
 

Journal Pre-proof

Stochastic Bandgap Optimization for Multiscale Elastic Metamaterials
with Manufacturing Imperfections

Minghui Zhang , Qihan Wang , Zhen Luo , Wei Gao

PII: S0020-7403(24)00078-X
DOI: https://doi.org/10.1016/j.ijmecsci.2024.109035
Reference: MS 109035

To appear in: International Journal of Mechanical Sciences

Received date: 19 October 2023
Revised date: 9 January 2024
Accepted date: 9 January 2024

Please cite this article as: Minghui Zhang , Qihan Wang , Zhen Luo , Wei Gao , Stochastic Bandgap
Optimization for Multiscale Elastic Metamaterials with Manufacturing Imperfections, International Jour-
nal of Mechanical Sciences (2024), doi: https://doi.org/10.1016/j.ijmecsci.2024.109035

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

https://doi.org/10.1016/j.ijmecsci.2024.109035
https://doi.org/10.1016/j.ijmecsci.2024.109035


Highlights 
 A stochastic bandgap optimization framework for elastic metamaterials is 

proposed. 
 Microscale porosity and uncertainties of elastic metamaterials are considered. 
 The desirability function of statistical moments for bandwidths is optimized. 
 An adaptively mutation-based particle swarm optimization is developed. 
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Abstract 

Bandgaps are endowed to elastic metamaterials (EMMs) attributed to the rationally 
designed unit cells and extensive works are devoted to bandgap enlargement for 
improving the applicability of EMMs in multi-disciplinary applications. Nonetheless, 
most existing optimization frameworks neglect manufacturing imperfections, such as 
microscale heterogeneity and system uncertainties, which can significantly affect 
bandgap behaviours. Without properly accounting for these effects, the design may fail 
to achieve the optimal goal, exhibiting consistently ultra-wide wave attenuation bands 
in practical EMMs. Herein, in this paper, a stochastic bandgap optimization framework 
is developed for EMMs involving manufacturing imperfections, aiming at optimizing the 
first two statistical moments of the normalized bandwidth (NB) simultaneously. To 
alleviate the large computational costs in approximating statistical moments, a 
surrogate model is employed to reveal the constitutive relationship between system 
parameters and NB for the multiscale EMM. Moreover, to solve the optimization 
problem effectively and efficiently, a high-order mutation strategy is proposed to 
develop an improved particle swarm optimization (PSO) variant, namely the adaptively 
high-order mutation-based PSO (AHMPSO). To demonstrate the viability and efficiency 
of the proposed framework, a numerical investigation is implemented on a 3D EMM, 
which highlights enlarged bandwidths coupling with an improvement in the robustness 
of optimum. 

Keywords: Elastic metamaterials, Stochastic optimization, Manufacturing imperfections, 
Multiscale analysis, Machine learning, Particle swarm optimization 

1. Introduction 
Elastic metamaterials (EMMs), consisting of rationally designed periodic unit cells, 

exhibit a multitude of unprecedented characteristics, which demonstrate significant 
applicability across diverse fields, such as aerospace, transportation, civil engineering, 
and the like [1-4]. One of the most captivating characteristics of EMMs is the bandgap, 
induced by Bragg scattering and local resonance mechanisms [5-9]. With the merits of 
the bandgap, EMMs can be employed in various applications for wave attenuation, wave 
guiding, energy trapping, etc. [10,11]. However, one limitation of the developed EMMs is 
low-frequency bandgaps usually coupled with narrow bandwidths, restricting their 
real-life applications [12,13]. To alleviate this challenge, extensive works have been 
devoted to developing parametric [14], structural [15] and topological optimization 
approaches [16,17] for EMMs aiming at enlarging low-frequency bandgaps [18,19]. 

With the emergence of 3D printing techniques, metamaterials with complicated 
topologies can be fabricated [20-23]. Among various additive manufacturing techniques, 
fused deposition modelling (FDM) is one of the most promising methods, attributed to 
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the large availability of feedstock materials, fast production, and design flexibility [24-
28]. In the FDM process, due to the layer-by-layer feature, a porous is usually found 
between the deposited filaments once they solidify, denoted as inter-bead porosity [29-
31]. An optical image illustrating the cross-section of a FDM part with the inter-bead 
porosity with a printing angle of 0° is shown in Figure 1.  

 
Figure 1: Optical image of the inter-raster voids that were present in 0° raster angle 

specimens. Scale bar: 500 μm [32]. 

The inherent manufacturing imperfection can significantly affect the material and 
mechanical properties of the final products [33-35]. Moreover, another inherent 
manufacturing imperfection in FDM-fabricated parts is the inevitable system 
uncertainties, raised from multiple sources, such as measurement, processing, 
fabrication, environmental factors, etc. [36-38]. Since the bandgap characteristics in 
EMMs are tightly related to solid constitutes and unit cell architecture, these inevitable 
manufacturing imperfections significantly affect the corresponding bandgap properties, 
leading to the scatter of actual system performance in real-life EMMs [39,40]. Therefore, 
the design candidate from the deterministic optimization may exhibit sub-optimum 
performance under the presence of uncertainties. In addition, large variations of 
structural performance also lead to a significant increase in structural life-cycle costs 
[41,42]. Hence, the optimal goal for bandgap optimization concerns not only the 
bandwidths but also the consistency of structural performance. To the best of the 
author’s knowledge, there is no existing research on optimizing low-frequency 
bandwidth for EMMs considering the above-mentioned manufacturing imperfections. 
Thus, a novel framework is developed herein to fulfil the optimization task for EMMs 
involving microscale porosity and system uncertainties simultaneously, which are two 
commonly observed manufacturing imperfections in FDM parts [30,43-45]. 

With the consideration of randomness in system parameters, bandwidth 
optimization for multiscale EMMs can be treated as a stochastic optimization problem 
[46-49]. Instead of solving for a single optimal, two statistical criteria, i.e., the mean and 
standard deviation of the concerned structural performance, are generally optimized 
simultaneously [50-52]. To estimate the statistical information for random structural 
responses, one sampling-based approach with high robustness and flexibility is Monte 
Carlo simulation (MCS) [53,54]. Specifically, a large number of sampling points for 
system inputs are generated, which are used to estimate the corresponding structural 
responses and statistical information of concerned random structural outputs [55]. 
However, one concern of MCS is that accurate statistical information is generally 
obtained based on large samples, which may induce high computational costs [56]. To 
conduct a deterministic bandgap analysis for a multiscale structure, one widely used 
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method is the multiscale finite element method (
2FE ) [57-59]. Nevertheless, a large 

computational cost is required to conduct a deterministic 
2FE  for a multiscale EMM due 

to a series of cumbersome tasks, including domain discretization, meshing, calculating 
the homogenized material properties, evaluating physical relationships, and integration 
of models across scales. Therefore, to conduct the stochastic optimization for multiscale 
EMMs, one difficulty lies in the large computational burden from approximating the 
statistical moments, raised by the excessive number of time-consuming deterministic 
bandgap analysis. 

Fortunately, with the blossoming of computer science, a large variety of machine 
learning techniques have been developed, offering significant benefits in computational 
efficiency for structural analysis, design, and optimization [60-63]. Among that, a 
recently developed machine learning algorithm, namely the extended support vector 
regression (X-SVR), possessing high convergence speed and robustness, has been 
applied to conduct uncertainty quantification and reliability analysis for a wide range of 
real-life engineering structures [64-66] involving multiple uncertainty types [36]. 
Herein, in this research work, to relieve the excessively large computational cost 
induced by multiscale analysis, the X-SVR is carried out to construct surrogate models, 
which bridge the underpinned relationship between multiscale structural parameters 
and normalized bandwidth (NB) for an EMM. With solid mathematical support, the 

computationally expensive 
2FE  model is substituted by the developed surrogate model 

with an explicit formulation, which extensively relieves the computational burden 
indued by the multiscale bandgap analysis, providing significant merits on the 
computational efficiency in stochastic optimization. 

In addition to the large computational cost, another challenge in the stochastic 
optimization problem is to effectively and efficiently solve the optimization problem. 
Until now, various optimization tools have been developed, from gradient-based 
mathematical algorithms to non-gradient probabilistic-based search algorithms [67-71]. 
One nature-inspired metaheuristic probabilistic-based algorithm is particle swarm 
optimization (PSO). It has attracted considerable attention since it does not require 
preconditions such as continuity or differentiability of object functions and can be 
applied to almost all areas of tough optimization problems [72,73]. The algorithm in 
PSO is that multiple agents (i.e., particles) swarm around the search space, originating 
from random initial guesses, which communicate the current personal best and share 
the global best results to explore the global optimum solution. Nevertheless, the use of 
global best is a double-edged sword, which speeds up convergence, while lacking the 
ability to explore, leading to premature convergence [72]. To increase the diversity of 
new solutions, various mutation strategies, generalized as randomization techniques, 
are introduced into the basic PSO [74-77]. However, different optimization problems 
may require varied adaptive exploration and exploitation rates during the optimization 
processes for achieving the global optimum and maintaining high convergence speed. 
Herein, in this paper, to achieve the balance between exploration and exploitation when 
solving various optimization problems, a new mutation strategy with high-order 
functions is proposed to develop a new PSO variant. The newly proposed PSO variant, 
namely adaptive high-order mutation-based PSO (AHMPSO), is expected to exhibit high 
convergence speed and exceptional performance in global searching to tackle 
optimization problems across diverse research fields. 

The remainder of the paper is organized as follows. The formulations of the 
deterministic multiscale bandgap analysis and bandgap optimization are demonstrated 
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in Section 2.1. In Section 2.2, the formulations for stochastic bandgap optimization and 
the X-SVR algorithm are introduced. Then, the classic PSO, its variants and the newly 
developed AHMPSO are presented in Section 3. Subsequently, in Section 4, the 
stochastic bandwidth optimization framework for EMMs involving manufacturing 
imperfections is introduced. Then, the computational performance of the proposed 
AHMPSO and the overall optimization framework are tested, and the results are 
summarized in Section 5. Finally, some conclusions are presented in Section 6.  
2. Preliminary 

In Section 2, the methods to conduct the deterministic and stochastic NB 
optimization for 3D EMMs are discussed in Sections 2.1 and 2.2, respectively. 
Specifically, the multiscale method to implement the deterministic bandgap analysis is 
discussed in Section 2.1.1. Then, the formulation of the deterministic bandgap 
optimization is introduced in Section 2.1.2. Subsequently, the problem formulation of 
the stochastic bandgap optimization for 3D EMMs involving manufacturing 
imperfections is demonstrated in Section 2.2.1. Finally, the algorithm for a machine 
learning method, i.e., X-SVR, is introduced in Section 2.2.2.  
2.1. Deterministic Bandgap Optimization for Elastic Metamaterials (EMMs) 

2.1.1. Multiscale Bandgap Analysis 
A multi-level approach, consisting of two stages of homogenization, is employed to 

investigate the bandgap characteristics of EMMs involving microscale porosity. In the 
first stage of homogenization, the equivalent elasticity matrix of the material is derived 
based on the representative volume element (RVE) homogenization method [57]. 
Subsequently, the homogenized material properties are applied to the EMM unit cell. A 
second stage of the homogenization process is then implemented on the EMM unit cell 
to calculate the bandgap characteristics for the EMM. 

2.1.1.1. First Stage Homogenization: Material Homogenization 
To derive the equivalent elasticity matrix of the material consisting of micro-

porosity, a subscale modelling concept based on representative volume element (RVE) 
with proper boundary conditions is employed [78]. The concept is established based on 

the assumption that any material point VX  in the continuum scale is associated with 
a local RVE whose domain is V with boundary V  and the characteristics length of the 
RVE is much smaller than the length of the continuum scale. 

Without loss of generality, considering the RVE is subjected to an external traction 

rt  along its boundary V , the microscopic displacement filed on the RVE boundary, 

denoted as micro
u  can be decomposed into two parts: the mean part micro

u  and the zero-

mean fluctuation part micro
u , satisfying  

 micro micro micro micro , , 1, 2, 3 ,i i i ij j iu u u x u i j      (1) 

where 
ij  represents a volume average of the sub-scale strain and 

jx  denotes the 

coordinates of a material point in the Cartesian system. To calculate the effective 
material properties, periodic boundary conditions are applied over the RVE boundary 

V , which is decomposed into two parts: a positive part V   and a negative part V   

with ,V V V V V           and the associated outward normal   n n  at 

the corresponding points V x  and V x , respectively [78]. The applied 
periodic boundary conditions represent the periodicity of the fluctuations field and anti-
periodicity of the traction field on V , specifically,  
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   micro micro    and matching ,V V        u x u x x x  (2) 

      and matching ,r V V         t x t x x x  (3) 

where rt  denotes the traction field on V . In the absence of body force, the equilibrium 

state of the RVE is governed by the equilibrium equations: 

0 ,  and   
ij

j

V
x


  


x  (4) 

 ,ij j in t V   x  (5) 

where 
ij  is the microscopic stress. The mechanical property of the micro-constituents 

is derived through a constitutive law, i.e., 
ij

ij

W








, where 
ij  is the microscopic strain. 

Then, the homogenized stress tensor σ  and homogenized strain tensor ε , are defined 
as the volume average of the sub-scale stress and strain tensors over the RVE,  

1
,  and

1
,

ij ij
V

ij ij
V

dV
V

dV
V

 

 









 (6) 

where ij .and 
ij  are homogenized components of stress and strain, respectively in the 

mesoscale. In the case of linear material behavior, the effective moduli component ijklC  

can be calculated by applying a suitable strain tensor ε  through boundary conditions in 
Eq. (1) to the RVE [78]. 

2.1.1.2. Second Stage Homogenization: Bandgap Analysis 

The derived material properties ijklC  are applied on the mesoscale EMM unit cell to 

simulate the elastic wave propagation in the macroscale EMM. The corresponding 
governing equation is given by [79] 

 
2 3 3 3

2 2
1 1 1

, 1, 2, 3 ,
  

  
    

   
  k

u ui
ijkl

j l kj l

c i
t x x

 (7) 

where   denotes the density of the material; iu  indicates the displacement vector; t 

denotes time. Considering an EMM with repeating unit cells, the Floquet-Bloch theorem 
is employed to solve Eq. (7). The solution can be written as: 

     
,




k r

ku r u r
i

e  (8) 

where  , ,x y zr  denotes the position vector and  , ,x y zk k kk  represents the Bloch wave 

vector. With the Floquet-Bloch periodicity condition applied in the x, y and z directions, 

the three components of displacement  u r  can be written as [80]: 

     
, , , , ,


  xi k a

u x a y z u x y z e  (9) 

     
, , , , ,


  yi k a

u x y a z u x y z e  (10) 

     
, , , , ,


  zi k a

u x y z a u x y z e  (11) 

where a is the lattice constant of the EMM. The wave propagation in EMMs can be 
obtained by solving the dispersion relation which is an implicit function between the 
wavevector and the eigenfrequency. By substituting the Eqs. (9)-(11) into Eq.(7), the 
dispersion relation of a 3D EMM can be obtained by solving the eigenvalue problem:  
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  2 0, Γ ω k M u  (12) 

where d dΓ  denotes the stiffness matrix, and d dM  represents the mass matrix, 
in which d is the degree of freedom (DoF) of the EMM unit cell. By substituting the 

periodic boundary conditions of Eqs. (9)-(11) into Eq. (12), the solution set  
*

ω k  can 

be written as: 

        
*

1 2, , , .ω k ω k ω k ω kd
 (13) 

Then, the bandgap characteristics of the EMM are obtained by sweeping the wavevector 
k along the boundary of the first irreducible Brillouin zone [81]. The complete bandgap 
is identified, which has no eigenfrequency falling into the frequency range along the 
whole k-path. Since the low-frequency wave attenuation performance is mostly 
concerned, in this research, the structural optimization focuses on the investigation of 

the 1st bandgap, which is characterized by two quantities, i.e., the starting frequency ( sf ) 

and the cut-off frequency ( cf ). The 1st bandgap is identified by finding the lowest minp , 

satisfying      
min min1min max 0p p  ω k ω k . Then, the concerned sf  and cf  are 

calculated as: 

  
min

s

max
,

2




ω kp
f  (14) 

  
min 1

c

min
.

2






ω kp
f  (15) 

Another structural response, i.e., NB, assessing the width of the bandgap, is calculated 

based on the formulation:    c s c s=2 100%f f f f f   , which is the concerned 

structural response in this work. 

2.1.2. Deterministic Multiscale Bandgap Optimization 
The deterministic multiscale bandwidth optimization problem for EMMs is 

formulated as 

 

L U

max  
,

. .   




 

d
d

d d d

f

s t
 (16) 

where   f d  denotes the NB for an EMM considering microscale porosity, which is the 

objective function in the deterministic bandgap optimization problem; 

1 2, , , q

qd d d   d  represents a vector containing all design variables; 
L

qd  and 

U

qd  collect the lower and upper bound limits for all design variables, respectively. 

By solving the optimization problem, the optimum values for design variables are 
calculated for an EMM considering microscale porosity.  
2.2. Stochastic Bandgap Optimization for Elastic Metamaterials (EMMs) 

2.2.1. Problem Formulations in Stochastic Bandgap Optimization 
Accumulative experiences from industrial applications have revealed that inherent 

system uncertainties are mandatory to be properly considered in structural 
optimization to achieve desired structural properties in the fabricated parts [64]. Hence, 
to effectively enlarge low-frequency NB for practical EMMs involving microscale 
porosities and system uncertainties, a stochastic multiscale optimization framework for 
EMMs is developed. 
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Without loss of generality, let R pτ  denotes a p -dimensional random vector, 

which collects all random systematic input parameters R , for 1,2, , p  in a 

probability space  , ,Ω Λ P . The governing equation of the random dispersion relation 

for EMMs is expressed as: 

       
   R

2
R R R R

R R R D

0

,

~ ,  for 1,2,...,




  


      


Γ τ ω k M τ u

τ Ω τ
p f x p

 (17) 

where  R d dΓ τ  and  R d dM τ  indicate the random stiffness matrix and mass 

matrix, respectively, which are functions of the random vector R
τ ;   indicates a real 

number; R
u  denotes the random displacement vector; R ( ) d ω  represents a random 

vector collecting eigenfrequencies of the system;  R

Df x


 is the probability density 

function (PDF) for the th  random variable R . With the introduction of system 

uncertainties into the EMM, the concerned structural response, i.e., NB also possesses 

the feature of randomness, denoted as R f . In the structural optimization problem 

with stochastic parameters, a straightforward method to define the optimality condition 

is based on the first two statistical moments, i.e., the mean value   f  and 

standard deviation   f  of the concerned structural response. For achieving the 

optimal goal in EMM, exhibiting large bandwidth and high robustness at optimality, the 
mathematical formulation for the multi-objective optimization problem is expressed as  

  

  

R

R

L U

max ,

min ,

.    

f

f

st











 


d

d

d τ

d τ

d d d

 (18) 

Under the optimization, the design is expected to demonstrate a large bandwidth, which 
improves the applicability of EMMs in multi-disciplinary applications. Meanwhile, the 
minimization of standard deviation ensures the system is less sensitive to system 
uncertainties, giving rise to the need for a more robust design.  

In multi-objective optimization problems, the two design criteria may conflict with 
each other, which means that a trade-off between the two objectives is generally 
required to be made. Instead of solving for the single optimal, Pareto optimality is an 
alternative method to define a vector optimum. Specifically, for each element in this set, 
none of the objective functions can be further improved without worsening the 
remaining objective functions. A straightforward approach to Pareto optimal solutions 
is through the linear combination method. The optimization problem can then be 

formulated in terms of a desirability function df . The corresponding mathematical 

formulation for the bandgap optimization problem is expressed as:  

         R * R *

d

L U

min       , 1 ,
,

. .        

       

  

d
d τ d τ

d d d

s sf w f w f

s t
 (19) 
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where 0 1sw   is the factor weighting the two objective functions; *  and *  are 

normalization factors. The problem can be converted into a mean value maximization 

problem when sw  = 0 and a standard deviation minimization problem when sw  = 1.  

To tackle the stochastic optimization problem, one essential task is to estimate the 
mean and standard deviation for the concerned structural response. One sampling-
based approach with high robustness is through MCS. However, one concern is the 
substantial computational cost induced by the numerous evaluations of multiscale 

bandgap analysis, since the deterministic 
2FE  is already time-consuming due to a series 

of cumbersome tasks, including domain discretization, meshing, evaluation of the 
constitutive relationships and integration of physical models across scales. 

2.2.2. Surrogate Model Construction by Extended Support Vector Regression (X-
SVR) 

To relieve the large computational cost arising from the numerous evaluations of 
multiscale bandgap analysis for EMMs, a machine learning algorithm, namely the 
extended support vector regression (X-SVR) is employed. Through solid mathematical 
support, a surrogate model is generated, bridging the relationship between multiscale 
system parameters and NB for an EMM by an explicit formulation. In the X-SVR, through 
applying kernel mapping strategy, the linear X-SVR can be extended to the nonlinear X-
SVR for solving complex engineering problems. For a given training dataset input vector 

 
T

1 2, , , m n

m

 x x x x  and output vector  
T

1 2, , , m

my y y y , in which m 

represents the number of training samples and n p q   denotes the dimension of the 

inputs x , the developed surrogate model is formulated as,  

   ˆ ,f  x κ x w  (20) 

where  
T

1 2, , , n

nw w w w  and    represent the normal and bias of the targeted 

hyperplanes respectively;  κ x  represents the kernelized training input matrix. The 

nonlinear X-SVR surrogate model can be obtained by solving the optimization problem 
that is expressed as: 

     
2 2 T T T

2 2, , , ,
min :

2
n

C






     
p q ξ ξ

p q e p q ξ ξ ξ ξ  (21) 

  

  . .  ,

, ,  ,  

m m

m m

n m

s t

 

  



    


    
  

κ x p q e y e ξ

y κ x p q e e ξ

p q 0 ξ ξ 0

 (22) 

where    indicates a tuning parameter for balancing the performance of regression 

and feature selection;   denotes the soft margin; mξ  and  mξ represent two 

non-negative vectors collecting slack variables;  
T

1,1, ...,1 n

n  e  and 

 
T

0,0, ...,0 n

n  0  represent the ones vector and the zeros vector, respectively; 

, np q  are two negative variables [82]; C denotes a penalty constant. Notably, for 

kernelized input matrix, the dimension of features equals the number of training sets, 
i.e., n m . Subsequently, the optimization problem is simplified as: 

 T 2 T

ˆ ,

1 ˆ ˆˆ ˆ ˆmin :
2

  
z

z Cz a z  (23) 
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   4 4 4
ˆ ˆ ˆ ˆˆ. . ,     A I z I G b d 0m m ms t  (24) 

where 4 4

4

m m

m

I  indicates the identify matrix ˆ ˆ,C G  and 4 4ˆ m mA  are defined as: 

   

   

2 2 2 2 2 2 2 2

2

2 2

2

2 2

ˆ ˆ ˆ,  ,  ,

m m m m m m m m m m m m

m

m m m m m m m

m

m m m m m m m

C

     

  

  

  
    

       
        

0 0 0 0 0 0
I

C G 0 I 0 A κ x κ x 0
I

0 0 I κ x κ x 0

 (25) 

and the kernelized vectors ˆ ˆˆ, ,a b d  and 4ˆ mz  are defined as: 

2

2 2

2 2

ˆ ˆˆ ˆ,  ,  ,  .

m

m m

m m



 
   

                         
 

p
0

e 0 q
a b d y z

0 e ξ
y

ξ

 (26) 

Then, the kernelized X-SVR is solved with the introduction of a non-negative 

Lagrange multiplier 4mφ . Through the way for solving a quadratic programming (QP) 

problem, the optimization problem can further be formulated as:  

T T1
min :

2


φ
φ Qφ m φ  (27) 

4. . ,φ 0 ms t  (28) 

where 4 4m mQ  and 4mm  are defined as:  

   
T

1 T

4 4
ˆ ˆ ˆ ˆ ˆˆ ˆ ,   Q A I C A I Gbb Gm m  (29) 

  1

4
ˆ ˆ ˆ ˆˆ .    m A I C a b dm  (30) 

Let *
φ  be the solution of optimization problems in Eqs. (27) and (28), then the variables 

ẑ  and   can be determined as: 

 
T

1

4
ˆ ˆ ˆˆ ,    

  
z C A I φ am  (31) 

T ˆˆ .  b Gφ  (32) 

Then, the nonlinear regression function can be expressed as: 

     
T Tˆ ˆˆ .f   X p q κ X b Gφ  (33) 

The coefficient p  and q  can be obtained as: 

ˆ(1: ),p z m  (34) 

ˆ( 1: 2 ). q z m m  (35) 

With the developed surrogate model, the bandgap for EMMs with microscale 
porosity can be estimated based on an explicit formulation, instead of running the time-

consuming 
2FE . Consequently, the required computational resources to approximate 

the first two statistical moments are significantly relieved, offering extensive merits in 
computational efficiency for implementing the stochastic optimization for multiscale 
EMMs. 
3. Particle Swarm Optimization (PSO) 

In this Section, the algorithms of the PSO to implement the stochastic optimization 
for 3D EMMs are introduced. Specifically, the classical PSO and its variants are 
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discussed in Section 3.1. Then, the algorithm for the newly developed AHMPSO is 
introduced in Section 3.2.  
3.1. Classical Particle Swarm Optimization (PSO) and its Variants 

In the basic PSO, the algorithm starts with a population of particles randomly 
initialized in the search space, in which each particle denotes a potential solution. The 
position and velocity of the Lth particle are represented by two vectors, i.e., 

T

1 2, , , q

L L L Lqp p p   p  and 
T

1 2, , , q

L L L Lqv v v   v , respectively. The particles 

update their position based on their personal best and global best encountered so far, 
which are expressed as [83] 

         Pb Gb

1 1 2 21 ,     v v r p p r p pL L L L LK w K c K c K  (36) 

     1 1 ,   p p vL L LK K K  (37) 

where K represents the iteration number;  L Kv  and  L Kp  denote the velocity and 

position vectors of the Lth particle at the Kth iteration, respectively; Pb

Lp  indicates the 

best position explored by the Lth particle until the Kth iteration; Gb
p  denotes the global 

best position visited by the whole particles until Kth iteration; w denotes the inertia 

weight controlling the influence of the previous velocity on the current one; 1c  and 2c  

represent cognitive parameter and social parameter respectively; T

1

qr  and T

2

qr  

indicate two random vectors with values that are uniformly distributed in the interval 
[0, 1]; the symbol  represents the Hadamard product.  

Balancing exploration and exploitation for improving the global searching ability is 
always an important task in the optimization algorithm. A PSO variant with linearly 
decreasing inertia weight and time-varying acceleration coefficient (LPSO-TVAC) is 
proposed [84]. The detailed algorithm of it is shown in Appendix A. Besides, another PSO 
variant, namely a low-discrepancy sequence initialized particle swarm optimization 
algorithm with high-order nonlinear time-varying inertia weight (LHNPSO) is proposed 
by Yang et al. [85]. Three control parameters ,   and   are introduced to adaptively 

update the inertia weight and acceleration coefficients. The formulations for updating 

   1,w K c K  and  2c K  are introduced in Appendix B. 

3.2. Adaptively High-order Mutation-based Particle Swarm Optimization (AHMPSO) 
Though numerous improved PSO algorithms have been developed and applied in 

many research areas, solving optimization problems with extraordinary performance in 
global searching and rapid convergence speed is always an important task. Besides 
using adaptive inertia weight and acceleration coefficients for improving global 
searching capability, mutation strategies can be introduced into the PSO algorithm, 
offering significant merit in enhancing global exploration. However, mutation is a 
double-edged sword, which improves global exploration while slowing down the 
convergence. Adaptive mutation strategies, generating varied rates of exploration 
during the optimization process, have been demonstrated to improve global searching 
ability and maintain a high convergence speed. Some strategies aim at achieving a high 
exploration rate at the early stage for thoroughly searching the whole design space and 
a gradually increased exploitation rate at the later stage for concentrating on the best 
design areas [86]. However, for the problems with numerous local optima, the low 
exploration rate at the later stage hinders the capability to escape the local optima, 
which may lead to premature convergence. Hence, it is imperative to propose a 
mutation strategy, which can designate the exploration and exploitation rates during 
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the whole optimization process to effectively address multiple optimization problems 
across diverse fields.  

Herein, in this research, an adaptively high-order mutation-based strategy is 
developed and introduced into the PSO. Specifically, two high-order functions, i.e., η  

and T  are developed and introduced into the formulations for updating velocity and 
position vectors, which are expressed as  

               Pb Gb

1 1 2 21 ,      v v r p p r p p ηL L L L L LK w K K c K K c K K  (38) 

     1 1 ,   p T p vL L LK K K  (39) 

in which η  and T  are expressed as  

   1 3 U L

max

- ,
  
   
   

η r d dc

K
K p

K
 (40) 

  2 4

max

,

  
    
   

Τ J rp c

K
K p

K
 (41) 

where T

3

qr  is a random vector with values following normal distribution; T

4

qr  

is a random vector with values in the interval [-1, 1] following uniform distribution; 

1, , cp  and 2cp  are four parameters and p

p J  is a vector to control the rates of 

exploration and exploitation during the whole optimization process;    1,w K c K  and 

 2c K  are updated based on formulations in Appendix B. The high-order functions offer 

merits in adaptively controlling the extent of mutation in the whole global searching 
process. It provides a wide range of options for exploration and exploitation rates in the 
optimization process, such as a high exploration rate at the initial stage coupled with an 
increased exploitation rate at the later stage, or vice versa. Additionally, dynamic 
fluctuation of exploration and exploitation rates during the optimization process can 
also be achieved. Furthermore, it is worth mentioning that the PSO variant with no 

mutation is a special case for the AHMPSO, in which 1 20, 0c cp p   and J p
 is a vector 

with all elements of 1.  
4. Stochastic Bandgap Optimization Framework on A Surrogate Model 

To efficiently and effectively conduct the stochastic multiscale bandgap optimization 
for 3D EMMs involving microscale porosity and system uncertainties, which are two 
commonly observed manufacturing imperfections in an FDM part, a machine learning-
aided framework is proposed. The newly developed framework consists of two main 
parts including Part I: Surrogate model construction and Part II: Stochastic optimization 
for EMMs, as shown in Figure 2. 
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Figure 2: The proposed framework to implement the stochastic bandgap optimization 

by AHMPSO with the aid of surrogate models for EMMs with manufacturing 
imperfections.  

In Part I, the main purpose is to establish an effective surrogate model, which 
bridges the underpinned relationship between multiscale structural parameters and 
concerned structural response, i.e.,  f . The surrogate model construction is started 

from the design of the experiment to clarify the physical problems, concerned structural 
response, boundaries of design variables, and statistical information of uncertainties. To 

generate training dataset input trainx  that are specific realizations for R
ξ  and R

d , 

sampling methods, such as Latin hypercube sampling (LHC), Quasi-MCS, etc., can be 

employed [87]. The corresponding trainy  is obtained by implementing numerical 

simulations through 
2FE . Based on the developed training datasets, various machine-

learning algorithms can be employed to establish surrogate models. In this paper, a 
recently published supervised machine learning algorithm, namely extended support 
vector regression (X-SVR) is adopted. Through solid mathematical support, surrogate 
model construction by the X-SVR algorithm is formulated into a quadratic programming 
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(QP) problem, which means that the global optimum can be obtained by any QP or 
convex solver [43]. In addition, to ensure the accuracy of the estimation, cross-
validation is adopted to avoid overfitting. Furthermore, to tune the hyperparameters 
efficiently and effectively, Bayesian optimization is adopted, which can solve the 
optimization problem with fewer iterations compared with the traditional grid 
searching algorithm [88-90]. 

Subsequently, Part II is executed to conduct the stochastic bandwidth optimization 
for EMMs involving manufacturing imperfections. The newly developed PSO variant, i.e., 
AHMPSO is employed to solve the optimization problem. In the optimization process, 

the developed surrogate model f̂  is employed to estimate the concerned structural 

responses and further used to estimate df  for each particle L at the Kth iteration, 

denoted as   ˆ
d Lf Kx . In this case, a series of cumbersome tasks in the traditional 

2FE  

are avoided, including domain discretization, meshing, sophisticated constitutive 
relationship evaluation for models at both scales and integration of physical models 
across scales. Therefore, the computational resources required in each multiscale 
bandgap analysis are sharply reduced. Consequently, it significantly improves the 
applicability of the sampling-based method to approximate the statistical information 
for random structural outputs. In addition, the developed adaptive high-order mutation 
strategy is employed for balancing the exploration and exploitation rate in the 
optimization process. At the end of the optimization, optimal design parameters are 

obtained, which are collected in a vector d . Then, sufficient statistical information, such 
as means, standard deviations, PDFs, and CDFs can be estimated for the concerned 
random structural response in the optimal EMM. Since the stochastic optimization 
framework concerns the mean and standard deviation of the random structural 
response simultaneously, the optimal design is expected to achieve the optimal goal, 
demonstrating large bandwidth and high robustness of optimum under the presence of 
manufacturing imperfections.  

Besides the high computational efficiency, one inherent feature of the framework is 
information update. Once the surrogate model is developed, concerned structural 
response and statistical information for concerned structural responses can be updated 

in an efficient and effective manner without re-running computationally expensive 
2FE . 

This feature offers significant merits in computational efficiency to update the optimal 
design for an EMM involving uncertainties following multiple distribution types. 
Moreover, the developed framework possesses high compatibility, which supports 
various machine learning methods and optimization algorithms. Furthermore, various 
data-processing techniques and post-processing techniques can be integrated into the 
framework [36]. 
5. Numerical Investigation 

To demonstrate the computational stability, convergence speed and capability in 
global searching of the proposed AHMPSO, the computational performance of the 
algorithm is tested on benchmark problems in Section 5.1. In addition, to illustrate the 
efficiency, applicability and robustness of the developed framework, AHMPSO is 
implemented to solve the stochastic optimization for a 3D EMM involving 
manufacturing imperfections in Section 5.2. 
5.1. AHMPSO on Benchmark Functions 

The computational performance of the proposed AHMPSO is tested on two multi-
dimensional multimodal benchmark problems, including Griewank and Rastrigin 
functions [91]. These benchmark functions have multiple local optimal, and the number 
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of local optimal increases exponentially as the increase of dimensionality, which is 
suitable for evaluating the performance of the optimization algorithm in global 
searching. The corresponding functions, search spaces, dimensionalities, and optimum 
values of the two benchmark functions are shown in Table 1. 

Table 1: Benchmark functions.  
Function Expression Dimensionality Range Optimum 

Griewank  
1 1

1 cos
4000

DD
i i

i i

x x
f x

i 

 
    

 
   50 [-600,600] 0 

Rastrigin     2

1

10 10cos 2
D

i i

i

f x D x x


    50 [-50,50] 0 

To compare the performance of the newly proposed AHMPSO with other PSO variants, 
LPSO-TVAC [84] and LHNPSO [85], are also implemented. The control parameters in the 
three algorithms for solving the benchmark problems are demonstrated in Table 2.  

Table 2: The control parameters in three PSO variants.  
Algorithm Control parameters 
LPSO-TVAC max min 1 2 1 20.9, 0.4, 2.5, 0.5i f f iw w c c c c       

LHNPSO 
2

max min 1 2 1 20.9, 0.4, 2.5, 0.5, 1/ , 1, 1i f f iw w c c c c              

AHMPSO 
(Griewank) 

2

max min 1 2 1 2

50

1 50 2

0.9, 0.4, 2.5, 0.5, 1/ , 1, 1

1, [1,1, ,1] , 1, 1, 1

i f f i

c c

w w c c c c

p p

   



        

     J
 

AHMPSO 
(Rastrigin) 

2

max min 1 2 1 2 1

50

50 2

0.9, 0.4, 2.5, 0.5, 1/ 1, 1, 1,

[0,0, ,0] , 1, 1, 1

i f f i c

c

w w c c c c p

p

   



         

    J
 

Each benchmark problem is solved repeatedly for 20 times with an increased maximum 
iteration (i.e., 5, 10, 20, 40 and 60) to demonstrate the convergence speed and 
computational stability of the three algorithms. The population size is set as 20 in the 
three methods. In addition, the convergence plots are shown, illustrating the 
convergence trends of the best, mean, and worst optimal values when the maximum 
iteration is set as 20 and 10 for Griewank and Rastrigin functions, respectively. The 
computational results are summarized in Figures 3 and 4.  

 
Figure 3: Optimal values for Griewank function solved by (a) LPSO-TVAC, (b) LHNPSO, 
(c) AHMPSO for 20 times when the population size is 20 and the maximum iterations 

are 5, 10, 20, 40 and 60, respectively. 

(a) (c) (b) 
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Figure 4: Optimal values for Rastrigin function solved by (a) LPSO-TVAC, (b) LHNPSO, 
(c) AHMPSO for 20 times when the population size is 20 and the maximum iterations 

are 5, 10, 20, 40, and 60, respectively. 

It is illustrated from Figures 3 and 4 that the proposed AHMPSO has superior 
performance in convergence speed compared with LPSO-TVAC and LHNPSO. By only 
using 20 and 10 iterations to solve Griewank and Rastrigin functions, respectively, the 
proposed AHMPSO can find the nearly global optimum with exceptional computational 
stability, by referencing the extremely thin boxes around the global minimum at 0. 
Nonetheless, the solved optimal values by employing LPSO-TVAC and LHNPSO are 
significantly higher than the global minimum for both benchmark problems. 
Furthermore, the exceptional convergence speed of the proposed AHMPSO is 
demonstrated by the convergence plots. In summary, the introduced adaptively high-
order mutation-based strategy significantly speeds up the convergence rate and 
enhances global searching ability with exceptional computational stability.  
5.2. Stochastic Multiscale Optimization for a 3D Elastic Metamaterial (EMM) 

To illustrate the applicability, computational efficiency and robustness of the 
proposed machine learning-aided framework on stochastic multiscale optimization for 
EMMs with manufacturing imperfections, a practically motivated case is implemented 
on a lattice-based 3D EMM involving both material and geometrical uncertainties. 
Before conducting the stochastic multiscale optimization on the 3D EMM, a 
deterministic multiscale bandgap analysis is performed to demonstrate the procedure 
by FEM, which is shown in Section 5.2.1. The results of the stochastic optimization are 
discussed in Section 5.2.2.  

5.2.1. 3D Elastic Metamaterial (EMM) Design and its Deterministic Multiscale 
Bandgap Analysis 

In order to reveal the bandgap characteristics of the FDM-manufactured 3D EMM, a 
multi-level numerical approach, consisting of two stages of homogenization, is 
employed to conduct the multiscale bandgap analysis for EMMs, as shown in Figure 5.  

(a) (b) (c) 
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Figure 5: The multi-level approach for a 3D EMM with manufacturing imperfections. 

(a) An 3 3 3   array of the microscale RVE; structural layout of the microscale RVE with 
  of 90° in the (b) 2D view and (c) 3D view; structural layout of the mesoscale 3D EMM 

unit cell in the (d) 3D view and (e) 2D view; (f) 3D EMM array at the macroscale. 

In the first stage of homogenization, to mimic the porosity distribution in the FDM-
printed parts, a cubic RVE, shown in Figure 5(c), is developed to calculate the 
homogenized material properties for FDM-fabricated parts. The microscale RVE is 
characterized by seven structural parameters, including three material parameters, i.e., 
Young’s modulus E, Poisson’s ratio  , density  , and four geometrical parameters 

including raster angle  , RVE side length ac , radii of the elliptical shape ae  and be  from 

the cross-section of the deposited filaments. To derive the homogenized elasticity 
matrix, periodic boundary conditions are applied on the opposing faces in the RVE, and 
six loading cases are considered. To demonstrate the results, a numerical study is 

carried out on the RVE with structural parameters of 2GPa for E, 1150 3kg/m  for  , 0.4 

for  , 0.06mm for aC , 45°  for  , 0.035mm for both ae  and be , respectively. It is worth 

mentioning that the unit cell size of the microscale RVE needs to be significantly smaller 
than the EMM unit cell at the mesoscale to properly evaluate the material properties 
based on the homogenization method, indicating that only small-size porosity is 
considered in this work. The corresponding displacement filed in the RVE under six 
loading cases is shown in Figure 6(a-f). 
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Figure 6: Displacement field of the microscale RVE under loading at (a) x-direction, (b) 

y-direction, (c) z-direction, (d) xy-direction, (e) yz-direction and (f) xz-direction; (g) 
mesoscale EMM unit cell with periodic boundary conditions coloured in blue; (h) band 

structure along for the 3D EMM at macroscale the k-path Γ-X-M-Γ-R-X|M-R  of the 

macroscale 3D EMM; convergence study and the adopted mesh for (i) sf , (j) cf  for the 

3D EMM considering inter-bead porosity and structural parameters of a = 30mm, ar = 

3mm, br = 11mm, cr = 0.8mm, ̂  = 1073.41 3kg/m . 

The elasticity matrix derived based on the microscale RVE is calculated as: 
3.526e9 1.908e9 1.908e9 0 15404 0

1.908e9 3.005e9 1.766e9 0 14992 0

1.908e9 1.766e9 3.005e9 0 23518 0
pa

0 0 0 6.537e8 0 911.890

15404 14992 23518 0 6.484e8 0

0 0 0 911.890 0 6.537e8

 
 
 
 
 
 
 
 
 

 (42) 

Subsequently, the derived elasticity matrix is applied to the mesoscale EMM unit cell, 
illustrated in Figure 6(g), which is characterized by four geometrical parameters, 

including unit cell size a, cornered sphere radius ar , centered sphere radius br , and 

cylinder radius cr . The second homogenization process is carried out by applying 

Floquet-Bloch periodic conditions on the opposing boundary surfaces of the mesoscale 
EMM unit cell, coloured in blue, to calculate the concerned bandgap properties for the 
macroscale 3D EMM [6]. In addition, due to the presence of porosity, the density of the 
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homogenized material, denoted as ̂  is calculated as ˆ
fV   by the rule of mixture, 

and 
fV  denotes the volume fraction of the filament in the microscale RVE [21]. The 

deterministic bandgap solution for the EMM is obtained by sweeping the wavevector 
along the k-path Γ-X-M-Γ-R-X|M-R  in the first Brillouin zone;   represents the centre 

of the Brillouin zone, M  the centre of the edge, R  a corner point, and X  the centre of a 
face, respectively. Since the derivation of the k-path is the secondary problem in this 
research, the detailed derivation can be referred to the references [81,92,93]. The 

coordinates for ,M,R  and X  are (0, 0, 0),    , ,0 , , ,a a a a a      and (0, / a , 

0), respectively. The convergence study of the mesh is shown in Figure 6(i) and 6(j) for 

sf  and cf , respectively, for an EMM with a = 30mm, ar = 3mm, br = 11mm, cr = 0.8mm, 

̂  = 1073.41 3kg/m . According to Figures 6(i) and 6(j), it can be found that obvious 

convergence trends for both sf  and cf  are observed when the degree of freedom 

reaches 34497. In addition, from Figure 6(h), the 1st complete bandgap is identified as 
the lowest frequency range with no eigenfrequency, characterized by two quantities 

including the sf  and cf  with values of 1769.66 and 5145.94 Hz respectively. The NB is 

calculated as 97.94%. The operating wavelength for the first complete bandgap, which 
is capable of attenuating both longitudinal and transverse waves, is approximately 25 
times larger than the size of the EMM unit cell, corresponding to the low-frequency 
bandgap. 

5.2.2. Stochastic Multiscale Bandgap Optimization for a 3D Elastic Metamaterial 
(EMM) 

Stimulated by practical implications, material and geometrical uncertainties are 
inherent features in 3D printed engineering structures, which greatly influence their 
mechanical and dynamic properties. Herein, to explore the optimum 3D EMMs involving 
manufacturing imperfections, a stochastic optimization is conducted on a multiscale 3D 
EMM involving material and geometrical uncertainties. Specifically, in this section, an 
effective surrogate model to bridge the relationship between structural parameters and 
NB is developed. Then, the stochastic optimization results for 3D EMMs involving 
manufacturing imperfections by the developed AHMPSO are discussed.  

To establish an effective surrogate model, revealing the relationship between 
multiscale structural parameters and the concerned structural response, training 
datasets are generated by numerical methods. The training input dataset is generated 
through LHS for mutually independent variables within the ranges of [1.90e9, 2.10e9] Pa  

for 
31093.25,1207.50,[ ] kg/mE  for [0.38,,  0.42]  for , 0 ,90     for  , [2.85, 3.15]mm for ar , 

[11.40, 12.60]mm for br , [0.76, 0.84]mm for cr , [0.033, 0.036] for both ae  and be , 

respectively. The corresponding training dataset outputs are obtained through 
performing the multiscale bandgap analysis by using COMSOL and the re-meshing in 
each realization is by the auto-mesh. A convergence study is conducted to explore the 
training sample size for the effective surrogate model. The computational accuracy of 
the model is assessed based on the estimation metrics listed in Table 3.  

Table 3: Estimation metrics.  
Estimation metric Formulation 
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

 
Y Y

RE
Y

  

* where ˆ,Y Y  and Y  denote the FEM-based MCS results, surrogate model estimation, 

and the mean of the FEM-based MCS results respectively; N represents the number of 
samples.  

In the convergence study, surrogate models with adjusted training sample sizes (i.e., 
5, 25, 50, 100, 150, 200) are established. To demonstrate the computational stability, a 
mutually independent calculation is repeated 20 times. Furthermore, the best, mean, 

and worst values of 
2R  and RMSE obtained in 20 runs are plotted versus different 

sample sizes. Besides the X-SVR method, other popular machine learning techniques, 
such as support vector regression (SVR) and neural network (NN) are implemented for 
comparisons, in terms of convergence speed and computational accuracy. To assess the 
accuracy, the brute MCS with 1e3 iterations is conducted as the reference. The 
computational results are summarized in Figure 7.  

 
Figure 7: Convergence study, best, mean, and, worst values of estimated 2R  for 

surrogate models by (a) X-SVR, (b) SVR and (c) NN; estimated RMSE for surrogate 
models by (d) X-SVR, (e) SVR and (f) NN of NB for 3D EMMs considering inter-bead 

porosity and system uncertainties following uniform distributions when the training 
sample size is 10, 25, 50, 100, and 150.  

According to the convergence study in Figure 7, it is noted that obvious convergence 

trends for 
2R  and RMSE are observed for the models developed by the three machine 

learning algorithms. Effective surrogate models are established when the training 
sample size reaches 100. In the box plots, the thickness of the box represents the 
dispersion of the results and the ‘+’ indicates the outlier. It is noted that the X-SVR 

(a) (b) (c) 

(d) (e) (f) 
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method possesses the highest computational stability compared with SVR and NN, by 
referencing to the thinnest boxes and least outliers. Furthermore, when the training 
sample size is 100, among the three developed models, the X-SVR method illustrates 

superior performance in computational accuracy by referring to the higher 
2R  with a 

value of 0.9971 and lower RMSE at 0.2826 compared with the models by SVR and NN. 
Once the effective surrogate model is developed, a series of cumbersome and time-
consuming tasks in the multi-level numerical approach are no longer involved, 
including domain discretization, meshing, evaluating the sophisticated constitutive 
relationships in two homogenization processes and the integration of FEM models 
across the scales. The estimation of structural response in the following analysis can be 
executed with significantly lowered computational expenses yet little sacrifice in 
accuracy. Therefore, in the following calculations, the developed surrogate model 
trained by 100 training samples is adopted to estimate NB for 3D EMMs with 
manufacturing imperfections.  

Subsequently, to further demonstrate the high computational accuracy, the 
statistical information at 7 concerned locations, i.e., , , 2       and 3   are 

estimated by the developed surrogate models. The brute MCS with 4e3 iterations are 
presented for reference.  

Table 4: The estimated statistical information of NB for 3D EMMs involving inter-bead 
porosity and system uncertainties following uniform distributions. (Unit: %) 
Location MCS X-SVR RE SVR RE NN RE 

3   80.0668 80.0476 -0.0240 81.8153 2.184 81.3854 1.65 
2   85.4489 85.4392 -0.0113 86.6698 1.429 86.3445 1.05 

  90.8310 90.8309 -1.480e-4 91.5244 0.763 91.3036 0.520 
  96.2131 96.2225 0.00980 96.3789 0.172 96.2627 0.0515 

   101.5952 101.6142 0.0187 101.2334 -0.356 101.2217 -0.368 
    106.9773 107.0058 0.0267 106.0880 -0.831 106.1808 -0.745 
   112.3594 112.3975 0.0339 110.9425 -1.26 111.1399 -1.085 

From Table 4, it can be seen that the concerned statistical information is estimated 
accurately by the surrogate model through the X-SVR method. The maximum absolute 
value of RE is only 0.0339%, which is significantly lower than the values of 2.184% and 
1.65% of SVR and NN, respectively. Hence, it is concluded that the X-SVR method 
possesses exceptional computational accuracy in estimating the structural performance 
and statistical information for 3D EMMs with manufacturing imperfections.  

Then, PDFs and CDFs are generated to further highlight the computational accuracy 
of the three developed surrogate model. The exhaustive MCS with 4e3 iterations is 
employed as the benchmark for assessing the accuracy. In addition, the scatter plots are 
generated to demonstrate the dispersion of the results by surrogate models in reference 
to MCS results. The corresponding results are shown in Figure 8.  
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Figure 8: Estimated (a) PDF, scatter plot and (b) CDF of NB for multiscale EMMs by MCS, 

X-SVR, SVR and NN involving inter-bead porosity and system uncertainties following 
uniform distributions; mode shapes at sf  and cf  for the 3D EMM with NB 3  . 

From Figure 8, it is seen that the estimated PDF and CDF by X-SVR highly overlap with 
the MCS results, demonstrating its exceptional computational accuracy in estimating NB 
for a multiscale EMM. Moreover, the high computational accuracy is shown by the 
highly overlapped results between X-SVR and MCS in the scatter plot. Besides, one 
inherent feature of the X-SVR method with high robustness is the information update. 
Without rerunning the computationally expensive numerical simulations, the trained X-
SVR model can be used to estimate structural responses for 3D EMMs with inter-bead 
porosity and system uncertainties following multiple distribution types. To 
demonstrate it, the structural parameters in the EMM are modelled as random variables 
following various distribution types. The corresponding statistical information of the 
system uncertainties is shown in Table 5.  

Table 5: Statistical information of material and geometrical uncertainties.  
Parameter Distribution type Mean Standard deviation Range 

E (GPa) Normal 2.00 1.97e-2 [1.91, 2.07] 

 3g cm  Gamma 1.15 1.16e-2 [1.10, 1.19] 

  Extreme value  0.40 2.07e-2 [0.38, 0.40] 

ae  (mm) Logistic 0.035 2.471e-4 [0.034, 0.036] 

be  (mm) Gamma 0.035 3.55e-3 [0.034, 0.036] 

   °  Lognormal 45 4.49 [30, 69] 

ar  (mm) Logistic 3.00 2.11e-2 [2.88, 3.13] 

br  (mm) Lognormal 11.00 0.11 [10.59 ,11.40] 

cr  (mm) Extreme value 0.80 3.43e-3 [0.78, 0.81] 

To quantify the performance in computational accuracy of the surrogate models 

developed through three machine learning methods, 
2R  and RMSE are estimated in 

reference to the exhaustive MCS with 5e3 iterations. Moreover, the 7 concerned 
statistical information, i.e., , , 2       and 3   of NB, are estimated. The 

corresponding computational results are summarized in Table 6.  

Table 6: Estimation metrics for the developed surrogate models and estimated 
statistical information of NB by MCS, X-SVR, SVR and NN. (Unit: %) 

 MCS X-SVR RE  SVR RE NN RE 
3   90.3923 90.5350 0.1579 91.3871 1.1006 90.9475 0.6142 



2 

2 



2 

(a) (b) 

2 

2 

2 

f
s
 f

c
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2   92.2098 92.3395 0.1407 93.0243 0.8832 92.6575 0.4855 

  94.0274 94.1440 0.1241 94.6614 0.6743 94.3675 0.3617 

  95.8449 95.9486 0.1081 96.2986 0.4733 96.0775 0.2427 

   97.6625 97.7531 0.0928 97.9357 0.2798 97.7875 0.1280 

    99.4800 99.5576 0.0780 99.5729 0.0934 99.4976 0.0179 

   101.2976 101.3621 0.0637 101.2101 -0.0864 101.2076 -0.0889 

2R  N/A 0.99576 N/A 0.94256 N/A 0.95857 N/A 

RMSE N/A 0.11745 N/A 0.44649 N/A 0.35796 N/A 

It is noticed in Table 6 that the X-SVR technique possesses significantly higher 
2R  and 

lower RMSE compared with the values from SVR and NN. In addition, the estimated 
absolute maximum RE for the statistical information by X-SVR is greatly lower than the 
corresponding values by SVR and NN, implying the exceptional performance in 
computational accuracy and robustness of the X-SVR method.  

Besides the high accuracy and robustness of the X-SVR method, it is worth 
mentioning the high computational efficiency of the machine learning method 
compared with the FEM-based multiscale analysis. All computations were carried out 
on a workstation with Intel(R) Core(TM) Gold 5215 CPU @ 2.54GH 2.49GHz. It 
consumed 147 hours to conduct the multiscale analysis with 1e3 iterations by FEM and 
736 hours to update the concerned structural responses when system uncertainties 
follow various distribution types. Nonetheless, by using the X-SVR method, the majority 
of time was consumed by the dataset establishment, which took approximately 15 
hours to establish the training dataset. Once the training datasets were developed, it 
took less than 30 seconds to complete the following tasks, including hyperparameter 
tuning, surrogate model construction, estimating structural response with 2e3 
iterations, and updating structural response with 5e3 iterations. Generally, the 
computational costs were sharply reduced in comparison to the brute MCS method on 
FEM models. Since the stochastic optimization process involves abundantly performing 
multiscale bandgap analysis for approximating statistical moments, the embedded X-
SVR technique significantly improves the applicability of the proposed framework for 
stochastic optimization on practical 3D EMMs. 

The high robustness, computational accuracy, and efficiency of the X-SVR method 
are demonstrated. Subsequently, the proposed AHMPSO is incorporated with the 
developed surrogate model to conduct the stochastic optimization for the multiscale 3D 

EMM. The statistical information of the random variables, including E, , , ae   and be  are 

listed in Table 5. The lower and upper boundaries for the design variables are [ 0° , 90° ] 

for  , [2.85, 3.15]mm for ar , [10.45, 11.55]mm for br  and [0.76, 0.84]mm for cr . To 

estimate the statistical information for the random NB, the MCS with 1e6 iterations is 
conducted on the surrogate models. The settings in the AHMPSO to solve the stochastic 
optimization problem are the same for the settings solving for the Griewank test 

function shown in Table 2, in which  and   are changed to 21/  and 2, respectively. 

The number of particles and maximum iterations are both set as 40. To test the 
computational stability and convergence speed, the stochastic optimization problem is 

solved 20 times when sw  is set as 0.7. The convergence plots for the best, mean and 

worst fitness values found by AHMPSO are illustrated in Figure 9(a). In addition, the 
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estimated PDF and CDF for NB at the 1st and 40th iterations are shown in Figures 9(b) 
and 9(c), respectively. The mean and standard deviation for the concerned structural 

response at the 1st and 40th iterations are denoted as 1 1,   and 40  and 40  

respectively. 

 
Figure 9: (a) The estimated optimal value by MCS with 1e6 iterations and convergence 

of the best, mean and worst fitness of the multiscale optimization for 3D EMMs 
involving inter-bead porosity and system uncertainties following multiple distribution 

types by the proposed AHMPSO for 20 times when 
sw  is 0.7 and both the maximum 

iteration and population size are set as 40; estimated (b) PDF and (c) CDF of the NB for 
a 3D EMM with inter-bead porosity and system uncertainties following multiple 

distribution types at the 1st and 40th iterations by the AHMPSO.  

From Figure 9(a), an obvious convergence trend is noted when the maximum iterations 
reach 40 in all 20 runs. In addition, it is found that the optimal value solved by the 
AHMPSO outperforms the optimal value obtained from the brute MCS with 1e6 
iterations, implying the extraordinary performance in global searching of AHMPSO for 
the stochastic optimization of the 3D EMM with manufacturing imperfections. 

Furthermore, in Figures 9(b) and 9(c),  f  is increased and  f  is decreased 

simultaneously at the 40th iteration compared with the initial design, which indicates 
that the optimized EMM possesses higher applicability and robustness through the 
enlarged bandwidths and reduced variations in structural performance.  

Subsequently, structural optimizations are undertaken for 
sw  varied from 0 to 1. 

The Pareto optimal regarding  f  and  f  for EMMs is summarized in Figure 

10(a). In addition, the estimated PDF and CDF by X-SVR at the the minimum standard 

deviation ( sw =1) and largest mean ( sw =0)are shown in Figure 10(b) and 10(c), 

respectively. 

(a) (b) (c) 
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Figure 10: (a) Pareto optimal solutions for 

sw  varied from 0 to 1 and the knee point 

solved by AHMPSO for 3D EMMs considering inter-bead porosity and system 
uncertainties following multiple distribution types; estimated PDF and CDF for 3D 

EMMs when 
sw  is (b) 1 and (c) 0. 

From Figure 10(a), it is found that the increase of   leads to the increase of  , implying 

the conflict between the two sub-objectives. The highest mean, i.e., max  is achieved 

when sw  is 0, which leads to a significant increase of  , implying large variations of 

structural performance. Similarly, when the minimum standard deviation, i.e., min  is 

achieved,   is decreased extensively by more than 17%, which detrimentally affects the 

applicability of EMMs for real-life applications. Even the Pareto-set solutions in Figure 
10(a) offer a large number of design solutions, a decision must be made for the most 
satisfactory solution. Hence, a knee point is found, which has the minimum distance to 
the utopia point, i.e., optimal values of each individual objective. The identified knee 

point is marked in Figure 10(a), which has corresponding sw  of 0.72. The corresponding 

estimated   and   for the NB are 101.2542% and 0.0593%, respectively for the 3D 

EMM with manufacturing imperfections. The optimal design parameters for , ,a br r  and 

cr  are 0° , 2.85mm, 11.11mm and 0.84mm respectively. The corresponding estimated 

PDF and CDF for the concerned structural response are shown in Figures 11(a) and 
11(b). In addition, hypothesis testing for three common probability distributions, 
including Extreme value, Loglogistic, and Lognormal are implemented. 
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Figure 11: (a) Hypothesis test and the estimated PDF by the proposed framework with 

embedded X-SVR and AHMPSO and (b) CDF of NB at the knee point for a 3D EMM 
considering inter-bead porosity and system uncertainties following multiple 

distribution types.  

From Figure 11(a), it can be found that although the means and standard deviations 
from the four distributions are extremely close, especially from the Lognormal 
distribution, the fitted PDF by the hypothesized probability distribution cannot accord 
with the results from the MCS-based approach (X-SVR incorporated with AHMPSO). As 
for the relationship between multiscale system variables and the concerned structural 
responses for the optimized multiscale 3D EMM is highly nonlinear, it is extremely 
challenging to pre-assume the distribution type of the concerned structural response. 
With the aid of the proposed framework, i.e., machine learning-aided approach, there is 
no prerequisite on the distribution type of the concerned output. By importing the 
statistical information of random variables into the framework, the multiscale EMMs 
with manufacturing imperfections can be optimized, demonstrating large bandwidths 
with small variations in structural responses, which exhibit high applicability and 
robustness of the optimum. Furthermore, sufficient information, including statistical 
moments, PDF, and CDF of the concerned structural response for the EMM can be 
estimated. 
6. Conclusions 

In this paper, a novel sampling-based stochastic multiscale optimization framework 
is developed for EMMs considering manufacturing imperfections, including microscale 
porosity and system uncertainties simultaneously. Instead of optimizing a single value 
of the normalized bandwidth (NB), the first two statistical moments are optimized, 
aiming at improving applicability and robustness to the optimum of 3D EMMs 
simultaneously. Within the framework, a machine learning method, i.e., namely the 
extended support vector regression (X-SVR) is embedded to relieve the large 
computational cost of estimating the first two statical moments for 3D EMMs with 
manufacturing imperfections. Subsequently, a new particle swarm optimization (PSO) 
variant, i.e., adaptively high-order mutation-based particle swarm optimization 
(AHMPSO) is introduced to solve the stochastic optimization problem. The 
computational accuracy, robustness, and applicability of the framework are 
demonstrated by numerical investigations.  
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Effective surrogate models by the X-SVR method, bridging the structural parameters 
and the NB for 3D EMMs, successfully substitute a series of complicated tasks involved 

in the 
2FE  for multiscale bandgap analysis. Furthermore, in the numerical investigation, 

the X-SVR method is superior to SVR and NN in terms of convergency speed, 
computational stability, and computational accuracy. Furthermore, the adopted X-SVR 
method possesses high robustness, which is capable of accurately estimating the 
bandwidths for the 3D EMMs when the distribution types of the system uncertainties 
are changed, without rerunning the computationally costly physical models. The 
computational cost to estimate the statistical moments is significantly reduced 
compared with the traditional MCS method. 

The introduction of the high-order functions in the PSO is demonstrated to 
effectively improve the convergency speed, global searching performance, and 
computational stability on both multimodal benchmark functions and the stochastic 
optimization problem for the 3D EMM, compared with LPSO-TVAC and LHNPSO. With 
the aid of the X-SVR and AMHPSO, Pareto optimal regarding the mean and standard 
deviation of the NB is obtained. Furthermore, sufficient statistical information, including 
the first two statistical moments, probability density function (PDF), and cumulative 
distribution function (CDF) of the NB for 3D EMMs with manufacturing imperfections 
are estimated effectively and efficiently.  

In conclusion, under stochastic optimization, the multiscale 3D EMMs with 
manufacturing imperfections demonstrate large bandwidths coupling with high 
robustness of optimum. Persuasively, the advanced framework significantly benefits the 
analysis, optimization, and fabrication of EMMs in multi-disciplinary engineering 
applications. 
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Appendix A 

In LPSO-TVAC, w, 1c  and 2c  are updated based on the formulations: 

   max max min
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1
K

w K w w w
K

 
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where 1 2, ,i if ic c c  and 
2 fc  are initial and final values of the cognitive and social 

parameters, respectively. 
Appendix B 

In LHNPSO, w, 1c  and 2c  are updated based on the formulations: 

   max max min
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1
K

w K w w w
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   2 2 2 2

max

1 i i f

K
c K c c c
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 
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where ,   and   are three parameters to control the variations of inertia weight and 

acceleration coefficients. 
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