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Abstract

The connectivity of self-assembled networks of nanowires and nanoparticles is believed to strongly

influence their performance in brain-like (neuromorphic) computing applications. Here we present

a new perspective on the connectivity of these networks in which their neuron-like active elements

are viewed in the same way as the nodes in artificial and biological neuronal networks. We consider

two-dimensional and quasi-three-dimensional networks of nanowires and percolating networks of

nanoparticles and show that, from this new perspective, they all have similar small-world charac-

teristics. Other characteristics which may impact the computational performance of the networks

are also investigated, including their assortativity and the scale-free nature of the nanoparticle net-

works. Taken together these results allow comparison of key network characteristics for a variety of

self-assembled nanoscale networks, and provide a basis for detailed investigations of computational

performance.

I. INTRODUCTION

Self-assembled networks of nanowires [1–13] and nanoparticles [14–24] have recently

emerged as important candidate systems for brain-like (or neuromorphic) information pro-

cessing. The essence of the approach is to take advantage of these networks’ intrinsic dynam-

ical properties to implement brain-inspired approaches to computation, such as Reservoir

Computing (RC) [25, 26]. Implementation of such approaches in hardware has the po-

tential to overcome limitations in traditional integrated circuit technologies [27, 28], while

decreasing power consumption and improving performance [29, 30].

It is well-established that the intrinsic architectures of networks impact their dynamics,

and in particular it has been shown that networks with scale-free and small-world proper-

ties provide important computational benefits [31–33]. There have therefore been significant

efforts [9, 12, 18] to understand the connectivity of both networks of nanowires and nanopar-

ticles (illustrated in the left column of Figure 1). The basis of this approach is to construct

connectivity maps in which the nanowires and nanoparticles are the nodes of the networks,

and the connections between them are links (illustrated in Figure 1, middle column, and

discussed in detail below). This is a natural approach, and is necessary for, for example,
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calculations of the electrical properties of the networks (through Kirchhoff’s laws). How-

ever, in these static node maps (SNMs), the nodes are passive, linear elements (i.e. wires

or particles) which do not modify signals that are transmitted through the network. This

is very different to the situation in the biological brain and in artificial neural networks

(ANNs) where the nodes are dynamic, non-linear elements, i.e. the nodes represent neurons

which interact via (linear) synaptic connections.

This distinction is important because it has recently emerged that the memristive con-

nections in self-assembled nanoscale networks exhibit dynamical, neuron-like behavior [7,

11, 20, 34]. Hence, it is clear that a change of perspective is required in order to compare

the network characteristics of self-assembled networks with those of neural networks: the

neuron-like active elements of the networks (the memristive junctions) should be consid-

ered as the nodes, and the connections between them (provided by the wires or particles)

should be the passive, linear links, just as in biological and artificial NNs. This perspective

is essential to the design of physical computing systems based on self-organised networks

which aim to emulate the structure and associated functionality of neural networks. Here

we present a detailed analysis of both nanowire networks (NWNs) and percolating networks

of nanoparticles (PNNs) from this new perspective. As the cornerstone of this change in

approach, which is explained in detail below, we introduce the concept of dynamic node

maps (DNMs) for these networks. We present a detailed characterization of their properties

and show that despite significant differences in the SNMs for NWNs as compared to PNNs,

the DNMs are surprisingly similar to each other. We show that, in fact, the DNMs of all

investigated networks exhibit small-world properties, i.e. they are highly clustered and have

small path lengths between nodes [35], and all DNMs are assortative.

II. NETWORK MODELS

Both NWNs and PNNs (Figure 1, left column) are created using simple deposition pro-

cesses [1–24]. The building blocks (nanowires, particles) are deposited randomly on insu-

lating substrates and electrodes are provided to allow input signals to be injected into the

networks, and outputs to be read, as required for computation. There are however key dif-

ferences. Nanowires are typically surrounded by an insulating shell, so that when they land

on previously deposited wires a memristive tunnel gap (Figure 1, center panel of left column
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– see discussion in next section) is created at each point of contact between wires [1–3, 5].

The wires form quasi-three-dimensional (Q3D) stacks [12], but since the wires are often

assumed to form perfectly planar, two dimensional (2D) networks, we consider both Q3D

and 2D cases here. Nanowire deposition is simulated by randomly choosing the placement

and orientation of the wires within a square deposition area. Where two wires intersect, a

connection (memristive junction) is formed and the connectivity is stored in an adjacency

matrix. Wires in the 2D networks are considered to be 1D lines, and therefore lie in a 2D

plane and are allowed to inter-penetrate. Wires in the Q3D networks are considered to

be 3D cylinders which stack vertically. Deposition occurs sequentially, with previous wires

affecting the position of a new wire in 3D space. The plane has dimensions 30 µm and the

wires are 6 µm long, which means that the percolation threshold is at N ∼ 140 wires. For

more details, see [12].

Metallic nanoparticles, on the other hand, have no protective shell and coalesce when

they land on each other, forming extended, well-connected groups (Figure 1, bottom left);

the deposition is terminated at the percolation threshold (onset of conduction) [14–16, 21]

ensuring that the groups of particles are separated from one another by memristive tunnel

gaps. The nanoparticles are simulated as uniform disks deposited randomly within a square

deposition area, and are allowed to overlap with each other. This overlapping simulates

the coalescence between neighboring particles, leading to the formation of groups of well-

connected particles. When the surface coverage is below a critical threshold, no single group

spans the entire deposition area. The conduction of the network is therefore due to the

tunnel currents that flow across small gaps between groups. The centroids of the groups

are taken to be the nodes, and the connections between groups, defined as the minimum

distance between neighboring group boundaries, are stored in an adjacency matrix (as with

the nanowire networks). For more details, see [12, 18, 19, 36].

We emphasize that after deposition the overall structure of both the NWNs and PNNs is

fixed, and the dynamical (memristive) behavior takes place only in the tunnel gaps, where

atomic or nanoscale filaments are formed. This is in contrast to other types of device in

which memristive behavior results from significant re-arrangements of nanoparticles [37].

Both NWNs and PNNs can be considered within the framework of percolation theory, but

experimental considerations mean that the two types of network are constrained in different

ways. NWNs can be fabricated with a range of wire densities above the percolation threshold
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[10], and so it is important to investigate the properties of networks as a function of the

number of wires deposited (N), at a fixed system size. In contrast, PNNs are always prepared

at the percolation threshold, and scaling laws [38, 39] suggest that network properties will

change as a function of system size (we consider square systems of size W × W particle

diameters). We therefore investigate the connectivity of NWNs and PNNs as a function of

these different natural variables (i.e. N and W respectively), before comparing results and

drawing conclusions.

III. DYNAMICAL, NEURON-LIKE BEHAVIOR IN TUNNEL GAPS

The basic non-linear units facilitating computation in the networks are the tunnel gaps.

The tunnel gaps that form between neighboring nanoparticle groups and between touching

nanowires act as switching sites: upon application of an external voltage stimulus, atomic

scale filaments can be formed (and subsequently broken) in the tunnel gaps [14], resulting in

changes in the gap conductance and consequently in the network conductance (G). These

tunnel gaps, regardless of the type of system, are memristive: their resistance responds

non-linearly to changes in applied voltage and exhibits memory of previous stimuli [40].

The atomic scale behaviour is illustated in Figure 1 (center panel of left column): when a

bias voltage is applied across the gap, it causes the migration of ions and, depending on the

system, an atomic or nanoscale filament begins to form [41–43]. In the low bias regime, the

conductance is low because the current flow across the gap is via quantum tunneling. As the

filament grows (shrinks), the width of the tunneling barrier decreases (increases), causing a

non-linear change in conductance for each junction. At higher bias, the filament can bridge

the gap, causing a transition to a high conductance Ohmic state.

Importantly, the effect of the applied electric field/current is cumulative, i.e., both forma-

tion and destruction of the atomic scale filaments can be viewed as integrating the applied

signals until filament formation/destruction (‘firing’). These processes are therefore qualita-

tively similar to integration and fire mechanisms in biological neurons [44, 45]. A variety of

neuron-like behaviours have been described in different networks and individual devices, re-

lying on both atomic scale and nanoscale mechanisms: the literature includes several studies

that demonstrate brain-like properties such as neural avalanching and that compare exper-

iments with simulations [7, 19] as well as recent reviews [10]. Note however that since the
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focus of the present work is on the characteristics of the networks of memristive elements,

neither the type of memristor under consideration nor the way that they are modeled af-

fect the analysis presented below. It should also be emphasised that we are focused here

on basic network characteristics (in the absence of stimuli) because the architecture of the

network affects its dynamical properties, and hence its possible computational applications

[7, 17, 19, 46].

IV. A CHANGE OF PERSPECTIVE

Figure 1 demonstrates the construction of dynamic node maps for all three types of

networks (2D NWNs (top row, red), Q3D NWNs (centre row, blue) and PNNs (bottom

row, green)). The left column in Figure 1 shows the physical network structure; the top

view of the 2D and 3D NWNs are the same, as they differ only in their connectivity. The

center column captures the connectivity of the networks in the corresponding static node

maps: each wire or group of particles is a node in the network (black circles) and the links

between them (colored lines) represent memristive tunnel gaps that connect the nodes. The

right column in Figure 1 shows the transformation to the DNM, in which each neuron-

like tunnel gap is represented as a colored node and the black lines represent passive links

between them. The DNM is constructed simply by determining which links are connected

via nodes in the corresponding SNM. This process is similar to the construction of so-called

line graphs in graph theory [47]. The resultant DNM visualizes the connectivity between the

active elements (‘neurons’ [7, 20]) and captures the topology of the artificial neural network

contained within the NWN or PNN.

In the following we compare the detailed properties of the DNMs and SNMs, for all three

network types.

V. RESULTS AND DISCUSSION

A. Basic connectivity analysis

We start by considering the degree of each node in the network maps and the lengths L of

the paths between nodes. The degree, k, of a node is the number of links that connect that

node to other nodes. Figure 2 shows the degree distributions (n(k), left), for N = 200, 400,
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600 (for the NWNs) and W = 50, 100, 200 (for the PNNs). The data for SNMs (DNMs)

is shown with dashed (solid) lines. The degree distributions for NWNs are approximately

normal, both for the SNMs and DNMs, but the distributions are broader for the 2D case

(note the different horizontal scales in these two panels) because the wires all lie in a 2D

plane, and therefore intersect all other wires deposited before or after them. In both 2D

and Q3D networks, the DNMs have much larger mean degrees (k̄ = 1
N

∑N
i ki; see Appendix

A and in particular Figure A1, left column), although this difference is more striking in

the 2D networks. In contrast the degree distributions for the PNNs are power-laws [18],

with a shallower slope for the DNMs (note the logarithmic scales). The essential origin of

these changes is that when the transformation to the DNMs occurs, there are many more

nodes and connections between nodes than in the original SNMs (see Appendix B for an

illustrative example and detailed discussion).

The path length between nodes i and j, Lij, is the shortest sequence of links that con-

nects them [35]. Figure 2 (right column) shows the path length distributions n(L) for all

networks. While there are some differences in detail, such as the increase in the width of the

distributions for the Q3D NWNs compared to the 2D NWNs (the path between any pair of

wires/junctions can be a complex route through the 3D stack, and paths can be circuitous,

especially for small N), in each case the path length distributions for the static and dynamic

node maps are remarkably similar to one another. This is simply because the number of

nodes and links are directly related to each other, i.e. as the number of nodes increases in

the SNMs, so too does the number of links (compare centre and right columns in Figure

A1).

B. Small-world nature of the networks

Small world networks are highly clustered and have small path lengths between nodes

[35]. It has previously been demonstrated that various biological and physical networks

are small-world including c. elegans neural networks and macaque monkey brain regions

[48, 49], and 2D NWNs [12, 50].

Figure 3 shows a comparison of the mean path lengths L̄ (left column), mean local clus-

tering C̄ (middle column) and small world propensity (right column) for the SNMs (dashed

lines) and DNMs (solid lines). Again each row corresponds to a different network type:
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2D NWNs (top row, red), the Q3D NWNs (middle row, blue) and the PNNs (bottom row,

green). All displayed quantities are the mean values obtained from 10 network realizations,

with uncertainties representing standard deviations. L̄ (i.e. 1
N(N−1)

∑N
i ̸=j Lij) increases at a

slower rate for the Q3D networks than for the 2D networks. This is because wires at the

top of the stack in the Q3D networks cannot connect with wires at the bottom [12]. For all

networks, L̄ for the dynamic node maps are very similar to those for the static node maps,

reflecting the similarities in the path length distributions shown in Figure 2.

The second column in Figure 3 shows C̄ for the different networks. For any node i with

degree ki, the local clustering coefficient [35] is given by

Ci =
1

ki(ki − 1)

∑
j,k

AijAikAjk, (1)

where Aij, Aik, Ajk are elements of the adjacency matrix. The mean local clustering coef-

ficient is then C̄ = 1
N

∑N
i=1Ci. The SNMs for the 2D NWNs and the PNNs have a high

degree of clustering whereas those for the Q3D NWNs have low clustering, similar to random

networks. However, after the transformation is made to the DNMs, clustering increases for

all network types. The most dramatic increase is for the Q3D NWNs where the increase

in C̄ causes a significant increase in the small world propensity ϕ (Figure 3, right column,

middle row). ϕ quantifies the small-world nature of the networks by mapping them onto

corresponding regular and random Watts-Strogatz networks with the same number of nodes

and degree distribution [48]:

ϕ = 1−
√

∆2
C +∆2

L

2
, (2)

where the deviation of network clustering from those of a regular lattice is

∆C =
Clatt − C̄

Clatt − Crand

(3)

and the deviation of network path lengths from those of a random network is

∆L =
Lobs − Lrand

Llatt − Crand

. (4)

Values of ϕ > 0.6 signify small-world properties [48], and so the DNMs are small-world for

all network types. This is a dramatic change for the Q3D NWNs, as the SNMs are not

small-world. Remarkably, there is no significant change in small world character for the

other network types, despite significant changes in the maps shown in Figure 1, and in the

degree distributions (Figure 2).
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C. Discussion of other network characteristics

The results presented in the previous sections establish a clear basis for comparison of

the different networks of interest, using multiple different metrics. Since the transformation

of the SNMs to DNMs results in rather similar small world characteristics for all networks

we now consider some additional network properties that have previously been shown to be

biologically relevant and to impact on computational performance in neural networks.

We begin by considering the global clustering for each network (Figure 4 (left column)),

since it is correlated with the assortativity [51, 52] that will be discussed next. The global

clustering coefficient [53] Cglobal is the ratio of closed triplets to all triplets:

Cglobal =
closed triplets

open + closed triplets
, (5)

where an open triplet is defined as three nodes connected by two links, and a closed triplet

is defined as three nodes connected by three links. In most cases, the global clustering

coefficients are similar to the local clustering coefficients. The exception is for the PNNs

where the transformation from the SNM to the DNM causes a dramatic change: the global

clustering coefficients for the SNMs (DNMs) are significantly lower (higher) than the local

clustering coefficients shown in Figure 3. This is because the calculation of the global

clustering places greater (lesser) weight on high (low) degree nodes compared to the local

clustering.

Assortativity is a measure of the correlation between nodes based upon some property

[54]. For example in social networks, a person is more likely to be connected to people of a

similar age rather than to people with radically different ages. The degree assortativity [54]

is the Pearson correlation coefficient of the degree between pairs of connected nodes, given

by

r =

∑
ij ij (eij − aibj)

σaσb

, (6)

where eij is the fraction of links that connect nodes of degree i to nodes of degree j, and in

undirected networks is symmetric. ai and bj are the fraction of links that start and finish at

nodes with degrees i and j respectively (note that for undirected graphs, ai = bj). σa and

σb are the standard deviations of the distributions a and b. Values of r vary between −1

and 1.

Here we examine assortativity based on the degree of each node. High assortativity in-
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dicates that high (low) degree nodes are often connected to other high (low) degree nodes,

whereas negative assortativity (also called disassortativity) indicates that high degree nodes

are often connected to low degree nodes. Many biological networks are disassortative, con-

trasting with social networks which have high assortativity. Figure 4 (right column) shows

the assortativity for each network. The SNMs for the Q3D NWNs are disassortative, and

the corresponding DNMs are assortative, and a similar but more modest change is observed

for the 2D NWNs (SNMs are assortative, and DNMs are highly assortative). This increase

in assortativity is driven by the increase in global clustering since there is a clear correlation

between high assortativity and networks with a transitive bias [51, 52] – when the global

clustering is high (low), the assortativity is also high (low).

The change in assortativity for the PNNs is more dramatic. The SNMs for PNNs have

the lowest (most negative) values of the assortativity among all networks considered here,

whereas the corresponding DNMs are the most assortative. The wheel-and-spoke type pat-

tern observed in the SNM (Figure 1, center panel of bottom row) is a common feature of

disassortative networks with power-law degree distributions such as in c. elegans neural and

protein connectivity maps [52, 55]. The high degree nodes act as hubs that connect mainly

to smaller nodes with low-degree. This connectivity is destroyed in the transformation to

the DNMs as the global clustering and therefore the assortativity increases dramatically, i.e.

many tunnel gaps (nodes in the DNMs) have high k (see Figure 3) and are connected to

other high k tunnel gaps via conducting groups of nanoparticles.

Assortativity has been shown to significantly impact computational performance [56],

and it can influence the order of phase transitions and lead to explosive synchronization in

oscillator networks [57]. Furthermore, it has been shown that robustness to noise is greatly

enhanced in assortative neural networks, especially if it is the hub neurons that store the

information, while disassortative networks are less resilient [58, 59]. This is highly relevant

to the present work, because the dynamic node map perspective establishes the neuron-like

memristive connections as the network node, and, at least for the PNNs, the effect of trans-

forming the SNM to the DNM is dramatic. The present results are promising but it must

be acknowledged that in each case the existing literature [56–59] focuses on specific types

of neural or oscillator networks, and so it remains to be demonstrated whether the com-

putational performance of the NWNs and PNNs will indeed be impacted by the particular

network properties (scale-free, small world, local and global clustering, and assortativity)
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studied here.

VI. CONCLUSION

In conclusion, we have presented a new perspective on the connectivity of nanowire and

nanoparticle networks which leads to clear differences in topological properties (in com-

parison to previously published analyses), such as higher mean degrees and higher local

clustering coefficients for all network types considered. We emphasize that while small-

world properties of PNNs and NWNs have been identified previously [12, 50], neither the

need to consider dynamic node maps, nor the properties of the DNMs have been considered

previously. The key structural differences that underpin the differences in properties of

the PNNs and NWNs are i) that in PNNs the nanoparticles overlap with each other to

form groups of well-connected particles that are separated by tunnel gaps that have a range

of sizes [19, 51], whereas nanowires are usually coated with materials that form relatively

uniform memristive gaps between the wires [4]; and ii) the nanoparticles are deposited to

the percolation threshold (so that the networks are poised at the threshold for conduction)

whereas the NWNs are usually well above the percolation threshold.

The change of perspective presented here means that the neuron-like active elements in

self-assembled nanoscale networks are viewed as equivalent to the nodes in artificial and

biological neuronal networks. This change of perspective is required in order to allow direct

comparison of properties of the networks (degree distributions, small world characteristics,

assortativity) but we emphasise that the electrical characteristics of the NWNs and PNNs

are unaffected: the application of Kirchhoff’s laws requires the network to be considered from

the point of view of the original static node maps. When considered as DNMs, 2D NWNs,

Q3D NWNs and PNNs all have small world characteristics and high assortativity, suggesting

that the performance of neuromorphic devices based on these networks might be similar.

The main differences in the DNMs are that PNNs additionally have a scale-free network

architecture similar to that of the biological brain [18]. This scale-free architecture, which

is maintained in the transformation from SNMs to DNMs, is important for computational

performance [46].
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FIG. 1. Process for construction of dynamic node maps. The left column shows examples of a

NWN (top) and a PNN (bottom), and the electric field driven formation of a ‘hillock’ of atoms

in the tunnel gaps between the wires or nanoparticles (center). These hillocks are precursors to

the formation of filaments that bridge the gaps and exhibit memristive properties – see main text.

The middle column shows static node maps in which the wires and groups of nanoparticles are

the nodes in the network. For the NWNs (2D (top row) and Q3D (middle row)), the nodes are

the midpoints of the nanowires, and the links represent the memristive junctions formed between

the wires. There are fewer connections in the 3D case because of stacking effects [12]. In the

PNN (bottom), nanoparticles coalesce to form groups (each colored differently in the bottom left

panel). The nodes are then the group centroids, and the links are gaps formed between groups

(these are also the memristive junctions). The right column shows the dynamic node maps, in

which the memristive junctions are the nodes of the networks and the links represent connections

via wires/groups.
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FIG. 2. Key characteristics of the networks. Left column: degree distributions n(k); right

column: path length distributions n(L). 2D NWNs (top row, red), Q3D NWNs (middle row, blue)

and PNNs (bottom row, green). SNMs: dashed lines; DNMs: solid lines. For the NWNs data is

shown for N = 200, 400, and 600 wires and for the PNNs W = 50, 100, 200; the progression from

dark to light colors indicates increasing N , W .
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FIG. 3. Small-world nature of the networks. Dependence of mean path length (left), mean local

clustering coefficient (middle), and small-world propensity (right) on the number of nanowires (N ,

for the NWNs) or the system size (W , for the PNNs). 2D NWNs (top row, red), Q3D NWNs

(middle row, blue) and PNNs (bottom row, green). SNMs: dashed lines; DNMs: solid lines.
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FIG. 4. Assortativity for the various networks. Dependence of the global clustering (left column)

and assortativity (right column) on the number of nanowires (N , for the NWNs) or the system size

(W , for the PNNs). 2D NWNs (top row, red), Q3D NWNs (middle row, blue) and PNNs (bottom

row, green). SNMs: dashed lines; DNMs: solid lines.
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APPENDIX A: MEAN DEGREE, NUMBER OF NODES AND NUMBER OF

LINKS
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FIG. A1. Dependence of mean degree k̄ (left column), the mean number of nodes (center), and

mean number of links between nodes (right) on the number of nanowires, N (for the NWNs), and

the system size, W (for the PNNs). 2D NWNs (top row, red), Q3D NWNs (middle row, blue)

and PNNs (bottom row, green). SNMs: dashed lines; DNMs: solid lines. For the NWNs the

transformation from the SNM to the DNM causes relatively modest changes in all three quantities.

In contrast the transformation causes a dramatic increase in k̄ for the PNNs, since the fractal

groups of nanoparticles connect many tunnel gaps (see Figure 1 in the main text.)
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(a) (b) (c)

FIG. A2. (a) Portion of a nanowire network, highlighting a single wire (blue) and the wires

it is connected to (red). (b) Static node map corresponding to (a). (c) Dynamic node map

corresponding to (b).

APPENDIX B: ILLUSTRATION OF THE EFFECT OF THE TRANSFORMA-

TION ON THE MEAN DEGREE.

The effect of the transformation from a static node map to a dynamic node map on the

mean degree is described in this Appendix. Since the mean degree in the SNM is ⟨k⟩, which

is greater than 1, the transformation to the DNM generates ⟨k⟩ times more nodes in the

DNM. The number of links in the DNM is also significantly higher. This can be visualised

for the specific example illustrated in Figure A2. The blue wire in (a) makes connections to

5 red wires (i.e. there are 5 memristive gaps), and so the degree of the blue node in the SNM

shown in (b) is 5. Now consider the memristive gap highlighted by the green circle in (a)

and represented by the green link in (b). This memristive gap is a node in the DNM (green

node in (c)) and is connected to 4 other nodes (highlighted by the gold circles) plus the gaps

between the far right red wire and any grey wire that crosses it (there are 10, highlighted

by the black circles). Hence the degree of the green node in the DNM is significantly higher

than that of the original blue wire in the SNM. The same is true for every memristive gap.

The average degree of each node in the DNM is therefore higher than those in the SNM.

And since the number of nodes in the DNM is already greater than that in the SNM, both

N and ⟨k⟩ increase as a result of the transformation. These changes underpin the changes

in other properties of the network that are discussed in the other figures.
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