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A B S T R A C T   

This paper introduces a virtual modelling-aided computational analysis framework for assessing the safety of a 
ductile engineering object against high-velocity impact. By evaluating the data feedback continuously collected 
from the working site, the presented Virtual Modelling Aided Safety Assessment (VMASA) scheme is competent 
to effectively report the current safety level of the engineering object. The safety level (alternatively known as the 
reliability), of the impacted system can be quantified by using the first-passage theory. By considering various 
mercurial factors that are influencing the high-velocity impact for ductile materials, in this research, a new 
machine learning-aided virtual modelling technique as the clustering extended support vector regression 
(CXSVR), is implemented to evaluate the capacity of the engineering product against different conditions. Also, 
the John-Cook failure model is transformed into a random format to simulate the dynamic response of the en-
gineering product against high-velocity impacts. A new T-spline kernel has also been developed within the 
CXSVR scheme. By using the VMASA, the inherent limit state function can be quantitatively certified by ana-
lysing the relationship between the system inputs and outputs. Both experimental and numerical investigations 
are implemented to demonstrate the accuracy, practicability, and efficiency of the proposed safety assessment 
framework.   

1. Introduction 

Structures made from metallic, or alloy materials are frequently 
facing the lurking effects of high dynamic loadings, such as the high- 
velocity impact of bird strikes, flying debris and burst stone [1–3], as 
shown in Fig. 1. The constant repair or patch for structural components 
bring huge capital costs, sometimes the entire structure needs to be 
replaced. Thus, this highlights the importance of safety assessment of 
structures against potential impact events, to prevent catastrophic 
consequences [4,5]. Furthermore, the nondeterministic parameters, for 
instance, the material properties, dynamic excitations, and dimensions 
of the structure have been inherently related to the entire system and 
could generate considerable fluctuations in the ultimate safety condi-
tions [6,7]. The reliability analysis of structural systems is a significant 

solution to solve static safety problems and quantify the probability of 
failure. However, by incorporating the time-dependent random model-
ling process into the reliability framework, the overall dynamic safety 
assessment procedure would become extremely complicated. 

In the past decades, many attempts have been made to investigate 
dynamic safety problems [8–10], which mainly use the first-passage 
theory to evaluate the probability of failure through numerical and 
analytical methods. The analytical solutions are normally acquired by 
two directions. One approach often used assumes of the Poisson process 
model and its modified versions [11]. In this method, the evaluation of 
reliability involves adopting the ratio of expected crossings and the 
extreme value distribution [12,13]. Nevertheless, this method is pri-
marily applicable to linear systems excited by Gaussian white noises. 
Another approach involves assuming Markov diffusion processes [14]. 
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In this context, reliability is characterized by the conditional reliability 
function and the moments of the first-passage time. Although the second 
method offers increased accuracy, it necessitates solving partial differ-
ential equations. Due to the inherent difficulty in obtaining exact solu-
tions for these equations, researchers often turn to approximate 
analytical solutions [15] and numerical techniques such as the finite 
difference method [16], finite element method [17], and similar ap-
proaches. However, the adoptions of these analytical and numerical 
methods are suitable in a limited range, which could be mainly useful in 
linear elastic problems for a single degree of freedom body, due to their 
inherent complexity in mathematic derivations and formulations [18]. 
That is, facing the high-velocity impact or other nonlinear problems, the 
time-dependent reliability function underpinned with the elastoplastic 
constitutive equation can be extremely difficult to acquire, let alone the 
continuous variations of material properties. 

As another challenging issue, the capability of analysing structural 
safety during a time-dependent random modelling process is difficult to 
achieve. For most methodologies, reliability is focused on the ultimate 
response of structure within a period [19,20]. But for high-velocity 
impact problems, the structural deflection and impact energy is not 
proportionally increasing but varied along the time domain [21,22], 
which means the maximum dynamic responses would occur at any 
moment of the loading process. This highlights the importance of 
simulating and forecasting structural safety throughout the whole 
serving stage, particularly for sensitive structures under extreme work-
ing conditions [23]. By using the classical first-passage theory-based 
reliability analysis models, an overall approximation of the entire dy-
namic process can be obtained, which has been seen as critical for the 
modern dynamic systems. Furthermore, considering the randomness 
involved in the sampling-based dynamic safety assessment analysis, the 
impact responses of the concerned structure can be varied under 
different material properties, dynamic excitations, and dimensions of 
the structure, from which the integral result of the reliability cannot 
fully represent the safety condition of the structure. Consequently, a 
powerful safety forecast regime of structure is needed to observe real-life 
safety assessment problems. 

Moreover, for the uncertainty involved dynamic structural analysis, 
the computational efficiency problem has always been an obstacle for 
various disciplines. In this research, the proposed framework is expected 
to predict structural potential response against continuously varying 
working information in a rapid manner. Then a quick and accurate 
safety forecast system for the structure can be achieved. Due to the 
elastoplastic constitutive equation of the ductile structure, the plastic 
deformation modelling under impact loadings is complex and time- 
consuming, which is not achievable through the integral type of anal-
ysis, i.e., first or second-order reliability method [24,25]. By using the 
sampling-based crude Monte Carlo simulation method [26], the proba-
bility of failure can be evaluated but a great quantity of repetitive 
deterministic finite element analysis is needed to calculate every 
possible response, which could result in tremendous computational 

efforts. Considering the practical needs, the computational efficiency of 
the modern reliability framework must be enhanced to a high dimen-
sional level to surpass the analytical and numerical burdens. 

There are clearly some essential requirements for modern engi-
neering safety guidance: rapid simulating and adaptivity with varying 
inputs from surrounding observations. Models of conventional first- 
passage-based uncertainty quantification methods are impractical to 
fulfil all the standards. However, the decision-making ability by using 
the popular machine learning algorithm is a powerful alternative [27, 
28]. Various machine learning models have been widely adopted in 
different real-life engineering damage, nonlinear and reliability prob-
lems and have been validated effectively [29–31]. In this study, a new 
virtual modelling technique is introduced by enhancing the capability of 
machine learning algorithms with an efficient visualization module. The 
critical issues as mentioned can be addressed with new solutions. 

First, the virtual modelling technique can analyse the inherent 
relationship with the varying inputs and structural impact responses at 
discretised time steps, in form of explicit functions. By using the well- 
known Johnson-Cook failure model [32,33], the random ductile dam-
age governing equation under high-velocity impact can be determined 
by the sampling-basis of the machine learning algorithm, such that the 
structural response at an arbitrary moment can be estimated through the 
acquired functions. That is, the entire impact performance of the con-
cerned structure can be monitored and controlled within a 
time-dependent loading process. By setting the safety threshold for the 
structure in advance, any predicted deflection or stress response 
exceeding the limit can be forecasted as an alarm state, which is known 
as the rapid simulating process. For this ability, accurate prediction is of 
vital importance to support. In addition, rapid simulation under various 
inputs from observations is another key feature of the proposed virtual 
modelling framework. Utilizing the obtained input-output functions, the 
estimated impact responses can be directly obtained, instead of running 
repetitive time-consuming finite element analysis. Then the predicted 
result can be implemented into the first passage theory to certify the 
limit state condition of the structure and complete a quick safety eval-
uation cycle. Actually, the specific failure criteria can be defined by 
different rules, and either the maximum displacement-based or residual 
velocity-based first-passage theory can be adopted. The proposed regime 
can integrate numerous historical data to train the model, then 
self-adapt with renewed information and quickly make a judgement on 
the current safety level of the engineering object. 

In this paper, a virtual modelling-aided safety assessment (VMASA) 
scheme is proposed for ductile systems under high-velocity impact. A 
major objective is to establish efficient safety assessment that provides 
valid reports of the current safety level or reliability of the engineering 
object to the end-users, by rapidly evaluating data sources continuously 
collected from the working site. To support the functionalities, a new 
artificial intelligence technique as the clustering extended support vec-
tor regression, along with a newly developed T-spline kernel, has been 
incorporated into the Johnson-Cook ductile damage model against 

Fig. 1. Structures: (a) automobile, (b) turbine engine, (c) stahlhelm under high-velocity impacts.  

Y. Feng et al.                                                                                                                                                                                                                                     



Engineering Structures 301 (2024) 117373

3

random high-velocity impacts. Furthermore, the established VMASA 
framework in this paper has the prospective utility to involve different 
failure models and dynamic systems. 

The paper is structured as follows. Section 2 introduces a brief review 
of the dynamic safety assessment of ductile impact damage, including 
the Johnson-Cook ductile damage model and the first-passage theory. 
Section 3 presents the nondeterministic structural dynamic safety 
analysis by using virtual modelling. Then the capability of the proposed 
VMASA framework is demonstrated through two practical examples in 
Section 4. Finally, some conclusions of the study have been drawn in 
Section 5. 

2. The sampling-based dynamic safety assessment of ductile 
impact damage 

2.1. Plastic deformation modelling under high-velocity impact 

For ductile materials subjected to high-velocity impact, the rela-
tionship between the plastic stress and strain can be described through 
the popular Johnson-Cook model [34], which has been rigorously tested 
under large deformation and high strain rate conditions. Specifically, for 
an arbitrary status of structure with plastic deformation, the typical 
decomposition of the entire strain at a certain time step can be repre-
sented as 

ε = εe + εp (1)  

where εe, εp are the linear elastic and plastic strains, respectively. Then a 
von Mises yielding function has been chosen to simulate the plastic 
stress flow, given as 

ϕ
(

σ,H
(

εp,T
))

=
̅̅̅̅̅̅̅̅̅̅̅̅
3J2/2

√
− H

(
εp,T

)
(2)  

where J2 is the second deviatoric stress invariant, H(εp,T) is the hard-
ening matrix associated with plastic strain and temperature. And the 
hardening stress with the Johnson-Cook model can be represented as 

σ =
(

σY +Hεp

)(
1+C ln ε̇∗p

)(
1 − T∗m

)
(3)  

where σY denotes the yield stress; H denotes the straining hardening 
parameter; C is the material constant; ε̇∗p = ε̇p/ε̇0 denotes the dimen-
sionless strain rate, ε̇0 is the reference strain rate; T∗m denotes the ho-
mologous melting temperature from the test [32]. In this study, 
regarding the experimental limitations, ε̇0 and T∗m are both taken as 
constants [35]. 

Thus, the associate flow rule can be transformed as 

εp = λ
∂ϕ
(
σ,H

(
εp, T

))

∂σ (4)  

where λ is the plastic multiplier where the initiation of failure strain is 
generated. After plastic strain has been initialized, the damage evolution 
law of the fracture strain based on the Johnson-Cook failure criterion 
can be given as 

εf =

[

D1 +D2exp
{

D3

(
σm

σeq

)}]{

1+D4 ln
(

ε̇∗p
)}(

1+D5T∗m
)

(5)  

where D1 to D5 are material constants acquired from experiments; σm 
denotes the mean stress value; σeq denotes the equivalent stress. 

With the incremental accumulation of plastic damage in the struc-
tural body, a damage parameter γ can be formulated to weaken the 
original stiffness as [36]: 

γ =
∑
(

Δεp

εf

)

(6)  

where Δεp is the incremental plastic strain. Consequently, considering 

the material strength loss during plastic deformation, the constitutive 
equation with the coupled elastic-plastic-damage relation on an indi-
vidual element can be defined by 

σ = w(γ)D : εe = w(γ)D :
(
1 − εp

)
(7)  

with 

w(γ) = 1 − γ (8)  

where w(γ) is the weakening function with damage parameter γ; D is the 
normal linear stiffness matrix of the structure. 

Subsequently, considering the contributions from all elements and 
different time steps discretised from the dynamic loading process, by 
using the principle of virtual work, the global governing equation for the 
incremental plastic deformation modelling subjected to impact loadings 
can be represented as 

Kw
ep⋅ΔU(t) =

(
1 − γ

)
Kep⋅ΔU(t) = ΔF(t) (9)  

where Kw
ep is the weakened global elastoplastic stiffness matrix with 

damage vector γ; ΔU(t) is the incremental displacement vector which is 
time-dependent; ΔF(t) is the time-dependent incremental external 
loading vector. Therefore, the entire process of the structure from un-
damaged state until fully penetration collapse considering plastic 
behaviour can be obtained. 

2.2. Nondeterministic impact response of structure 

In real-life engineering applications, the material properties can be 
varied under different scenarios, for instance, the Young’s modulus E, 
Poisson’s ratio υ, yield stress σY , hardening parameter H and material 
density ρ etc. In this section, the randomness of each factor is imple-
mented by sampling different distribution types and information to the 
deterministic values through quasi-Monte Carlo Sobol’s sequence 
method [37], which can be represented by ξ = {E(ζ), υ(ζ), σY(ζ),H(ζ),
ρ(ζ).} [38]. From which, ξ is a random vector collecting different vari-
ations of system properties in the probability space, and ζ represents one 
possible realization of the random variable set. By doing so, the random 
vector can then be adopted into the deterministic plastic impact damage 
deformation model to obtain the quantified nondeterministic impact 
responses of the concerned structure. 

As mentioned, the nondeterministic hardening plastic stress by using 
the Johnson-Cook model can be reformulated as 

σ(ζ) =
{

σY(ζ)+H(ζ)εp

}(
1+C ln ε̇∗p

)(
1 − T∗m

)
(10)  

where σ(ζ) is the nondeterministic expression of plastic stress. For in-
dividual elements, the random constitutive equation can be expressed as 

σ(ζ) =
(
1 − γ

)
D(ζ) :

(
1 − εp(ζ)

)
(11) 

By considering various random vectors, the global governing equa-
tion for dynamic impact responses of ductile structure can be changed to 

Kw
ep(ξ)⋅ΔU

(
ξ, t
)
=
(

1 − γ
)

Kep(ξ)⋅ΔU
(

ξ, t
)
= ΔF

(
ξ, t
)

(12)  

where Kw
ep(ξ), ΔU(ξ, t) and ΔF(ξ, t) are the weakened global elastoplastic 

stiffness matrix, time-dependent incremental displacement, and external 
loading vector in nondeterministic formats. 

It should be stated although the governing equation has been ac-
quired, the explicit or analytical solution of U(ξ, t) are only available to 
very simplified cases rather than real-life engineering applications with 
complex geometries or degrees of freedom [39]. Thus, the detailed 
quantification of the distributed probability density function (PDF) of 
U(ξ, t) is computationally infeasible. In the past decades, considering 
various numerical approaches to approximate the statistical moments 
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and reliability profiles of nondeterministic impact response of struc-
tures, the crude Monte Carlo simulation (MCS) approach has been 
considered as an applicable method and has been widely used in 
different circumstances [40]. 

2.3. First-passage failure principle 

The safety condition for the structure can generally be assessed 
through evaluating the failure probability based on structural responses, 
for instance the maximum displacement, stress or stain within the body 
undergoes dynamic loadings. Typically, the structure is determined as 
failed if the structural response reaches or exceeds the pre-set safety 
threshold at the first time, which has been known as the first-passage 
failure principle. From analytical discipline, the probability of failure 
can be calculated by 

Pf = Pr

{

g(ξ) ≤ 0

}

=

∫

g(ξ)≤0
f PDF

ξ (ξ)dξ =

∫

ℜn
[[g(ξ) ≤ 0]f PDF

ξ (ξ)dξ (13)  

where Pr{⋅} is the probability space; [[⋅] denotes an indicator function 
that will equal to 1 when [⋅] is ‘true’, otherwise 0 when [⋅] is ‘false’; 
fPDF

ξ (ξ) is the PDF for ξ; g(ξ) is the limit state function defining structural 
failure when g(ξ) ≤ 0. 

It should be noticed that, for structural dynamics, the responses are 
varied along the time domain, so as the corresponding limit state 
function. Thus, the time-dependent probability of failure in a time in-
terval [0,T] can be reformulated as 

Pf = Pr{∃t ∈ [0, T], g(ξ, t) ≤ 0} (14)  

otherwise, in the format of exceeding safety threshold δ as shown in 
Fig. 2, with 

Pf = Pr{∃t ∈ [0, T], max U(ξ, t) ≥ |δ|} (15)  

where g(ξ, t) = |δ| − max U(ξ, t) can be transformed from each format. 
Therefore, the robust way to accurately and efficiently obtain Pf is still a 
challenging task in practical impact reliability analysis. Among the 
established mathematical models to get the probability of failure, for 
instance the Markov models, the detailed expression can be defined by 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v+(t) = lim
Δt→0

Pr{g(ξ, t) > 0 ∩ g(ξ, t + Δt) < 0}
Δt

Pf = 1 − exp
[

−

∫ T

0

v+(t)
1 − Pf ,ins(t)

dt
] (16)  

where v+(t) is the out-crossing rate, pf ,ins(t) = Pr{g(x, t) ≤ 0} denotes the 
instantaneous probability of failure at time t. It can be observed from the 
Markov model that the formulation requires large calculations of out- 
crossing rates and a complex integral process for the entire time 
domain [12], which is extremely complex and time-consuming in the 

real-life engineering applications, especially against the 
high-dimensional nondeterministic features. Thus, in the study, the 
crude MCS approach is employed to evaluate the probability of failure 
through an effective sampling approach [41], by generating large 
number of samples n for the input vector ξi(i = 1,2, .,n), the Pf can be 
alternatively expressed as 

Pf ≈ P̂f =
1
n

∑n

i=1
[[g(ξi ≤ 0)] =

nf

n
(17)  

where nf is the total number of samples resulting in the failure of 
structure. 

Based on Eq. (17), an alternative solution is provided for acquiring 
the probability of failure in both structural deformation and strength 
fields. However, as seen from the expression of Pf , the determination of 
the safety or reliability of structure still requires a complete realization 
of all generated samples in the whole dynamic loading process [42,43]. 
That is, a large number of computational efforts are used to repeatedly 
calculate the physical finite element analysis for complicated structures 
and consistently evaluate the limit state function [44]. Moreover, this 
computational barrier will be raised to another high-dimensional un-
touchable level, if the system properties are continuously changing 
under dynamic circumstances. Facing with this condition, a machine 
learning aided virtual modelling reliability analysis is a powerful alter-
native, which could efficiently analyse the correlation between the 
random inputs and system response outputs. 

3. Structural dynamic safety analysis by using virtual modelling 

In this section, the new virtual-modelling safety assessment tech-
nique (VMASA) aided by a newly developed machine learning algorithm 
is proposed to solve the structural sampling-based dynamic safety 
assessment problems with much less computational efforts required in 
comparison with the classical MCS approach. The new artificial intelli-
gence technique as the clustering extended support vector regression 
(CXSVR), along with a newly developed T-spline kernel to reinforce the 
performance of virtual model are introduced. Then, a detailed intro-
duction of the construction of structural dynamic safety analysis by 
using the proposed model will be presented. 

3.1. Kernelized CXSVR 

Stimulating by conventional support vector machine employed in a 
variety of engineering fields [45], different machine learning algorithms 
based on various theories have been popular among practical applica-
tions [46–48]. In this study, aiming at complex physical process and 
high-efficiency handling capability, a freshly developed machine 
learning algorithm, namely the clustering extended support vector 
regression (CXSVR) has been established. Parallel training clusters and 
high-dimensional feature transform have been brought together into the 
algorithm [49,50], so complicated engineering applications with 
changing working scenarios could be quantified accurately. 

Assume a group of random vectors ξj(j = 1,2, .,m) in a relative 
disordered sequence, the kernelized mapping process within the tech-
nique can raise the random vector into a high-dimensional structured 
pattern, which can be represented as 

ξ =
[
ξ1, ξ2, ., ξj

]T ⇒k̂
(
ξj
)
=

⎡

⎢
⎢
⎣

Θ(ξ1)
T Θ
(
ξj
)

Θ(ξ2)
T Θ
(
ξj
)

⋮
Θ(ξm)

T Θ
(
ξj
)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

k
(
ξ1, ξj

)

k
(
ξ2, ξj

)

⋮
k
(
ξm, ξj

)

⎤

⎥
⎥
⎦, j = 1, 2, .,m.

(18)  

where Θ(ξj) is the implicit kernel mapping function; k̂(ξj) is the jth 
kernelized feature vector. 

In general, the optimization process of the kernelized clustering 

Fig. 2. The safety threshold in first-passage theory.  
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extended support vector regression can be expressed as 

min
pk ,qk ,χ,ϑ,ϑ̂

:
λ1

2

(

‖pk‖
2
2 +‖qk‖

2
2

)

+ λ2eT
m

(

pk + qk

)

+
S
2

(

ϑT ϑ+ ϑ̂
T

ϑ̂
)

(19)  

⎧
⎪⎪⎨

⎪⎪⎩

k
(
pk − qk

)
− χeT

m − yres ≤ εeT
m + ϑ

yres −
(
k
(
pk − qk

)
− χeT

m

)
≤ εeT

m + ϑ̂

pk,qk,ϑ, ϑ̂ ≥ 0m

(20)  

where yres is the structural response vector corresponding to ξj(j = 1,2,.,
m); pk, qk are positive coefficients; λ1, λ2 are tunning coefficients for 
feature selections; ϑ, ϑ̂ denote the slack parameter within a quadratic 
loss equation; χ is the bias coefficient; ε is the tolerable deviation be-

Table 1 
The mathematical measures.  

Evaluation measures Formulations 

R-squared (R2) 
R2 = 1 −

∑ξtrain
i=1 (ŷi − yi)

2

∑ξtrain
i=1 (μŷi − yi)

2 

Root mean square error (RMSE) 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

ξtrain

∑ξtrain

i=1
(ŷi − yi)

2
√

Relative error (RE) 
RE =

yi − ŷi
yi

× 100%  

*yi, ŷi and μŷi denote true, estimated and mean values of the responses at the ith 
sampling point.  

Fig. 3. Flowchart for structural dynamic safety analysis by using VMASA.  
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tween the estimated and actual result. For the sake of simplicity, Eq. (19) 
can be modified as the following optimization function as [51]: 

min
uk

:
1
2

uT
k Qkuk − mT

k uk (21)  

where uk ∈ ℜ4m is the concerned solution of the optimization problem; 
Qk ∈ ℜ4m×4m and mk ∈ ℜ4m are explained with full details in Appendix 
A, due to page limitations. 

Subsequently, by solving the above optimization problem with the 
acquired global optimal result u∗

k, the explicit expression of the ker-
nelized CXSVR function can be represented as 

f̂ (ξ) = (pk − qk)
T k̂(ξ) − eT

k u∗
k (22) 

It should be noticed that the ultimate performance of the regression 
function still depends on the kernel function k̂(ξ) selected, which will be 
introduced in the following section. 

3.2. A new T-spline polynomial kernel function 

For regression problems, especially nonlinear complex applications, 
the ultimate behaviour of the surrogate model relies on the kernel 
chosen [52]. The spline kernels have been very popular in interpolation 
and function estimation, for instance the well-known B-spline kernel or 
other basic spline [53,54]. The spline kernels are competent to effec-
tively handle the local supports used for function approximation, and 
polynomial basis of the kernel receives increasingly interests from a 
variety of researchers. 

In recent years, T-spline functions have been widely adopted for 
feature quantification and function approximation [55], due to its 
flexibility with multi-dimensional polynomial level and excellent 
refinement of complicated parameterization especially in isogeometric 
analysis. Stimulating by these features, we constructed a new T-spline 
kernel function for the proposed kernelized CXSVR. By defining on the 
selection region of [ − 1,1], the T-spline kernel function Tspline(ξi, ξj) is 
expressed recursively as 

Tspline

(

ξi, ξj

)

=
PiwiB2n+1

(
ξi − ξj

)

∑m
j=1wjB2n+1

(
ξi − ξj

) (23)  

Bn(ξi) =
∑i+1

r=0

( − 1)r

i!
(i + 1)!

r!(i + 1 − r)!

(

ξi +
i + 1

2
− r
)i

+

(24)  

where (ξi)+ = max(0,ξi); wi denotes a set of positive weights; Pi denotes 
the spline coefficient; Bn(ξi) is a B-spline kernel; n denotes the degree of 
polynomial function. 

It can be observed the range and shape of the polynomial kernel 
depends on the hyperparameter order n. Different interpolation and 
estimation accuracy could be resulted with different orders. Conse-
quently, to effectively fulfill the purpose of auto-learning and auto- 
training skills of the T-spline polynomial kernel, the well-known 
Bayesian optimization method has been integrated within the pro-
posed algorithm for better training purposes [56,57]. 

3.3. Virtual modelling aided safety assessment (VMASA) framework 

In this research, a newly developed VMASA model is introduced to 
help predict the structural responses via sampling-based approach. Since 
the governing equation will be solved based on each data from the input 
vector ξi(i = 1,2, .,n), limit number of deterministic impact analyses are 
calculated at the sampling points. Within each realization, the deter-
ministic dynamic response is discretized into a series of time steps. For 
each time step, the relationship between the input variables and struc-
tural outputs is approximated by the VMASA approach, which is an 
explicit formulation. After the regression formulation is acquired, the 

Fig. 4. Experimental case: (a) Dog-bone flat specimen [58], (b) FE mesh plot.  

Table 2 
Distribution inputs for the dog-bone flat specimen.  

Varying Inputs Distribution type Mean Standard deviation Interval 

E (GPa) Lognormal[47] 122.6 6.1 - 
υ Beta 0.3 0.010 - 
σY (MPa) Normal[28] 954.7 47.7 - 
τ(mm) Uniform[58] – [0,1]  

Fig. 5. The estimated (a) R2 and (b) RMSE of impact energy with different sample sizes.  
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potential structural response at each time step can be directly predicted 
without the need of re-running the finite element analysis. Furthermore, 
with the implementation of clustering nodes, multiple time steps can be 
predicted simultaneously to construct the full loading process of dy-
namic event. For the structural dynamic safety analysis, the limit state 
function has been evaluated by the VMASA technique instead of the 
repetitive finite element analysis. Subsequently, the probability of fail-
ure of structure can be approximated through the virtual modelling 
based MCS sampling strategy. In general, the design of experiment (DoE) 
based principle is first adopted to make convergence study of the virtual 
model by using different levels of training samples through quasi-Monte 
Carlo simulation method with Sobol’s sequence, which can guarantee to 
make reliable prediction compared with the MCS-derived results. This 
process is achieved through mathematic measures as listed in Table 1, as 
to draw convergence curve of prediction accuracy under various 

training samples. 
For the dynamic safety analysis in this study, a safety threshold |δ| is 

taken as the barrier for the first-passage theory to record the failure 
conditions of structure. The detailed procedure of the dynamic safety 
analysis by using VMASA model can be summarized as  

1. Input the structural geometry, mesh, system properties and loading 
conditions to the dynamic safety analysis framework.  

2. Generate different DoE levels of training samples ξtrain by using the 
quasi-MCS Sobol’s sequence and calculate the structural responses 
ytrain through deterministic analysis.  

3. If there are experimental results, use the experimental results as 
reference, otherwise, generate a large number of MCS samples xMCS 

(103 − 105) with repetitive finite element results as reference. Then, 
compare the prediction results of different DoEs with reference 
through measures in Table 1, and certify the most converged training 
sample size.  

4. Train the CXSVR models at different nodal points through the steps 
in Section 3.1 and establish the VMASA framework. The limit state 
function of the concerned response ĝ(ξ) can be approximately esti-
mated through the obtained VMASA model.  

5. Predict all the dynamic responses based on xMCS and implement into 
the limit state function ĝ(ξ). Based on the failure criterion of 
ĝ(ξ) ≤ 0, select all failure samples xf .  

6. The probability of failure for the response can be calculated through 
P̂f = xf/xMCS. 

7. Verify the estimated P̂f with the MCS-derived Pf . If the varying in-
puts are updated with new information, return to Step 5 and re- 
evaluate the probability of failure. 

To provide a more distinct understanding, the flowchart of the dy-
namic safety analysis by using virtual modelling technique is shown in 
Fig. 3. 

4. Numerical investigation 

To illustrate the accuracy, efficiency and practicability of the 
sampling-based dynamic safety assessment for structure under high- 
velocity impact, one experimental validation and two practical engi-
neering applications are investigated in this section. Considering vary-
ing inputs for the system parameters, the validation parameters in 
Table 1 have been used to verify the accuracy between predicted and 
reference results. The results are all completed on the workstation of 
Intel(R) Xeon(R) Gold 5215 CPU @ 2.5 GHz 10 cores with 192 GB RAM. 

4.1. Experimental dog-bone flat specimen 

In the first experimental validation case, the dog-bone flat specimen 
against high-velocity impact test is considered and compared with the 
experimental observations from Zhang et al. [58]. The dog-bone flat 
specimen is made of titanium alloy with dimensions of 
90 mm × 20 mm× 2 mm and fixed at the bottom surface as shown in 
Fig. 4. The steel spherical projectile (E = 220 GPa, μ = 0.3) with a 
diameter of 4 mm was accelerated by an air gun system at a speed of 
350 m/s was conducted to impact normally to the edge of the flat 
specimen. In order to effectively verify the numerical simulated result, 
the FE model was established using Abaqus to simulate the high velocity 
test and the hexahedral elements (C3D8) with a total number of 18,392 
were used to mesh the structure as shown in Fig. 4(b). 

To construct the proposed VMASA surrogate model, the uncertainty 
information of Young’s modulus E, Poisson’s ratio υ, yield strength σY 
and impact position τ (from the midline of specimen thickness to the 
edge) are considered for the flat specimen to establish a sufficient 
training dataset. The MCS simulation with 1000 cycles is used as 
reference. The detailed uncertainty information is listed in Table 2, with 

Fig. 6. Comparison of the impact process between the experimental test and 
VMASA predicted simulation at (a) t = 0 ms, (a) t = 0.1 ms, (a) t = 0.2 ms and 
(a) t = 0.3 ms. 

Table 3 
Results of experimental and predicted notch sizes L with different impact 
positions.  

Impact offset position (mm) Experimental test L (mm) VMASA predict 
L (mm) 

0  4.25  4.02 
0.25  4.47  4.16 
0.5  4.36  4.45 
0.75  4.02  3.90 
1  3.83  3.95  
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the random vector of ξ = {E(ζ),υ(ζ),σY(ζ), τ(ζ)}. 
By observing the impact energy released within the dynamic process, 

the convergence study of the statistical measures of R2 and RMSE 
through the proposed model with various sample sizes are demonstrated 
in Fig. 5. From Fig. 5, it is clear that with the increment of training 
sample size, the R2 of trained impact energy rises from 0.891 to 0.993 at 
the sample size of 150, whilst the relevant RMSE decreases from 5.642 to 
0.872. Thus, the training sample size of the VMASA model is determined 
as 150 for the flat specimen. 

For the construction of the VMASA surrogate model, a total of 18,392 

clusters were parallel trained to predict high impact energy, deflection, 
and stress within each FE element. As captured from the experimental 
test [58], a group of high-speed snapshots of projectile at the impact 
velocity of 350 m/s impacting on the flat specimen are shown in Fig. 6, 
in comparison with the VMASA numerical simulation results. As illus-
trated in Fig. 6, the edge of the specimen was penetrated through the 
dynamic impact process and a part of specimen was peeled off from both 
approaches. Therefore, the accuracy of the numerical simulation based 
VMASA model has been fully demonstrated through the experimental 
test results. 

Moreover, a correlation on the damaged notch sizes L between the 
experimental and numerical results could also be investigated. When the 
impact position of projectile changes, the notch sizes would vary. The 
possible notch sizes can be directly predicted through the trained 
VMASA model. In Table 3, a series of different impact positions, as well 
as the corresponding experimental and predicted notch sizes are listed. 
From the table, the VMASA surrogate model predicted results exhibited 
similar notch sizes with the experimental results, and the accuracy of 
proposed approach could be acceptable considering the problem 
complexity. 

4.2. Car door 

For the second numerical case, a practical car door is impacted by a 
flying stone, with the impact velocity around 60 m/s. The car door is 
made of steel material and a strain hardening effect has been considered 
for the car door. The dimensions of the car door are simplified to 
1.6 m × 1.2 m× 0.02 m and the diameter of the impactor is 0.25 m. The 
geometry of door and impactor are shown in Fig. 7(a), by using the 
tetrahedron element, a converged mesh of geometry is shown. For the 
boundary conditions of the car door application, the nodes on the 
external edges of the car door are fixed in all directions which have been 
highlighted in Fig. 7(b) through black triangular symbols and the z-di-
rection impact loading was applied at the central location of the door 
surface. 

For the car door application, in order to keep the passengers’ safe, 
the engineering failure criteria should be more focused on the maximum 
deflection of car door under dynamic loadings. Thus, for this case, a 
maximum displacement based first-passage theory should be adopted. 
For instance, the maximum z direction displacement at point A on car B- 
pillar is selected as the observation response and the safety threshold at 
point A is set to be |δ| = 4cm[59–61]. The maximum displacement-based 

Fig. 7. Numerical example 2: (a) Car door geometry, (b) mesh plot and boundary conditions.  

Table 4 
Distribution inputs for the car door.  

Varying Inputs Distribution type Mean Standard 
deviation 

Interval 

E (MPa) Normal[28] 2.1E5 11.2 - 
υ Beta 0.32 0.011 - 
ρ (kg/m3) Uniform – [7515,8145] 
σY (MPa) Lognormal[47] 700 35.3 - 
H Uniform – [1E3, 2E3] 
v (m/s) Weibull 60 3.10 -  

Fig. 8. Random impact responses and failure region at point A of the car door.  
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Fig. 9. The estimated (a) R2 and (b) RMSE of Z-displacement with different training sample size.  

Fig. 10. (a) The estimated PDFs; (b) CDFs; (c) RE of CDFs of maximum Z-displacement.  

Fig. 11. (a) The estimated PDFs; (b) CDFs; (c) RE of CDFs of maximum von Mises stress.  

Table 5 
The estimated moments of max Z-displacement and von Mises (vM) stress.  

Moments Methods Max Z-disp (cm) RE (%) Max vM stress (MPa) RE (%) Computational cost (h) 

Mean VMASA  3.781 0.0264  804.749 2.36E-3  34.1 
MCS  3.780 –  804.730 –  167.9 

Std VMASA  0.179 1.117  61.197 -3.27E-3  34.1 
MCS  0.177 –  61.199 –  167.9  
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limit state function in this example is represented as 

g(ξ, t) = max U(ξ, t) − |δ| = max U(ξ, t) − 4 (25)  

where the limit state function g < 0, the structure is safe, otherwise 
failed. 

For the varying input samples, the random vector ξ = {E(ζ), υ(ζ),
σY(ζ),H(ζ), ρ(ζ)} has been generated with different distribution infor-
mation by using Sobol’s sequence as listed in Table 4. The selected 
system properties are significant for the impact resistance of structure 
and an additional 10e3 cycles of MCS simulation is set as the reference 

result, which can be seen clear in Fig. 8, with grey curves shown all the 
random impact responses and a blue dashed curve shows the deter-
ministic impact response at point A. From Fig. 8, the red region at the top 
of figure illustrates the failure region which exceeds the safety threshold, 
such that the dynamic response in the failure area is marked with ‘fail’ 
status for the structure. 

To construct the VMASA model, a converged training sample size 
needs to be determined first for the CXSVR algorithm. Based on the DoE, 
various training sample size levels have been adopted to train the model 
and the predicted Z-displacement results are compared with MCS results 
through measures of R2 and RMSE, as shown in Fig. 9. From Fig. 9, the 
accuracy of R2 increase with the rise of training sample, and at the size of 
200, the value is stable with 0.995; the value of RMSE decreases with the 
rise of training sample and is stable with 0.232 at the same size. The 
training sample size of the virtual model is determined as Ntrain = 200. 

The maximum Z-direction displacement and maximum von Mises 
stress at point A are predicted and compared with MCS results as shown 
in Figs. 10–11. In Figs. 10–11, the probability density function (PDF), 
cumulative density function (CDF) and the relative errors for the CDF 
curves are presented for both displacement and stress responses. It is 
clear from the results that the virtual modelling technique coincides well 
with the reference in both curves. 

In addition, the detailed statistical moments (i.e., mean and standard 
deviation) of the maximum deflection and stress from two approaches 
are provided in Table 5. In Table 5, the moments of the predicted re-
sponses are matched well with the reference values, with the absolute 
maximum relative error of only 1.117%. Consequently, seen from both 
reliability profiles and statistical moments, the accuracy of the proposed 
virtual modelling technique has been well illustrated. However, 
considering the computational efforts, the proposed framework takes 
only quarter of the efforts used by the conventional MCS method. The 
detailed computational time for the VMASA method is 33.6 h for 
training samples’ simulation, 0.5 h for the surrogate model construction 
and 5 s for prediction of varying inputs. The proposed framework is 
efficient on handling dynamic analysis with various system information. 

The probability of failure at point A by two approaches are listed in 
Table 6. From Table 6, the MCS-derived probability of failure of 
maximum Z-direction displacement at point A calculated by MCS 
approach is pf = 0.121. For the VMASA technique, the probability of 

Table 6 
The probability of failure of max Z-displacement at point A exceeds |δ|.  

Methods p̂f (Ntrain=50) REpf (%) p̂f (Ntrain=100) REpf (%) p̂f (Ntrain=200) REpf (%) 

VMASA 0.075 -38.017 0.099 -18.182 0.122 0.826 
MCS pf = 0.121  

Fig. 12. (a) The estimated max Z-displacement and (b) limit state function at different input samples through the VMASA model.  

Table 7 
Arbitrary three groups of new input samples.  

Varying Inputs Sample I Sample II Sample III 

E (MPa) 1.943E5 2.215E5 1.761E5 
υ 0.3042 0.2893 0.3010 
ρ (kg/m3) 7652 7864 7594 
σY (MPa) 712.3 725.7 685.4 
H 1323 1266 1851 
v (m/s) 63.2 60.1 62.4  

Table 8 
The predicted safety status of car door with three arbitrary new samples.  

Samples Methods Max Z- 
disp 
(cm) 

RE 
(%) 

Safety status Computational 
cost (min) 

I VMASA  4.056 0.173 Fail, 
g= 0.056  

0.083 

Numerical  4.049 – Fail, 
g= 0.049  

10.5 

II VMASA  3.561 0.112 Safe, 
g= − 0.439  

0.083 

Numerical  3.557 – Safe, 
g= − 0.443  

10.5 

III VMASA  4.426 0.113 Fail, 
g= 0.426  

0.083 

Numerical  4.421 – Fail, 
g= 0.421  

10.5  
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failure estimated by the CXSVR algorithm gradually converges to the 
MCS-derived probability with the increase of training sample size. At the 
size of 200, the predicted probability of failure at point A is p̂f = 0.122, 
which is almost identical to the MCS-derived probability of failure, but 
in an efficient manner. 

In Fig. 12, all the predicted responses at the entire sample space from 
the virtual model have been shown and the corresponding limit state 

function surface established by the VMASA model has been visibly 
shown for better understanding. From the limit state function surface, 
readers can easily see and classify the ‘safe’ and ‘fail’ regions for arbi-
trary training sample, which constructs the critical ability of the dy-
namic safety analysis by using the virtual modelling. 

The dynamic safety analysis framework is competent to predict the 
‘safe’ or ‘fail’ status of structure towards the forecasted information. In 

Fig. 13. VMASA virtual model training procedure.  

Fig. 14. VMASA predicted von Mises stress distribution of car door at three new sample points.  

Fig. 15. Numerical von Mises stress distribution of car door at three new sample points.  
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here, three new arbitrary sample events are generated and implemented 
into the established surrogate model as listed in Table 7. The estimation 
results are rigorously verified with the deterministic finite element nu-
merical results at three samples. As listed in Table 8, the safety condi-
tions of three new samples are identified with ‘Fail’, ‘Safe’ and ‘Fail’ by 
the proposed technique, which are identical with the MCS-derived re-
sults. Also, the limit state functions have been estimated by the VMASA 
algorithm to better classify the structural safety. After validating the 
accuracy, the total prediction time by using the virtual model is only 5 s 
and saved 99% computational time of the deterministic finite element 
analysis. This capability provides accurate and efficient safety assess-
ment for engineering structures under dynamic excitations. 

Furthermore, due to the clustering virtual modelling capabilities of 
the proposed technique as shown in Fig. 13, the overall von Mises 
stresses in the structural body can be predicted as presented in 
Figs. 14–15. The deterministic numerical results are also provided to 
illustrate the accuracy of the VMASA model. It can be seen that the 
estimated structural stress conditions simulate well with the determin-
istic responses at all three samples. The relative errors between three 
samples are less than 5%, which are accurate enough for practical en-
gineering applications to visibly observe the entire structural stress 
distribution and make forecast before certain stress concentration 
happens. 

4.3. Stahlhelm 

For the third numerical case, a practical stahlhelm is impacted by a 
high-velocity bullet, with the impact velocity of 262 m/s. The radius of 
the helmet is about 15 cm with thickness of 0.5 cm, and the diameter of 
the impactor is 0.6 cm. The stahlhelm is made of steel material and a 

Fig. 16. Numerical example 3: (a) stahlhelm geometry, (b) mesh plot and boundary conditions.  

Table 9 
Distribution of inputs for stahlhelm.  

Varying Inputs Distribution type Mean Standard deviation Interval 

E (GPa) Normal[28] 190 9.5 - 
υ Lognormal[47] 0.32 0.016 - 
ρ (kg/m3) Cauchy 7630 381.5 - 
σY (GPa) Weibull 0.31 0.0155 - 
H Uniform – [800,900]  

Fig. 17. Random velocity time history and failure region of the bullet impactor.  

Fig. 18. The estimated (a) R2 and (b) RMSE of Z-disp with different training sample size.  
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strain hardening effect has been considered for the stahlhelm. The ge-
ometry of the stahlhelm and impactor are shown in Fig. 16(a), by using 
the tetrahedron finite element, a converged mesh of geometry is shown 
in Fig. 16(b). For the boundary conditions of the stahlhelm application, 
the nodes on the bottom external edges of the sthlhelm are fixed in all 
directions which have been highlighted in Fig. 16(b) through black 
triangular symbols and the z-direction impact loading was applied at the 
central location of the helmet surface. 

The structure is considered safe only if the single-time bullet didn’t 
penetrate the helmet. That is, the residual velocity vresi of the bullet is 
less than 0, which means the bullet would bounce back after contacting, 

otherwise if vresi > 0, the bullet would penetrate through the helmet and 
make damage to human head. Thus, for this case, a residual velocity 
based first-passage theory should be adopted. For instance, the residual 
velocity of the bullet is selected as the observation response and the 
safety threshold of bullet is set to be |δ| = 0m/s. Also, the maximum von 
Mises stress at point A is observed to monitor the stress distribution of 
helmet. The residual velocity-based limit state function in this example 
is represented as 

g(ξ, t) = vresi(ξ, t) − |δ| = vresi(ξ, t) − 0 (26)  

where the limit state function g < 0, the structure is safe, otherwise 

Fig. 19. (a) The estimated PDFs; (b) CDFs; (c) RE of CDFs of residual velocity vresi.  

Fig. 20. (a) The estimated PDFs; (b) CDFs; (c) RE of CDFs of maximum von Mises stress.  

Table 10 
The estimated moments of residual velocity and von Mises stress.  

Moments Methods vresi (m/s) RE (%) Max vM stress (MPa) RE (%) Computational cost (h) 

Mean VMASA  -12.624 -0.008  344.130 0.0552  76.9 
MCS  -12.521 –  343.940 –  254.2 

Std VMASA  0.195 -0.510  21.966 0.164  76.9 
MCS  0.196 –  21.930 –  254.2  

Table 11 
The probability of failure of residual velocity of bullet exceeds |δ|.  

Methods p̂f 

(Ntrain=60) 
REpf (%) p̂f (Ntrain=150) REpf (%) p̂f (Ntrain=300) REpf (%) 

VMASA 0.009 -72.727 0.025 -24.242 0.043 0 
MCS pf = 0.043  
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failed. 
For the varying input samples, the random vector ξ = {E(ζ), υ(ζ),

σY(ζ),H(ζ), ρ(ζ)} has been generated with different distribution infor-
mation by using Sobol’s sequence as listed in Table 9. The selected 
system properties are significant for the impact resistance of structure 
and an additional 10e3 cycles of MCS simulation is set as the reference 
result, which can be seen clearly in Fig. 17, with grey curves shown all 

the random velocity time histories and a blue dashed curve shows the 
deterministic velocity time history of the bullet. From Fig. 17, the red 
region at the top of figure illustrates the failure region which exceeds the 
safety threshold, such that the dynamic response in the failure area is 
marked with ‘fail’ status for the structure. 

To construct the VMASA model, a converged training sample size 
needs to be determined first for the CXSVR algorithm. Based on the DoE, 
various training sample size levels have been adopted to train the model 
and the predicted results are compared with MCS results through mea-
sures of R2 and RMSE, as shown in Fig. 18. From Fig. 18, the accuracy of 
R2 increase with the rise of training sample, and at the size of 300, the 
value is stable with 0.998; the value of RMSE decreases with the rise of 
training sample and is stable with 0.192 at the same size. Therefore, the 
ultimate sample size of the virtual model is determined as Ntrain = 300. 

The residual velocity of bullet and maximum von Mises stress at 
point A are predicted and compared with MCS results as shown in 
Figs. 19–20. In Figs. 19–20, the PDF, CDF and the relative errors for the 
CDF curves are presented for both velocity and stress responses. Based 
on the results, it is clear the results from the VMASA technique coincides 
well with the reference results in both PDF and CDF curves. 

In addition, the detailed statistical moments of the residual velocity 
and stress from two approaches are provided in Table 10. In Table 10, 
the moments of the predicted responses are matched well with the 
reference values, with the absolute maximum relative error of only 
0.510%. However, considering the computational efforts, the proposed 
framework takes only quarter of the efforts used by the conventional 
MCS method. The detailed computational time for the VMASA method is 
76.3 h for training samples’ simulation, 0.6 h for the virtual modelling 
model construction and 7 s for the prediction of varying inputs. 

Furthermore, the probability of failure of bullet by two approaches 
are listed in Table 11. From Table 11, the MCS-derived probability of 
failure of residual velocity of bullet calculated by MCS approach is pf =

Fig. 21. (a) The estimated residual velocity and (b) limit state function at different input samples through the VMASA model.  

Table 12 
Three arbitrary groups of new input samples.  

Varying Inputs Sample I Sample II Sample III 

E (GPa)  164.5  191.4  236.9 
υ  0.3043  0.3653  0.3410 
ρ (kg/m3)  7122  7762  7699 
σY (GPa)  0.291  0.312  0.326 
H  882.1  826.2  802.1  

Table 13 
The predicted safety status of stahlhelm with three arbitrary new samples.  

Samples Methods vresi 

(m/s) 
RE 
(%) 

Safety status Computational 
cost (min) 

I VMASA  -16.96 5.725 Safe, 
g= − 16.96  

0.11 

Numerical  -17.99 – Safe, 
g= − 17.99  

15.3 

II VMASA  8.31 3.616 Fail, g= 8.31  0.11 
Numerical  8.02 – Fail, g= 8.02  15.3 

III VMASA  -3.51 -5.089 Safe, 
g= − 3.51  

0.11 

Numerical  -3.34 – Safe, 
g= − 3.34  

15.3  

Fig. 22. VMASA predicted residual velocity of bullet for three new sample points.  
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0.043. For the virtual modelling technique, the probability of failure 
estimated by the CXSVR algorithm gradually converges to the MCS- 
derived probability with the increase of training sample size (i.e., 60, 
150, 300). At the size of 300, the predicted probability of failure is p̂f =

0.043, which is just identical to the MCS-derived probability of failure. 
In Fig. 21, all the predicted responses at the entire sample space from the 
VMASA model have been shown and the corresponding limit state 
function surface established by the VMASA model has been visibly 
shown for better understanding. From the limit state function surface, 
readers can easily review and classify the ‘safe’ and ‘fail’ regions for 
arbitrary training sample. 

Once again, the proposed dynamic safety assessment framework is 
capable of predicting the ‘safe’ or ‘fail’ status of structure against future 
forecasted information. Here, three new arbitrary sample events are 
generated in Table 12 then implemented into the established virtual 
modelling model. The estimation results are rigorously verified with the 
deterministic finite element numerical results at three samples. As listed 
in Table 13, the safety conditions of three new samples are identified 
with ‘Safe’, ‘Fail’ and ‘Safe’ by the proposed technique, which are 
identical with the MCS-derived results. Also, the limit state functions 
have been estimated by the VMASA algorithm to better classify the 
structural safety. After validating the accuracy, the total prediction time 
by using the VMASA model is only 7 s and saved 99% computational 
time of the deterministic finite element analysis. This capability pro-
vides both accurate and efficient safety assessment for the critical 
structures under dynamic excitations. 

Furthermore, the schematics of residual velocities of bullet can be 
virtually predicted following in procedure in Fig. 13 and the results are 
presented in Figs. 22–23. The deterministic numerical results are also 
provided to illustrate the accuracy of the VMASA model. It can be seen 
that the estimated residual velocity of bullet matches well with the 
deterministic velocity for all three new samples. The relative errors 
between the three samples are not larger than 10%, which are accept-
able for practical engineering applications to visibly observe the high 
velocity impact process and make forecast against the future changing 
system information. 

5. Conclusion 

In this paper, a sampling-based dynamic safety assessment frame-
work by using the virtual modelling technique (VMASA) was proposed 
for ductile materials against high-velocity impact loadings. The reli-
ability analysis was adopted through the first-passage theory and a 
popular Johnson Cook model was used to simulate the plastic defor-
mation of ductile material under high-velocity impact. For the virtual 
modelling technique, a new machine learning algorithm, namely the 
clustering extended support vector regression (CXSVR) was imple-
mented to analyse the inherent relationship between the varying inputs 
and structural dynamic plastic deformations caused by impact loadings. 

A new T-spline kernel was developed to enhance the performance of the 
machine learning algorithm especially for the complex engineering 
problems. Based on the explicit regression functions obtained by the 
virtual model, the proposed safety analysis framework was competent to 
predict the potential structural response and assess the safe or fail con-
dition of the structure against the continuously varying system infor-
mation, which was called the forecasting capability for practical 
applications. Through the VMASA model, the repetitive FEM analysis by 
using the conventional Monte Carlo simulation method has been elim-
inated such that a great deal of computational efforts can be saved. By 
calculating several practical experimental and numerical investigations, 
the accuracy, efficiency, and practicability of the proposed safety 
assessment framework were demonstrated under various conditions. 

Furthermore, the proposed strategy has been shown with potentials 
for further structural design and optimization fields. Research in-
vestigations about the advanced composite structures’ performance 
under impact loadings, and the next-step material/topology optimiza-
tion will be conducted in future research works. 
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Appendix A. Definitions of optimization parameters 

The vectors and matrices of Qk and mk defined in the CXSVR optimization algorithm are expressed as: 

Qk ∈ ℜ4m×4m :=
(

R̂k + I4m×4m
)

T̂
− 1
k (R̂k + I4m×4m)

T
+ Ĥk êk êT

k Ĥk (A1)  

mk ∈ ℜ4m := λ2
(

R̂k + I4m×4m
)

T̂
− 1
k uk − εêk − k̂k (A2)  

T̂k =

⎡

⎢
⎢
⎣

λ1Im×m
λ1Im×m

SIm×m
SIm×m

⎤

⎥
⎥
⎦ (A3)  

Ĥk =

⎡

⎣
02m×2j 02m×m 02m×m
0m×2m Im×m 0m×m
0m×2m 0m×m − Im×m

⎤

⎦ (A4)  

R̂k =

⎡

⎣
02m×m 02m×m 02m×2m
− ξtrain ξtrain 0m×2m
ξtrain − ξtrain 0m×2m

⎤

⎦ (A5)  

uk =

⎡

⎣
em
em
02m

⎤

⎦, êk =

⎡

⎣
02m
em
em

⎤

⎦, k̂k =

⎡

⎣
02m

ytrain
− ytrain

⎤

⎦, vk =

⎡

⎢
⎢
⎣

pk
qk
ϑ
ϑ̂

⎤

⎥
⎥
⎦ (A6)  
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