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Abstract:  26 

Alzheimer’s disease (AD) is a progressive and degenerative neurological disease characterized by 27 

the deterioration of cognitive functions. While a definitive cure and optimal medication to impede 28 

the progression of the disease are currently unavailable, a plethora of studies have highlighted the 29 

potential advantages of exercise rehabilitation in managing this condition. In those studies, exercise 30 

rehabilitation has exhibited the capability to enhance cognitive function and improve the quality of 31 

life for individuals affected by AD. It also stands in stark contrast to solely relying on conventional 32 

pharmacological therapies. Not surprisingly, exercise rehabilitation has been regarded as one of the 33 

most important strategies to manage AD patients. Here, we provide a comprehensive analysis of the 34 

currently available findings on exercise rehabilitation in AD patients, with a focus on the types of 35 

exercises that showed efficacy when implemented alone or combined with other treatment methods, 36 

as well as the potential mechanisms underlying these positive effects. Specifically, we explain how 37 

exercise may improve brain microenvironment and neuronal plasticity. These key factors are 38 

thought to play a critical role in the AD pathogenesis. This review holds the promise of aiding in the 39 

development of more effective and finely tailored treatment strategies to address the challenges 40 

imposed by this debilitating disease, especially in low- and middle-income countries. 41 

Keywords: cognitive function, brain microenvironment, neuronal plasticity, mechanism 42 

 43 

1. Introduction 44 

Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disorder that significantly 45 

impairs neurocognitive and behavioral functions, especially among the aging population. It is the 46 

leading cause of dementia, accounting for 50% to 75% of all dementia cases [1]. According to the 47 

World Alzheimer Report 2022, over 55 million people are living with dementia worldwide, and this 48 

number is projected to increase to 139 million by 2050 [2]. The most significant increase will occur 49 

in low- and middle-income countries. The global cost of dementia has also been estimated to rise 50 

significantly from $1.3 trillion in 2019 to $2.8 trillion by 2030 due to increased care costs [2]. 51 

While specific pharmacotherapies may slow cognitive decline in selected cohorts of patients with 52 

early-stage AD, they are often of low efficacy and unable to halt irreversible neuronal loss due to 53 

ongoing neurodegeneration. Consequently, a decline in independent living capabilities persists 54 

despite these interventions [3]. Additionally, adverse reactions restrict the use of these drugs among 55 

the aging population. For example, Donepezil can cause extrapyramidal symptoms, bradycardia, 56 

gastrointestinal bleeding, nausea, and vomiting; Rivastigmine is linked to increased risk of all 57 

causes of mortality, especially among critically ill patients; Memantine has relatively milder side 58 
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effects, including dizziness, headache, hypertension, somnolence, and constipation [4]. Studies have 59 

demonstrated that exercise programs can effectively enhance cognitive function, daily living 60 

abilities, and life quality, while alleviating depressive symptoms in AD patients [5, 6]. Therefore, 61 

non-pharmacological interventions have emerged as indispensable complementary strategies to 62 

pharmacotherapy in AD patients to preserve their cognitive function and independent living abilities, 63 

especially in low- and middle-income countries where drugs to improve AD symptoms are too 64 

expensive to reach for most patients. As such, this review focuses on how exercise rehabilitation 65 

can improve the neurocognitive functions of AD patients and the potential molecular mechanisms 66 

involved. 67 

A search on PubMed, Ovid Medline, and Web of Science was performed using “AD”, “cognitive 68 

function”, “aerobic exercise”, “resistance exercise”, “multimodal exercise”, “Aβ”, and “tau”. The 69 

search for mechanistic studies used the keywords “AD”, “exercise”, and “cognitive function”, in 70 

combination with one of these keywords, “cerebrovascular dysfunction”, “synaptic plasticity”, 71 

“hippocampal neurogenesis”, “microglia”, “astrocyte”, “BDNF”, “IGF-1”, “irisin”, “mitochondrial 72 

integrity”, “epigenetics regulation”, and “sex difference”. We included peer-reviewed original 73 

research papers published in English between Aug 2001 and Apr 2023, in either animal models (to 74 

compare different types of exercise) or humans with AD (randomized controlled trials, meta-75 

analysis, and observational studies) that reported positive results. The effects of various forms of 76 

exercise in combination with other treatments on cognitive function and proposed mechanisms have 77 

been summarized in this review. We did not include publications with insufficient powers (e.g., case 78 

studies).  79 

 80 

2. The pathophysiology of AD 81 

The primary neuropathological features of AD are amyloid-β (Aβ) plaque formation and 82 

neurofibrillary tangles, leading to the gradual loss of functional neurons (also called 83 

“neurodegeneration”) in the hippocampus, neocortical and basal ganglia regions. Several of these 84 

brain regions are involved in memory formation and retrieval. The hippocampus is closely related 85 

to the formation of learning memories, and plays a key role in spatial navigation during memory 86 

formation [7]. The prefrontal cortex is responsible for executive functions, such as consolidating 87 

long-term memory and decision making, and regulates the activity of the hippocampus [8]. 88 

Aβ peptides are cleaved from amyloid precursor protein (APP), an essential membrane protein for 89 

synapse formation and repair. In the AD brain, APP is processed by β-secretase, instead of α-90 

secretase, to generate a soluble Amyloid Precursor Protein beta (sAPPβ). The remaining 91 
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transmembrane portion of APP is then recognized and cleaved by γ-secretase to generate an Aβ 92 

monomer fragment, Aβ40 or Aβ42. Then, several Aβ monomer fragments, especially Aβ42, 93 

assemble to form insoluble oligomers or senile plaques [9]. The excessive Aβ deposition and 94 

abnormal nervous structural changes activate microglia for clearance, which in turn initiates pro-95 

inflammatory responses that promote oxidative stress and further neuronal damage [10]. Synaptic 96 

connections and plasticity are critical for memory formation, storage, and retrieval, thus enabling 97 

learning from experiences. Aβ plaques can lead to overstimulation of N-methyl-D-aspartate 98 

(NMDA) receptors, which are glutamate receptors responsible for regulating synaptic plasticity. 99 

This overstimulation of NMDA receptors can cause dysfunction in hippocampal neuronal activation, 100 

memory coding and storage, ultimately resulting in decreased memory retrieval ability [11].  101 

In early-stage AD, site-specific phosphorylation of tau protein can inhibit Aβ toxicity [12]. However, 102 

tau hyperphosphorylation makes it unable to bind to tubulin in AD brains, and its accumulation 103 

results in the formation of neurofibrillary tangles, which block the production and function of 104 

several proteins. For example, hyperphosphorylated tau can interact with c-Jun N-terminal kinase-105 

interacting protein 1 (JIP1), impairing the formation of the kinesin complex and affecting axonal 106 

transport [13]. The synergistic effect of extracellular Aβ plaques and intracellular neurofibrillary 107 

tangles precipitates neurodegeneration[14]. It has been shown that the depletion of tau gene in APP 108 

transgenic J20 mice can reduce hippocampal hyperactivation and thus improve motor function and 109 

spatial memory recall [15]. This suggests that tau dysfunction may be more critical than Aβ toxicity 110 

in the early-stage pathogenesis of AD. 111 

The buildup of Aβ plaques can also increase redox-mediated oxidative stress and cytoplasmic Ca2+ 112 

levels [16]. Subsequently, the downstream signaling, such as serine/threonine protein phosphatase 2A 113 

and 2B (PP2A and PP2B), is activated to inhibit calcium/calmodulin-114 

dependent protein kinase II (CaMKII) and induce the endocytosis of ionotropic glutamate receptors, 115 

e.g. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Similarly, 116 

oligomeric Aβ can induce the endocytosis of NMDA receptors, mediated by dephosphorylation of 117 

NMDA receptor subunit NR2B (GluN2B), leading to synaptic dysfunction [16] (Figure 1). The 118 

accumulation of damaged mitochondria has been a distinctive hallmark of both aging and age-119 

related neurodegenerative conditions, which are closely intertwined with impaired Aβ clearance 120 

mechanisms [17]. Mitophagy, the mitochondrial self-renewing mechanism, can restore the functional 121 

mitochondrial population in neurons of AD models, resulting in increased microglial phagocytosis 122 

of extracellular Aβ plaques and insoluble Aβ1-42 and Aβ1-40, reduced neuroinflammation, and 123 

improved cognitive function [17]. In AD models, mitochondrial damage within neurons also 124 

contributes to an increased complement-mediated tag of the synapse, which activates adjacent 125 
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microglia to initiate presynaptic elimination [18]. This further impairs neuroplasticity and cognitive 126 

function, particularly learning and memory functions.  127 

 128 

3. Types of exercise rehabilitation in AD patients 129 

Regular exercise facilitates the harmonious coordination of the body’s response to unexpected 130 

situations and supports the preservation of normal brain functions, which effectively prevent 131 

significant cognitive decline. Previous studies have shown that the risk of cognitive decline is 35% 132 

to 38% lower in physically active individuals compared with their sedentary counterparts [19]. 133 

Evidence continues to mount on the positive roles of exercise in managing and preventing 134 

neurodegenerative disorders, such as AD. In APPswe/PS1ΔE9 mice, voluntary exercise has been 135 

shown to prevent memory loss and reverse neuropathological changes related to AD progression [20].  136 

 137 

3.1. Aerobic exercise 138 

Aerobic exercise has been the predominant method employed to slow cognitive decline in the 139 

elderly population [21]. Several clinical trials have demonstrated that regular moderate-intensity 140 

exercise (40-60 min duration, 3 days/week) can significantly increase brain volume indicative of 141 

neurogenesis, which was associated with improved memory function in healthy elderly individuals 142 

[21-23]. In patients with mild AD, moderate-intensity aerobic exercise has also been shown to 143 

effectively improve cognitive function [24]. Research has demonstrated that aerobic exercise has the 144 

capacity to enhance brain energy metabolic homeostasis by increasing ketone uptake and 145 

metabolism, a phenomenon associated with cognitive improvement [25]. Moreover, engaging in 146 

moderate to high-intensity aerobic exercise results in favourable effects on cardiopulmonary 147 

function, physical performance in single and dual tasks, and exercise self-efficacy in patients with 148 

mild AD [26]. Exercise has also been found to alleviate the neuropsychiatric symptoms of patients 149 

with mild AD [27]. Even acute aerobic exercise of moderate intensity (20 min cycling exercise) can 150 

benefit thinking abilities in patients with mild AD, which was even more effective when combined 151 

with cognitive games for mental training [28]. An animal study showed that aerobic exercise 152 

improved cognitive performance by reducing neuronal apoptosis through  activating  the 153 

PI3K/Akt/GSK-3β signaling pathway in D-galactose and aluminium chloride induced AD mice [29], 154 

which may be the mechanisms underlying the abovementioned cognitive benefits in humans. 155 

Therefore, engaging in aerobic exercise can be an option for the elderly to delay age-related 156 

dementia and for patients with mild AD to mitigate rapid neurocognitive decline. 157 

 158 
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3.2.  Resistance exercise 159 

Resistance exercise, also referred to as strength training, has been suggested to reverse the loss of 160 

muscle mass and function, as well as brain structural deterioration in AD patients. In a rat model of 161 

AD, a single injection of Aβ1-42 into the Cornu Ammonis (CA)1 region of the hippocampus was 162 

sufficient to cause muscle atrophy due to the loss of myonuclear number and satellite cell content, 163 

whereas resistance training was able to successfully restore the muscle mass by significantly 164 

enhancing the level of myosin heavy chain (MyHC) IIb fiber in myofibers [30]. Evidence has also 165 

shown that resistance exercise is beneficial for increasing muscle strength in trained individuals and 166 

alleviating depressive symptoms in the elderly population affected by AD [31]. In 3xTg AD mice (a 167 

transgenic mouse model of AD), short-term resistance exercise reduced Aβ load, tau 168 

hyperphosphorylation, reactive astrogliosis, and inflammatory responses in the frontal cortex and 169 

hippocampus, which correlate with improved synaptic plasticity and cognitive functions, including 170 

short-term memory and working memory functions [32]. Resistance exercise can also reverse 171 

cognitive dysfunction due to neuroinflammation via insulin-like growth factor (IGF)-1 signaling in 172 

the hippocampal dentate gyrus region [33]. Long-term resistance training in APP/PS1 mice can also 173 

activate microglia recruitment without enhancing inflammatory responses but increasing the 174 

elimination of Aβ deposition [34]. As a result, locomotor hyperactivity was ameliorated in those AD 175 

mice [34].  176 

In humans, it has been shown that with every unit increase in muscle strength, there was a 43% 177 

reduction in the chance of developing AD at the onset of cognitive impairment [35]. This suggests 178 

that there may be a direct interaction between muscle function and brain well-being, possibly 179 

involving chemokines or non-coding RNAs released from newly generated muscles. These 180 

molecules reach the central nervous system to promote synaptic plasticity and improve neurological 181 

functions. The concept of “exerkine” was introduced when the skeletal muscle was considered an 182 

endocrine organ in the setting of physical activity-induced secretions, together with liver and 183 

adipose tissue. Exerkines may act as messengers during muscle-brain crosstalk. These exercise-184 

mediated myokines, such as lactate, irisin, and interleukin (IL)-6, are released into the circulation, 185 

cross the blood-brain barrier, and positively affect synaptic plasticity and memory, by enhancing 186 

brain mitochondrial function [36]. 187 

It is important to acknowledge that strength training is often high-intensity and can be challenging 188 

to maintain as a regular activity in the long term, especially for middle-aged and older patients with 189 

movement impairment. In these scenarios, assisted strength training may be considered, which 190 

involves the support of trained carers or personal trainers to facilitate the process. 191 

 192 
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3.3. Flexible exercise regime 193 

Elderly individuals can benefit from a multimodal exercise regimen that combines aerobic exercise, 194 

postural balance, muscular strength training, and flexibility training. A combination of different 195 

types of exercise may be easier to follow compared to a single form. Both aerobic and resistance 196 

exercises are important in improving the cognitive status of AD patients [37]. It has been shown that 197 

twelve weeks of multimodal exercise can decrease the risks of falls in elderly women with moderate 198 

cognitive impairment and enhance their focus and ability to perform dual tasks [38]. It can also 199 

significantly increase brain function in the frontal lobe while contributing to better cognitive 200 

function, postural balance, and physical capacity [39]. Therefore, in individuals with dementia, 201 

multimodal exercise may help improve cognition and physical functionality in daily living activities. 202 

Repeated transcranial magnetic stimulation (rTMS) has been found to significantly improve 203 

cognitive function in patients with mild to moderate AD [40], and alleviate cognitive deficits in 3xTg 204 

AD model rodents by activating the PI3K/Akt/GLT-1 pathway [41]. High-frequency rTMS may 205 

improve executive functions and behavior in AD patients, while moderate-intensity aerobic exercise 206 

may enhance balance and mobility [42]. The combination of rTMS and physical exercise may 207 

achieve a better effect in ameliorating neurological impairment of AD patients. Exercise 208 

rehabilitation combined with music therapy is also more effective in 209 

ameliorating neuropsychiatric symptoms and boosting the positive effects of exercise rehabilitation 210 

in individuals with mild to moderate AD[43]. Exercise holds promise in reducing the risk of falls 211 

among individuals with AD using antihypertensives and psychotropics [44]. Engaging in exercise 212 

with functional tasks can produce considerable benefits for people with mild cognitive impairment 213 

in general cognitive function, memory, executive function, and everyday problem-solving abilities 214 

[45]. 215 

Voluntary physical activities are also beneficial to cognitive performance compared with a 216 

sedentary lifestyle. In a transgenic mouse model expressing the human mutant amyloid precursor 217 

protein (APPSw, Ind), environmental enrichment with a running wheel for voluntary exercise restored 218 

adult neurogenesis and memory function after 7 weeks of exposure [46]. This scenario can represent 219 

the engagement with outdoor activities to experience diverse surroundings, which are thought to be 220 

important in sculpturing the brain for memory consolidation [47]. This setting may significantly 221 

improve hippocampal-dependent spatial learning and memory defects at the early stage of AD 222 

development in humans, as shown in the rodent model [46]. The associated adult neurogenesis in the 223 

hippocampus is reflected by increased synaptic number, dendritic length, and neural projections to 224 

the CA3 region. However, Aβ levels and the number of neurons in the dentate gyrus were 225 

unchanged [46]. This may suggest that promoting neurogenesis is a key treatment strategy to 226 
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improve cognitive function in patients with AD, rather than only focusing on Aβ clearance.  227 

 228 

4. Proposed mechanisms of exercise  229 

It is likely that various forms of exercise can benefit cognitive performance in AD patients via 230 

different biological mechanisms. Studies investigating the mechanisms of AD pathophysiology 231 

often employed genetically modified murine models, such as transgenic APP/PS1 mice (also called 232 

TgAPP/PS1 mice), 3xTg AD mice, the senescence-accelerated mouse prone 8 (SAMP8) mice, 233 

Thy1-GFP transgenic mice, and 5xFAD mice. Some studies also used wildtype rodents by 234 

introducing exogenous neurotoxins, such as Aβ analogs, D-galactose with aluminium chloride, and 235 

streptozotocin. The proposed mechanisms of exercise in altering AD pathology learned from animal 236 

models are listed in Table 1 and Figure 2. Clinical trials among AD patients are listed in Table 2. 237 

 238 

Table 1. Effects of exercise training on rodents with AD 239 

Author (Year) Animal models Exercise types Effects Molecular alterations 

Pena GS., et al. 
(2020) [48] 

3xTg AD mice Ladder climbing 
exercise 

↑: muscle mass and strength 

↓: Aβ oligomers 

↑: IGF-1 

Liu Y., et al. 
(2020) [32] 

3xTg AD mice Ladder climbing 
exercise 

↑: cognitive function; 
Akt/GSK-3β pathway 

↓: Aβ plaques; Tau 
phosphorylation; reactive 
astrogliosis; microglial 
activation; 
neuroinflammatory; JNK 
pathway 

↑: synaptic proteins 
synaptotagmin 1 and 
synaptobrevin 1; exercise-
induced factors IL-6, FGF-21 
and PGC-1α; anti-
inflammatory factors IL-10 

↓: pro-inflammatory factors 
TNF-α and IL-1β 

Hashiguchi D., 
et al. (2020) [34] 

APP/PS1 mice Ladder climbing 
exercise 

↑: microglial recruitment 

↓: behavioral hyperactivity; 
Aβ plaques 

↓: exercise-induced factors 
IL-6; pro-inflammatory 
factors IL-1α 

Rahmati M., et 
al. (2023) [30] 

Aβ1- 42 
induced AD rats 

Ladder climbing 
exercise 

↑: cognitive function; 
myonuclear number; MyHC 
IIb fbers 

↓: muscle atrophy; oxidative 
damage 

↑: SOD, catalase and 
glutathione 

Kim D., et al. 
(2019) [49] 

3xTg AD mice Treadmill 
exercise 

↑: cognitive function; 
neurogenesis; mitochondrial 
function 

↓: Aβ plaques; reactive 
astrogliosis 

↑:  mitochondrial biogenesis-
related factor NRF1 

Zhao G., et al. 
(2015) [50] 

Aged APP/PS1 
mice 

Treadmill 
exercise 

↑: spatial learning and 
memory function; synaptic 

- 
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plasticity 

↓: soluble Aβ levels 

Hong J., et al. 
(2020) [51] 

APP/PS1 mice Treadmill 
exercise 

↑: cerebrovascular function; 
P2Y2 receptor-mediated 
eNOS signaling pathways 

↓: ER stress and ER stress-
associated apoptosis 

↑: P2Y2 receptor, p-Akt and 
p-eNOS; anti-apoptotic 
factor Bcl-2 

↓: APP, p-IRE1, p-eIF2α, and 
CHOP 

Li B., et al. 
(2021) [52] 

APP/PS1 mice Treadmill 
exercise 

↑: memory function; synapse 
number; the length and 
thickness of postsynaptic 
densities; synaptic plasticity 
and excitatory 
neurotransmission 

↓: Aβ plaques and soluble Aβ 
levels;  

↑: synaptic structural 
plasticity-related proteins 
synapsin, PSD95, MAP2 and 
NCAM; ionic glutamate 
receptor subunit proteins 
GluN2B and GluA1 

Yu H., et al. 
(2021) [53] 

APP/PS1 mice Treadmill 
exercise 

↑: spatial learning and 
memory function; 
neurogenesis; differentiation 
of neurons; APP cleavage 
through the non-
amyloidogenic pathway 

↓: Aβ plaques; neuronal 
apoptosis; the differentiation 
of astrocytes 

↑: α-secretase ADAM10, 
sAPPα, BDNF and TrkB 

↓: β-secretase BACE1, γ-
secretase PS1, APP and 
sAPPβ 

Zhang, X., et al. 
(2019) [54] 

APP/PS1 mice Treadmill 
exercise 

↑: cognitive function; 
microglia M2 polarization 

↓: Aβ plaques and soluble Aβ 
levels; neuroinflammatory; 
oxidative damage 

↑: anti-inflammatory 
cytokine TGF-β 

↓: pro-inflammatory 
cytokines IL-1β and TNF-α; 
MDA 

Zhao N., et al. 
(2023) [55] 

APP/PS1 mice Treadmill 
exercise 

↑: spatial learning and 
memory function; 
mitochondrial function; 
PINK1/Parkin-mediated 
mitophagy; SIRT1-FOXO1/3 
pathway 

↓: Aβ plaques and soluble Aβ 
levels;  

↑: ATP, complex I and 
complex IV enzyme levels; 
Parkin and SIRT1 

↓: PINK1, P62, Ace-
FOXO1a and ace-FOXO3a 

Sun, L.N., et al. 
(2018) [56] 

Aβ1- 42 
induced AD 
mice 

Treadmill 
exercise 

↑: cognitive function; 
neurogenesis 

↓: reactive astrogliosis; 
neuroinflammatory 

Reversing the MAPK 
signaling abnormality 

↓: pro-inflammatory 
cytokines IL-1β and TNF-α; 
p-p38 and p-JNK 

Alkadhi, KA., 
et al. (2018) [57] 

Aβ1- 42 
induced AD rats 

 

Treadmill 
exercise 

- ↓: APP, Aβ and BACE1 

Dao AT., et al. 
(2015) [58] 

Aβ1- 42 
induced AD rats 

Treadmill 
exercise 

↑:basal synaptic 
transmissions; synaptic 

↑: p-CaMKII and BDNF 
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 plasticity ↓: calcineurin PP2B 

Wang YL., et 
al. (2022) [59] 

Aβ1- 42 
induced AD rats 

Treadmill 
exercise 

↑: cognitive and motor 
function;  

↓: neuronal degeneration and 
apoptosis; microgliosis 

↑: BDNF, TrkB and cathepsin 
D 

 

Peng Y., et al. 
(2022) [29] 

D-galactose and 
aluminium 
chloride 
induced AD 
mice 

Treadmill 
exercise 

↑: spatial learning and 
memory function; 
PI3K/Akt/GSK-3β pathway 

↓: neuronal apoptosis 

↑: PI3K, p-Akt and anti-
apoptotic factor Bcl-2 

↓: GSK-3β and pro-apoptotic 
molecule Bax 

Lu, Y., et al. 
(2017) [60] 

Streptozotocin-
induced AD rats 

Treadmill 
exercise 

↑: spatial learning and 
memory function; microglia 
M2 polarization; 
mitochondrial function 

↓: Aβ generation; Tau 
phosphorylation; neuronal 
degeneration and apoptosis; 
oxidative damage 

↑: anti-inflammatory 
cytokines IL-4 and IL-10;  

↓: pro-inflammatory 
cytokines IL-1β and TNF-ɑ; 
peroxynitrite production 3-
NT; oxidative stress markers 
4-HNE, P-H2A.X and 8-
OHDG 

Xiong, J.Y., et 
al. (2015) [61] 

APP/PS1 mice Treadmill 
exercise  

↑: spatial learning and 
memory function  

↓: microglial activation 

↑: BDNF 

 

Li, B., et al. 
(2019) [62] 

APP/PS1 mice Treadmill 
exercise divided 
into two groups 
(HIIT and 
MICT) 

↑: spatial learning and 
memory function; 
mitochondrial function 

↓: Aβ plaques and soluble Aβ 
levels;  

↑: SOD and catalase 

↓: BACE1, ROS, MDA and 
H2O2 

Revilla S., et al. 
(2014) [63] 

3xTg AD mice Voluntary wheel 
running exercise 

- ↑: synaptophysin, PSD95, 
GDNF and SIRT1; 
NMDA receptor subunit NR2
B;  

↓: GABAA receptor α5 
subunit  

Belaya, I., et al. 
(2020) [64] 

5xFAD mice 

 

Voluntary wheel 
running exercise 

 

↑: cognitive function; GFAP-
positive astrocyte activation;  

Selectively altered the 
morphology of the GFAP-
positive astrocytes near the 
Aβ plaques 

↑: PSD-95, GFAP and BDNF 

Tapia-Rojas, C., 
et al. (2016) [20] 

APP/PS1 mice Voluntary wheel 
running exercise 

 

↑: spatial learning and 
memory function; 
neurogenesis 

↓: Aβ plaques and Aβ 
oligomers; Tau 
phosphorylation; reactive 
astrogliosis 

- 

Cosín-Tomás 
M., et al. (2014) 
[65] 

SAMP8 mice Voluntary wheel 
running exercise 

 

- ↑: IGF-1, BDNF, TrkB and 
Neuritin; global acetylation 
levels of histone H3; mir-
148b-3p, miR-15b-5p, miR-

https://xueshu.baidu.com/usercenter/paper/show?paperid=cc4144e08d6628749a487f883500ce2e&site=xueshu_se
https://www.zhangqiaokeyan.com/journal-foreign-detail/0704012889809.html
https://www.zhangqiaokeyan.com/journal-foreign-detail/0704012889809.html
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28a-5p, miR-7a-5p and miR-
98-5p;  

↓: Hdac3, miR-105 and miR-
133b-3p 

He, XF, et al. 
(2017) [66] 

Thy1–GFP 
transgenic aged 
mice 

Voluntary wheel 
running exercise 

 

↑: spatial learning and 
memory function; 
glymphatic clearance; AQP4 
polarity; synapse number and 
function 

↓: Aβ deposits; astrocytes 
and microglia activation 

↑: AQP4 and PSD95 

Belviranli, M., 
et al. (2019) [67] 

D-galactose and 
aluminium 
chloride 
induced AD 
rats 

Voluntary wheel 
running exercise, 
swimming 
exercise, 
swimming load 
training 

 

↑: locomotor activity and 
exploratory behavior; spatial 
learning and memory 
function;  

↓: anxiety-like behavior; Aβ 
oligomers; Tau pathology; 
oxidative stress 

↑: BDNF, NGF, SOD and 
glutathione 

↓: MDA and PC 

3-NT: 3-nitrotyrosine; 4-HNE: 4-hydroxynonenal; 8-OHDG: 8-hydroxy-2' -deoxyguanosine; ace-FOXO1a: 240 

acetylated forkhead box O1a; ace-FOXO3a: acetylated forkhead box O3a; ADAM10: ADAM metallopeptidase 241 

domain 10; Akt: serine/threonine kinase; APP: amyloid precursor protein; AQP4: aquaporin 4; BACE1: beta-site 242 

amyloid precursor protein cleaving enzyme 1; Bax: Bcl-2-associated X; Bcl-2: B cell leukemia/lymphoma 2; 243 

BDNF: brain derived neurotrophic factor; CaMKII: calcium/calmodulin-dependent protein kinase II; CHOP: 244 

CCAAT/enhancer-binding protein homologous protein; eIF2α: eukaryotic initiation factor 2α; eNOS: endothelial 245 

nitric-oxide synthase; ER: endoplasmic reticulum; FGF-21: fibroblast growth factor-21; GDNF: glial cell-derived 246 

neurotrophic factor; GFAP: glial fibrillary acidic protein; GluA1: glutamate ionotropic receptor AMPA type 247 

subunit 1; GluN2B: glutamate ionotropic receptor NMDA type subunit 2B; GSK-3β: glycogen synthase kinase 3 248 

beta; HIIT: high-intensity interval training; IGF-1: insulin-like growth factor 1; IL: interleukin; IRE1: inositol-249 

requiring enzyme 1; JNK: c-Jun NH2-terminal kinase; MAP2: microtubule-associated protein 2; MAPK : 250 

mitogen-activated protein kinase; MDA: methane dicarboxylic aldehyde; MICT: moderate-intensity continuous 251 

training; MyHC IIb: the myosin heavy chain IIb isoform; NCAM: neural cell adhesion molecule; NGF: nerve 252 

growth factor; NMDA: the N-methyl-D-aspartate; NRF1: nuclear respiratory factor 1; p-: phosphorylation; PC: 253 

protein carbonyl; PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PI3K: 254 

phosphoinositide 3-kinase; PINK1: PTEN-induced kinase 1; PP2B: protein phosphatase 2B; PS1: presenilin 1; 255 

PSD95: postsynaptic density protein 95; ROS: reactive oxygen species; sAPPα: soluble amyloid precursor protein 256 

α; sAPPβ: soluble amyloid precursor protein β; SIRT1: silent information regulator factor 1; SOD: superoxide 257 

dismutase; TNF-α: tumor necrosis factor-α; TrkB: tropomyosin-related kinase B. 258 

 259 

Table 2. Clinic trials in AD patients at different stages  260 

Author (Year) The stage of 
AD Exercise types Effects Imaging Biochemical 

indicators 
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de Farias J.M., 
et al. (2021) [68] 

AD Physical exercise 
training 

Improve judgment 
and problem-solving 
abilities 

  

 

 

 

- ↑: serum 
sulfhydryl and 
nitrite levels; anti-
inflammatory 
cytokine IL-4 

↓: serum carbonyl 
and DCFH levels; 
serum catalase 
activity; neuronal 
damage marker 
NSE 

Pedrinolla A., et 
al. (2020) [69] 

AD Moderate-high-
intensity aerobic 
and strength 
training 

 

Improve peripheral 
vascular function 

 

↑: blood flow 
and shear rate 

↑: plasma VEGF 
levels 

 

 

 

de Andrade LP., 
et al.(2013) [39] 

AD with mild 
or moderate 
dementia 

Multimodal 
exercise 

 

Improve the frontal 
cognitive function, as 
well as the postural 
control and balance 

- -  

Satoh M., et al. 
(2017) [70] 

AD with mild 
and moderate 
dementia 

Physical exercise 
combined with 
music vs 
cognitive 
stimulation 

Improve cognitive 
function and 
activities of daily 
livings, excluding 
memory 

- -  

Sobol N.A., et 
al. (2016) [26] 

Mild AD Moderate-to-high 
intensity aerobic 
exercise 

Improve 
cardiorespiratory 
fitness, single- and 
dual-task physical 
performance, and 
exercise self-efficacy 

- -  

Morris J., et al. 
(2017) [71] 

Mild AD 

 

Aerobic exercise Improve memory 
performance and 
cardiorespiratory 
fitness 

↓: hippocampal 
atrophy 

- 

Yang S.Y., et al. 
(2015) [24] 

Mild AD  Aerobic exercise 
(moderate 
intensity cycling 
training) 

Improve cognitive 
function, mental 
state, and the quality 
of life 

- ↑: plasma Apo-A1 
levels 

Castellano 
C.A., et al. 
(2017) [25] 

Mild AD  Aerobic exercise 
(moderate 
intensity 
treadmill 
walking) 

Improve brain energy 
metabolism 

↑: CMRacac, 
Kacac and 
dCMRket 

 

- 

 

 

Cezar NOC., et 
al. (2021) [72] 

Mild-to-
moderate AD 

Home-based 
multimodal 
exercise  

Improve muscle 
strength and function 

Reduce the risk of 
falls 

- -  

Yu F., et al. Mild-to- Aerobic exercise 
vs light-intensity 

Delay the decline in 
global cognitive 

- - 

https://xueshu.baidu.com/usercenter/paper/show?paperid=dc496d3bb7f20a5c75233bfbfd2ee8f8&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=dc496d3bb7f20a5c75233bfbfd2ee8f8&site=xueshu_se
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(2021) [73] moderate AD  stretching  function 

Ben Ayed I, et 
al. (2021) [28] 

Moderate AD Aerobic 
exercises alone 
or combined with 
cognitive games 

Improve cognitive 
function 

 

- - 

Apo-A1: apolipoprotein A1; CMRacac: global cerebral metabolic rate of acetoacetate; DCFH: dichlorofuorescein; 261 

dCMRket: global cerebral metabolic rate of ketone; Kacac: rate constant for net uptake of acetoacetate; NSE: 262 

neuron-specific enolase; VEGF: vascular endothelial-derived growth factor. 263 

 264 

4.1. Exercise improves cerebrovascular dysfunction 265 

The coordination between neuronal activity and cerebral blood flow is maintained by a mechanism 266 

called neurovascular coupling [74]. The neurovascular unit, consisting of endothelial cells, vascular 267 

smooth muscle cells, pericytes, neurons, and glia, controls this coupling [75]. It has been shown that 268 

the glutamate-NMDA receptor-neuronal nitric oxide synthase (nNOS) axis is critical for 269 

cerebrovascular function, because it triggers soluble guanylate cyclase in nearby arteriolar smooth 270 

muscle cells to promote vasodilation [76]. In patients with AD, there is a progressive reduction in 271 

cerebral blood flow in affected brain regions, which is closely linked to their cognitive decline [77]. 272 

Exercise training can improve peripheral vascular function in AD patients, by increasing Nitric 273 

oxide (NO) and vascular endothelial growth factor (VEGF) to cause vasodilation and increased 274 

arterial blood flow and shear rate [69].  275 

NO, a major vasodilator, is generated by the activation of endothelial nitric oxide synthase (eNOS). 276 

The decrease in NO in the cerebrovascular endothelium is associated with increased levels of APP 277 

and β-site APP-cleaving enzyme 1 (BACE1), resulting in increased production of cytotoxic Aβ1-40 278 

and Aβ1-42 [78, 79]. In addition, endothelial NO plays important roles in regulating synaptic plasticity, 279 

mitochondrial biogenesis, and function of neuronal progenitor cells [80], linking cerebrovascular 280 

function with cognition. Indeed, eNOS-deficient mice exhibit impaired cognitive performance [81]. 281 

In APP/PS1 mice, exercise has been shown to ameliorate cerebrovascular dysfunction by enhancing  282 

P2Y2 receptor-mediated eNOS signaling and NO release [51]. Exercise can also alleviate 283 

endoplasmic reticulum stress and associated apoptosis by reducing phosphorylated inositol-284 

requiring enzyme 1 (p-IRE1), phosphorylated eukaryotic initiation factor 2 (p-eIF2α) and CCAAT-285 

enhancer-binding protein homologous protein (CHOP), which are all significantly elevated in the 286 

brains of AD mice [51].   287 

Pericytes play a critical role in the stabilization of the capillary wall, maintenance of the blood-brain 288 

barrier, and regulation of capillary diameter and cerebral blood flow. Pericyte degeneration has been 289 

shown to lead to neurovascular uncoupling, reduce oxygen supply to the brain, and cause metabolic 290 
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stress [82]. Reduced pericyte number may disrupt BBB properties and result in neuronal dysfunction 291 

during AD pathogenesis [83]. A study showed that Aβ can induce pericyte-mediated cerebral 292 

capillary blood vessel constriction, resulting in the reduction of cerebral blood flow during the 293 

early stage of AD [84]. Therefore, managing dysfunctional neurovascular units may help to slow 294 

down neurodegeneration and improve cognitive function in AD patients.  295 

Indeed, twelve-month aerobic exercise in patients with mild cognitive impairment has been shown 296 

to improve memory function and blood flow in the hippocampus and anterior cingulate cortex 297 

without change in brain volume [85]. Restoring blood supply by exercise can increase brain 298 

oxygenation and nutritional supply and benefit cognitive functions. However, another study has 299 

shown that sixteen weeks of moderate-to-high-intensity aerobic exercise was insufficient to produce 300 

a sustained increase in cerebral blood flow, which may be due to the short intervention time and  301 

small sample size [86]. In some cases, there may be improved blood vessel oxygen and nutrition 302 

delivery function, rather than an increase in absolute blood volume. This speculation needs to be 303 

confirmed bu future studies. Nevertheless, sustained exercise, especially at the early stage of AD, 304 

could prevent vascular lesions and dysfunction by maintaining sufficient cerebral perfusion. 305 

 306 

4.2. Exercise enhances synaptic plasticity and hippocampal neurogenesis 307 

Synaptic plasticity is fundamental to learning and memory. At the early stage of AD, synaptic 308 

dysfunction and loss of the dendritic spines are associated with cognitive decline and other 309 

neurological impairments [87]. Aβ can interact with ionic glutamate receptors to reduce synaptic 310 

integrity and plasticity, resulting in synaptic loss and neuronal death [88]. There is also a significant 311 

increase in synaptic markers in cerebrospinal fluids, such as PSD95, presynaptically localized 312 

synaptosomal-associated protein 25 and neurogranin, which may be used as early diagnostic 313 

biomarkers [89]. Exercise can reduce Aβ40, Aβ42 and Aβ deposition, resulting in significantly 314 

increased synaptic number, as well as the length and thickness of postsynaptic structure in the 315 

hippocampal CA1 region [52]. In a rat model of AD, impaired basal synaptic transmission and long-316 

term potentiation in the dentate gyrus can be rescued by four weeks of moderate treadmill exercise, 317 

as well as normalized basal levels of phosphorylated CaMKII and PP2B [58]. In 3xTg mice, 318 

resistance exercise and running wheel exercise can increase synaptic density and plasticity, resulting 319 

in improved cognitive performance [32, 63], through brain fibronectin type III domain-containing 320 

protein 5 (FNDC5)-irisin signaling [90]. Therefore, improving synaptic density and plasticity is the 321 

key to restoring cognitive function in patients with AD by exercise. 322 

Adult hippocampal neurogenesis is important in maintaining learning and memory functions 323 
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throughout life. Alterations in hippocampal neurogenesis occur at the early stage of AD, even 324 

before neurofibrillary tangles or Aβ plaques appear in the dentate gyrus [91]. Interestingly, inducing 325 

hippocampal neurogenesis alone by drugs or genetic modification yields marginal cognition 326 

benefits in 5×FAD mice; however, additional exercise can improve cognition, along with reduced 327 

Aβ deposition and increased BDNF, FNDC5, and synapses. It is likely that exercise improves the 328 

local environment and enables the benefit of hippocampal neurogenesis [92]. In fact, exercise alone, 329 

regardless of running wheel or treadmill exercise, has been shown to increase hippocampal 330 

neurogenesis and ameliorate cognitive function in several mouse models of AD, including Aβ1-42 331 

induced AD, 3xTg, and APP/PS1 mice [20, 49, 56]. Exercise can also increase brain BDNF levels, 332 

promote APP proteolysis, and reduce toxic Aβ peptides [93], which help to create a healthy 333 

hippocampal microenvironment for neurogenesis [53]. Therefore, hippocampal neurogenesis can be 334 

the goal for developing effective therapeutic strategies for AD patients. 335 

 336 

4.3. Exercise modulates glial functions 337 

Microglia are the innate immune cells in the brain and the first responders to pathological changes. 338 

Early microglial activation promotes Aβ clearance and is neuroprotective. As the disease progresses, 339 

these activated microglia produce a large number of pro-inflammatory cytokines IL-1β and TNF-ɑ, 340 

which inhibit microglial Aβ-binding receptors (eg. scavenger receptor A and CD36) and Aβ-341 

degradation enzymes (eg. insulysin and neprilysin) to decrease its phagocytic capacity and 342 

exacerbate Aβ accumulation [94].  In addition, oligomeric Aβ induces endoplasmic reticulum stress 343 

and Ca2+ release, leading to GSK-3β mediated tau phosphorylation and neurofibrillary tangles and 344 

subsequently, neurodegeneration [95].   345 

Growing evidence suggests that exercise exerts neuroprotective effects by inhibiting microglial 346 

activities and related neuroinflammation in AD brain. In APP/PS1 mice, twelve weeks of treadmill 347 

exercise can preserve hippocampal cognitive function and suppress Aβ deposits at an early stage of 348 

AD, possibly by modulating microglia-mediated neuroinflammation and oxidative stress [54]. 349 

Treadmill exercise promoted the transition of microglia from the pro-inflammatory (neurotoxic) 350 

phenotype to the anti-inflammatory (neuroprotective) phenotype, with increased anti-inflammatory 351 

cytokine TGF-β and decreased pro-inflammatory cytokines IL-1β and TNF-ɑ [54]. Similar effects of 352 

treadmill exercise on microglial phenotype change were also observed in streptozotocin-induced 353 

AD rats, with increased anti-inflammatory cytokines IL-4 and IL-10 [60]. In Aβ1-42 induced AD 354 

mice, treadmill exercise attenuates the pre-inflammatory responses in the hippocampus 355 

by modulating MAPK signaling [56]. Resistance exercise also inhibited neuroinflammation in the 356 

frontal cortex of 3xTg AD mice [32]. In older people with mild cognitive impairment, both aerobic 357 

https://xueshu.baidu.com/usercenter/paper/show?paperid=1d4v0me0u76n0x10f26u0ew0qm266803&site=xueshu_se
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exercise and resistance exercise can reduce serum TNF-α levels [96]. All these indicate that exercise 358 

can mitigate neuroinflammation by inhibiting microglial activities and 359 

promoting microglia polarization to an anti-inflammatory phenotype. 360 

Astrocytes are supporting cells. They assist in neuronal metabolism and synaptic transmission, 361 

maintain blood-brain barrier integrity, and finely tune neuroinflammation with microglia. Astrocytes 362 

may also be neuroprotective by phagocytosis of Aβ deposits and dystrophic neurites [97, 98]. 363 

Astrocyte dysfunction due to the deletion of glial fibrillary acid protein (GFAP) and vimentin genes 364 

led to increased Aβ plaques and related dystrophic neurites in the APP/ PS1 mice [99]. Similar to 365 

microglia, astrocytes have pro-inflammatory and anti-inflammatory phenotypes [100]. Microglia-366 

derived IL-1α, TNF-α, and complement component 1 subcomponent q (C1q) can convert astrocytes 367 

to a neurotoxic phenotype, losing their primary supporting functions [101]. Astrocytes may represent 368 

a significant source of Aβ during neuroinflammation in AD, as amyloidogenic APP synthesis in 369 

astrocytes can be increased by the presence of pro-inflammatory cytokines (TNF-α and IFN-γ), as 370 

well as Aβ oligomers and fibrils [102].  371 

Both aerobic exercise and resistance exercise can reduce astrocyte activation in the brain of AD 372 

mice [20, 32, 49, 56]. In 5xFAD mice, six months of voluntary exercise can remodel the astrocytes to 373 

reverse cognitive impairment. Morphological analysis indicates that voluntary exercise induces a 374 

significant increase in the primary branch number, branch length and soma size of plaque-375 

associated astrocytes without changing the distance between the astrocytes and Aβ plaques, with 376 

increased astrocytic BDNF and postsynaptic protein PSD95 levels [64]. Astrocytic water channel 377 

aquaporin 4 (AQP4) is normally located in the perivascular astrocytic end-feet ensheathing the 378 

brain vasculature, which facilitates the clearance of Aβ and the loss of perivascular AQP4, also 379 

known as AQP4 depolarization, promotes Aβ plaque formation [103, 104]. In aged mice, six weeks of 380 

voluntary exercise promotes glymphatic clearance of Aβ and attenuates neuroinflammation, by 381 

increasing AQP4 expression and polarization and restoring perivascular localization of AQP4 [66]. 382 

The above evidence indicates that exercise can mitigate neuroinflammation by regulating both 383 

microglia and astrocyte functions to improve cognitive function in AD models and patients. 384 

Therefore, exercise represents a promising option in the early management of AD. 385 

 386 

4.4. Exercise induces neurotrophic factors  387 

BDNF is one of the most important growth factors in the brain for its roles in neuronal survival, 388 
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neurite outgrowth and synaptic plasticity. It is highly expressed in the hippocampus, cerebral cortex, 389 

and basal forebrain, all involved in learning, memory, and cognitive contemplation. BDNF exerts its 390 

effects through interacting with tropomyosin-related kinase B (TrkB) receptors and subsequently 391 

activating various signaling pathways, including MAPK, phosphoinositide 3-kinase (PI3K) and 392 

phospholipase C-γ (PLCγ) pathways [105]. BDNF can also reduce Aβ levels by enhancing the α-393 

secretase activity and shifting APP towards the non-amyloidogenic pathway [93, 106]. Decreased 394 

BDNF levels may lead to synapse loss and cognitive dysfunction [107]. It has shown that reduced 395 

brain BDNF occurs in the early stage of AD and is associated with cognitive impairment [108]. As 396 

the condition progresses, AD patients also show decreased BDNF levels in the serum [109]. Exercise 397 

can improve cognitive function by enhancing the expression of BDNF.  In APP/PS1 transgenic mice, 398 

treadmill exercise can enhance BDNF expression in the hippocampus, associated with hippocampal 399 

neurogenesis and spatial memory improvement [53, 61]. In D-galactose and aluminium chloride 400 

induced AD rats, voluntary, involuntary and forced exercises can equally reverse behavioral 401 

impairment by increasing hippocampal neurotrophic factors, such as nerve growth factor and BDNF, 402 

[67]. A meta-analysis shows that acute and chronic exercises in AD patients can ameliorate cognitive 403 

impairment with increased blood BDNF levels, which may be used as a biomarker for evaluating 404 

the effect of exercise among AD patients [110].  405 

Insulin-like growth factor 1 (IGF-1) is an important neurotrophic factor that modulates neuronal 406 

excitability, metabolism, growth, and differentiation [111, 112]. During the progression of AD, IGF-1 407 

levels in the blood and cerebrospinal fluid are reduced, which may serve as a potential biomarker 408 

for predicting cognitive deterioration [113]. Moreover, low baseline levels of serum IGF-1 are 409 

associated with faster cognitive decline in AD patients [114]. Exercise can significantly increase IGF-410 

1 levels in the blood, and boost brain uptake of circulating IGF-1 [115]. A study in 411 

experimental neurodegenerative mice confirms that subcutaneous administration of anti-IGF-1 412 

antibodies can block the circulating IGF-1 entering the brain, diminishing exercise-induced 413 

neuronal protection. This suggests that circulating IGF-1 is indispensable for exercise-induced 414 

neuroprotection [116]. Another study has found that intracarotid injection of IGF-1 can 415 

mimic the effect of exercise to increase BDNF in the hippocampus, indicating that IGF-1 may be an 416 

upstream regulator of  BDNF [115]. In individuals with mild cognitive impairment, acute aerobic 417 

exercise can increase serum levels of both IGF-1 and BDNF, while acute resistance exercise can 418 

only increase serum IGF-1 levels, indicating different working mechanisms of these two types of 419 

exercise [37].  420 

Irisin is a myokine released by the proteolysis of FNDC5 in the skeletal muscle after exercise [117]. 421 

Irisin can cross the blood-brain barrier and induce the expression of BDNF in the hippocampus to 422 
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improve neuronal function [118], by activating the peroxisome proliferator-activated receptor-γ 423 

coactivator-1α (PGC-1α)/FNDC5 pathway [119]. Irisin can also promote hippocampal cell 424 

proliferation through STAT3 signaling [120], and reduce oxidative stress-induced neuronal damage 425 

through activating Akt and ERK1/2 signaling pathways [121]. FNDC5 is also expressed in the 426 

hippocampus, and its levels in the hippocampus and cerebrospinal fluid are reduced in AD patients 427 

and a rat model of AD  [90]. Knockdown of brain FNDC5/irisin can weaken the neuroprotective 428 

effect of exercise on synaptic plasticity and memory retention in AD mice [90]. On the other hand, 429 

the administration of exogenous irisin is effective in ameliorating both cognitive deficit and 430 

neuropathology in the APP/PS1 and 5xFAD mice [122]. Thus, irisin may represent a new treatment 431 

option for managing cognitive decline in patients with AD.  432 

 433 

4.5. Exercise improves mitochondrial integrity 434 

Maintaining mitochondrial structural and functional integrity is critical to upholding cellular energy 435 

and metabolic equilibrium. When mitochondria are damaged, it leads to energy supply deficiency, 436 

intracellular calcium imbalance, and oxidative stress, all of which aggravate tau 437 

hyperphosphorylation and Aβ accumulation, resulting in synaptic dysfunction, cognitive decline 438 

and memory loss [123]. Exercise-induced lactate can increase brain mitochondrial biogenesis-439 

associated factors (such as PGC-1α; nuclear respiratory factor 1 and 2; mitochondrial transcription 440 

factor A) and mitochondrial DNA copy numbers, and improve mitochondrial dynamics in 441 

hippocampal neurons [36, 49]. In 6-month-old APP/PS1 mice, exercise has also been shown to 442 

improve mitophagy machinery, which can promote mitochondrial renewal and mitochondrial 443 

function through the silent information regulator factor-1 / forkhead transcription factors 1/3 444 

(FOXO1/3) -phosphatase and tensin homolog-induced putative kinase 1 (PINK1) / Parkin pathway 445 

[55, 124]. High-intensity interval exercise and moderate-intensity continuous exercise can also 446 

improve hippocampus mitochondrial morphology and reduce mitochondrial fragmentation and 447 

hippocampal Aβ burden in APP/PS1 mice [62]. Exercise can also increase the repair capacity of 448 

oxidative stress-induced damage to mitochondrial DNA and mitochondrial ATP production, leading 449 

to increased synaptic plasticity and synaptic density in the hippocampus and cerebral cortex of 450 

APP/PS1 mice [125]. This suggests mitochondrial integrity and function play a key role in synaptic 451 

plasticity in AD brains. 452 

 453 

4.6. Exercise affects epigenetic regulation 454 

Epigenetic regulation is a key mechanism in neural response and adaptation to external 455 
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environmental stimuli. There are mainly three epigenetic mechanisms, DNA methylation, histone 456 

modification, and non-coding RNAs, e.g., microRNAs. A study found that Aβ can increase the 457 

DNA methylation of neprilysin (an enzyme responsible for Aβ degradation) and further suppress its 458 

mRNA expression and protein levels  [126]. Moreover, the frontal lobe of the AD brain had lower 459 

DNA methylation levels at the APOE CpG island and exhibited increased mRNA expression of otal 460 

APOE, which is the most significant hereditary risk factor for late-onset AD [127]. It has been 461 

confirmed that the methyl-CpG binding protein 2 (MeCP2) - mediated dysregulation of the 462 

epigenome in the striatum is linked to impaired cognitive functions and abnormal neuronal activity 463 

in AD mice, which can be rescued by knocking down striatal MeCP2 [128]. A possible protective role 464 

of mild cognitive impairment by exercise is supported by the changes in genome-wide DNA 465 

methylation patterns [129]. This suggests that exercise can alter epigenetic regulations associated 466 

with cognitive function. 467 

Histone acetylation has also been shown to play a significant role in regulating synaptic plasticity 468 

and memory processes [130]. Histone acetylation is regulated by histone acetyltransferases (HATs) 469 

and histone deacetylases (HDACs). It has been shown that some HATs, such as CREB-binding 470 

protein (CBP) and its homolog p300, are significantly decreased in the frontal cortex and 471 

hippocampus of AD brains, associated with learning and memory deficits [131, 132]; while treadmill 472 

exercise can increase global HAT activity in the cortex and hippocampus of rodents [133, 134]. 473 

HDACs play an important role in memory formation and synaptic plasticity. HDAC2 is increased in 474 

AD brains which is associated with memory impairments by reducing the histone acetylation of 475 

genes important for learning and memory. Reducing HDAC2 can restore brian structure and 476 

synaptic plasticity and diminish neurodegeneration-associated cognitive decline [135]. Exercise can 477 

reduce several HDACs, such as HDAC2, HDAC3 and HDAC5, to increase histone acetylation, in 478 

line with the improvement in memory performance [136, 137] .   479 

MicroRNAs have been increasingly recognized to play a key role in neural development and 480 

synaptic plasticity, and their dysregulation has also been linked to the development and progression 481 

of AD [138]. For example, miR-155 is over-expressed in the brain of 3xTg AD mice, which is 482 

associated with activation of astrocytes and microglia, and increased expression of inflammatory 483 

factors, such as IL-6 and IFN-β [139]. Several studies have confirmed that exercise can modulate 484 

miRNA expression in its effect on cognitive function. Voluntary running wheel exercise has been 485 

shown to suppress over-expressed miR-132 in the hippocampus of SAMP8 mice with improved 486 

cognitive function [140]. MiR-137 is downregulated in both the hippocampus and cerebral cortex of 487 

APP/PS1 mice, resulting in tau hyperphosphorylation [141]; while voluntary wheel running can 488 

upregulate miR-137 expression and improve the memory function in mice [142]. MiR-15b is reduced 489 
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in brains from AD models and patients, associated with increased expression of BACE-1 [143]. 490 

Chronic aerobic exercise can upregulate miR-15b expression in the hippocampus of SAMP8 mice 491 

and reduce BACE-1 levels to decrease Aβ accumulation in the brain [65]. Exercise can also regulate 492 

other miRNAs, including miR-124, miR-146a and miR-148b, and their mechanisms of action in 493 

neurodegeneration and cognitive functions require future studies [144].  494 

 495 

4.7. Sex differences in exercise-induced cognitive changes 496 

There are sex differences in the effects of exercise on cognitive functional outcomes. In 497 

streptozocin-induced AD rats, treadmill exercise decreases depression-related behaviours in female 498 

rats, while reduces anhedonia-like behaviour in male rats [145]. However, treadmill exercise only 499 

increased BDNF levels in the hippocampus and IL-10 levels in the prefrontal cortex in female rats, 500 

suggesting sex-difference in working mechanims  [145].  Another study found the total white matter 501 

volume and myelinated fibers were significantly lower in the female AD mice than in the male 502 

counterparts [146]. However, running exercise was more effective in delaying the decline in spatial 503 

learning and memory functions and attenuating the changes in the myelinated fibers in female AD 504 

mice than in male AD mice [146]. Sex differences in neuroplasticity and neurotrophic factors may 505 

mediate the difference in the efficacy of exercise on improving cognition in AD models [147], 506 

suggesting individualized exercise protocols are needed for male and female patients. 507 

 508 

5. Conclusions and Future Perspectives 509 

Exercise has demonstrated a great capacity to enhance cognitive performance across various life 510 

stages, encompassing both youth and later years, as well as within particular populations with 511 

cognitive impairments. This phenomenon is supported by a body of evidence ranging from 512 

moderate to robust [148]. Both cognitive-aerobic training and a solitary aerobic training regime 513 

exhibited effectiveness in enhancing executive function among the elderly with mild dementia [149]. 514 

Exercise rehabilitation stands as an exceptionally promising and multifaceted domain that merits 515 

comprehensive investigation in the realm of future research initiatives. Its potential implications 516 

extend far beyond the confines of research, holding significant promise for integration into routine 517 

care for individuals grappling with AD. By harnessing exercise as a therapeutic tool, healthcare 518 

practitioners can potentially enhance the quality of life and cognitive function in AD patients 519 

(Figure 3). 520 

This paradigm shift opens avenues for personalized care plans, where exercise becomes not only a 521 
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physical activity but also a tailored intervention. It has the potential to serve as a predictive 522 

biomarker, offering insights into an individual’s potential response to exercise-based interventions. 523 

These biomarkers could guide healthcare professionals in designing exercise regimens that are 524 

precisely aligned with a patient’s unique needs and capabilities. This approach holds the potential to 525 

optimize the therapeutic benefits of exercise, promoting both physical and cognitive well-being in 526 

AD patients. 527 

Furthermore, more research on the intricate mechanisms underlying the cognitive benefits of 528 

exercise is needed to unveil novel biomarkers. These biomarkers, which may encompass 529 

neurochemical, neuroimaging, or even epigenetic markers, could offer crucial insights into the 530 

underlying molecular and physiological changes brought about by exercise. Importantly, these 531 

mechanistic biomarkers might also serve as viable targets for the development of new drugs aimed 532 

at slowing down the progression of AD or even preventing its onset. 533 

Incorporating exercise rehabilitation into routine care for AD patients necessitates a collaborative 534 

effort among healthcare providers, researchers, and policymakers. Such integration would require 535 

tailored exercise protocols that consider the varying degrees of cognitive impairment and physical 536 

abilities present in different AD patients. Additionally, establishing standardized guidelines and 537 

protocols for the assessment of exercise-induced biomarkers can facilitate their consistent use 538 

across clinical settings, aiding in treatment planning and decision-making. 539 

Taken together, exercise is a cost-effective intervention to improve the physical and cognitive 540 

fitness of AD patients. Different forms of exercise exert positive effects through different 541 

mechanisms of action. The prospects of exercise rehabilitation in the context of AD research and 542 

clinical practice are undeniably promising.   543 
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 886 

Figure 1. Schematic diagram of oligomeric Aβ-induced synaptic damage 887 

The oligomeric Aβ triggers a series of toxic events in the synapse, including the overstimulation of 888 

NMDA receptors, elevated neuronal calcium influx, increased calcium-dependent activation of 889 

calcineurin/PP2B and its downstream signalings, including cofilin, GSK-3β and CaMKII. This 890 

results in F-actin depolymerization, tau-hyperphosphorylation and endocytosis of AMPA receptors. 891 

The oligomeric Aβ can also induce the endocytosis of NMDA receptors, mediated by 892 

dephosphorylation of NMDA receptor subunit NR2B. These events eventually lead to synaptic 893 

dysfunction. AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; CaMKII: 894 

calcium/calmodulin-dependent protein kinase II; GSK-3β: glycogen synthase kinase 3 beta; NMDA: 895 

N-methyl-D-aspartate; p-: phosphorylation; PP2B: protein phosphatase 2B. 896 
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 897 

Figure 2. Proposed mechanisms of how exercise affects AD pathology 898 

ace-FOXO1a: acetylated forkhead box O1a; ace-FOXO3a: acetylated forkhead box O3a; Akt: 899 

serine/threonine kinase; AQP4: aquaporin 4; BACE1: beta-site amyloid precursor protein cleaving 900 

enzyme 1; Bax: Bcl-2-associated X; Bcl-2: B cell leukemia/lymphoma 2; BDNF: brain derived 901 

neurotrophic factor; CaMKII: calcium/calmodulin-dependent protein kinase II; CHOP: 902 

CCAAT/enhancer-binding protein homologous protein; eIF2α: eukaryotic initiation factor 2α; 903 

eNOS: endothelial nitric-oxide synthase; ER: endoplasmic reticulum; GSK-3β: glycogen synthase 904 
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kinase 3 beta; IGF-1: insulin-like growth factor 1; IL: interleukin; IRE1: inositol-requiring enzyme 905 

1; MAP2: microtubule-associated protein 2; NRF1,2: nuclear respiratory factor 1 and 2; p-: 906 

phosphorylation; PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; 907 

PI3K: phosphoinositide 3-kinase; PINK1: PTEN-induced kinase 1; PP2B: protein phosphatase 2B; 908 

PSD95: postsynaptic density protein 95; Syn: synapsin; TNF-α: tumor necrosis factor-α. 909 

 910 

 911 

 912 

Figure 3. Proposed therapeutic regimen for AD patients at different stages 913 

Exercise is beneficial for AD patients at different stages. Mild AD patients can engage in aerobic 914 

exercise to maintain cognitive function, while mild to moderate AD patients can combine 915 

pharmacotherapy, cognitive training and multimodal exercises, including aerobic exercise and 916 

stretching training, to prevent a rapid decline in cognitive function and enhance muscle strength. 917 

For moderate AD patients, especially those unsuitable for voluntary aerobic exercise, strength 918 

training can be performed with the help of trained carers or personal trainers to prevent muscle 919 

atrophy. In addition, repeated transcranial magnetic stimulation (rTMS) can improve cognitive 920 

function and psychobehavioral symptoms in AD patients with dementia. 921 


