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Abstract: Chloride intracellular ion channel (CLIC) proteins exist as both soluble and integral
membrane proteins, with CLIC1 capable of shifting between two distinct structural conformations.
New evidence has emerged indicating that members of the CLIC family act as moonlighting proteins,
referring to the ability of a single protein to carry out multiple functions. In addition to their
ion channel activity, CLIC family members possess oxidoreductase enzymatic activity and share
significant structural and sequence homology, along with varying overlaps in their tissue distribution
and cellular localization. In this study, the 2-hydroxyethyl disulfide (HEDS) assay system was used
to characterize kinetic properties, as well as the temperature and pH profiles of three CLIC protein
family members (CLIC1, CLIC3, CLIC4). We also assessed the effects of the drugs rapamycin and
amphotericin B, on the three CLIC proteins’ enzymatic activity in the HEDS assay. Our results
demonstrate CLIC1 to be highly heat-sensitive, with optimal enzymatic activity observed at neutral
pH7 and at a temperature of 37 ◦C, while CLIC3 had higher oxidoreductase activity in more acidic
pH5 and was found to be relatively heat stable. CLIC4, like CLIC1, was temperature sensitive with
optimal enzymatic activity observed at 37 ◦C; however, it showed optimal activity in more alkaline
conditions of pH8. Our current study demonstrates individual differences in the enzymatic activity
between the three CLIC proteins, suggesting each CLIC protein is likely regulated in discrete ways,
involving changes in the subcellular milieu and microenvironment.

Keywords: CLIC proteins; oxidoreductase enzymes; reactive oxygen species; moonlighting proteins;
metamorphic proteins; enzyme inhibitors; blocker drugs; amphotericin B; rapamycin; IAA94;
HEDS assay

1. Introduction

The human chloride intracellular channel (CLIC) proteins are a unique set of proteins
with their peculiarity residing in their dual cellular localization; in fact, they are mostly
found in a soluble monomeric form in the cytoplasm of resting cells, but they can also be
found in a multimeric state as integral membrane proteins [1]. In addition, CLIC proteins
do not follow the classical rule “one gene, one structure, one function”. Structural studies
of proteins have typically been based on the presumption that proteins will adopt a single
well-defined three-dimensional (3D) conformation within native conditions; however,
an increasing number of proteins have demonstrated equivocal characteristics in their
folding [2,3] (Figure 1). These non-classical proteins have been coined “metamorphic” as
they have the potential to adopt more than one native 3D conformation, despite possessing
the same amino acid sequence [2,3]. CLIC1 has been shown to adopt two distinct stable
structural forms; therefore, it falls into this subset of non-classical metamorphic proteins [3].
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These non-classical behaviors of CLIC proteins continue to intrigue, with the focus now
turning towards their potential as moonlighting proteins [4,5].
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figures were generated by using the DNASTAR Lasergene software v.15.3, Madison, WI, USA. 
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regarding its role in physiology and disease development. Apart from its ion channel 
activity, several other roles such as cell cycle regulation, apoptosis, modification of solute 
transportation, assisting adaptive immunity, and tissue homeostasis have been described 
[6–11]. Another significant aspect of CLIC proteins is their enzymatic activity, which 
further contributes to their functional versatility. CLICs demonstrate structural homology 
to the glutaredoxin (Grx) enzyme family, sharing a conserved glutaredoxin-like domain 
located in their N-terminal CLIC domain [12,13]. Additionally, CLIC proteins share a 
similar active thiol site motif (Cys-X-X-Cys/X) that either contains one highly reactive 
cysteine residue displaying a glutaredoxin monothiol motif as in the case of CLICs 1, 4, 5, 

Figure 1. Three-dimensional structure of CLIC proteins. The C and N domain shown in blue and
green, respectively, in each structure. (A) 3D ribbon structure of CLIC1 displaying the acidic loop
region. The PDB code for this structure is 1K0M. (B) 3D structure of reduced CLIC3. The PDB code
for this structure is 3FY7. (C) CLIC4 soluble structure. The PDB code for this structure is 2AHE. All
figures were generated by using the DNASTAR Lasergene software v.15.3, Madison, WI, USA.

Of the six human CLIC proteins, CLIC1 is one of the most extensively studied regard-
ing its role in physiology and disease development. Apart from its ion channel activity,
several other roles such as cell cycle regulation, apoptosis, modification of solute trans-
portation, assisting adaptive immunity, and tissue homeostasis have been described [6–11].
Another significant aspect of CLIC proteins is their enzymatic activity, which further con-
tributes to their functional versatility. CLICs demonstrate structural homology to the
glutaredoxin (Grx) enzyme family, sharing a conserved glutaredoxin-like domain located
in their N-terminal CLIC domain [12,13]. Additionally, CLIC proteins share a similar active
thiol site motif (Cys-X-X-Cys/X) that either contains one highly reactive cysteine residue
displaying a glutaredoxin monothiol motif as in the case of CLICs 1, 4, 5, and 6 or two
cysteine residues forming a dithiol motif in the case of CLICs 2 and 3 [12,13]. This active
site has been shown to couple with the peptide glutathione (GSH), which is used as a
cofactor in the redox reactions catalyzed by members of the Grx family and now also by
the CLIC protein family. We have previously shown that this monothiol or dithiol motif in
CLICs undergoes reversible oxidation and reduction, enabling CLIC proteins to function as
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oxidoreductases capable of binding GSH in thiol-disulfide interchange reactions [12,14,15].
We have also shown that the monomeric conformation of CLIC1 displayed the highest
levels of enzymatic activity compared to its dimer form, which was also greater compared
to CLIC2 and CLIC4 when measured in 2-hydroxyethyl disulfide (HEDS) assays [12]. More
recent research has shown that CLIC3 also acts as a glutathione-dependent oxidoreduc-
tase, targeting the reduction and regulation of transglutaminase2 (TGM2) and binding to
cofactors [14]. More recent studies propose that CLIC4 and CLIC5 are involved in cardio
protection from in vivo ischemia-reperfusion and, respectively, aid in maintaining calcium
homeostasis and mitochondrial ROS generation [16,17]. CLIC5′s role in ROS generation
further supports their status as “moonlighting proteins”, acting as both non-traditional
ion channels that can also perform additional enzymatic activities; with their latter role
further supported by their high structural homologies to the GSTs, GST-Ωs, and plant
dehydroascorbate reductases (DHARs).

While a wide array of biological functions has been ascribed to the CLIC proteins,
drawing conclusions about the role of individual CLICs is difficult. This is due to the
presence of six paralogues, with multiple CLICs co-expressed in most cells, leading to
potential functional redundancy between family members. Therefore, exploring individual
differences and specific enzymatic behavior under discrete environmental conditions, is
crucial to untangling their individual physiological roles. Enzyme activity is well known to
be influenced by temperature, pH, and substrate concentration [18–21]. Therefore, to gain
deeper insights into the functioning of CLIC proteins, we set out to further characterize
their oxidoreductase enzymatic activity.

2. Materials and Methods

The following reagents were all purchased from Sigma Aldrich: glutathione reductase
(GR) from yeast, reduced glutathione (GSH), nicotinamide adenine dinucleotide phosphate
(NADPH), HEDS, bovine plasma thrombin, kanamycin, isopropyl ß-D-1-thiogalactopyranoside
(IPTG), tris(2-carboxyethyl) phosphine (TCEP), indanyloxyacetic acid (IAA-94), and am-
photericin B solution. All other reagents used were of analytical grade.

2.1. Site-Directed Mutagenesis, Protein Expression and Purification of Recombinant CLIC1,
CLIC3, CLIC4, CLIC1- C24A, CLIC1- K37A, and CLIC1-C59A

The following annotations will be used to refer to each mutant, with each containing a
single amino acid substitution to alanine: C24A, K37A, and C59A. The cDNA encoding
the wild-type His-CLIC1 fusion protein (NP_001279), cloned into the pET-28a vector, was
used to generate the point mutations using the QuikChange site-directed mutagenesis
kit (Stratagen, La Jolla, CA, USA) according to the manufacturer’s instruction. CLIC1
cDNA, encoding the different mutations (C24A, K37A, and C59A) were then sequenced
at Macrogen Inc. (Seoul, Republic of Korea) to confirm the incorporation of the correct
mutations into the CLIC1-pET-28a plasmid. Following the conformation of the correct
point mutation, each plasmid encoding a particular CLIC1 mutant was used to transform
Escherichia coli (E. coli) BL21 (DE3) pLysS strains for overexpression of the recombinant
CLIC1 wild-type and mutant proteins.

Glycerol stocks of E.coli BL21 (DE3) cells were transformed with the His-tagged
PET28a (+) expression vector (Novagen) containing the coding sequence for either human
CLIC1, CLIC3, CLIC4, or CLIC1 mutants (CLIC1-C24A, CLIC1-K37A, and CLIC1-C59A)
as previously described [22]. The human CLIC4 was prepared in the pGEX4T-1 vector
(AMRAD-Pharmacia) that coded for an N-terminal GST purification tag. The recombinant
CLIC proteins (rCLIC) were grown in 2xYT medium containing kanamycin at a concen-
tration of 30 µg/mL (Sigma Aldrich) or 100 µg/mL ampicillin in the case of CLIC4, and
inducted with 1 mM IPTG (Sigma Aldrich) at 20 ◦C with overnight shaking at ~200 rpm.
Cells were then harvested and the rCLIC proteins were purified as previously described [12]
with the exception of GST-CLIC4 expressing cells which were resuspended in phosphate
buffered saline containing 0.5 mM TCEP prior to sonication. All soluble cell lysates were
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collected after an additional centrifugation at 10,000× g for 40 min at 4 ◦C and subjected
to affinity chromatography using either a Ni2+-NTA (Qiagen, Hilden, Germany) column
for His-tagged proteins or a GSTrap 4B (GE Healthcare, Chicago, IL, USA) column for
GST-CLIC4. The His-tag or the GST-tag was removed by an in-column thrombin enzymatic
cleavage using an overnight incubation of bovine plasma thrombin (Sigma Aldrich, St.
Louis, MO, USA) (30 NIH units per 1 L of bacterial culture) at 4 ◦C. The cleaved CLIC
proteins were then collected in PBS buffer (10 mM phosphate buffer, 2.7 mM KCl, 140 mM
NaCl, pH 7.4, and 0.5 mM TCEP) and further purified through size exclusion chromatogra-
phy (SEC) (AKTA Pure/Amersham Pharmacia Biotech) using a HiPrep™ 16/60 Sephacryl®

S-100HR (Sigma Aldrich) or a HiLoad 16/600 Superdex 75pg (GE Healthcare) column and
equilibrated in column sizing buffer (100 mM KCl, 1 mM NaN3, 20 mM HEPES pH 7.5,
and 0.5 mM TCEP). The rCLIC proteins were verified by SDS-page (Figure S2) using a
4–15% Mini-PROTEAN TGX Stain-Free™ Protein Gels (BioRad) and for visualization of
the protein bands, the separation gel was stained with Coomassie Brilliant Blue R 250 stain
(Sigma Aldrich), and Western-blotting using their respective anti-CLIC antibodies (Santa
Cruz, Santa Cruz, CA, USA). Recombinant protein concentrations were measured spec-
trophotometrically and calculated using the following extinction coefficient values of 0.647,
0.391 and 0.745 for CLIC1, CLIC3, and CLIC4, respectively, or by the Bradford protein assay
(ThermoFisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.
The purified samples were then aliquoted and stored at −80 ◦C for future experiments.

2.2. HEDS Enzyme Assay

HEDS assays act as a substrate for studying glutaredoxin enzymatic activity in
high specificity and sensitivity. This assay was designed around the concept of protein
de/glutathionylation, where the enzymatic activity of CLIC proteins assessed by its ability
to catalyze the reduction of HEDS when combined with GSH and GR (Figure 2), by moni-
toring the consumption of NADPH, which reflects the formation of glutathione disulfide
(GSSG), as NADPH is consumed by GR during the process [23].
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Figure 2. Mechanistic model represents HEDS assay. In this assay system, the CLICs protein acts
as an enzyme by deglutathionylating the mixed disulfide between glutathione (GSH) and the beta-
mercaptoethanol region of the HEDS substrate. Subsequently, the oxidized GSSG would be reduced
again to GSH by the glutathione reductase, through catalyzing the consumption of NADPH.

Previous studies have demonstrated the oxidoreductase activity of the CLIC family
member in the HEDS enzyme assay [12,15]. All HEDS enzyme assays were performed
in a flat 96-well plate containing a final volume of 200 µL comprising of 10 µM final
concentration of each protein added to a potassium phosphate buffer (5 mM/pH 7) that
contained 1 mM EDTA, 250 µM NADPH, 1 mM HEDS, and 0.5 µg/mL GR. The mixture
was incubated for 5 min at 37 ◦C, with the reaction initiated by the addition of 1 mM GSH.
The consumption of NADPH was measured at A340nm using the TECAN-Infinite M1000
microplate reader. Statistical analysis was performed using either one-way ANOVA with
Dunnett’s multiple comparisons or the two-tailed student’s t-test and is presented as the
mean ± SEM.
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2.3. HEDS Enzyme Assay Conditions Use to Determine Enzyme Kinetics of CLIC1, CLIC3,
and CLIC4

Enzyme kinetics of the CLIC1, CLIC3, and CLIC4 recombinant proteins were deter-
mined using varying concentrations of the HEDS substrate (0, 0.25, 0.5, 1, 2, 4, and 6 mM
final concentration), wherein the activity of one unit of rCLICs was determined based on
its capacity to oxidize 1 mmol of NADPH per minute, with a fixed concentration of 250 µM
NADPH, 0.5 µg/mL GR, 1 mM GSH, and 10 µM fixed enzyme concentrations. Km and
Vmax values were calculated from the Lineweaver–Burk plot.

2.4. HEDS Enzyme Assay Performed under Varying Temperature Conditions

In order to characterize and define the optimal catalytic activity of the purified CLIC1,
CLIC3, and CLIC4 proteins, different biochemical conditions were applied using the
standard HEDS enzyme assay procedure. This included pre-heating the protein samples
across a range of temperatures, specifically: 0 ◦C, 30 ◦C, 37 ◦C, 42 ◦C, 50 ◦C, and 60 ◦C
for 10 min. After that time, the residual activity of the CLIC proteins was assessed at
37 ◦C using the standard HEDS enzyme assay as previously described. To characterize the
thermal effect on the enzymatic activity of recombinant CLIC proteins (CLIC1, CLIC3, and
CLIC4), the recombinant proteins were subjected to a thirty-minute incubation at either
42 ◦C or room temperature prior to the HEDS assay being performed. Further thermal
activity studies of CLIC1, CLIC3, and CLIC4 proteins were performed by running the
HEDS assay at three different temperatures: 30 ◦C, 37 ◦C, and 42 ◦C in three individual
experiments (n = 3).

2.5. Preparation of Transformed Bacterial Whole Cell Lysates with and without Heat-Shock

To investigate changes in oxidoreductase activity, an additional experiment was con-
ducted using bacterial whole-cell lysates. The lysates of bacterial AF-CLIC1, AF-CLIC4,
CLIC3, and pIRES2-EGFP were used at a final concentration of 10 µg. Following lysing
bacterial cells, lysates were combined with a potassium phosphate buffer (5 mM, pH 7)
containing 1 mM EDTA, 250 µM NADPH, 1 mM HEDS, and 0.5 µg/mL GR. Two sets of
lysates were prepared: one was subjected to a heat-shock treatment at 42 ◦C for 30 min,
while the other was kept at room temperature as a control. After the respective treatments,
the lysate mixtures were incubated at 37 ◦C for 5 min. The reaction was initiated by adding
1 mM GSH. The consumption of NADPH, an indicator of the enzymatic activity, was
measured at A340nm.

2.6. HEDS Enzyme Assay Performed under Varying pH Conditions

In order to determine the optimal pH for the catalytic activity of the rCLIC proteins and
effects on the whole cell lysates enzymatic activity, the HEDS assay was run as previously
described with the reaction mixtures prepared using buffers with a pH 5, 7, or 8.

2.7. HEDS Enzyme Assay Performed Using a Variety of Inhibitor Drugs

To evaluate the effects of drugs on the enzyme activity of CLIC1, CLIC3, and CLIC4,
each protein was separately incubated at a final concentration of 10 µM with various drugs:
IAA94, rapamycin (Selleck Chemicals AY-22989), and amphotericin B. The incubation took
place for 1 h at 4 ◦C. Subsequently, the incubated CLIC proteins were mixed with 1 mM
HEDS, 250 µM NADPH, 0.5 µg/mL glutathione reductase, and 5 mM potassium phosphate
buffer (pH 7). This mixture was then incubated for 5 min at 37 ◦C, and the reaction was
initiated by adding 1 mM GSH. Monitoring the NADPH consumption was done at A340nm.

3. Results and Discussion
3.1. Purified Recombinant CLIC Protein Enzymatic Activity Assessed via the HEDS
Enzyme Assay

It has been demonstrated that CLIC1, CLIC3, and CLIC4 display glutaredoxin-like
oxidoreductase enzymatic functions in their monomeric soluble state independent of their



Biomolecules 2023, 13, 1394 6 of 18

integral membrane ion channel activity [12,14,15]. As such, these recent discoveries of
the enzymatic activity of CLIC family members necessitate further characterization of this
activity. Structure–function studies have shown that Cys24 is located near the pore-forming
region of CLIC1 (when in its membrane-bound form) and forms an active site monothiol
motif in CLIC1 (CPFS) located in the common CLIC N-terminal domain [24]. This active
cysteine and its equivalent found in all other CLICs is highly conserved. CLIC1′s Cys24
has also been shown to form a disulfide bond with Cys59 during oxidation that is critical
in stabilizing its oxidized alternate structure. The mutation of Cys24 to alanine, causes a
profound disruption of its enzymatic activity [12]. A similar mutation of Cys22 to alanine in
the dithiol active site (CPSC) of CLIC3 also resulted in a significant loss of CLIC3 enzymatic
activity [14]. To determine the functional activity of the purified CLIC1, CLIC3, and CLIC4
proteins, the HEDS enzyme assay was performed where buffer only (i.e., no CLIC proteins)
and the CLIC1-C24A mutant were used as negative controls. As seen in Figure 3, the
consumption of NADPH increases (resulting in a decreased absorption at A340nm) in the
presence of CLIC1, CLIC3, and CLIC4, while this is greatly reduced in the case of CLIC1-
C24A. This indicates that all three CLIC proteins reduced the HEDS substrate when coupled
with GSH and GR in the presence of NADPH with CLIC3 showing the greatest activity
and CLIC1-C24A mutant showing significantly reduced activity.
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Figure 3. HEDS assay using CLIC1, CLIC3, CLIC4, and CLIC1 mutants. (A) The absorbance of
NADPH was monitored over time at A340nm. (B) The relative activity of a final concentration of
10 µM of either CLIC1, CLIC3, CLIC4, or CLIC1 mutants was added to the HEDS assay, where
the activity of the CLIC1 without mutation was defined as 100%. (C) Area under the curve of
oxidoreductase activity shows that wildtype CLIC1 has the highest enzyme activity compared to its
mutants. Results were analyzed with one-way ANOVA with Dunnett’s multiple comparisons test
and expressed as mean ± SEM. *** p < 0.0005, and **** p < 0.0001, n = 3.
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HEDS assays were also conducted with CLIC1-C59A and CLIC1-K37A mutants, with
both mutations showing a significant impact on the protein’s enzymatic activity. Cys59
in CLIC1, as described above, is involved in the stabilization of the oxidized form of the
protein, through the formation of an intramolecular disulfide bond with Cys24 [24]. Its
mutation caused a significant decrease in CLIC1 activity when tested in the HEDS assay,
while the mutation of the charged residue Lys37 to alanine (K37A) also caused a significant
reduction, albeit less pronounced, compared to Cys24A. Lys37 is located at the distal end
of the first alpha-helix, which is also the predicted transmembrane domain of CLIC1. A
previous study has shown this same mutation altered the biophysical properties of the
CLIC1 ion channel activity in both artificial bilayers and cells [25].

3.2. Defining the Kinetic Parameters of CLIC Proteins’ Enzymatic Activity

To elucidate the kinetic profiles of each CLIC protein, we ran the HEDS assay using
varying concentrations of the HEDS substrate (0–6 mM) while maintaining consistent
concentrations of other reagents, as described in the methods section. Lineweaver–Burk
double reciprocal plots were used to determine Vmax and Km and analyzed using non-
linear regression (Figure 4). As presented in Figure 4, the reaction rates exhibited variations
among CLIC1 (Figure 4A), CLIC3 (Figure 4B), and CLIC4 (Figure 4C) at specific HEDS
concentrations, resulting in distinct Vmax and Km values. The kinetic parameters (Km, Vmax,
and Kcat) for the different CLIC proteins are presented in Figure 4D and summarized in
Table 1. Specifically, the Km values for CLIC1, CLIC3, and CLIC4 were 0.27, 0.26, and
0.34 mM, respectively. The Km value of CLIC3 was lower than CLIC1 and CLIC4. A lower
Km value implies a greater affinity towards a substrate. Therefore, the results indicate that
CLIC3, with the lowest Km value (0.26 mM) has a higher affinity for the HEDS substrate. As
a result, CLIC3 requires lower quantities of substrate to saturate its active site and efficiently
reduce the disulfide bond. As a comparison, published kinetic studies of yeast dithiol Grx1
and Grx2 indicate these enzymes are able to reduce the mixed disulfide formed between
GSH (1 mM) and the HEDS substrate, with an apparent Km value of 0.12 mM and 0.7 mM,
respectively [26]. A study of insulin reduction by thioredoxin has been reported to have a
Km value of 11 µM and a Vmax of 4 µM·min−1 [27].

Table 1. Summary of the kinetic properties of CLIC1, CLIC3, and CLIC4.

Km
(mM)

Vmax
(µmol·min−1·mg−1)

Kcat
(1/S)

S−1·mM−1

(1/S/mM)

CLIC1 0.2738 5.573 99.87455 364.7719
CLIC3 0.2663 6.153 115.6579 434.3143
CLIC4 0.345 5.396 93.68056 271.5378

Additionally, CLIC3 showed the highest kcat/Km values at the same enzyme con-
centration. Titration of HEDS substrate between (0–6 mM) demonstrated that the Vmax
values CLIC1, CLIC3, and CLIC4 were 5.57, 6.15, and 5.39 µmol·min−1·mg−1, respec-
tively, under the reaction conditions of 37 ◦C, pH 7.0. CLIC4′s lower Vmax value of
5.396 µmol·min−1·mg−1 in comparison to that of CLIC1 and CLIC3 indicates a longer
time is required for the enzyme to catalyze the chemical reaction. On the other hand, CLIC3
has the highest Vmax value of 6.153 µmol·min−1·mg−1 indicating that the saturation of the
enzyme active site occurs very quickly and hence, the chemical reaction is catalyzed faster
in comparison to CLIC1 and CLIC4 (Figure 4). The kcat indicates the maximum number
of substrate molecules converted per second for a single catalytic site at a given enzyme
concentration. The (S−1·mM−1) catalytic constant and physiological efficiency of CLIC1,
CLIC3, and CLIC4 were 364.7, 434.3, and 271.5 1/s/mM, respectively.
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Figure 4. Representative graphs of CLIC1, CLIC3, and CLIC4 reduction of HEDS substrate and their
different kinetic behaviors. A final concentration of 10 µM of either CLIC1 (A), CLIC3 (B), or CLIC4
(C) protein was added to the mixture of potassium phosphate buffer that contains 1 mM EDTA in
pH 7, 0.5 ug/mL of GR, HEDS (0, 0.25, 0.5, 1, 2, 4, or 6 mM) and 250 µM of NADPH. After 5 min
incubation at 37 ◦C, the reaction was initiated by 1 mM GSH addition. Subsequently, the absorbance
of NADPH was monitored at A340nm. The error bars are representing of the standard deviation of
three samples replicate. (D) Lineweaver–Burk double reciprocal plots of CLIC1, CLIC3, and CLIC4,
Michaelis–Menten equation plot (Figure S3) mean ± SEM, n = 3.

3.3. Evaluating Temperature Effects on Recombinant CLICs’ Enzymatic Activity

We next studied the effects of temperature on the oxidoreductase activity of the
purified CLIC proteins in the standard HEDS enzyme assay. We first looked at the effect
of temperature on the protein’s stability by pre-heating the CLIC proteins prior to adding
them to the assay, we then undertook studies looking at the effect of temperature on the
enzymatic rate by running the HEDS assay at different temperatures.

3.3.1. Assessing Thermal Stability by Pre-Heating the Recombinant Proteins for 10 min
across a Range of Temperatures

Figure 5 summarizes the results following pre-heating of the CLIC proteins for only
10 min at different temperatures ranging from 30 ◦C to 60 ◦C immediately prior to their
use in the HEDS assay and compared to a non-treated control (kept at room temperature,
typically around 22 ◦C). In the case of CLIC4, pre-heating for 10 min above 37 ◦C resulted
in a large reduction in its enzymatic activity, while showing highest activity when pre-
heated to 37 ◦C (Figure 5C). CLIC1 only showed a significant reduction in activity at 60 ◦C,
with maximal activity when pre-heated to 42 ◦C (Figure 5A). On the other hand, as seen
in Figure 5B, CLIC3 showed less dramatic changes in its catalytic activity as a result of
pre-heating. It is noteworthy that CLIC3 activity appears to increase when pre-heated to
temperatures of 42 ◦C and 65 ◦C. Comparing the catalytic activities of CLIC1, CLIC3, and
CLIC4 across different pre-heating temperatures, it is evident that CLIC3 shows greater
heat resistance compared to CLIC1 or CLIC4.
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Figure 5. Summary graph of the effects of pre-heating on the catalytic activity of CLIC proteins. The
catalytic profiles of pre-heating either CLIC1 (A), CLIC3 (B), or CLIC4 (C) across a temperature range
of 0 ◦C, 30 ◦C, 37 ◦C, 42 ◦C, 50 ◦C, and 60 ◦C for 10 min before subjecting the proteins in the HEDS
assay. (D) A comparison of the oxidoreductase activity of CLIC1 (blue), CLIC3 (red), and CLIC4
(green) following pre-heating at different temperatures prior to HEDS assay. Results were analyzed
with one-way ANOVA with Dunnett’s multiple comparisons test and are expressed as mean ± SEM.
* p < 0.05, ** p < 0.001, *** p < 0.0005, and **** p < 0.0001. n = 3.

3.3.2. Assessing Thermal Tolerance of the Recombinant CLIC Proteins’ Enzymatic Activity
by a Longer (30 min) (Pre) Heat Treatment

To further compare the three CLIC proteins’ thermal tolerance, purified recombinant
CLIC1, CLIC3, and CLIC4 proteins were subjected to heating at 42 ◦C for a longer period
of 30 min immediately prior to their use in the HEDS assay and compared to a non-treated
control. CLIC1 and CLIC4 were the most heat sensitive, both showing significant decrease
in their oxidoreductase activity, post heating to 42 ◦C (Figure 6). On the other hand, CLIC3′s
enzymatic activity tended to increase with the heat treatment, as previously described.
Thus, we can conclude that CLIC1 and CLIC4 are heat sensitive proteins, while CLIC3′s
enzymatic activity is maintained and perhaps enhanced at higher temperatures.

A similar experiment was performed using cell lysates collected from bacteria expressing
different recombinant CLIC proteins, namely CLIC1, CLIC3, or CLIC4, as well as a control
lysate obtained from cells transformed with the empty pIRES2-EGFP vector (Figure 7). The
lysates were subjected to heat treatment at 42 ◦C for a duration of 30 min prior to addition
in the HEDS assay. The enzymatic activity of the lysates, as measured by the HEDS assay
(Figure 7), showed a similar trend to the purified recombinant proteins (as seen in Figure 6). In
Figure 7, lysates from CLIC1 transformed bacterial cells showed the greatest loss of enzymatic
activity following heat treatment, compared to lysates of bacterial cells that were not heat
treated or expressing CLIC3 or CLIC4. Similar to the purified recombinant proteins, heated
CLIC3 lysates showed a tendency towards increased activity, while heated CLIC4 lysates
again tended toward a lower activity. Interestingly, CLIC4 bacterial cell lysates exhibited
greater heat tolerance compared to the purified CLIC4 protein. This is possibly due to the
complex nature of the lysate which includes numerous components (including other CLIC-like
proteins) and protein interactions, which may provide protection against heat effects that do
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not arise in the case of the recombinant purified protein. Control cell lysates transformed with
an empty vector (both heated and non-heated), showed lower levels of oxidoreductase activity
compared to CLIC-transformed cells, and this activity likely arises from native bacterial
oxidoreductase enzymes or previously identified bacterial CLIC-like homologs [28].

Biomolecules 2023, 13, x FOR PEER REVIEW 10 of 19 
 

analyzed with one-way ANOVA with Dunnett’s multiple comparisons test and are expressed as 
mean ± SEM. * p < 0.05, ** p < 0.001, *** p < 0.0005, and **** p < 0.0001. n = 3. 

3.3.2. Assessing Thermal Tolerance of the Recombinant CLIC Proteins’ Enzymatic 
Activity by a Longer (30 min) (Pre) Heat Treatment 

To further compare the three CLIC proteins’ thermal tolerance, purified recombinant 
CLIC1, CLIC3, and CLIC4 proteins were subjected to heating at 42 °C for a longer period 
of 30 min immediately prior to their use in the HEDS assay and compared to a non-treated 
control. CLIC1 and CLIC4 were the most heat sensitive, both showing significant decrease 
in their oxidoreductase activity, post heating to 42 °C (Figure 6). On the other hand, 
CLIC3′s enzymatic activity tended to increase with the heat treatment, as previously 
described. Thus, we can conclude that CLIC1 and CLIC4 are heat sensitive proteins, while 
CLIC3′s enzymatic activity is maintained and perhaps enhanced at higher temperatures.  

 
Figure 6. HEDS assay using recombinant CLIC proteins with or without heat. (A) The catalytic 
profiles of pre-heating either CLIC1, CLIC3, or CLIC4 at 42°C for 30 min before subjecting the 
proteins in the HEDS assay. (B) A comparison of the oxidoreductase activity of CLIC1 (blue), CLIC3 
(red), and CLIC4 (green) following pre-heating at 42 °C for a longer period of 30 min prior to HEDS 
assay. Results were analyzed with one-way ANOVA with Dunnett’s multiple comparisons test and 
are expressed as mean ± SEM. * p < 0.05 and **** p < 0.0001. n = 3. 

A similar experiment was performed using cell lysates collected from bacteria 
expressing different recombinant CLIC proteins, namely CLIC1, CLIC3, or CLIC4, as well 
as a control lysate obtained from cells transformed with the empty pIRES2-EGFP vector 
(Figure 7). The lysates were subjected to heat treatment at 42 °C for a duration of 30 min 
prior to addition in the HEDS assay. The enzymatic activity of the lysates, as measured by 
the HEDS assay (Figure 7), showed a similar trend to the purified recombinant proteins 
(as seen in Figure 6). In Figure 7, lysates from CLIC1 transformed bacterial cells showed 
the greatest loss of enzymatic activity following heat treatment, compared to lysates of 
bacterial cells that were not heat treated or expressing CLIC3 or CLIC4. Similar to the 
purified recombinant proteins, heated CLIC3 lysates showed a tendency towards 
increased activity, while heated CLIC4 lysates again tended toward a lower activity. 
Interestingly, CLIC4 bacterial cell lysates exhibited greater heat tolerance compared to the 
purified CLIC4 protein. This is possibly due to the complex nature of the lysate which 
includes numerous components (including other CLIC-like proteins) and protein 
interactions, which may provide protection against heat effects that do not arise in the 
case of the recombinant purified protein. Control cell lysates transformed with an empty 
vector (both heated and non-heated), showed lower levels of oxidoreductase activity 
compared to CLIC-transformed cells, and this activity likely arises from native bacterial 
oxidoreductase enzymes or previously identified bacterial CLIC-like homologs [28]. 

A
bs

or
ba

nc
e 

(A
34

0n
m

)

CLIC1

CLIC1 a
t 4

2°C
CLIC3

CLIC3 a
t 4

2°C
CLIC4

CLIC4 a
t 4

2°C
0

2

4

6

8

10

✱✱✱✱✱✱✱✱ ✱

A B

Figure 6. HEDS assay using recombinant CLIC proteins with or without heat. (A) The catalytic
profiles of pre-heating either CLIC1, CLIC3, or CLIC4 at 42 ◦C for 30 min before subjecting the
proteins in the HEDS assay. (B) A comparison of the oxidoreductase activity of CLIC1 (blue), CLIC3
(red), and CLIC4 (green) following pre-heating at 42 ◦C for a longer period of 30 min prior to HEDS
assay. Results were analyzed with one-way ANOVA with Dunnett’s multiple comparisons test and
are expressed as mean ± SEM. * p < 0.05 and **** p < 0.0001. n = 3.
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Figure 7. Comparing changes in the glutaredoxin activity of lysates from bacteria transformed with
CLIC1, CLIC3, CLIC4, or empty control vector +/− heat shock. (A) XY plot showing that bacteria
transformed with CLIC1, CLIC3, or CLIC4 have significantly higher levels of glutaredoxin-like
oxidoreductase activity compared to the empty control vector. (B) XY plot showing that CLIC1
containing lysates were heat sensitive while CLIC3, CLIC4, and the empty control vector lysates were
not significantly affected. (C) XY plot overlapping bacteria whole cell lysates with and without heat
treatment. (D) Area under the curve shows that lysates from bacteria transformed with CLIC1 were
significantly susceptible to heat shock while lysates of CLIC3 and CLIC4 transformed lines are more
heat-stable. Results were analyzed with one-way ANOVA with Dunnett’s multiple comparisons test
and are expressed as mean ± SEM. ** p < 0.001. n = 3.
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3.4. Optimal Reaction Temperature for CLIC1, CLIC3, and CLIC4 in the HEDS Assay

Given the variation observed between the individual stability of CLIC proteins and
their thermal tolerance, we next investigated the effects of temperature on the CLIC protein
enzymatic activity, by performing the entirety of the HEDS assay at various temperatures.
The HEDS experiment was done using purified recombinant CLIC1, CLIC3, and CLIC4
with the reactions run at 30 ◦C, 37 ◦C, or 42 ◦C, over a forty-minute period. Figure 8 shows
that CLIC1 and CLIC4 oxidoreductase activity is optimal when the reaction is run at 37 ◦C,
with significant activity reduction occurring at both 30 ◦C and 42 ◦C. CLIC3, however,
showed little variation in its activity between the three different assay temperatures, again
demonstrating its heat tolerance compared to CLIC1 and CLIC4 and its optimum of 37 ◦C.
Overall, 37 ◦C appears to be an optimal temperature at which to run the HEDS assay for all
three CLIC proteins studied, without any preheating and maintaining proteins on ice at
4 ◦C.
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Figure 8. Summary graph of thermal activity of CLIC1, CLIC3, and CLIC4 proteins at 30 ◦C, 37 ◦C,
and 42 ◦C. The catalytic profiles of assay temperature are either CLIC1 (A), CLIC3 (B), or CLIC4 (C).
(D) A comparison of the oxidoreductase activity of CLIC1 (blue), CLIC3 (red), and CLIC4 (green)
at 30 ◦C, 37 ◦C, and 42 ◦C assay temperatures. Results were analyzed with one-way ANOVA with
Dunnett’s multiple comparisons test and are expressed as mean ± SEM. * p < 0.05, and **** p < 0.0001.
n = 3.

Similar studies of the Grx proteins found that the activity of Chlorella sorokiniana
T-89 Grx enzyme was the most heat-stable Grx protein (activity retained at 80 ◦C for
30 min) [12,29], while an alternate study showed chlorella Grx has an optimal temperature
at 37 ◦C [30]. A 2017 functional study of two CLIC homologs in the organism Caenorhabditis
elegans, EXL-1 (excretory canal abnormal like-1) and EXC-4 (excretory canal abnormal ± 4),
demonstrated EXL-1 translocates from the cytoplasm into the nucleus under heat stress [31].
The functional importance of this was supported by experiments using EXL-1 loss of
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function mutants, which demonstrated decreased heat resistance compared to wild-type
animals, following exposure to heat stress (35 ◦C for 2 h) [31]. The authors of this study
concluded that the CLIC homologs differ in their physiological functions, at least for
the purposes of heat stress management [31]. Studies such as these, further support our
proposal that the individual CLIC members likely have distinct activities, influenced by
their surrounding environment conditions—temperature and pH—along with subcellular
localization and cell type [6–11,32–51].

3.5. Evaluating Recombinant CLIC’s Enzymatic Activity under Varying pH Conditions

pH is a critical parameter against which many cellular processes are exquisitely sensi-
tive, including the actions of proteins and enzymes. Previously, studies of human CLIC1
ion channel activity have shown its activity increases under lower pH conditions [52,53],
and a similar effect was found for the bacterial CLIC homolog, SspA [28]. Therefore, in
order to determine the effects of pH on the CLIC proteins’ enzymatic activity, the HEDS
assay was run using varying pH levels, specifically pH 5, 7, and 8. As seen in Figure 9, all
three proteins demonstrated pH sensitivity. CLIC1 and CLIC4 were found to lose activity
as the conditions became more acidic (pH 5), while they increased their enzymatic activity
at more neutral pH values. On the other hand, CLIC3 was more enzymatically active at pH
5 and decreased its activity at pH 7 and pH 8. From our observations, it appears that the
enzymatic functioning of CLIC1 and CLIC4 occurs optimally in more neutral to slightly
alkaline conditions, while CLIC3 seems to perform optimally under more acidic conditions.
For CLIC1 at least, its increased enzymatic activity at a more neutral pH is unlike its ion
channel activity, which is greater under more acidic conditions, further highlighting the
distinct moonlighting activity of these non-canonical enzyme proteins [52,53].

Numerous studies in the literature have shown that both protein processing and
trafficking can be altered when luminal pH is changed, whether it be through post-
translational modifications and processing, misdirection, or overall changes in the integrity
of organelles [54–56]. Furthermore, several biological processes like protein–protein interac-
tions [57,58], protein–ligand binding [59,60], protein interactions with membranes, [60–62]
as well as peptide–membrane interactions [63], are also significantly influenced by changes
in pH. Therefore, it was not surprising that studies of CLIC protein activity and localiza-
tion have also demonstrated regulation by pH. Previous studies have shown that CLIC1
assembles in lipid bilayers in a pH-dependent manner [53], where a decrease in pH causes
an increase in membrane interaction and insertion by CLIC1 [53]. It has also been sug-
gested that when CLIC1 moves from the cytosol (pH 7) to a more acidic pH surface at the
membrane (~pH 5.5), the lower pH ‘primes’ the structure of soluble CLIC, by lowering
the activation energy barrier, which facilitates its conversion into a membrane-insertable
form [64]. It is also likely that lower pH would also favor the maintenance of cysteine
residues in a thiol (-SH) state. Therefore, similar structural changes may play a role in the
reduced enzymatic activity of CLIC1 at acidic pH.

Generally, individual enzymes will demonstrate their own optimal catalytic activity at
varying pH conditions. This term, optimum pH, is also dependent on the location within
which the enzyme is found and normally functions within a specific cell or tissue. However,
should the local pH rise or fall outside of this optimum, the enzyme’s structure may change,
resulting in potential loss or enhancement of enzymatic activity. With CLIC1, CLIC3, and
CLIC4, each was found to have a different optimal pH for their enzyme activity, suggesting
that members of the CLIC family have distinct activities depending on cellular localization.
Such a phenomenon was observed for the soybean vegetative lipoxygenases (VLXs). It was
found that VLX A, B, and E showed optimal activity at pH 5.5, while VLX C and D had a
pH optima between 6.5–7 [65]. Extrapolating from this, one could speculate that the six
human CLIC proteins, likely function optimally within specific local cellular environments
or distinct cellular sub-compartments, targeting specific substrates and distinct activities.
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Figure 9. HEDS assay using recombinant CLIC Proteins at (A) pH 5, (B) pH 8, and (C) pH 7. (D) Area
under the curve of recombinant CLIC Proteins at pH 5, 7, and 8. CLIC1 (shown in blue) shows an
enzymatic optimum at pH 7. CLIC3 (green) prefers more acidic conditions such as pH 5 while CLIC4
(red) shows optimal activity at pH 8. Results were analyzed with one-way ANOVA with Dunnett’s
multiple comparisons test and are expressed as mean ± SEM. * p < 0.05. n = 4.

3.6. Assessing the Effect of Two Newly Identified CLIC4 Inhibitors (Rapamycin and Amphotericin
B) on the CLIC Proteins’ Enzymatic Activity in the HEDS Assay

In a recent study utilizing a combination of computer-aided methods and experi-
mental approaches, the drugs rapamycin and amphotericin B were identified as allosteric
inhibitors of CLIC4, which also reversed stress-induced membrane translocation of CLIC4
and inhibited endothelial cell migration [66]. The diuretic drug IAA94 is a well-known ion
channel blocker of chloride-selective ion channels, and can specifically inhibit the activity
of CLIC channels when used at lower concentrations (≤100 µM) [67]. Furthermore, we
have previously shown it can also inhibit CLIC enzymatic activity [12], and a cell study
demonstrated the addition of IAA-94 to the growth media, caused cell cycle arrest in the
G2/M phase, likely due to its blocking effect on the CLIC proteins [7]. In our current
study, we tested the effect of the drugs rapamycin and amphotericin B on CLIC1, CLIC3,
and CLIC4 enzymatic activity in the HEDS assay, with IAA94 included as a control. Both
rapamycin and amphotericin B caused inhibition of the enzymatic activity of all three pro-
teins, but with varying degrees of effectiveness. As depicted in Figure 10, both rapamycin
and amphotericin B, like IAA94, caused significant inhibition of the enzymatic activity
of all three proteins, with CLIC1′s activity virtually abolished by all three drugs. CLIC3
and CLIC4 showed varying levels of residual activity in the presence of either of the three
drugs, ranging from 4.1–21.5% for CLIC3, and 12.8–30% for CLIC4, respectively. These



Biomolecules 2023, 13, 1394 14 of 18

findings confirm the previous study [66] and extend the findings to indicate that all three
drugs inhibit the oxidoreductase catalytic activity of CLIC1, CLIC3, and CLIC4.
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Figure 10. Effect of inhibitor drugs IAA94, rapamycin, and amphotericin B on the oxidoreductase
activity of CLIC1, CLIC3, and CLIC4. The catalytic profiles from the HEDS assay for CLIC1 (A),
CLIC3 (B), or CLIC4 (C). (D) A comparison of the oxidoreductase activity of CLIC1 (blue), CLIC3
(red), and CLIC4 (green) incubated with 10 µM final concentration of each inhibitor for 1 h. (E) The
residual (%) enzymatic activity for each protein following inhibition with 10 µM final concentration
of each inhibitor drug for 1 h, added to the HEDS assay. Activity of the CLIC1, CLIC3, or CLIC4
without inhibitors was defined as 100%. Results were analyzed with one-way ANOVA with Dunnett’s
multiple comparisons test and are expressed as mean ± SEM. **** p < 0.0001; n = 9.
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The highly conserved and ubiquitous expression of CLIC and CLIC-like proteins
across vertebrates supports the hypothesis that these proteins play critically important
roles within cells [1,7,12,13,24,68,69]. Initially, CLICs were shown to behave as atypical
ion channels and have been ascribed a plethora of biological functions, ranging from
ion channel activity to cell cycle regulation, and this is now extended to their enzymatic
oxidoreductase activities [6–11,32–51,67].

4. Conclusions

CLIC proteins’ enzymatic activity is influenced by a variety of factors including tem-
perature and pH. CLIC1 was observed to be highly heat-sensitive, with optimal enzymatic
activity observed at neutral pH7 and at 37 ◦C, while CLIC3 had higher oxidoreductase
activity at more acidic pH5 and was found to be heat stable under the conditions tested.
CLIC4, like CLIC1, was temperature sensitive with optimal enzymatic activity observed
at 37 ◦C; however, it showed optimal activity in more alkaline conditions of pH8. The
current study also sought to define the kinetic profile of oxidoreductase catalytic activity of
these CLIC proteins. Based on this characterization study, kinetic constants (Vmax, Km) for
CLIC1, CLIC3, and CLIC4 were determined. By comparing these catalytic efficiencies, it
was evident that these three CLIC proteins obey Michaelis–Menten and first-order kinetics.
The Vmax and Km values for CLIC1, 3, and 4 proteins obtained using varying substrate
concentrations showed that the CLICs have different affinity for the HEDS substrate at
37 ◦C, with the highest affinity shown by CLIC3 followed by CLIC1 and then CLIC4. Finally,
the study also demonstrated that the drugs rapamycin and amphotericin B, like IAA94,
cause significant inhibition of the oxidoreductase enzymatic activity of all three proteins,
CLIC1, CLIC3, and CLIC4.
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