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Viewing biofilm formation through a multifocal lens of physics 
and biology 
Binu KundukadA,#, James C. S. HoA,B,#, Sudarsan MugunthanA, Lan Li WongA, Scott A. RiceC,  
Atul N. ParikhA,B,D, Thomas SeviourA,E, Jamie HinksH and Staffan KjellebergA,F,G,*  

ABSTRACT 

Recent studies on the formation, organisation and dynamics of biofilms highlight the interplay 
between physical forces and biological programs. Two complementary generalised pathways that 
explain the mechanisms driving biofilm formation have emerged. In the first pathway, where 
physical forces precede the biological program, the initial expansion of cells leads to cell clustering 
or aggregation prior to the production of extracellular polymeric substances (EPS). The second 
pathway describes an initial biologically prompted production of EPS, which introduces new 
biophysical interactions within the EPS, such as by phase separation, macromolecular crowding, 
excluded volume interactions and intermolecular cross-linking. In practice, which of the two 
pathways is adopted is ultimately determined by the specificities of the biofilm and the local 
microenvironment, each leading to the formation of robust, viscoelastic biofilm. Within this 
framework, we further highlight here recent findings on the role of higher-order structures in 
matrix gelation and phase separation of EPS in promoting the clustering of bacteria. We assert 
that examining biofilms through the combined lens of physics and biology promises new and 
significant methodological and conceptual advancements in our understanding of biofilms.  

Keywords: biofilms, EPS, extracellular polymeric substances, matrix, phase separation, 
viscoelasticity. 

To survive and thrive in disparate environmental conditions, microorganisms adopt a 
biofilm lifestyle in which aggregates of microorganisms are embedded within a three- 
dimensional matrix of self-secreted biopolymers, collectively termed extracellular 
polymeric substances (EPS).1,2 This contrasts with the free-swimming planktonic life-
style, where each microbial cell exists as an isolated entity. The biofilm lifestyle is 
highly pervasive and adopted by a variety of microorganisms in a broad diversity 
of habitats and environments. They span from anaerobic ammonium oxidation 
(anammox) bacteria forming beneficial polymicrobial biofilms that account for sub-
stantial nitrogen recycling in water bodies and global nitrogen sinks,3 to Pseudomonas 
aeruginosa cells co-existing with Staphylococcus aureus in the lungs of people with 
cystic fibrosis, giving rise to pathogenic biofilms that are mechanically robust and hard 
to eradicate.4 

The initiation of the biofilm lifestyle is orchestrated by a complex set of tightly 
regulated biological mechanisms – including genetic program, gene regulation and 
post-translational modifications – as the cells respond to external cues (e.g. temperature, 
pH, osmolarity, nutrient availability, chemicals and attachment surfaces).2 The secreted 
biofilm matrix comprises a cocktail of chemically and structurally distinct EPS molecules 
(mainly polysaccharides, proteins, nucleic acid and lipids),5 whose interactions with each 
other are also influenced by environmental factors. This amounts to physically distinct 
and locally different environments around clusters of cells, which in turn exert emergent 
physicochemical forces on the embedded microorganisms, thereby forming a well- 
regulated, homeostatic feedback control system. Thus, biological and physical forces 
work together iteratively and synergistically to provide the matrix with the emergent 
physical, chemical and functional properties that set biofilm bacteria apart from their 
planktonic counterparts.6 The overall fitness of the embedded microorganisms is 
enhanced through emergent behaviours, which include efficient resource capture and 
retention, synergism of consortia and stress tolerance, as well as enhanced resistance 
to antimicrobial agents.2,7 Many of these emergent properties are attributed to the 
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manipulation of the spatial organisation of matrix compo-
nents that affect biopolymer interactions in the matrix and 
alter biofilm viscoelasticity.8 

Understanding how this physical–biological interplay 
within the matrix provides biofilms with their emergent 
properties requires a cross-disciplinary approach that goes 
beyond classical microbiological methods. Quantitative bio-
physical approaches, when paired with qualitative biological 
observations, enable nuances of the underlying mechanisms 
to be described and contribute to establishing a holistic view 
of the biofilm. Recent studies are beginning to shed light on 
the importance of this interplay for establishing the emer-
gent properties of biofilms.9–11 Here, we provide a selection 
of examples that highlight how biophysics can be used to 
explain certain phenomena in biofilms and how insights into 
the physical factors influencing biofilm formation can be 
exploited to understand and engineer biofilm emergent prop-
erties and functionalities. 

Biofilm formation – an interplay between 
biology and physics 

A key definition in the adoption of the biofilm lifestyle is the 
transition of the initially soluble bacterial biopolymers into an 
insoluble, gel-like state, which acts to immobilise the bacterial 
cells and generate interactive bacterial consortia. This trans-
formation is mediated by the secreted EPS molecules that 
provide a distinct habitat for the bacteria, create a localised 
scaffold and establish emergent properties. Therefore, 

understanding how the EPS contributes to the formation of 
this physically distinct environment is the first step towards 
identifying the mechanisms of the unique biofilm emergent 
properties. The view of biofilm formation through the lens of 
biophysics has thus identified at least three fundamental bio-
physical concepts that contribute to this process (Fig. 1). 
These are (i) aggregation of bacteria due to reduced bacterial 
motility,11,12 (ii) reorganisation of the matrix by phase sepa-
ration13 and (iii) gelation of the matrix biopolymers.10,14 

Aggregation of bacteria due to reduced bacterial 
motility 

As bacteria multiply, motile cells move collectively in 
dynamic clusters, following two scenarios.11 In the first sce-
nario, cell crowding precedes EPS production. Fluctuations 
in cell density randomly produce high-cell-density clusters in 
which movement of the cells is slowed down due to space 
constraints (crowding). Subsequent cell division increases 
crowding, leading to a further limitation in cell movement, 
generating areas with high-density clusters comprising 
immobilised cells, and areas with low-density of swarming 
cells. This scenario is thought to activate biological programs 
that produce EPS, which drives the progression to a mature 
biofilm state. In the second scenario, EPS production pre-
cedes the clustering of bacteria. The production of EPS 
(e.g. quorum sensing activates exopolysaccharide succino-
glycan in Sinorhizobium meliloti) crowds the space around 
the bacterial cells and physically pushes them to form high- 
density clusters, in order to increase their own entropy.15,16 
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Fig. 1. Two proposed mechanisms of biofilm formation. Upper boxes (physics drives biology): a motility-induced transition driven 
by fluctuations in cell densities produces larger aggregates of immobile cells and highly motile smaller aggregates of swarming cells 
(red arrows). The high-density clusters then initiate EPS production and biofilm formation. Lower boxes (biology drives physics): the 
production of EPS is first activated by environmental cues. Cell–cell adhesion and biofilm formation are facilitated by the EPS. At low 
concentrations of EPS, where there is no crosslinking, the biofilms have a viscous behaviour. The crosslinking density increases with 
elevated EPS production, leading to an elastic biofilm matrix. The image is from Wong et al. with modification 6 (© 2022, Wiley).    
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Both motile and immotile bacteria aggregate in response to 
the increase in macromolecule concentrations. 

Reorganisation of the matrix by phase separation 

Continued production of EPS crowds the biofilm matrix, 
where the biomolecules engage in physical interactions, and 
reorganise the matrix into co-existing phases (liquid–liquid 
phase separation, LLPS, or liquid–solid phase separation, 
LSPS).17 These phase behaviours are also commonly found 
in eukaryotic cell biology,18 suggesting it is a highly con-
served and ancient biological process. For example, the amy-
otrophic lateral sclerosis (ALS)-associated FUS protein 
undergoes a transition into solid aggregates through an inter-
mediate liquid droplet state.19 This transition to solid state is 
driven by the changes in the concentration of proteins in the 
cell. It is thought to be a key step in the progression of ALS 
pathology, as these aggregates can disrupt normal cellular 
processes. Similarly, in biofilms, the extracellular matrix pro-
duced by bacteria may go through an intermediate LLPS state 
before transitioning into a gel-like state. 

A commonality among LLPS-inducing molecules is the 
presence of low-complexity, primary repeat sequences that 
adopt disordered conformations, which now appear to be an 
evolutionarily conserved process.20 Many of the proteins in 
biofilm matrices are also characterised by such sequences 
and behaviour, suggesting that LLPS-inducing biofilm pro-
teins may have a functionally important role in driving 
biofilm formation. Some examples of proteins that promote 
biofilm formation include the biofilm-associated protein 
(BAP)21 in S. aureus and curli22 in Escherichia coli, which 
adopt amyloid-like structures and function as matrix scaffold 
biopolymers. In another example, the S-layer protein of 
nitrogen cycling wastewater bacteria form droplets that pro-
mote wetting and clustering of cells,13,23 in addition to its 
native function as self-assembled paracrystalline 2-D lattice 
on the bacterial surface. The latter example suggests that the 
S-layer protein is expressed extracellularly for cell–cell adhe-
sion, microcolony formation and matrix assembly, using 
liquid droplets as an intermediate for biofilm formation. 

Gelation of the matrix biopolymers 

The material composition of the EPS, as mixtures of high 
molecular weight biopolymers at high concentrations, seeds 
conditions propitious for the formation of the gel-like EPS 
matrix. Matrix biopolymers can become physically entangled 
beyond a threshold concentration, or chemically crosslinked 
through non-covalent linkages.24,25 These crosslinks and 
entanglements result in a mechanically robust viscoelastic 
matrix, i.e. one having both viscous (flow-like) and elastic 
(solid-like) properties. These allow the microorganisms to 
withstand external physical stresses through the distinct orga-
nisation or reorganisation of the biofilm structure.8 In bio-
films, the degree of crosslinking between the polymers of the 
matrix governs the viscoelasticity and can be quantified in 
physical terms such as elastic storage (G′) and viscous loss 
(G″) moduli. These physical properties yield critical insights 
into the mechanical behaviour of the biofilms and how they 
respond to the environment. 

This is best exemplified by comparing mature and nascent 
biofilms. Mature biofilm matrices have higher crosslinking 
densities (larger elastic modulus) than their immature counter-
parts26 (Fig. 1). Crosslinking can either reflect a concentration- 
dependent physical entanglement or chemical crosslinking. 
For example, at sufficiently high concentrations, the Pel exo-
polysaccharide crosslinks with eDNA in P. aeruginosa bio-
films,27,28 whereas the polysaccharide intercellular adhesins 
self-assemble by associative interactions below the entangle-
ment threshold concentration in Staphylococcus epidermis 
biofilms.14 Structural exopolysaccharides modulate the visco-
elastic properties of the matrix, offering different functionali-
ties. For example, Pel confers malleability (characterised by 
smaller elastic moduli) to the matrix, allowing spreading and 
streamer formation, whereas Psl confers stiffness (larger elastic 
moduli) to the matrix allowing lateral biofilm growth.29 Apart 
from these physical interactions, some matrix components, 
such as eDNA, undergo a transition into higher-order struc-
tures (e.g. G-quadruplex and Holliday junctions10), facilitating 
gelation. In this way, the nucleotide structure plays an impor-
tant role in G-quadruplex formation, suggesting that the estab-
lishment of these higher-order matrix structures is part of the 
fundamental genetic code. Filamentous Pf bacteriophage pro-
mote self-assembly of P. aeruginosa matrix biopolymer into 
liquid crystals, thereby enhancing biofilm functions such as 
adhesion, moisture retention and antibiotic tolerance.16 

Filamentation of cells provides additional protection to biofilm 
bacteria and is a serious challenge in treating clinical infec-
tions.30 Filamentous hyphae may significantly enhance the 
mechanical strength of fungal biofilms as compared to bacte-
rial biofilms.31 

Taken together, the examples above illustrate how physical 
properties of the biofilm matrix play important roles in deter-
mining their functions, now a rapidly expanding area of 
biofilm research. Apart from the biophysical processes dis-
cussed here, other physical properties such as ecomechanics2 

and electrogenic32 properties also play a role in shaping 
different biofilms. We assert that a thorough understanding 
of the role of physics in determining the emergent properties 
and functions of the matrix will yield a comprehensive under-
standing of biofilm formation, growth, and homeostasis. 

Reflection and outlook 

Although the emergent biofilm properties are potential targets 
for controlling and engineering biofilms, the principles and 
origins of these unique biofilm behaviours remain largely 
unknown (Fig. 2). Notably, the biological code for the emer-
gent properties could be embedded in the chemical structures 
of EPS and the corresponding higher-order structures. 
However, to decipher these codes requires a holistic under-
standing of EPS structure–function relationships under physi-
ological conditions that reflect biofilm microenvironments 
(e.g. crowding), and the means by which microorganisms 
utilise EPS to regulate and shape their local environments. 

The conformation of matrix biopolymers is an important 
factor that facilitates crosslinking and entanglements in 
matrix formation. For example, DNA undergoes conforma-
tional changes to facilitate protein binding. The way these 
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molecules interact with one another is critical to biofilm 
formation and stability. Methods to detect conformational 
changes are yet to be achieved as a key step towards under-
standing matrix formation and enabling matrix behaviour to 
be modelled. Understanding the role of biopolymer confor-
mation is not just a matter of scientific curiosity, but has 
implications for the development of strategies for control-
ling biofilm growth in preventing associated challenges such 
as infection and biofouling or promoting biofilms for bio-
remediation and wastewater treatment. 

Although resolving biological behaviour through next- 
generation sequencing is fast and reliable across biofilms in 
a range of contexts, there are no high-throughput approaches 
to characterise the exopolysaccharides, owing to their diver-
sity and complex stereochemistry. Nonetheless, with techno-
logical advances, the ability to readily characterise biophysical 
properties will inevitably be realised in the coming years, thus 
enabling biofilms to be examined through the lenses of 
both physics and biology. In the meantime, it is important to 
identify suitable model systems that ideally represent ‘typical’ 
matrix structures and processes. Such model systems can form 
the foundation of holistic databases of EPS structure–function 

traits, which incorporate the principles of biology, physics and 
chemistry. 
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