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Abstract

Scheduling projects under limited resource availability, which is called
the resource-constrained project scheduling problem (RCPSP), has a
wide range of real-world applications, e.g., in mining, manufacturing and
supply chain. The RCPSP is NP-hard, and over the last five decades
researchers attempted to propose various solution techniques for this
challenging problem. The relax-and-solve (R&S) algorithm is a recently
proposed method for solving various scheduling problems such as job-
shop and single and parallel machine scheduling problems. This research
contributes to the existing research on the R&S by presenting an easy-
to-implement and effective R&S method for solving RCPSP. Our R&S
employs CPLEX CP optimizer as an optimization solver to gener-
ate and optimize schedules within a heuristic framework. We further
improve the algorithm’s performance by employing forward-backward
passes. The results of testing the algorithms on 1560 standard instances
from the well-known PSPLIB show our heuristic delivers competitive
results and outperforms state-of-the-art methods for solving the RCPSP.
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1 Introduction

Scheduling a large project under several precedence and resource constraints
has always been challenging for project managers. A common source of delays
in projects is known to be lack of an efficient project scheduling technique
[1]. For more than 70 years, the critical path method (CPM) has been one of
the most extensively used planning and scheduling approaches. CPM assumes
unlimited resources are always available. Therefore, by considering precedence
constraints the CPM may provide a lower bound for the project duration.

The resource-constrained project scheduling problem (RCPSP) was intro-
duced by Pritsker et al. in 1969 [2]. In addition to precedence constraints,
the authors considered the restriction of resource availability over time. Since
then the RCPSP and its extensions have been used in a wide range of practi-
cal applications in diverse industries such as supply chain [3], mining [4] and
job-shop scheduling [5]. The RCPSP’s vast range of applications, as well as
its computational challenges (it is an NP-Hard problem [6]) has attracted the
attention of many scholars [7]. The RCPSP’s solution methods are generally
divided into exact algorithms and heuristics-based approaches [8]. While the
optimality of the solutions in exact methods is guaranteed, it is, however, at
the expense of increasing solution time, which makes exact methods imprac-
ticable in solving large-scale problems [9]. Approaches based on heuristics can
overcome the shortcoming of exact methods in computation time, although
obtaining an optimal solution cannot be guaranteed [10].

Generally, heuristic methods solve RCPSP in two steps [11]. In the first
step, a task list is provided based on heuristic rules, and a rank is assigned
to each task based on their priorities. In the second step, considering both
precedence and resource constraints, the start and finish times of tasks are
determined. In this step, two different methods for transferring the list from
step 1 can be employed, namely forward loading and backward loading [11].
In the forward loading method, which generates schedules in a forward pass
(e.g., starting from time zero and moving ahead), tasks are started as early
as possible, i.e., as soon as all of their precedence constraints are satisfied and
adequate resources are available. In contrast, the backward loading method
generates schedules in a backward pass in which each task is selected as late as
possible subject to not exceeding the target finish time of the project. Schedules
produced by employing backward loading methods can be more efficient than
those employing forward loading methods [11].

The forward-backward improvement (FBI) [11] is an effective method to
generate quality feasible schedules. In the forward pass a feasible schedule is
generated in which each task starts as early as possible. In the backward pass
tasks are started at the latest time such that all constraints are satisfied and
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the target finish time of the project is met. Iterative scheduling in the forward
and backward passes can improve the results[11]. This procedure terminates
when there is no improvement in two successive solutions obtained by forward
and backward passes. According to [10], FBI can be hybridized with heuristic
algorithms. In fact, many of the best methods in solving RCPSP employ this
method [12].

The genetic algorithm (GA) [13] is one of the most used methods to solve
the RCPSP [14]. Nonetheless, several studies used FBI with GA [14–24]. [25]
improved the evolutionary algorithm by FBI in EA(FBI). [26] developed com-
bined FBI and the ant colony optimization (ACO) [27] to solve RCPSP, and
[28] implemented three algorithms of bee algorithm (BA) [29], artificial bee
colony (ABC) [30] and bee swarm optimization (BSO) [31]. They improved
these methods by a new constraint handling method and a new local search.
They also implemented the variants of the algorithms in which the algorithms
were combined with the FBI: BSO-FBI, ABC-FBI, and BA-FBI. The results
show that incorporating FBI leads to quality schedules. [32] used FBI with
a scatter search metaheuristic. In each iteration, the algorithm reverses the
project network. A hybrid FBI with Lagrangian relaxation (LR-FBI) proposed
by [33].

The constraint programming (CP) has successfully been used to solve
scheduling problems [34–36] including the RCPSP [37–40].

The general R&S, including the one proposed in the present research has
significant differences than relax-and-fix and fix-and-optimize methods. The
relax-and-fix method [41] defines a rolling time window to separate the binary
variables to be fixed and those to be optimized (their values are decided upon).
This algorithm relaxes the integrality constraint of those variables that are
not in the rolling time window. The fix-and-optimize method [42, 43] deals
with the problem by operating on two sets of variables, namely fixed and
optimized. The main advantage of this algorithm is that it always provides
feasible solutions through maintaining integrality constraints.

The R&S algorithm has recently been proposed for various scheduling prob-
lems such as job-shop and single and parallel machine scheduling problems
[44–48].

We are motivated to conduct the present research due to the fact that
RCPSP is an NP-hard problem [6], which means only small-sized instances of
RCPSP can be solved by using exact methods in a reasonable computational
time [49]. Although there are various open-source [50] and commercial solvers
such as CPLEX CP optimizer [51] that can be used for solving optimization
problems, including RCPSP, however, the efficiency of those solvers typically
decreases when the size of instances increases (e.g., solving an instance of
RCPSP with more than 100 tasks with those solvers is very challenging).
In general, for solving challenging instances with more than 30 tasks vari-
ous heuristic-based solution techniques have been proposed over the last five
decades. That along with inefficiency of the solvers motivated us to propose a
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method that employs the CPLEX CP optimizer within the R&S matheuristic
that is able to effectively and efficiently solve RCPSP.

The R&S method proposed in the present paper to solve RCPSP first gen-
erates a feasible schedule (a solution). Then, it improves the feasible solution
in an iterative process, which includes two main phases, namely relaxing phase
and solving phase. The algorithm relaxes the execution order of a few tasks
at a time in a solution to generate a relaxed problem. Then, the algorithm
solves the whole problem by a solver, which leads to developing a schedule of
executing the tasks.

Relaxing the problem in this way helps to reduce the solution time because
smaller problems need to be solved at every iteration. The main challenging
part of employing such relaxation method in solving RCPSP includes defining
the set of task in a schedule to be relaxed. To handle that issue, we use a rolling
time window to distinguish between tasks that are inside the time window
(permitted to be reordered, i.e., relaxed), and the tasks that are located outside
the time window. To relax the problem, when completing time of one task and
starting time of another task are the same, the algorithm adds start-at-end
constraints between them. In this way, the algorithm prevents the change in
the relative order of tasks outside the time window.

The contributions of our work include (i) developing a novel matheuris-
tic algorithm for RCPSP with forward and backward passes, (ii) employing
CPLEX CP optimizer to create schedules in both forward and backward
passes, whereas the CPLEX CP optimizer is usually employed to generate
schedules in the forward pass, (iii) proposing a novel and efficient technique to
develop relaxed problems at each step using the current solution, and (iv) deliv-
ering competitive solutions for instances from the PSPLIB (project scheduling
problem library) with 30, 60 and 120 activities.

In what follows, we formally define RCPSP (Section 2), and provide our
forward-backward R&S matheuristic in Section 3. In Section 4, we report
the results of our computational experiments, and in Section 5 we provide
conclusions and future research directions.

2 Problem definition and formulation

The RCPSP includes a set of n task. Task i has a certain non-negative duration
presented by di. Precedence constraints also exist between tasks that can be
modeled as an activity-on-node network G = (V,A). Every single task relates
to a node in the node set V = {1, 2, . . . , n + 1}. Arc (i, j) in the arc set A
represents the precedence constraint that task i has to complete before task
j can start. Dummy nodes 0 and n + 1 are added to the set of nodes to
represent the project’s start and finish times, respectively. The duration of
dummy nodes (tasks), i.e., d0 and dn+1 are 0. Because time cannot reverse the
graph G is always acyclic. A fixed set of renewable resources represented by
RR is available. Every single resource k ∈ RR has a non-negative and fixed
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capacity Rk at each time in planning horizon T . Each task i needs a non-
negative amount of rik of each resource k ∈ RR. Tasks cannot be interrupted
once started (non-preemptive).

The mathematical formulation of the RCPSP can be expressed as follows,
where Si presents the starting time of the task i. The first dummy task starts
at S0 = 0, and the finishing time of the project (makespan) is the finishing
time of the last dummy job. Because the duration of dummy jobs is equal to
zero, the project makespan is then equal to Sn+1.

minSn+1 (1)

subject to

Sj ≥ Si + di, ∀(i, j) ∈ A, (2)

∑
i∈τ(t)

rik ≤ Rk,∀k ∈ RR, ∀t ∈ {0, . . . , T − 1}, (3)

τ(t) = {i ∈ V | Si ≤ t < Si + di}, (4)

Si ∈ {0, 1, . . . , T − di}, ∀i ∈ V, (5)

where T is the given upper bound on the project duration.

3 The proposed forward-backward
relax-and-solve method

This section proposes an efficient forward-backward R&S matheuristic algo-
rithm for the RCPSP. The main idea of this method is to reduce the solution
time by reducing the complexity of the problem at every iteration. We aim to
relax the problem in a way that all tasks are involved in the solution while
taking the advantage of the forward-backward method to improve the search-
ability of the algorithm. In the proposed forward-backward R&S algorithm an
initial feasible solution is generated and gradually improved like most heuris-
tics. For a feasible schedule a rolling time window is defined for the “relax”
phase, in which all tasks outside the window are “glued” with each other with
respect to the order in the current solution.

Only tasks inside the time window can be reordered. In the “solve” phase,
a feasible schedule is obtained by solving the relaxed problem. As we do not
remove the precedence and resource constraints the obtained solution is always
feasible for the problem.

CPLEX CP optimizer is used to generate a solution in the forward pass
considering problem’s resource and precedence constraints. In addition to the
forward pass, we generate a solution in a reversed direction i.e., in a backward
pass. To this aim, the precedence constraints should be reversed, which means
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each arc (i, j) should be changed to arc (j, i). By doing so tasks are scheduled
in a reversed order starting from the last task.

The algorithm starts with the initial solution generated in the backward
pass. In each iteration, the algorithm relaxes certain tasks in the problem,
which results in a relaxed problem, and then solves the relaxed problem in the
forward pass. At the end of each iteration, the algorithm removes all added
start-at-end constraints and solves the problem in the backward pass for a
limited time to avoid being trapped in a local optimum.

The general forward-backward R&S algorithm is summarized in Algo-
rithm 1.

Algorithm 1 The forward-backward R&S algorithm.

Input: A RCPSP instance.
Output: A feasible schedule.
Generate an initial feasible solution using CPLEX CP optimizer on the backward
pass formulation of the instance (see Section 3.1).
Set time window starting time st = 0
while the stopping condition is not met do

if st > Cmax − L then
st = 0 ▷ Cmax is the makespan and L is the time window length

end
Determine the tasks of group 1 and the tasks of group 2 (see Sections 3.2.2, and
3.2.3);
Generate a relaxed problem (see Section 3.2);
Solve the relaxed problem in the forward pass by using the CPLEX CP opti-
mizer (Section 3.3.1);
st = st+ L− overlap; ▷ overlap is a parameter
Solve the original problem in the backward pass with CPLEX CP optimizer
(Section 3.3.2);

end
return the best obtained schedule (the solution);

In what follows we discuss: generating an initial solution for the problem;
generating and solving a relaxed problem in each iteration; and setting the
stopping criterion for the algorithm.

3.1 Initial solution

[52] discussed the effectiveness of the CP in generating initial solutions for a
crew scheduling problem. CPLEX CP optimizer, which is a commercial solver
for CP, can generate quality solutions for challenging combinatorial optimiza-
tion problems [53]. We use CPLEX CP optimizer in the backward pass to
generate an initial solution.

To solve RCPSP, most approaches prefer to operate on the representation
of the solutions and then employ decoding methods to transform those repre-
sentations into a schedule. Common representation methods for RCPSP were
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Fig. 1: An example demonstrating how time window is defined for RCPSP.

proposed in [54]. In the present paper, we operate on schedules rather than
representations. Therefore, the solution for an instance is proposed through
starting time for each task.

3.2 Generating the relaxed problem

Figure 1 illustrates an example of a feasible solution that will be relaxed in
solving an RCPSP using the forward-backward R&S method. A rolling time
window is employed to specify which part of a problem is relaxed.

In the figure, the time window divides the tasks into group 1 and group 2.
In what follows we explain how the rolling time window works and how the
tasks of each group are treated to generate a relaxed problem.

3.2.1 The rolling time window

A time window is utilized to relax a schedule. We assume there is a rolling
frame on the time horizon of an existing schedule. We provide an example
in Figure 1 to show how a rolling time window specifies which part of the
problem should be relaxed. Generally, increasing the length of the time window
increases the number of tasks that are free to be reordered. The time window’s
starting time is set as t = 0, and after each iteration it moves forward at a
specific rate. As soon as the time window reaches the end of the time horizon
it is set to t = 0. While moving the time window forward, a critical parameter
preventing the algorithm from being trapped in local optima is the overlap,
which is the amount of overlap between time windows in successive iterations.
If there is no overlap, then the tasks are restricted to be inside a time window;
hence, those tasks cannot move to other time windows. We suggest to define
the length of the time window and overlap between time windows proportion
to the makespan of the current feasible schedule of the problem that is subject
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to relaxing. Later in section 4, we propose to set the value of parameter overlap
between 0 and 1.

We propose to calculate the length of the time window L as a function
of the number of generated relaxed problems i.e., N , and also overlap, and
makespan i.e.,Cmax , in particular L = (Cmax

N )× (1 + overlap).

3.2.2 Tasks of group 1 (G1)

The tasks that finish before the start of the time window, or start after the
finish of the time window, i.e., those tasks that are entirely beyond the time
window belong to group 1. For example, in Figure 1, the set of tasks of group
1 includes G1 = {3, 6, 4, 9, 8, 13}. The algorithm does not allow the tasks of
group 1 to change their relative execution order. That is the main idea behind
relaxation as we define and use in the present paper.

That can be achieved by adding “start-at-end” constraints between the
tasks, which states that the start time of one task is equal to the finish time of
another task. Examples include (3, 11) or (12, 8) in Figure 1. In this example,
tasks 7, 4, 9, 13 are also fixed together.

A point that should be noted here is that one task starts as soon as its
resource constraints and precedence constraints are satisfied. So each task
starts at t = 0 or starts at the finish time of another task. In such a case, as
for task 6 in the example, the algorithm does not need to fix the task with
other tasks

3.2.3 Tasks of group 2 (G2)

The task of group 2 or G2 are those tasks that are completely or partially
inside the time window. For example, G2 = {5, 11, 2, 1, 7, 12, 10} in Figure 1
shows tasks of group 2. The tasks of this group can be reordered subject to
satisfying all problem’s constraints, if that leads to an improved schedule

3.3 Solving Phase

This phase includes two steps: 1) solving each relaxed problem, and 2) solving
the original problem. In both steps, the forward-backward R&S algorithm uses
the CPLEX CP optimizer.

3.3.1 Solving the relaxed problem

The relaxed problem includes a fewer tasks to be reordered compared to the
original problem, which results in the relaxed problem to be relatively easier to
solve. The obtained solution to the relaxed problem is always feasible because
the tasks of group 1 cannot be reordered, however, the starting time of each
set of fixed tasks is flexible, so the makespan of the relaxed problem is always
the makespan of the original problem. We solve each relaxed problem in the
forward pass.
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3.3.2 Solving the original problem

The algorithm solves the general problem immediately after solving each
relaxed problem. Solving the original problem even for a few seconds in back-
ward pass improves the global exploration of the algorithm. Therefore, it is
beneficial to search the space in both directions.

3.4 Stopping criterion

The maximum number of iterations should be determined before solving a
problem. In each iteration, a time limit is set for the CPLEX CP optimizer to
solve each forward or backward pass. Once the CPLEX CP optimizer obtains
the optimal solution, or if the computation time reaches the limit, the algo-
rithm goes to the next iteration. The algorithm terminates when it reaches the
maximum number of iterations.

4 Computational experiments

In this section, we provide computational results of the proposed forward-
backward R&S on instances from the well-known PSPLIB [55]. We consider
instance sets J30, J60 and J120, which include 30, 60, and 120 tasks, respec-
tively. Instance sets J30 and J60 include 480 instances and the set J120 includes
600 instances. We coded the algorithm by using the Python programming
language version 3.6.5 and we use CPLEX CP optimizer version 12.10.0.0 [51].

Unless otherwise stated we use default value for CP parameters. We con-
duct all the experiments on a machine with CPU Intel Xeon Gold 6238R
2.2GHz.

Next, we discuss the parameters setting followed by the detailed computa-
tional results.

4.1 Parameters setting

The initial solution generated in a backward pass is obtained by setting the
time limit to 30 seconds. The stopping time for solving each relaxed problem
is set to 60 seconds. The allocated time for solving the original problem in
the backward pass (at the end of each iteration) is set to 30 seconds. Those
lead to average computational times of less than 150, 300 and 600 seconds, for
instance sets J30, J60, and J120, respectively. We set overlap = 0.33 and the
maximum number of relaxed problems N = 0.1× n.

Each relaxed problem should be solved in one iteration, meaning that the
maximum number of iterations is equal to 3, 6, and 12 for J30, J60, and J120,
respectively.

4.2 Results

In this section, we compare our results and those obtained by CPLEX CP
optimizer and three exact methods including failure directed search (FDS)[56],
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Table 1: comparison of LCG, FDS, SMT, CPLEX, and forward-backward
R&S .

J30 J60 J120

Method ∆LB t ∆LB t ∆LB t
LCG 0 - 2.17 - 9.76 -
FDS 0 0.93s 1.91 67.44s 7.02 322.52s
SMT 0 0.22s 1.88 61.90s 9.55 320.50s
CPLEX CP optimizer 0 4.71s 1.11 52.83s 4.69 350.40s
R&S 0 5.12s 1.06 46.75s 4.63 235.65s
Forward-backward R&S 0 7.17s 1.06 66.21s 4.61 200.11s

lazy clause generation (LCG) [57], satisfiability modulo theories (SMT) by
[58], that shown competitive results in solving RCPSP.

In order to compare the results delivered by the proposed method and the
exact methods we present a summary of the results in Table 1. In this table,
t is the computation time in seconds and the average deviation from the best
known lower bound for each instance is calculated as:

∆LB =

∑p=P
p=1

Cmax,forward−backwardR&S,p−Cmax,LB,p

Cmax,LB,p
× 100%

P
, (6)

where P is the number of instances in each set, Cmax,forward−backwardR&S,p

is the makespan obtained by Algorithm 1, and Cmax,LB,p is the best known
lower bound on the makespan for each instance.

For each method, the computation time and the average deviation from the
best known lower bound are provided in Table 1. Results show that employ-
ing the forward-backward method in R&S improves the performance of R&S,
leading to superior results, in terms of ∆LB criterion, to other methods for
solving J60 and J120 instances. All of the tested methods obtain optimal
solution for J30. Comparing the result of the CPLEX CP optimizer, as a stand-
alone method, and both R&S and forward-backward R&S for J60 and J120
illustrates the efficiency of the forward-backward R&S in solving the tested
instances. For almost all instances of J30, the CPLEX CP optimizer finds the
optimal solution in a short time.

In Table 2, we compare the results of forward-backward R&S and the
state-of-the-art metaheuristics as in [7], including memetic algorithm (MA),
consolidated optimization algorithm (COA) [65], PSO-based hyper-heuristic
algorithm (PSO-HH) [66] and genetic algorithm using forward-backward
improvement (GAFBI) [64], and those algorithms that combine the forward-
backward method with GA [14, 15, 17–24], PSO [59, 62, 63], ACO [26], ABC
[28], the Lagrangian relaxation [33] and scatter search [32].

In the literature, it is common to set the number of generated schedules as
the stopping criterion. However, it does not apply to our algorithm because it
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Table 2: Comparison of the state-of-the-art metaheuristics and forward-
backward R&S

Algorithm J30 J60 J120
forward-backward R&S (our proposed method) 0 10.53 31.07
R&S (our proposed method) 0 10.54 31.09
GA(SA(FBI))[16] 0.01 10.63 30.66
GA(FBI)[23] 0.02 10.68 30.82
Sequential(SS(FBI))[32] 0 10.58 31.16
GA(FBI)[22] 0.02 10.73 31.24
GA(FBI)[20] 0 10.57 31.28
GA(FBI)[21] 0 10.71 31.3
PSO(LS) [59] 0.05 10.62 31.43
GA(FBI) [19] 0.03 10.84 31.49
ALNS(FBI)[60] 0.02 10.73 31.54
SS(EM + FBI)[61] 0.01 10.71 31.57
GA(FBI)[17] 0.01 10.81 31.65
PSO(FBI)[62] 0.02 10.85 32.4
EA(FBI)[25] 0.03 10.91 32.52
GA(FBI)[24] – 10.57 32.76
PSO(FBI)[63] 0.01 10.79 32.89
GA(FBI)[18] – 10.66 33.82
BCO(FBI)[28] 0.04 11.16 34.55
DBGA [15] 0.02 10.68 30.69
GA-FBI [64] 0.0 10.56 32.76
COA [65] 0.0 10.58 31.22
PSO-SS[66] 0.01 10.68 31.23
MA [7] 0 10.55 31.12

used the CPLEX CP optimizer . Therefore, we compare the best results of the
tested algorithms for 50,000 generated schedules, which time-wise is very close
to the computational times of our methods. The average deviation from the
critical path method (CPM), i.e., ∆CPM is calculated by using Equation (6),
where the lower bound of the makespan (Cmax,LB,p) is obtained by CPM.

Table 2 for the instances with 30 tasks shows the average deviation of the
solution of each algorithm from the optimal solutions. In this set of instances,
forward-backward R&S can find the optimal solution for all the instances. The
results for the other instances in this table are the average deviation of the
solution for each algorithm from the CPM. In solving instances with 60 tasks,
our method provides the lowest average deviation from the CPM among all
the algorithms, so it is the best method for this set of instances. Dealing with
the instances with 120 tasks, DBGA [15], GA(SA(FBI))[16], and GA(FBI)[23]
reported better solution than our algorithm, and our method is better than
the remaining state-of-the-arts
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4.3 Discussion

Aiming to solve RCPSP efficiently, we proposed a R&S matheuristic that first
generates an initial solution. Then, a rolling time window is employed to deter-
mine the tasks that are free to be reordered and those that their execution
order is not allowed to be altered. The potential of improving each relaxed
problem corresponds with the length of each time window, i.e., the wider the
time window, the more tasks can be reordered to improve the results. How-
ever, increasing the time window length increases the problem’s complexity.
The parameter overlap between time windows allows reordering more tasks
in two consecutive relaxed problems. Increasing this parameter is expected to
result in increasing the computation time.

The main challenge with the structure of the proposed R&S algorithm is
that the solution is highly impacted by the initial solution. Also, only the
tasks in overlap can be passed to the next relaxed problem. The latter is more
important for tasks with fewer predecessors and successors. In contrast with
the tasks on a critical path, those tasks should be able to move in the time
horizon easily to find the best starting time, leading therefore to improving
the solution. To reduce the dependency of the algorithm on the initial solu-
tion and also to enhance the algorithm’s exploration capability, we proposed
to generate solutions in both forward and backward passes. Based on the pre-
sented results, employing the CPLEX CP optimizer within the R&S framework
develops feasible solution for all tested instances. The CPLEX CP optimizer
provides the optimum solution for instances with 30 tasks, and R&S is shown
to improve the solutions obtained by CPLEX CP optimizer for the larger and
challenging instances.

5 Conclusion

In this paper, a novel relax-and-solve matheuristic for the RCPSP was pre-
sented. In this algorithm, a solution is presented by a schedule that indicates
the starting time of each task and then relaxed by removing precedence con-
straints for a set of tasks that are specified by a rolling time window. The
relaxed problems are then solved by using the CPLEX CP optimizer in both
forward and backward passes. A set of 1560 instances of PSPLIB with 30, 60
and 120 tasks were used to test the proposed algorithm. Instances with 30
tasks are easy to be optimally solved by the CPLEX CP optimizer and that
quickly. However, for larger instances, i.e., instances with 60 and 100 tasks,
our algorithm provides superior solutions in a shorter time to the stand-alone
CPLEX CP optimizer. The results indicate that arming the R&S with forward
and backward passed leads to better results than the R&S with only forward
pass. Because generating a solution in both passes lets the algorithm do not
trap in the local optima and reduces the dependency of the algorithm on initial
solutions.

An important aspect towards the efficiency of our method lies in relaxing
an instance without decreasing the number of tasks. In our method, certain
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tasks are not allowed for their execution order to be altered. In this way, the
obtained solution is always feasible.

The future research may focus on different schemes for relaxing the execu-
tion order of tasks. Also, extending the proposed method to solve multi-mode
RCPSP and RCPSP under uncertainty is an interesting avenue for further
research. Furthermore, the given structure of the R&S could be easily adapted
for solving other optimization problems. Finally, the proposed R&S may bene-
fit from available heuristics and metaheuristics, as well as exact solvers during
the solve phase.

Conflict of Interest: The authors declare that they have no conflict of
interest.
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