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Abstract: The effective utilization of solar energy for hydrogen production requires an abundant supply of thermodynamically
active photo-electrons; however, the photocatalysts are generally impeded by insufficient light absorption and fast photocarrier
recombination. Here, we report a multiple-regulated strategy to capture photons and boost photocarrier dynamics by devel-
oping a broadband photocatalyst composed of defect engineered g-C3N4 (DCN) and upconversion NaYF4:Yb3+,Tm3+ (NYF)
nanocrystals. Through a precise defect engineering, the S dopants and C vacancies jointly render DCN with defect states to
effectively extend the visible light absorption to 590 nm and boost photocarrier separation via a moderate electron-trapping
ability, thus facilitating the subsequent re-absorption and utilization of upconverted photons/electrons. Importantly, we found a
promoted interfacial charge polarization between DCN and NYF has also been achieved mainly due to Y-N interaction, which
further favors the upconverted excited energy transfer from NYF onto DCN as verified both theoretically and experimentally.
With a 3D architecture, the NYF@DCN catalyst exhibits a superior solar H2 evolution rate among the reported upconversion-
based system, which is 19.3 and 1.5 fold higher than bulk material and DCN, respectively. This work provides an innovative
strategy to boost solar utilization by using defect engineering and building up interaction between hetero-materials.
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INTRODUCTION

Solar-to-hydrogen conversion has been regarded as a promising and sustainable strategy to alleviate the
steadily worsening energy crisis and environmental issues caused by fossil fuels [1]. To maximize solar
utilization, enormous efforts have been focused on exploiting highly efficient photocatalysts to produce
abundant thermodynamically active photo-electrons by extending the light absorption from ultraviolet (UV)
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to near-infrared (NIR) region and improving photocarrier separation efficiency [2]. Unfortunately, a single
photocatalyst alone can hardly satisfy all the above requirements as the NIR-responsive bandgap is generally
thought to lack photocatalytic activity or directly convert NIR solar energy into heat [3,4]. Fortunately,
upconverison materials such as carbon quantum dots (CQDs) featuring capturing long-wavelength light to
emitting short-wavelength light via surface traps and trivalent lanthanide-based lanthanides (Ln3+) ion-doped
NaYF4 possessing lower vibrational energy (~360 cm−1≈45 meV) to absorb NIR light and emit UV-visible
(UV-vis) light via two or multi-photon absorption/energy conversion have attracted extensive research
interest [5–8]. For the former, QDs suffer from chemical stability, hindering its further applications in
photocatalytic activity. While for the latter, Ln3+-ions such as Er3+, Tm3+ are frequently used as co-dopants
with Yb3+ to produce stable and efficient energy transfer in upconversion luminescence due to their ladder-
like energy levels and long-lived intermediate excited states [9]. However, the realization of their photo-
catalytic activity largely relies on the electronic/optical properties of the core photocatalyst [10,11]. Despite
great progress has been made toward these broadband photocatalytic system, the study on the interaction
between the upconversion material and photocatalyst is rarely reported.
Exhibiting an excellent absorption of UV light, polymerized graphitic carbon nitride (g-C3N4) has recently

become the hottest core photocatalyst particularly owing to the tailorable electronic structure via defect
engineering [12]. Although most literature has emphasized the positive roles of defects such as extended light
absorption and electrons buffering sites [13–15], their potential side effect of being recombination centers of
surface photocarriers has been neglected. Thus, precise defect control on g-C3N4 is necessary, otherwise the
over-strong electron-trapping ability of defect states would conversely lower the light utilization from both
“external” sun and “inner” upconverted materials [16]. Moreover, considering the larger electronic negativity
of C and N atoms, it might form an interaction between g-C3N4 and metallic atoms in upconversion materials.
This interaction may promote the charge transport at interface, but the deeper understanding at the atomic
level is still missing.
In this case, we firstly introduce defect engineering on g-C3N4, and assemble it with upconversion com-

position, forming three-dimensional (3D) architecture. Both theoretical calculations and experiments were
performed to understand how the S dopants and C vacancies induced defect states in defective g-C3N4

(DCN), extending its visible light response to 590 nm. For the first time, we realize a precise defect control
on DCN by endowing its defect states with a moderate electron-trapping ability, and thus an efficient
photocarrier separation is acquired, which is beneficial for the subsequent utilization of upconverted photons.
Furthermore, by integrating the upconversion NaYF4:Yb3+,Tm3+ (NYF) nanocrystals onto DCN, we suc-
cessfully obtain a broadband photocatalyst (NYF@DCN) that can capture UV, visible, and NIR photons.
Interestingly, we found a promoted interfacial charge polarization between DCN and NYF has also been
achieved mainly due to Y-N interaction, which has been verified from both theoretical and experimental
analysis. Thus, compared to the unmodified bulk g-C3N4 (BCN), DCN is more favorable to accept the
migrated energy from NYF nanocrystals via both enhanced fluorescence re-absorption and excited energy
transfer process due to the precise defect controls and Y-N atomic interaction, respectively. As a result, the
photocatalytic performance of the as-developed broadband photocatalyst has been enhanced by 19.3 times
compared with bulk g-C3N4, which ranks the top among the reported upconversion-based photocatalysis
system.
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RESULTS AND DISCUSSION

As depicted in Figure 1A, a series of NYF-x@DCN catalysts (where x represents the mass percentage of
NYF nanocrystals) were prepared by the pyrolysis of ethylene glycol (EG)-assisted self-assembled mela-
mine-cyanurate (MCA-EG) and subsequent thermal treatment with NYF. To preserve the 3D framework of
DCN, the size and annealing condition of the precursors were prudently studied (Figure S1, see details in the
Supplementary Information). The growth of hexagonal MCA-EG nanocolumns was restricted to a size of
~1 μm in length and 200 nm in width (Figure 1B). While sulfur acts as another morphology protecting agent

Figure 1 (A) Schematic illustration for the fabrication of NYF@DCN. SEM images of (B) MCA-EG and (C) DCN. Transmission electron
microscopy (TEM) images of (D) DCN, (E) NYF, (F) NYF-35@DCN. (G) High-resolution transmission electron microscopy (HRTEM)
image of NYF-35@DCN. (H) High-magnification scanning transmission electron microscopy image with the corresponding elemental
mapping of C, N, S, Na, Y, F, Yb, and Tm for NYF-35@DCN (scale bar: 500 nm).
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during the air thermal exfoliation process, which is confirmed by the well-established hexagonal nano-
columns of DCN (Figure 1C and 1D) and the split nanosheets/nanoflakes of its counterparts (Figure S1B–
S1D). The NYF upconversion nanocrystals (25 nm) also demonstrate a uniform hexagonal shape and robust
thermal stability as their morphology and crystallinity are well preserved even after the post-thermal treat-
ment (Figure 1E–G, Figure S2) [17]. Benefiting from the 3D scaffold, the NYF nanocrystals (≤35 wt%) are
uniformly distributed on the surface of DCN nanocolumns (Figure 1F, Figure S3). While DCN exhibits non-
obvious lattice fringe along (002) orientation due to the weakened (002) crystalline plane, suggesting an
intensive thermal exfoliation process (Figure 1G, Figure S2). Moreover, DCN and NYF@DCN present a
hierarchical meso-macroporous structure with higher surface area and larger pore volume, compared to the
non-modified BCN (Figures S1E and S1F, and S4, Table S1). For DCN, the S-dopants and successful
coupling with NYF are also confirmed by the elemental mapping result (Figure 1H).
With a doping-level of 0.55%, S atoms substitute the two-coordinated N atoms in the basic tri-s-triazine

ring to form C–S–C bond in DCN (Figure 2A, Figure S5, and Table S2) [18]. While the C vacancies are
verified by the weakened g signal intensity at ~2.0042 that originates from the unpaired electrons in C atoms
as reflected from the electron paramagnetic resonance (EPR) spectrum (Figure 2B) [19]. Moreover, the
pronounced double peaks around ~3200 cm−1 are assigned to the primary amine group (Figure S6) [19,20],
which further demonstrats the presence of two-coordinated C vacancies in DCN. As a result, compared with
BCN, DCN shows an increased and decreased concentration of C–N–H and –C3N, respectively (Figure S5c,
Table S3). As a result, the S dopants and C vacancies-derived defects not only change the original chemical
environment (Figure S5B–S5D) but also alter the electronic structure and optical property of g-C3N4. We
propose a calculated DCN model with the atomic C:N:S ratio of 34:46:1 based on the experimental surface
element ratio (C:N:S ratio of 39:58:1, Table S2, insert in Figure 2C). The negative formation energies of
−3.82 and −4.25 eV for g-C3N4 with S-dopant (CNs) and C-vacancy (CNc) further indicate that S dopants
and C vacancies are energetically presented in two- and three-coordinated N sites, respectively (Figure S7).
Compared to BCN, DCN shows a narrower bandgap as reflected by the density of states (DOSs) (Figure 2C,
Figure S8). More importantly, for DCN, significant states of N 2p and C 2p around the Fermi level are
presented, which implies the generation of defect states and improved electrical conductivity (Figure 2C).
The existence of defect states in DCN is further experimentally confirmed by the absorption shoulder around
500 nm and the Urbach tail [15] as reflected in the UV-vis diffusion reflectance absorption spectra (Figure
2D). Based on the Kubelk-Munk function [21], DCN shows a 0.21 eV lower bandgap of 2.60 eV than BCN,
and the position of defect states is calculated to be 2.10 eV above the VB, suggesting the utilization of
photons excited with much lower energy and an enhanced visible absorption up to 590 nm (Figure S9). After
coupling with NYF, the NYF-35@DCN exhibits a distinctive absorption band around 980 nm, assigning to
2F7/2→2F5/2 transition of the dopant Yb3+, which demonstrates its broadband light absorption property.
Moreover, the photoluminescence spectra show that the hexagonal NYF nanocrystals can upconvert NIR
energy into higher UV and visible light photons, corresponding to the transitions of 1I6→3F4 (345 nm),
1D2→3H6 (361 nm), 1D2→3F4 (451 nm), 1G4→3H6 (475 nm), 1G4→3F4 (646 nm) and 3H4→3H6 (800 nm),
respectively (Figure 2E, Figure S10) [22]. However, the NYF-35@DCN hybrid exhibits negligible UV
emissions (Figure S10) and the dramatically reduced intensity ratio of the blue emissions (451, 475 nm) to
yellow emission (650 nm) from 10.9 to 2.4 (Figure 2E). These weakened emissions are covered in the light
absorption region of DCN, thus they can be theoretically re-absorbed by DCN via the photon transfer
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process.
Employing a typical three-electrode cell system, the 1 μm thick photoelectrode was back-illuminated under

a chopped simulated solar light (Figure S11). Figure 3A shows the transient photocurrents of BCN, DCN, and

Figure 2 (A) Core-level XPS spectrum of S 2p for DCN. (B) EPR spectra of BCN and DCN. (C) DOSs of DCN (insert: proposed structure
of DCN; the Fermi level is defined as 0 eV). (D) UV-vis diffusion reflectance absorption spectra of BCN, DCN, NYF, and NYF-35@DCN
(selected area: defect states and NIR absorption). (E) Upconversion photoluminescence spectra of NYF and NYF-35@DCN.
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NYF@DCN catalysts at 0.2 V (vs. Ag/AgCl). Compared to BCN with a rectangular curve of photocurrent,
DCN shows a steadily increasing photocurrent which further demonstrates the success of defect engineering,
which is consistent with PL (conduction band) result (Figure S12). This originates from the more complex
competition between electron accumulation and charge recombination within the DCN film due to the
additional energy levels that provide more photo-excited electrons from VB (valence band) and accept more

Figure 3 (A) Transient photocurrent responses at 0.2 V vs. AgCl/Ag electrode. (B) Transient photocurrent responses at longer wavelengths
of 450, 500, 550, 600, 650 (left) and 98–0 nm (right) for BCN, DCN, and NYF-35@DCN. (C) IPCE curves of BCN, DCN, and NYF-
35@DCN. (D) EIS Nyquist plots (insert: equivalent circuit). (E) H2 evolution rate for BCN, DCN, and NYF@DCN hybrids under solar and
980 nm laser irradiation. (F) Comparison of solar H2 evolution rate of NYF-35@DCN with representative reported photocatalysts.
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migrated electrons from CB (conduction band) to the fluorine-doped tin oxide (FTO) substrate. Specifically,
NYF-35@DCN, NYF-50@DCN, NYF-5@DCN, DCN, and BCN, in decreasing order, deliver a photo-
current of 301, 234, 167, 112, and 7 μA cm−2, respectively. This implies an optimized mass loading of NYF
nanocrystals is necessary to obtain the highest photocarriers separation efficiency. Notably, NYF-35@DCN
also displays the highest photocurrents even at a wavelength longer than its bandgap excitation (λ=476 nm),
i.e., 16.01 μA cm−2 at 500 nm, 12.55 μA cm−2 at 550 nm, and 8.15 μA cm−2 at 650 nm (Figure 3B, left). This
enhanced visible light utilization can be ascribed to the reduced photon-excited energy (<2.60 eV) caused by
the defect states (Figure S9). The contribution of upconversion NYF nanocrystals is further verified by an
obvious photocurrent of 8.01 μA for NYF-35@DCN with a 980 nm laser (Figure 3B, right). Compared to
BCN and DCN, NYF-35@DCN shows an overwhelming superiority on incident photon-to-current effi-
ciency (IPCE) over all wavelengths, demonstrating the boosted solar energy conversion after the multiple
regulations on carbon nitrides (Figure 3C, Table S4). Electrochemical impedance spectroscopy (EIS) mea-
surement shows NYF-35@DCN has the lowest charge transfer resistance (Rct) of 7.67×104 Ω cm2 (Figure
3D), which is lower than that of DCN (8.77×104 Ω cm2, Table S5). This is mainly due to its enhanced bulk
electrical conductivity induced by defects in DCN and the lower intrinsic resistance of NYF. The reduced
resistance is also reflected by the highest dark photocurrent as seen from the photovoltammograms (Figure
S13). Moreover, under simulated solar irradiation, NYF-35@DCN also presents the lowest Rct value of
9.10×103 Ω cm2, suggesting the superior photoelectrochemical property and significantly decreased transport
obstacle for photocarriers (Table S6).
As a result, DCN displays an improved photocatalytic H2 evolution rate of 1872 μmol h−1 g−1, which is 12.9

times higher than that of BCN, indicating the success of defect engineering (Figure 3E, Figure S14). To study
whether the upconversion nanocrystals could boost the NIR energy utilization of DCN, the H2 generation
performance of all materials was evaluated under 980 nm laser with an intensity of ~15 mW cm−2 (Figure
S15). The negligible photocatalytic activity was witnessed for DCN and NYF. While the NYF-x@DCN
exhibits significantly enhanced H2 evolution rate up to 1251 μmol h−1 g−1 with an optimized NYF mass
loading of 35%, which indicates the positive effect of upconversion coupling (Figure S14). To further
evaluate the practical H2 evolution, the hybrid materials were also irradiated under solar light whose light
intensity at 980 nm is much lower than that of 980 nm laser. Compared to bare DCN, NYF-5@DCN, NYF-
35@DCN, and NYF-5@DCN also achieve higher H2 evolution rate of 2148, 2799, and 2406 μmol h−1 g−1

with the NYF-assocaited contribution of 276, 927, and 534 μmol h−1 g−1, respectively (Figure 3E). This
enhanced performance of NYF-x@DCN confirms the energy transfer between NYF and DCN can occur
even under solar irradiation. Moreover, we also performed a controlled experiment using the defective
stacked g-C3N4 nanosheets with S dopants and C vacancies (abbreviated as DCN-HS, Figure S16) as the
supporting matrix for NYF to study the stereo structure effect. The hybrid (NYF-35@DCN-HS) shows an
inferior hydrogen evolution rate and photocurrent of 2239 μmol h−1 g−1 and 108.50 μA cm−2 (Figure S17),
indicating the indispensable role of 3D architecture toward solar light utilization. Furthermore, NYF-
35@DCN exhibits superior apparent quantum efficiency (Figure S18) and robust stability against photo-
corrosion as evidenced by the continuous H2 evolution without noticeable deterioration (Figure S19) and
persistent scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FT-IR) and X-
ray diffraction (XRD) patterns after reaction (Figure S20). As an overview of the state-of-the-art, the solar H2

evolution performance of NYF-35@DCN not only ranks the top among the g-C3N4 based photocatalysts but
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also exceeds the upconversion particles-based and other traditional photocatalysts (Figure 3F, Table S7)
[5,21,23–33].
In a control experiment, we explore the necessity of EG solvent and sulfur powder on final defect controls

toward suppressed surface recombination. A series of defective g-C3N4 samples employing H2O-assisted
self-assembled melamine-cyanurate (MCA-H2O), MCA-H2O and sulfur, and MCA-EG as precursors are
denominated as DCN-H, DCN-HS, and DCN-E, respectively. As shown in Figure 4A, DCN shows a
moderate increase of suface state capacitance (Css) of 3.15 μF cm−2 compared to BCN (0.96 μF cm−2) and
DCN-E (4.52 μF cm−2) under simulated solar light (Figure S21, Table S8) [34], indicating a limited increase
of charge density in these surface states by buffering the photo-excited electrons from CB or the transited
electrons from VB. To explore the strength of the electron-trapping, the pseudo-first-order rate constant (k) of
surface photocarrier recombination is calculated using the following equation based on the decay profiles of
the open-circuit potential (Figure 3F) [35]:

( ) ( )V V V V kt/ = 1 exp( ), (1)light dark light

where V, Vdark, and Vlight are the open-circuit potential, in the dark and under light irradiation, respectively
(Figure 4B). As a result, DCN presents the slowest decay kinetics (0.021 s−1) compared to BCN (0.384 s−1),
DCN-H (0.036 s−1), DCN-HS (0.067 s−1), and DCN-E (0.045 s−1). This means the suppressed recombination
and prolonged lifetimes of surface photocarriers for DCN, implying the modest electron-trapping ability of
defect sites via the synthetic controls using both EG and sulfur powder. In addition, the calculated k of NYF-
35@DCN is around 0.018 s−1, which is slightly lower than that of DCN (Figure S22). The lower k of hybrid
material implies the improved photocarrier separation efficiency induced by the upconversion coupling,
which is consistent with the PEC and photocatalytic performance (Figure 3A and 3E). Thus, our defect-
engineered DCN greatly alleviates the recombination of surface photocarriers, guaranteeing an efficient
supply of thermodynamically active electrons into the subsequent photocatalytic redox activity.
At this stage, it is critical to reveal the underlying energy migration of NYF@DCN for a deep under-

standing of the synergistic effect between upconversion and defect engineering toward solar H2 evolution: (1)
To provide direct evidence of photon transfer (PT) process, the transient photocurrent test was performed
with a purpose-designed electrode in which BCN and DCN were pasted on the conductive side of FTO glass
while NYF was pasted on the non-conductive side (Figure S23). Illuminating NYF with a 980 nm laser,
NYFǁFTOǁDCN electrode shows a higher photocurrent (1.01 μA cm−2) than NYFǁFTOǁBCN (0.17 μA cm−2).
This confirms that the defect engineered g-C3N4 is more favorable in harvesting the upconverted fluores-
cence. (2) Moreover, the time-resolved fluorescence decay curves recorded by a home-made scanning
confocal microscope under a 980 nm pulsed laser [36,37] show that NYF-35@DCN exhibits a shorter
lifetime of 179 μs than NYF of 255 μs at 451 nm (Figure S24). This indicates the upconverted energy can
also be transferred via the non-radiative excited state energy transfer (ET) pathway from Tm3+ 1D2 excited
state to CB/defect states of DCN [22,38,39]. Notably, the ET process can be further accelerated due to the
interaction between DCN and NYF nanocrystals, which is demonstrated by the solid-state nuclear magnetic
resonance spectra (ssNMR) measured under a cross-polarization magic angle spinning mode (CP-MAS). The
CP-MAS 13C NMR spectra show no obvious chemical shift change for both DCN and NYF-35@DCN,
suggesting that the upconversion nanocrystals have no significant interference with C of tri-s-triazine unit
(Figure S25). Notably, for the 15N NMR spectra, we observe a peak multiplicity disappearance around 106.6
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and 104.9 ppm for the intermediate N atom (red, 102.2–109.5 ppm, Figure 4C) after NYF coupling, which
could be induced by their interactions with the cations in NaYF4:Yb3+,Tm3+ that shield H atoms. In addition,
the peak broadening for central N that is close to C vacancies (purple, 87.0–91.2 ppm) also indicates the
interaction between DCN and NYF nanoparticles [40,41]. The XPS (X-ray photoelectron spectroscopy)

Figure 4 (A) Comparison of Css calculated from EIS data and (B) open-circuit potential decay curves of BCN, DCN, and other defective g-
C3N4 samples. (C) CP-MAS 15N NMR spectra of DCN and NYF-35@DCN. Differential charge density between (D) NYF@DCN and (E)
NYF@BCN (olive and cyan iso-surfaces represent the region of net electron accumulation and deficit; grey: C; brown: N; green: S; yellow:
Na; dark grey: Y; red: F; blue: Yb; purple: Tm). (F) Proposed photocatalytic mechanism of NYF@DCN photocatalysts.
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shows N shifts to lower binding energy while Y significantly shifts 0.5–0.6 eV to higher binding energy
(Figure S26). Therefore, we draw a conclusion that there exists a Y-N interaction between DCN and NYF,
where N atoms are mostly the intermediate N and defective central N. This enhanced interaction might be
induced by the intimate contact after thermal treatment because the physically mixed counter (NYF-
35@DCN-p) shows an inferior photocatalytic activity than NYF-35@DCN (Figure S27). Figure 4D and 4E
shows the density functional theory (DFT)-based charge density difference diagrams and illustrates the
stronger electronic interaction and polarization at the interface of NYF@DCN than NYF@BCN, as the net
charge change is 0.67 e vs. 0.41 e. This suggests that the defects in DCN might also play a more favorable
role in strengthening the composite affinity and dynamically facilitating the excited state ET process com-
pared with the unmodified BCN. Therefore, defect engineered g-C3N4 is more favorable in accepting the
photon energy from the upconverted energy from NYF via both PT and excited state ET pathway.
Based on the above analyses, we propose a schematic for the solar light harvesting and charge transfer

process for NYF@DCN (Figure 4F). According to the calculated bandgap and defect states level (Figure S9),
the band structures of BCN and DCN were drawn after measuring their CB positions at −0.70 and −0.59 V
vs. reference hydrogen electrode (RHE), respectively (Figure S28). Under solar light irradiation, the elec-
trons involved in hydrogen evolution are dominantly excited via the following five ways: (1) Under UVand
visible light illumination with wavelength <476 nm, the electrons in the VB of DCN can be excited to the CB
(−0.59 V) via a bandgap excitation, simultaneously leaving VB with positive holes to react with scavenger.
(2) Due to the defect engineering on DCN, additional electrons will be excited to the defect states level
(−0.09 V), which thermodynamically satisfies hydrogen evolution requirement via the sub-gap excitation,
extending the visible light absorption region to 590 nm. (3) Acting as an electron buffering level, the defect
states of DCN can accept the electrons from CB and work as electron reservoirs with a moderate electron-
trapping ability, preventing their rapid recombination with holes in VB. (4) Under NIR light illumination (λ=
980 nm), the photons in NYF are excited to the long-lived 2F5/2 level of Yb3+ sensitizer and transfer to the
activated levels of 1I6, 1D2, and 1G4 of Tm3+ activator [42]. The upconverted UVand blue emissions centering
around 345, 361, 451, and 477 nm are subsequently released and act as a secondary light source to re-excite
DCN with extra electrons in CB or defect states via a PT pathway. (5) While a proportion of excited electrons
in 1I6 and 1D2 levels are transferred to DCN via a non-radiative excited state ET process. More importantly,
this energy transfer can be further accelerated due to the Y-N interaction, and thus a facilitated charge transfer
dynamic onto DCN is attained. Finally, due to the enhanced light-harvesting ability of DCN and enhanced
electronic polarization at the interface of NYF@DCN, a fascinating synergetic effect between defect states
and upconversion is achieved. This broadband photocatalyst with porous 3D architecture, intimate contact
between nanocomponents, enhanced light absorption, and accelerated charge transfer process ultimately
boosts a superior hydrogen evolution performance.

CONCLUSION

In summary, we have successfully developed a broadband photocatalyst by coupling hexagonal
NaYF4:Yb3+,Tm3+ upconversion nanocrystals onto the surface of defect engineered g-C3N4 nanocolumns.
Through a precise defect control, the S dopants and C vacancies jointly render DCN with defect states, which
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are effective in both extending light absorbance from 441 to 590 nm and alleviating the photocarrier re-
combination via a narrower bandgap and moderate electron trapping ability. Moreover, the Yb3+ and Tm3+

cations further upconvert NIR light into UV-vis light to re-excite the electron-hole pairs in DCN or impart the
excited electrons from 1I6 and 1D2 levels to CB/defect states of DCN, enabling NYF@DCN a full-solar-
spectral photocatalyst for hydrogen production. Importantly, we revealed the promoted interfacial charge
polarization between DCN and NYFmainly contributed by the Y-N interaction. Due to the moderate electron
trapping ability of defects and Y-N interaction, DCN is more favorable to accept the upconverted energy
transferred from NYF via both PT and excited state ET pathway. As a result, the NYF@DCN performs as a
full-solar-spectral photocatalyst, which exhibits a superior H2 evolution activity of 2799 μmol h−1 g−1,
ranking the top among the g-C3N4 based photocatalysts and upconversion particles-based photocatalysts.
This work provides an understanding on the interaction between metallic and non-metallic materials and
presents an avenue to boost photocatalytic property via multiple regulations.
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