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ABSTRACT Assuring that cell therapy products are safe before releasing them for use 
in patients is critical. Currently, compendial sterility testing for bacteria and fungi can 
take 7–14 days. The goal of this work was to develop a rapid untargeted approach for 
the sensitive detection of microbial contaminants at low abundance from low volume 
samples during the manufacturing process of cell therapies. We developed a long-read 
sequencing methodology using Oxford Nanopore Technologies MinION platform with 
16S and 18S amplicon sequencing to detect USP <71> organisms and other microbial 
species. Reads are classified metagenomically to predict the microbial species. We used 
an extreme gradient boosting machine learning algorithm (XGBoost) to first assess if 
a sample is contaminated, and second, determine whether the predicted contaminant 
is correctly classified or misclassified. The model was used to make a final decision 
on the sterility status of the input sample. An optimized experimental and bioinformat­
ics pipeline starting from spiked species through to sequenced reads allowed for the 
detection of microbial samples at 10 colony-forming units (CFU)/mL using metagenomic 
classification. Machine learning can be coupled with long-read sequencing to detect and 
identify sample sterility status and microbial species present in T-cell cultures, including 
the USP <71> organisms to 10 CFU/mL.

IMPORTANCE This research presents a novel method for rapidly and accurately 
detecting microbial contaminants in cell therapy products, which is essential for ensuring 
patient safety. Traditional testing methods are time-consuming, taking 7–14 days, while 
our approach can significantly reduce this time. By combining advanced long-read 
nanopore sequencing techniques and machine learning, we can effectively identify the 
presence and types of microbial contaminants at low abundance levels. This break­
through has the potential to improve the safety and efficiency of cell therapy manufac­
turing, leading to better patient outcomes and a more streamlined production process.
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C ell therapies are increasingly prevalent in the treatment of incurable diseases. For 
example, chimeric antigen receptor T-cells (CAR-T) are used for the treatment 

of hematologic malignancies (1). Ongoing work with human pluripotent stem cells 
(hPSCs) is targeted to treat Parkinson’s and age-related macular degeneration (AMD) (2), 
while mesenchymal stromal cells (MSCs) are being developed for immunomodulatory 
treatments (3). Compendial sterility methods based on microbial growth are laborious 
and slow, and faster methods are required to guide clinical management (4). Rapid 
testing methodologies could be an important tool for decreasing the time that a patient 
must wait from initial leukapheresis to application of the cell therapy. Depending on 
a patient’s current health status, the patient may not be able to afford delays in the 
application of a potentially lifesaving therapy. Thus, a reduction of release testing time 
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will ensure the timely and safe delivery of lifesaving cell therapies leading to improved 
patient outcomes.

Current good manufacturing practice for microbial safety has been developed from 
experience in recombinant protein manufacturing, where standard practices include 
three pillars of safety: (i) identifying appropriate sterile raw materials, (ii) testing of cell 
banks and in-process microbe testing for materials, and (iii) inclusion of process steps to 
inactivate and remove undetected microbes (5). Cell therapy manufacturers are currently 
only able to use the first two pillars, as the product cannot be terminally sterilized. 
For testing, as such, the main approach to microbial safety is with compendial sterility 
tests. For example, test samples are inoculated into multiple growth media that support 
proliferation of aerobic and anaerobic organisms, as well as using the plate-count 
method and membrane filtration (6). Validation of compendial methods includes testing 
with USP <71> organisms. For a list of USP <71> organisms used in this study, see Table 
1. The procedures for ensuring that the tests give valid results are codified in the United 
States Pharmacopoeia/European Pharmacopoeia (USP/EP). These methodologies can 
detect contamination events but cannot determine the species identity, which requires 
additional time-consuming follow-up by the manufacturer for failure investigation. The 
USP <71> tests suffer from false negatives at low (<30 CFU) contaminant concentration 
when organisms fail to grow to the point of visible detection in the allocated time 
(4). Alternative sterility testing approaches have been developed with lower limits of 
detection, such as the BacT/ALERT system, which is an automated system that works 
by colorimetric change of CO2 level evolution monitored every 15 min. The BacT/ALERT 
system has a limit of detection of <10 CFU for sample volumes of 0.5–10 mL (7, 8).

The performance of both standard compendial tests and BacT/ALERT system can be 
further improved upon. A thorough analysis by England and colleagues reported an 
average 40 h time to detection for the BacT/ALERT compared to 53 h for compendial 
testing. Within the acceptable runtime (<144 h), 100/118 (84.7%) tested isolates were 
detected by the compendial USP <71> methods. When running the sterility tests using 
the BacT/ALERT alongside supplemental Sabouraud dextrose agar (SDA) plates were 
incubated up to 360 h (15 dys), 100% of fungi were detected, while USP <71> detected 
95.8% of contamination events. The authors report that the majority of fungal isolates 
were detected within 144 h for the manual USP <71> methods; however, with automa­
ted systems fungal detection could take longer to resolve and were only detected by 
manual inspection after 360 h of incubation. Additionally, the authors report that some 
bacterial species could not be detected without the infusion of fresh human blood into 
the culture, for example, Haemophilus influenzae and Cutibacterium acnes using the BacT/
ALERT after 270 h. Furthermore, isolates grown at low inocula <30 CFU proved difficult 
to detect within the accepted time frame (<96 h, bacteria; <144 h, fungi) (4). In summary, 

TABLE 1 Culture conditionsa

Organism Medium Temperature Culture time Subculture time Respiration

Cutibacterium acnes (ATCC-6919) BHIB 33ºC 5 days 2 days Anaerobic
Klebsiella pneumoniae (KP1) LB 37ºC O/N 2 h Aerobic
Escherichia coli (K12) LB 37ºC O/N 2 h Aerobic
Pseudomonas aeruginosa PAO1 (ATCC BAA47) LB 37ºC O/N 2 h Aerobic
Candida albicans (ATCC 10231) YPD RT 2 days 2 h Aerobic
USP <71> organisms
Staphylococcus aureus subsp. aureus (ATCC 6538) LB 37ºC O/N 2 h Aerobic
Pseudomonas aeruginosa (ATCC 9027) LB 37ºC O/N 2 h Aerobic
Bacillus subtilis subsp. spizizenii (ATCC 6633) LB/ BHIB 33ºC O/N 2 h Aerobic
Clostridium sporogenes (ATCC 19404) MRCB 37ºC 2 days 2 h Anaerobic
Candida albicans (ATCC 10231) YPD RT 2 days 2 h Aerobic
Aspergillus brasiliensis (ATCC 16404)b Aerobic
aMRCB, modified reinforced clostridial broth; YPD, yeast extract–peptone–dextrose; BHIB, brain heart infusion broth; LB, Luria-Bertani broth; RT, room temperature; O/N, 
overnight.
bAspergillus brasiliensis was purchased as a pellet from ATCC.
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within the accepted time frame for bacteria (<96 h), 83.1% of isolates were detected with 
the USP <71> compendial approach and 87% for the 32.5°C BacT/ALERT. Meanwhile for 
fungal isolates (<144 h), 87.8% of isolates were detected with the USP <71> compendial 
approach and 63.4% for the 32.5°C BacT/ALERT (4). Given the described time constraints, 
as well as reduced sensitivity to filamentous fungal species, we propose an alternative 
methodology to detect and identify microbial contaminants through long-read MinION 
sequencing.

In the case of autologous CAR-T therapy products, each manufacturing lot is prepared 
for a single patient. Each lot of a cell therapy must pass through manufacturing release 
testing. This poses a limitation with regard to available test material—using a minimal 
volume for sterility assessment is important to maximize cells available for the patient 
(with guidelines described in USP <1071>) (9), while minimizing additional manufac­
turing costs. The products will have in-process and final product testing for sterility, 
endotoxin levels, mycoplasma, and replication competent virus (10). As CAR-T treat­
ments become more readily available, rapid throughput and multiplexing will become 
increasingly necessary for the analysis of large numbers of scaled-out autologous cell 
therapy samples.

We propose an approach that identifies contaminants by the presence of either 
bacterial or fungal DNA. Long-read MinION sequencing offers a rapid, simple-setup, 
real-time reads (contaminant identification before sequencing completion) and low-cost 
approach to DNA sequencing (11, 12). Compared to Illumina platforms, which can 
take days to weeks to complete sequencing and bioinformatics analyses, the nanopore 
sequencing can provide results in less than 24 h (13, 14). Another advantage with the 
long-read MinION sequencer is greater taxonomic resolution than amplicon sequencing 
using the Illumina MiSeq system at the species level (15). This positions an amplicon 
sequencing approach using the long-read MinION combined with a full-size metage­
nome database favorably for managing rapid release testing.

Samples processed for T-cell therapy release tests will present at low sample volume 
and low contaminant DNA concentration. The long MinION offers long-read sequencing 
with two potential routes for identification of contaminants: direct DNA and amplicon-
sequencing. Direct DNA sequencing comes with the constraint of high background host 
DNA that will be sequenced; this can make detection of the relatively lower concentra­
tion microbial DNA harder. Autologous cell therapies will present as low volume, low 
contaminant concentration samples, thus by necessity we took the PCR-based amplicon 
approach, which has the additional benefit of reducing microbe to host noise before 
downstream computational screening for host reads. In the case of bacteria, the highly 
conserved prokaryote 16S ribosomal RNA region is widely used in the metagenomics 
field with either the amplicon or shotgun metagenomics approach to perform microbial 
identification at the species level (16–18), while the equally highly conserved eukaryote 
18S–28S operon is used for fungal classification.

RESULTS

Design of the DNA read analysis pipeline

The overview of the pipeline is described in Fig. 1A, which processes reads derived from 
the spiked samples and derives a decision as to whether the sample is contaminated 
or not. The methodology for data acquisition, model training, and validation, followed 
by the decision matrix are described in Fig. 1B. In this analytical sterility study, we 
detected low levels of microbial contamination (10 CFU/mL) with high specificity and 
accuracy. The workflow we developed is compatible with low sample volume and rapid 
turnaround that meets patient needs and preserves sample shelf-life.

Samples were comprised of negative samples (T-cell only, medium-only, and cell-free 
medium) and target organisms (fungal and bacterial species) (Table 1). The table 
contains information about the added species, barcode used, sequencing time duration, 
and the nanopore kit used. Negative samples were prepared alongside inoculated 
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FIG 1 Pipeline workflow. (A) Machine learning pipeline overview: microbial contaminants were prepared, sequenced, and the reads processed. The metage­

nomic classification data, overall run read quality data, predicted species quality data, and time to next read data were combined into a single table of features. 

(Continued on next page)
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samples, which were run in both direct and amplicon-sequencing runs. Only the 
amplicon-sequencing data is presented here.

Inclusion of low-quality reads improved correctly classified read count

Our goal was to detect microbes at low concentrations (≤10 CFU). Detection therefore 
required generation of additional genetic information or a means of improving the pool 
of reads for assessment. We did not screen by phred quality score (Q) as we sought 
to identify contaminant read species identity. Consequently, there were a median of 
6.9% additional reads across all samples. Mean read length was compared between 
high-quality (Q ≥ 7) and high-quality plus low-quality reads (Q > 0) for correctly classified 
true positive reads (Fig. 2A). For 16S amplicon-enriched species, the read length did not 
change greatly between the two groups, at around 1450 bp, while 18S–28S had smaller 
mean fragment size (Fig. 2A).

We calculated summary statistics for a subset of low concentration (10–100 CFU/mL) 
contaminated samples compared to microbe-only samples. Generally, we observed 
more microbe reads in the microbe-only cultures compared to samples containing host 
reads too; this was independent of low-quality read inclusion (Fig. 2B). For example, 
by incorporating the low-quality reads, Candida albicans was detectable in two of the 
three samples contaminated at 10 CFU, while when using high-quality reads alone, C. 
albicans was detected in only one of the analyzed samples. A side-by-side comparison 
of high-quality vs any-quality reads revealed that by including the low-quality reads, 
one additional true positive sample was correctly identified; the overall read count 
increased for correctly predicted species. However, there was a concomitant increase in 
the number of misclassified species. As such, it is important to consider the use case 
before making the choice to include this additional source of reads.

Detection sensitivity and time to detection

Initially, we sought to understand the limit of detection for a single species, Pseudomonas 
aeruginosa PAO1. The rationale for selecting a limit of detection of 10 CFU/mL is based 
on the USP <1071> chapter discussing infectious dose. The document discusses that 
a contaminant detection of 100 CFU/mL would catch all viable organisms, as such we 
set 100 CFU/mL as our target limit of detection, with the aim of detecting at lower 
concentrations as a form of stringent validation (9). T-cells were spiked with serial 10-fold 
dilutions of P. aeruginosa to the lowest input of 10 and 100 CFU/mL. Our approach 
examined the utility for both direct shotgun sequencing and amplicon sequencing. 
Extracted DNA was processed for both direct and amplicon sequencing. We consistently 
achieved 10 CFU/mL detection (from 1 mL spike sample) with the amplicon approach 
(Table 2), while the limit of detection for direct sequencing was 1000 CFU/mL (data 
not shown). We then proceeded to contaminant detection for microbial cultures and 
T-cells for intentional contamination with C. acnes, Klebsiella pneumoniae, Escherichia 
coli, P. aeruginosa, or the USP <71> species C. albicans, Staphylococcus aureus subsp. 
aureus, P. aeruginosa, Bacillus subtilis subsp. spizizenii, and Clostridium sporogenes (Fig. 3A 
and B; Tables S1 to S6; Table S5 available at https://figshare.com/s/5ecffffa2578fd87977f 
for the Centrifuge summary data and Table S6 available at https://figshare.com/s/
439ea9a88baf513c7b39 for the HS-BLASTn summary data). In all cases, we consistently 

FIG 1 (Continued)

A decision tree gradient boosting classifier algorithm XGBoost was deployed to assess contaminant sterility status, for more information see Machine learning 

pipeline in Materials and Methods or github. (B) Bacteria (gram positive or gram negative) or fungus (yeast) are spiked into PBS-washed cultured T-cells. The 

process is repeated threefold with and without T-cells using cells from a different passage and separately cultured microbes. DNA is extracted using mechanical 

lysis, buffers, and magnetic beads. DNA is amplified using targeted rDNA primers for the 16S region and 18S–28S region. (C) Sequencing analysis pipeline: 

sequenced base called reads were cleaned and host reads removed. Remaining reads were classified against the combined viral, fungal, and bacterial database 

using Centrifuge and High-Speed BLAST. Classified reads along with other data were provided to the machine learning pipeline for sample contamination status 

analysis.

Research Article Microbiology Spectrum

September/October 2023  Volume 11  Issue 5 10.1128/spectrum.01350-23 5

https://figshare.com/s/5ecffffa2578fd87977f
https://figshare.com/s/439ea9a88baf513c7b39
https://github.com/Electrocyte/adventitious-pipeline/blob/main/README.md
https://doi.org/10.1128/spectrum.01350-23


detected the contaminant to 100 CFU/mL (Fig. 3A) and 10 CFU/mL (Fig. 3B) in microbially 
contaminated T-cell cultures. One organism that proved consistently difficult to amplify 
was K. pneumoniae, resulting in fewer reads per sample than other species. Others have 
reported difficulty with taxonomic resolution in Klebsiella when amplifying the 16S rRNA 

FIG 2 Assessment of incorporating low-quality reads in sequence classification. (A) Additional low-quality reads incorporated 

into data analysis (N = 3) for 10 CFU/mL samples. Mean read length for correctly classified (true positives) reads with and 

without use of the low-quality reads were depicted in blue and black, respectively. Incorrectly assessed reads (misclassified) 

were depicted in cyan and gray. (B) Summary table of high-quality reality reads compared to using all reads for the microbes 

alone and microbes spiked into T-cells at 10 CFU/mL. Read numbers are for reads assigned to the correct spiked organism and 

represent a subset of all sequenced samples.
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FIG 3 Microbes spiked into T-cell cultures. All samples were amplified with either 16S primers for bacterial species, or 

18S–28S primers for fungal species. Samples were prepared for analysis as microbial cultures as well as simulated microbial 

contamination by the addition of microbes to activated T-cells at 100 CFU/mL (A) and 10 CFU/mL (B), pure culture spikes 

(gray) compared to contaminants spiked into T-cells (blue). Species tested were K. pneumoniae, P. aeruginosa PAO1, C. acnes, 

and the USP <71> species; C. albicans, B. subtilis, Clostridium sporogenes, S. aureus, P. aeruginosa 9027. Error bars are biological 

replicates (N = 3).
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regions of V1V2, V3, and V6V7 with Nanopore. They observed misclassification to closely 
related genera and low count of total mapped reads (13).

Our primary goal was to identify sample contamination as rapidly and accurately 
as possible. We were able to detect and identify contaminants within 24 h, including 
DNA extraction (2 h), PCR (2 h), sequencing (12 h), and the bioinformatics analysis 
(1 h). If the sequencing was shortened to 2 h, the time to detection was approximately 
8 h per sample. However, this might not provide enough time to sequence enough 
reads dependent on the species present (in species that amplify well, e.g., B. subtilis, 
we observed enough reads within 2 h). Multiple biological samples can be processed 
simultaneously with multiplexed barcoding, allowing up to 12 samples to run on the 
same flow cell. This can be replicated fivefold for technical replicates per USP <1223> 
guidance (19), which can be run in parallel with the primer and culture medium negative 
controls. To further improve the time to detection, we evaluated different computational 
processing approaches. The read trimming and metagenomic classification were very 
time intensive. However, multiprocessing resulted in an average fourfold improvement in 
speed. A computer system with higher specifications than used here would see an even 
greater improvement in time to result with more simultaneous processes.

Machine learning pipeline and sample sterility status

The methods described in the pipeline allow for rapid and sensitive detection of low 
concentrations of contaminations when the contaminant is known. In addition to 
the proposed machine learning approach, all experiments would have plates cultured 
alongside the sequencing analysis. This would allow organisms that are detected 
as borderline to be captured by a secondary, albeit slower methodology. To detect 
unknown contaminants using an unbiased approach, we used machine learning to 
enable decision making regarding the sterility status of a sample. The metagenomic 
classifiers yield multiple potential species identities for perceived contaminants, which 
we initially attempted to deplete by using filters based on total minimum read count 
per species. Two separate pairs of models were generated for both data from Centri­
fuge and HS-BLASTn. The Centrifuge models assessing sterility status and whether a 
contaminant was correctly predicted are shown in Fig. 4A through C. Model analysis 
for the HS-BLASTn model is depicted on Fig. 4D through F. The classification report 
demonstrates a model that can identify sample contaminant status, while the model 
examining contaminant identity can find contaminant species (Fig. 4A and B 4D and E). 
The model predictions from sample status (sterile: true negative or contaminated: true 
positive) and correctness of contaminant classification (correctly classified vs misclassi­
fied contaminant) were combined and a decision matrix was used to decide if a sample 
was sterile, contaminated, potentially contaminated, or showed signs of most likely 
being sterile with background noise signal (Fig. 4C and E). For Centrifuge, 65.0% of 

TABLE 2 Limit of detection and sensitivity for contaminant detectiona

Contaminant species Limit of detection Sensitivity (species detected in 
sample/total samples)

Pseudomonas aeruginosa (PAO1) 10 CFU 9/10
Klebsiella pneumoniae (KP1) 10 CFU 3/7
Cutibacterium acnes 10 CFU 4/6
USP <71> organisms
Staphylococcus aureus 10 CFU 5/6
Bacillus subtilis 10 CFU 6/6
Clostridium sporogenes 10 CFU 6/6
Pseudomonas aeruginosa (9027) 10 CFU 4/6
Candida albicans 10 CFU 11/12
aIn the sensitivity column, the first value denotes total samples from amplicon sequencing split for combined 
spiked T-cell contaminant and microbial culture of that contaminant. Second value shows only the T-cell 
contaminant amplicon sequencing value.
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negative controls were correctly labeled as sterile, 64.2% of 10 CFU/mL samples were 
correctly assessed as contaminated, and 77.3% of 100/mL CFU samples were identified 
as contaminated. Overall, while similar, the BLAST models perform better than Centrifuge 
on the final assessment for sterility status, with reduced ambiguity in a final decision 
on whether a negative control sample is sterile (75.0%) or whether a spiked sample 
was contaminated (10 CFU/mL; 83.9%, 100 CFU/mL; 96.0%). Overall, the 95% confidence 

FIG 4 Machine learning XGBoost model performance, sample, and prediction contaminant status. (A–C) Model performance statistics from data from 

centrifuge metagenomic classifier used to generate two XGBoost classification models. (D–F) Model performance statistics from data from high-speed BLASTn 

metagenomic classifier used to generate two XGBoost classification models. (A and D) Confusion matrix and classification report for model assessing sample 

sterility status. (B and E) Confusion matrix and classification report for model assessing whether a predicted contaminant is a correctly classified contaminant or 

misclassified. (C and F) All spikes and negative control model predictions were assessed for prediction accuracy regarding whether the sample assayed is sterile. 

Black bars depict samples assigned as likely contaminated, blue bars depict samples identified as sterile, while gray depicts samples where the algorithm had 

difficulty assigning a decision of either sterile or contaminated. CFU: colony-forming units. Sample status is defined as sterile: true negative or contaminated: true 

positive. Correct contaminant classification is defined as a true positive contaminant vs a misclassified contaminant.

Research Article Microbiology Spectrum

September/October 2023  Volume 11  Issue 5 10.1128/spectrum.01350-23 9

https://doi.org/10.1128/spectrum.01350-23


intervals for the combined Centrifuge models were 80.67% ± 1.06% and 76.75% ± 1.03% 
for HS-BLASTn.

DISCUSSION

We have demonstrated that amplicon sequencing can be used for low sample volume 
(<1 mL), low concentration (≤10 CFU) microbe detection in intentionally contaminated 
T-cell cultures. Our goal was to detect a contaminant with high specificity and in a 
short turnaround time to enable rapid sterility release testing for cell therapy products. 
This method is designed to report the presence of very low concentration contaminant 
organisms and does not yet allow for accurate organism quantification. We designed 
our sterility detection to be faster than current commercial detection times for low 
concentration contamination events of <100 CFU/mL to within <24 h, which compares 
with the historical detection times of 7–14 days using BacT/ALERT (20, 21) and more 
recent detection times of 40 h (4, 9), which is in line with FDA sterility guidelines (22, 
23). For bacterial and fungal detection, we used an amplicon approach that signifi­
cantly increased the contaminant signal from DNA extraction. Use of the Nanopore 16S 
amplicon kit allowed us to generate consistent full-length 16S fragments. Previously, 
full-length amplicons have been shown to be comparable in reliably identifying genera 
on Nanopore and MiSeq technologies, while Nanopore can operate at lower run costs 
(50 USD/sample) (14). However, when generating similar fragments using the 18S–28S 
primers, we did not observe similar read length consistency. This is likely due to use 
of the transposase technology in the Rapid Barcoding Sequencing Kit (SQK-RBK004) 
that cleaves the PCR product for barcode ligation. The problem could be solved by 
using the Nanopore ligation kit (SQK-LSK110); however, this approach increased sample 
preparation time by up to 5 h. This limited our ability to sequence the entire region as a 
single strand, however as we have demonstrated, we are still able to detect C. albicans to 
10 CFU.

During the sequencing analysis, we observed background genomic material in the 
sterile media controls. We believe these are derived from DNA contaminants in the DNA 
extraction, PCR, and library preparation kits. The presence of a kitome has been widely 
described in the literature, including from the DNeasy PowerSoil Kit used in this work (24, 
25). This is problematic because at low microbial concentration the signal to noise ratio 
becomes elevated, making identifying correctly classified contaminants difficult and 
increasing read misclassification. False positive predictions will potentially disrupt the 
ability to deliver the cell therapy product to a patient in the needed time frame because 
of additional time required to carry out failure investigation to assess actual lot sterility 
status, in addition to incurring further manufacturing costs. The issue of high noise at low 
concentration reinforces the need to use negative controls to identify the contamination 
background as well as control the number of PCR cycles, as previous studies have shown 
that 20 cycles were too few while 40 cycles will amplify the noise (26). Amplification 
efficiency was a potential problem we observed in certain species. We assayed 25, 27, 29, 
and 36 cycles and found 29 to be the optimal value for our use case in terms of reads 
sequenced for total cycle count, though others reported 30 as optimal (14). We observe 
a strong correlation between CFU and OD, which was corroborated by digital PCR. We 
conclude that the dilutions accurately achieved the target cell concentration and that the 
read count variation most likely occurs during library preparation or sequencing itself. 
We propose further investigation with the new 10.4.1. chemistry to better understand 
this observation.

One of the key limitations of this approach is the use of DNA for detection of 
adventitious agents. This does not provide a definitive answer to the viability of 
the detected contaminant and is part of the reason a deeper understanding of the 
kitome is required. Alternatively, sequencing of RNA after reverse transcription and 
rDNA amplification would provide a means to test for contamination directly. We are 
investigating background species that are detected during the sequencing, they are 
characterized by weak signal and may be on the limit of perception due to the low 
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read count derived from an already very low starting sample concentration and volume. 
Extensive testing and validation of potential background contaminant species could 
reduce noise detection, we propose performing multiple technical replicates per sample, 
as well as running multiplexed positive and negative standard controls in every sterility 
test.

To optimize sensitivity and pipeline runtime, we examined the choice of input species 
to build the metagenomic databases. This is mostly an issue with the NCBI fungal refseq, 
which at the time of database construction was confined to only 12 complete genomes. 
To expand the range of species, we incorporated incomplete genomes for both the 
BLASTn and Centrifuge databases. However, the bacterial reference database is very 
large and contains many genome replicates for common bacterial genera Pseudomonas 
(613) and Escherichia (1100), as well as species including P. aeruginosa (219) and E. 
coli (1078). As such, to reduce the database size, we retained only genomes with a 
“complete genome” and removed those labeled as “chromosome” or “plasmid.” This 
helped improve runtime and reduce database size differences between the fungal and 
bacterial databases. The only downside we observed by shrinking the bacterial database 
was the loss of species-level inference as observed with C. sporogenes, where C. butyricum 
was indicated instead. For future organisms, a living database could be constructed 
and periodically updated. Reference genome agnostic approaches could be used for 
unknown contaminants, such as read binning using the DNABERT approach described 
subsequently (27). After inclusion of C. sporogenes, we continued to observe that C. 
butyricum was preferentially predicted with 42% more reads on average for HS-BLASTn 
(and not identified by Centrifuge).

We subtracted host sequences using the human genome to reduce noise in the 
analysis pipeline and improve pipeline efficacy. With this approach, 98% of total reads 
were identified as host reads and removed, illustrating the challenge of detecting 
low-level bacterial or fungal contaminants in samples of cell culture material. Our study 
focused on amplicon-sequencing, which enriched for target sequences and reduced the 
ratio of host reads to target reads. We implemented host read removal to improve 
sensitivity and enable a non-amplicon approach going forward. Nevertheless, host 
read removal is useful for improving microbial identification, as has been described 
previously in viral contaminant detection (28). Previously, host read removal has been 
shown to improve viral contig assembly while reducing the number of assembled 
contigs so as to allow use of metagenomic classifiers such as BLASTn (29). In addition 
to removing host reads, removal of background reads by sequencing healthy and 
sterile T-cells, then subtracting the reads from the final pool could further improve 
sensitivity by reducing misclassification events (29). The 16S and 18S–28S amplicon 
sequencing approach is more successful than direct metagenome sequencing, especially 
at contaminant concentrations ≤1,000 CFU/mL. Previous studies have demonstrated that 
amplicon-based approaches can introduce inaccuracy and misclassification, for example, 
0.93% of reads are misclassified by EPI2ME at the genus level (16) and that there is a 
2.09% misclassification for the NCBI 16S reference database at genus level (16). For cell 
therapy sterility, the improved contaminant detection at the cost of a small increase to 
misclassification is an acceptable outcome.

Two key limitations for model development are the volume of available sequenc­
ing analysis data and the high sample-to-sample variance in the data distribution. 
For example, we observed sources of variation from read count, read quality, and 
experimental runtime. The implications for the observed variance include difficulty in 
applying the machine learning model to new samples that may contain data with 
novel distributions. Solving the problem of noisy, unreliable data requires a robust and 
flexible model that can classify despite lack of knowledge on the data distribution for 
the evaluation samples. This includes selecting for features with minimal missing data 
and applying, as well as deploying data augmentation techniques such as addition of 
gaussian noise, generating squares, and taking log10 of the numerical data. Finally, we 
have applied regularization techniques during model development including optimizing 
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L1 (lasso regression), L2 (ridge regression), and the gamma hyperparameters to mitigate 
overfitting. To improve issues with generating more similar and reliable samples that 
follow a specific data distribution would require further refinement of the DNA extraction 
and library prep, in addition to controlling for missing data points during feature 
selection. However, this would come at the cost of having a model that is less able 
to generalize to other cell types. We would like to highlight that the accuracy values 
we achieved of 95% should be taken as theoretical best-case scenario for the devel­
oped model. Further testing incorporating double-blinded and real-world samples will 
be necessary to examine performance. We would expect performance to be reduced 
under these circumstances as the new data will have changed distributions and may be 
imbalanced. We therefore stress that it is important to run positive and negative controls 
alongside all PCR runs during multiplexing.

Our analysis has primarily focused on generating many instances of contamina­
ted samples. During production for cell therapy manufacturing, we envisage sam­
ple contamination events as rare. Consequently, future model optimization must be 
considered through this data imbalance, as observed in fraud detection for better 
anomaly prediction (30–32). Alternatively, it might be possible to replace the metage­
nome classifier and binary classifiers with a single step natural-language processing 
(NLP)-based approach using, for example, DNABERT (27). A NLP-based approach would 
complement the metagenomics analysis that we have already designed. Furthermore, 
it would give us a potential solution for the identification of unknown contaminated 
samples independent of whether they have been previously characterized.

In conclusion, we have developed a rapid (<24 h), reliable, sensitive, and specific 
long-read sequencing pipeline for the detection of microbes in T-cell therapies alongside 
a large data set of microbial organisms’ (USP <71> focus) low concentration samples in 
pure culture and spiked with T-cells. This is partly achieved by using machine learning to 
provide an unbiased, untargeted approach that permitted automated decision making 
of the sterility status of cell therapy products. Our approach has demonstrated that we 
can achieve high sensitivity and detect contaminated samples on par or superior to 
accepted methods in superior time frames.

MATERIALS AND METHODS

Cell culture

Healthy human primary T-cells (human PBMCs were obtained from a single com­
mercial leukopak [Cat#260240.01, Lonza]) and one set of T-cells was derived from 
StemCell technologies (70025) were cultured in AIMV (Cat#12055091, Gibco) + 2% 
AB Human Serum (Cat#H4522, Sigma-Aldrich) + 100 U/mL IL-2 (Cat#130-097-748, 
Miltenyi Biotech) and activated using ImmunoCult Human CD3/CD28 T-Cell Activator 
(Cat#10971, StemCell Technologies). T-cells were cultured for 14–21 days. Cell counting 
was performed using a TC20 Automated Cell Counter (Biorad) with Trypan blue stain.

Microbial species were grown and cultured as described in Table 1. We used and 
developed standard curves alongside CFU plate counting to accurately estimate the 
number of bacterial cells present within a culture at a given timepoint using the 600 nm 
wavelength optical density (OD) values (33). CFUs were counted before the addition of 
microbial cells to sterile cultured T-cells. Briefly, 100 µL culture was serially diluted, 10 µL 
of each serial dilution was plated on agar, and CFUs were counted the following day. 
For low concentration samples, following overnight culture, a subculture was prepared 
at 0.05 OD and incubated for 1–3 h (the time was determined using the standard 
curve to predict the log phase of growth). Next the culture was diluted in LB to 0.1 
OD 600 nm and to 0.01 OD 600 nm. Subsequently, 0.01 OD was serially diluted in 
phosphate buffered saline (PBS) eight- to ninefold to obtain 10 CFU/mL. At the last set 
of serial dilutions, 1 mL was plated onto LB agar plates for CFU counting. Only once 
the growth and counting of the colonies was complete were the spikes prepared. Other 
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methodologies that could be used to confirm the final concentrations for future work 
include digital PCR, which we observed as a highly capable tool for measuring spiking 
dilutions post-rDNA PCR.

Preparation of spiking samples

Spiked samples were prepared using activated T-cells and bacterial or fungal species. 
Each sample used 500,000 T-cells. Bacterial and fungal cultures at a range of 10–100 
CFU/mL were prepared as described previously and added directly into T-cells in PBS and 
incubated for 5 min.

DNA extraction and amplification

For sample preparation, a uniform approach to DNA extraction was taken to maximize 
DNA extraction from all possible microbes. Using the manufacturer’s protocols, the 
DNeasy PowerSoil Pro Kit (Cat#47014, Qiagen) was the most consistent and reliable 
product. The kit disrupts cell walls and membranes alike through bead beating 
(TissueLyser II [Cat#85300, Qiagen]). The samples were quality controlled using the 
NanoDrop 2000/2000 c Spectrophotometers (Cat#ND-2000, Thermofisher Scientific) to 
assess RNA and protein contaminants (260/280 [1.8–2.0], 260/230 [2.0–2.2]) and Qubit 4 
Fluorometer (Cat#Q33238, Thermofisher Scientific) for DNA concentration.

Primers to amplify full-length 18S–28S rRNA genes were adapted from reference 34 to 
amplify the entire operon: 18S NS1 short F, CAGTAGTCATATGCTTGTC, and 28S RCA95m 
R, CTATGTTTTAATTAGACAGTCAG (34). All 16S primers described were those available in 
the Oxford Nanopore 16S-barcoding kit (SQK-RAB204). PCR conditions were as follows: 
initial denaturation 1 min at 95°C for 1 cycle, 20 s denaturation at 95°C for 29 cycles, 30 s 
annealing at 55°C for 29 cycles, an extension time of 2 min at 65°C for 29 cycles, followed 
by a final 5 min extension at 65°C, LongAmp Taq 2X Master Mix (e.g., NEB M0287).

Long-read sequencing library preparation

We used a multiplexing approach to maximize the sample throughput. This uses 
the existing 16S primers that have barcodes associated with them that can later be 
demultiplexed. In the case of the 18S–28S amplicons, no pre-existing kit exists. Thus, we 
applied barcodes from the rapid barcoding kit (SQK-RBK004) to the 18S–28S ampli­
fied samples, which could later be demultiplexed. Briefly, amplified DNA had RB01-12 
fragmentation primers attached and were concentrated as per the manufacturer’s 
protocol. The Oxford Nanopore MinION sequencer with a MinIT device for base calling. 
The FLO-MIN106 flow cell was used to run the DNA samples for between 2 and 24 h. 
Reads were generated and basecalled (the electrical impedance signal was converted 
to a kmer string) by the Nanopore device were processed using the basecaller Guppy 
v3.2.10.

Pipeline tools

Metagenomic classification databases were generated from NCBI bacteria, virus, and 
fungal databases, these were combined into a single database. Due to runtime issues 
with the bacterial database using BLAST, we developed an abridged database “filter­
bacteria” that contained a reduced number of entries for highly prevalent organisms 
within the NCBI database, for example, E. coli. This reduced the database to one-sixth 
its original size and was combined with the viral and fungal sequences to make a 
viral-fungal-bacterial database. To augment the fungal database for HS-BLAST, additional 
genomes were included from NCBI that were labeled as incomplete genomes. The 
database location and information were saved in a .txt file. Three metagenomic classifiers 
used in the pipeline were: Centrifuge (35), high-speed (HS-) BLASTn (36), and Krakenuniq 
(37). The DNA reads from sequencing were used as the raw data for the metagenomic 
classifiers. Using “centrifuge-download,” the NCBI refseq libraries for viruses (24/06/2020), 
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fungi (25/05/2021), and bacteria (21/09/2020) were acquired and “centrifuge-build” was 
applied to generate the database using the NCBI taxonomy structure. Krakenuniq was 
an additional classifier used for removing the maximum number of host reads, in order 
to prevent the host reads being a majority. Porechop 0.2.4 (https://github.com/rrwick/
Porechop) trimmed adapters from the Nanopore reads. Qcat 1.1.0 demultiplexed the 
barcoded reads, as well as the updated guppy algorithm (v6.1.5).

Pipeline

The bioinformatics pipeline (Fig. 1A and B) links together multiple tools, in addition to 
hosting custom scripts to check analysis progress. If the sample was multiplexed, it was 
demultiplexed before read trimming by porechop. We retained low-quality reads from 
the “fastq_fail” folder within the pipeline because the aim was to detect low concentra­
tion contaminants.

If the user specifies a known host species and reference genome (e.g., human), the 
pipeline will align host reads using HS-BLAST, Krakenuniq, and Centrifuge. The read 
IDs were used to remove these host reads from the read pool, which accelerates the 
workflow and reduces noise related to the host reads. Host read removal was comple­
ted in tandem using multiprocessing for each metagenomic classifier. Statistics on the 
number of host reads, classified and unclassified reads, were retained. Host-depleted 
reads were then processed using the metagenomic classifiers against the combined 
fungal, viral, and bacterial database. HS-BLAST and Centrifuge output were used to 
generate descriptive summary statistics from the troubleshooting files using the pandas 
describe function. Summary statistics for each predicted contaminant were generated 
from the Guppy file “sequencing_summary.txt” by aggregating the individual read 
quality scores that were processed using the describe function.

After analysis using the pipeline discussed earlier, Nanoplot (38) was used to generate 
and monitor run statistics. A wrapper was created to generate unique sequencing 
summary files for barcoded samples by splitting the reads on their barcode IDs. The 
“NanoStats.txt” file was cleaned up for later use in the machine learning section of 
the pipeline. Run environment specification were as follows: Python version: 3.8.3, Bash 
version: GNU bash, version 4.4.20(1) release (x86_64-pc-linux-gnu).

Machine learning pipeline

Initial pre-processing for metagenomic classification data from the combined viral, 
fungal, and bacterial database uses an independent filter for each metagenomic 
classifier. The pre-processing step is necessary because it filters out many of the 
low-quality predicted species made by both HS-BLAST and Centrifuge. The HS-BLAST 
filter uses a maximum percent identity value greater than 83%. This reduced misclas­
sified species by 33.19% (incorrectly predicted species removed from downstream 
analysis), while retaining (166/167) of samples, resulting in the loss of one sample from 
the analysis. Similarly, the Centrifuge filter uses a minimum metagenomic classification 
mean score greater than 900. The filter removes misclassified species by 38.64%, while 
retaining 97.45% (153/157) of samples. The Nanoplot output included experiment-level 
summary information were subsequently concatenated to the data. Summary statistics 
using the describe() function were generated for the metagenome classification data. 
Predicted species that have NaN values (Not a Number) for read count and mean read 
quality were removed from the data set.

The data were pre-split based on two layers of train_test_split() 75:25 split ratio. 
The split ratio was selected due to our relatively small limited data set size, previous 
publications recommended splits that are generally between 60:40 and 80:20 training 
to testing (39). Previous publications provide guidance as follows: there is no clear 
guidance and recommendations such as 80:20 are based off rule-of-thumb decisions by 
practitioners (40). In larger data sets, splits can be much more extreme at 99.5:0.4:0.1 
split (training/development/test). The first split generated the training and testing data 
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set alongside an unseen and (for model assessment) unused evaluation data set. 
The training and testing were then split again into training data set and test data 
set. Features were selected using Featurewiz (https://github.com/AutoViML/featurewiz), 
which was used to generate a list of important features that accounted for highly 
correlated features, as well as less insightful features and provided features for the 
generation of a high-performing model.

Binary classifiers were designed to answer two questions: (1) is the sample contami­
nated? and (2) is the predicted contaminant correctly classified and does it match the 
spiked species? For (1), the labels and encoded labels were as follows: True_positive: 
1, True_negative: 0 and (2) False_positive: 0, True_positive: 1. XGBoost classifier models 
were developed and implemented. The data preparation was similar for each. Gridsearch 
was used to identify the ideal model starting parameters. Performance was assessed with 
cross-validation testing (cv = 5, scoring = accuracy), confusion matrices, and generation 
of a classification report. Models were described subsequently:

1. Is the sample contaminated? Defined as either sterile or not sterile.
2. Is the predicted contaminant correctly classified? Defined as expected contami­

nant from the spike or any other predicted species.

The model predictions were then compared to the original labels and compared for 
accuracy. This step was completed for both questions (1) and (2). The last step for the 
training and testing of the machine learning pipeline were to take the predictions and 
make an assessment using a decision matrix as to whether a given sample is sterile or 
contaminated based on the available data.

To evaluate the machine learning model, the trained machine learning model applied 
to an unseen data pool that shared the same distribution as the complete data set: the 
evaluation data. The standard scalers were reloaded from the training step and used for 
standardization. The features identified by Featurewiz were also imported and reused 
when running the model with new data.
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DATA AVAILABILITY

Pipeline can be found at https://github.com/Electrocyte/adventitious-pipeline/. The 
following link provides the python files used to build the model: https://github.com/
Electrocyte/publication­figures. The Sequence Read Archive (SRA) deposit ID is 
PRJNA869859.

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Table S1. Sample names (Spectrum01350-23-S0001.xlsx). A table with all processed 
samples.
Table S2. Nanoplot summary data (Spectrum01350-23-S0002.csv). This table contains 
the results from running Nanoplot and gives sequencing-run raw information.
Table S3. Summary sequencing results from samples (Spectrum01350-23-S0003.csv). 
This table includes data on number of reads sequenced before removal of human host 
reads, as well as classified contaminant reads.
Table S4. Rationale for selection of XG Boost model (Spectrum01350-23-S0004.xlsx). A 
table showing results from pycaret of comparing various machine learning models that 
guided our choice of a final model.
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