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Abstract

In mass spectrometry (MS)-based proteomics, protein inference from identified peptides

(protein fragments) is a critical step. We present ProInfer (Protein Inference), a novel protein

assembly method that takes advantage of information in biological networks. ProInfer

assists recovery of proteins supported only by ambiguous peptides (a peptide which maps

to more than one candidate protein) and enhances the statistical confidence for proteins

supported by both unique and ambiguous peptides. Consequently, ProInfer rescues weakly

supported proteins thereby improving proteome coverage. Evaluated across THP1 cell line,

lung cancer and RAW267.4 datasets, ProInfer always infers the most numbers of true posi-

tives, in comparison to mainstream protein inference tools Fido, EPIFANY and PIA. ProInfer

is also adept at retrieving differentially expressed proteins, signifying its usefulness for func-

tional analysis and phenotype profiling. Source codes of ProInfer are available at https://

github.com/PennHui2016/ProInfer.

Author summary

Protein inference is a key step in proteomics data analysis. However, this procedure suf-

fers from coverage issues due to high statistical stringency requirement and noise. Integra-

tion of prior knowledge to guide protein assembly can be a powerful approach. Hence, we

developed a novel protein inference tool ProInfer that incorporates a length-adjusted and

weighted-accumulated posterior error probability score with protein-complex networks.

Compared against existing tools, ProInfer achieves the highest recall and F1 score in pro-

tein inference and also identifies novel differentially expressed proteins not reported by

any other tool.

This is a PLOS Computational Biology Methods paper.
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Introduction

Contemporary mass spectrometry (MS)-based proteomics is characterized by advanced high-

throughput technologies for identifying proteins from complex mixtures [1–2]. MS proteo-

mics measures the mass-to-charge (m/z) ion ratios, retention times, and ion intensities of pre-

cursor ions and peptide fragments [3–4]. A complex multi-step analytical procedure is then

performed to reverse-engineer spectral information into peptide sequences (peptide-spectrum

matching), followed by re-assembly of peptides to constituent proteins. The process of estimat-

ing the optimal set of proteins given acquired spectra is known as the protein inference prob-

lem [5–7]. Quantitative analysis is then performed to identify phenotype-specific proteins [8],

obtain their function annotation [9] and determine potential applications in clinical [10] and

medical settings [11] (Fig 1A).

In peptide-spectrum matching, a spectrum is matched against peptides in both a reference

and a decoy protein sequence database, producing a score for each peptide-spectrum match

(PSM) [12]. Given these PSMs, one can perform peptide identification, i.e., distinguishing cor-

rect PSM from incorrect ones, with well-known tools such as PeptideProphet [13] and Percola-

tor [14]. Percolator was shown to identify more PSMs under similar q-value thresholds [14]. It

can output q-values and posterior error probability scores (PEP) for identified peptides. Briefly,

a q-value is the minimal false discovery rate (FDR) threshold needed for a positive identification

of a given peptide while a PEP score indicates the probability of incorrectly identifying a non-

existing peptide [15]. PEP scores are reported in popular protein inference tools such as Fido

[16], PIA (Protein Inference Algorithms) [17] and EPIFANY [18].

Fig 1. Workflow for protein inference and differential expression analysis with proteomic data and hyperparameter optimization results of proposed

ProInfer. A shows a simple workflow of proteomics data-based protein inference and differential expression analysis. B gives a schema diagram of how

ProInfer works. C presents the average inferred protein numbers and numbers of true positives found by ProInfer under different psm filtering thresholds (y-

axis). The curves in D illustrate the performances of ProInfer indicated by recall, F1 (left-y axis) and precision (right-y axis) affected by various psm filtering

thresholds (x-axis).

https://doi.org/10.1371/journal.pcbi.1010961.g001
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Protein inference is concerned with protein identification from identified peptides. Protein

inference is a demanding task and is affected by experimental/biological and analytical chal-

lenges. Example experimental/biological challenges include incomplete proteome coverage

due to high dynamic range of protein abundances, limitations in digestion and protein separa-

bility under experimental running conditions, and detector sensitivity and resolution [18],

whereas the algorithm design and assumption validity, parameter values, and sequence library

completeness are example analytical challenges. A particularly cumbersome problem is dealing

with peptide ambiguity where one peptide can be mapped to two or more proteins [19]. Prote-

ome coverage issues can be eased by leveraging on alternative data acquisition strategies, e.g.,

parallel accumulation–serial fragmentation combined with data-independent acquisition (dia-

PASEF) [20], which increases precursor identification specificity. Peptide ambiguity problem

is solved by either discarding ambiguous peptides (peptides which map to> 1 protein), e.g.,

Percolator [14]; or conducting network analysis on peptide-protein bipartite networks, e.g.,

EPIFANY [18]. Those proteins sharing the same constituent peptides may be reported as pro-

tein groups [17] in which case, we can be assured that at least 1 member in the protein group

exists. Protein inference is a critical problem for proteomics, and so, many such methods have

been developed (please see Huang et al [21] for details regarding some early methods). Newer

(and popular) protein inference methods include Percolator [14], Fido [16], PIA [17], EPI-

FANY[18] and ProteinProphet [22].

Percolator [14] was originally designed for post-processing of peptide-spectrum matching

results using semi-supervised learning. When protein inference is required, users may opt for

a protein-level FDR threshold to output inferred proteins and their respective probabilities

[23]. Perhaps to improve precision, Percolator does not consider ambiguous peptides, which

may reduce proteome coverage. Fido [16] is a Bayesian probabilistic method for addressing

ambiguous peptide problems and computing protein probabilities using graph-transforming

algorithms. Fido creators claimed their method outperforms the heuristic posterior probability

models based on expectation-maximization such as ProteinProphet [22]. PIA [17] is a consen-

sus tool for integrating results of different search engines and different protein inference tools,

e.g., ProteinProphet [22], Scaffold [19], and IDPicker [24]. PIA addresses ambiguous peptides

by employing maximum parsimony principles and finding a minimal set of proteins explain-

ing found peptides or PSMs [18]. EPIFANY [18] is a recently published protein inference tool

that applies a loopy belief propagation algorithm (LBP) with convolution trees to process

Bayesian networks. Via a peptide-protein bipartite graph, EPIFANY adopts convolution trees

to propagate probabilities between peptides and proteins even for ambiguous peptides.

While these popular tools play significant roles in protein inference, there is room for

improvement, especially in reported protein accuracy and proteome coverage. Current protein

inference methods generally report proteins with lower q-values (q-values in this scenario, is a

rank-based metric for comparing confidences of inferred proteins being present [15]). Conse-

quently, proteins that are in fact present but have lower peptide support are ignored. Unless

approaches exist to exhaustively mine low quality spectra for peptide spectra matches (PSMs),

we do not expect peptide information supporting each protein to change drastically. Given

such constraints, we believe most current tools are reliant only on direct peptide-to-protein

information, to attain an upper limit (albeit incomplete) on the observable proteome [21]. To

overcome these information barriers, we believe incorporating prior knowledge via data inte-

gration, e.g., drawing from independent data sources such as biological networks, is essential.

Hence, we propose a protein-length adjusted posterior error probability accumulation method

ProInfer (short for Protein Inference), which features a comprehensive yet simple rule towards

protein scoring (including how it handles peptide ambiguity). To help users, ProInfer’s meth-

odology is easily understood; involving no complex calculations while possessing reasonable
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assumptions. Additionally, ProInfer borrows similar principles from our missing protein pre-

diction method PROTREC [25] that leverages on the phenomenon that proteins forming a sta-

ble protein complex (or constituting part of a tightly clustered network module) are more

likely to be co-expressed [26]. Specifically, it incorporates protein complex information to res-

cue proteins with weak signals themselves but have neighbors with strong evidence. ProInfer

achieves excellent performance in both protein inference and downstream quantitative

analysis.

Materials and methods

ProInfer

A schematic of ProInfer is shown in Fig 1B. ProInfer comprises three stages: protein inference

from the peptide-protein network, protein complex inference and protein rescoring from the

protein-complex network. To define these terms: A peptide-protein network refers to the con-

nections of identified peptides to their host proteins. This information is vital to demonstrat-

ing existence of these proteins in the sample (see an example of a peptide-protein network in

left side of Fig 1B). Peptide-protein networks are useful for performing protein assembly from

constituent peptides. Proteins work together as aggregates known as biological networks.

These in turn, can be expressed as protein complexes or pathways, and is information rich.

Thus, a protein-complex network (see the right-side bidirectional network in Fig 1B) is com-

posed of proteins aggregating into protein complexes (defined as groups of polypeptide chains

linked by noncovalent protein-protein interactions [27]). An arrow from a protein pointing

towards a protein complex denotes the protein belongs to that complex. And thus, the pro-

tein’s existence adds evidence supporting the presence of the complex in a tissue (i.e., protein

complex inference process based on observed constituent proteins). Alternatively, an arrow

from a protein complex to a protein propagates the existence probability of this complex to its

constituent proteins, helping to re-evaluate our confidence in the protein’s existence in a tissue

(i.e., protein rescoring).

Protein inference from peptide-protein network

Our idea for protein inference from peptide-protein network stems originally from a need to

address peptide ambiguity issues. Suppose an identified peptide Q from spectra is mappable to

N proteins {P1, P2,. . .,PN}. We may reasonably assume that Q has an equal chance to come

from N candidate proteins.

The false-reporting probability of using Q to support reporting P1 is the chance that Q is an

incorrect identification (with PEP score of pepQ) plus the chance that Q is not incorrect but

does not come from P1 (i.e., it is from one of P2,. . .,PN). This may be expressed as:

pepQ þ ð1 � pepQÞ � ðN � 1Þ=N ð1Þ

where pepQ is the PEP score of peptide Q and N is the number of mappable proteins.

Eq 1 can be rewritten as

1 � ð1 � pepQÞ � ð1=NÞ ð2Þ

Here, the term (1 –pepQ) � (1/N) means each candidate protein receives equal support, i.e.,

Q’s posterior probability (1 –pepQ). In practice, Q should not arise equally from each candidate

parent protein as “longer proteins are more likely to generate spurious matches than shorter

ones” [28]. In other words, the support attributed by an ambiguous peptide towards the exis-

tence of a protein also depends on the protein’s length. Thus, to express this idea, we normalize
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the probability of Q from P1 by accounting for protein length. The error of using Q to support

P1 can be modified to

1 � ð1 � pepQÞ � ф ð3Þ

where ф is a length-based adjustment and is computed as:

ф ¼
PN

i¼1
lenðPiÞ=ðlenðP1ÞÞ

PN
h¼1
ð
PN

i¼1
lenðPiÞ=ðlenðPhÞÞÞ

ð4Þ

where len(Pi) is a function computing the length of protein Pi.

Now we consider the problem of reporting a protein P1 to be present given supporting pep-

tides {Q1, Q2,. . .Qj,. . .,Qm}. If a peptide Qj supports a protein P1 uniquely, this peptide is con-

sidered “unique”. If a peptide Qj supports n> 1 proteins {P1, P2,. . .Pi,. . .,Pn}, this peptide is

considered “ambiguous”.

The error of peptide Qj supporting P1 can be context-driven (unique or ambiguous) as fol-

lows:

pðP1 is a false reportjQjÞ ¼
pepQj

; Qj is a unique peptide

1 � ð1 � pepQj
Þ � ф;Qj is a ambiguous peptide

ð5Þ

(

where ф is computed as shown in Eq (4).

We assume that peptide Q1 supporting P1 is independent of other peptides Qj,j6¼1 support-

ing P1. The total errors of using {Q1, Q2,. . .Qj,. . .,Qm} to support P1 to be present can be com-

puted by:

pðP1 is a false report jfQ1;Q2; . . .Qj; . . . ;QmgÞ ¼
Ym

j¼1
pðP1 is a false reportjQjÞ ð6Þ

To calculate the FDR, we transform the cumulative PEP score from (6) (denoted as accPEP)

to a confidence score:

S ¼ � 10 � log
10
ðaccPEPþ 1e � 14Þ ð7Þ

In (7), we spike a small value of 1e−14 to avoid errors where S becomes undefined (NaN)

when accPEP is 0. We compute the FDR derived q-value for reported proteins in the same way

as EPIFANY [18]. Firstly, the reported L proteins are ranked by confidence scores (S) in

descending order, i.e., {Pr1, Pr2,. . .,Prk,. . .,PrL}. Then, the q-value of PrL is the FDR with the

threshold of its confidence score calculated by

qvalue PrLð Þ ¼ FDR x ¼ SðPrLÞð Þ ¼
jfy � x; y 2 Dgj þ 1

jfy � x; y 2 Tgj þ 1
ð8Þ

where x is the threshold, and |{y�x, y2D}| or |{y�x, y2T}| counts the number of decoy (D) or

target proteins (T) with confidence scores no less than the threshold.

For k 2[L−1, 1],

qvalueðPrkÞ ¼ minfFDRðSðPrkÞÞ; qvalueðPrðkþ1ÞÞg ð9Þ

Given these q-values, we can select an appropriate FDR, e.g., 1%, to report the proteins that

qualify under this threshold. At FDR 1%, we expect 1 decoy protein (False Positive) per 100

correct target proteins (True Positive).
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Protein complex inference and protein rescoring with protein-complex

network

Given only PSM information, we may easily reach the upper boundary of reportable proteins

no matter how good the protein inference tool is. This is because these protein inference meth-

ods are ultimately dependent on spectra completeness and quality [21]. In a typical experiment

setting, due to limitations in instrument sensitivity, protein abundance and protein sequence

uniqueness, some proteins are only supported by weak signals (e.g., few supporting peptides

and/or low confidence peptides), and thus, are difficult to observe. To rescue such proteins,

and improve proteome coverage, we may “borrow” information from other important modali-

ties (protein-protein interaction network [29], gene expression profiles [30], etc.) Biological

network information encapsulated in the form of protein complexes is particularly valuable,

possessing high biological information value [31], improving statistical reproducibility [32]

and improving phenotype characterization [33]. Using protein complexes, we developed PRO-

TREC [25], a tool for missing protein recovery, which outperforms other missing protein pre-

diction methods. We hypothesize that protein complexes can also be useful for improving

protein inference from peptide information. To test this idea, we use protein complex informa-

tion in ProInfer.

Suppose ProInfer (refers to the part described in the above section) outputs L candidate

proteins and their accPEP scores and q-values denoted by:

Pros ¼ fðPi; accPEPi; qiÞji 2 ½1; L�g ð10Þ

We collected C reliable protein complexes and generated C decoy protein complexes by

replacing the protein ids (e.g., sp|P41182) in each real complex with corresponding decoy pro-

tein ids (e.g., DECOY_sp|P41182). The complexes are denoted by:

Cpxs ¼ fðcj; cP
j Þjj 2 ½1; 2C�g ð11Þ

where cj is the jth known protein complex, and it contains X constituent proteins denoted by

cPj ¼ fcPj
1; cP

j
2; . . . ; cPj

Xg.

The following procedures describe the protein complex inference and integration of protein

complex information in Cpxs with ProInfer’s outputs Pros:

Step1. Initialization. We initialize the probability of protein Pi being present in the sample as p
(Pi) = 1−accPEPi. For a given FDR f, ProInfer reports num0 numbers of target proteins.

Step2. Protein complex inference. Calculate the probability of a protein complex cj being pres-

ent in the sample as the maximum probability of the subset proteins in this complex and in

Pros, denoted by:

pðcjÞ ¼ maxf1 � accPEPaja 2 ½1; z�g ð12Þ

where accPEPa is the accPEP score of the ath protein in the subset cPj\Pros.

Step3. Calculate the probability of protein Pi in Pros being present in the sample according to

protein complex information. Let {c1, c2,. . .,cQ} be the Q complexes containing Pi, then the

probability of Pi is computed as the maximum probability of {c1, c2,. . .,cQ}:

p cpxðPiÞ ¼ maxðpðc1Þ; pðc2Þ; . . . ; pðcQÞÞ ð13Þ

If no protein complex contains Pi, then p_cpx(Pi) = 0.
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Step4. Update the probability of Pi being present in the sample. By comparing p(Pi) with

p_cpx(Pi), we update the probability of Pi being present in the sample as:

pðPiÞ
0
¼ maxðpðPiÞ; p cpxðPiÞÞ ð14Þ

Step5. Check whether we can now report new target proteins with given FDR f. From Step4,

we get accPEPi0 ¼ 1 � pðPiÞ
0
. We transform accPEPi

0 to its confidence score via above For-

mula (7). Then, via Formulas (8) and (9), we compute the q-value of Pi as qi0. Pros is updated

as following formula:

Pros ¼ fðPi; accPEPi
0; qi

0Þji 2 ½1; L�g ð15Þ

With FDR f, num target proteins are reported. If num> num0, then turn to Step1, other-

wise output Pros and stop.

Unlike PROTREC, ProInfer does not compute the probability of a protein complex being

present in a biological sample based on the weighted probability of all observed constituent

proteins [25]. ProInfer’s approach is based on calculating the maximum of constituent pro-

teins posterior probability (PP) expressed as PP = 1—accPEP. We used protein complexes

downloaded from CORUM 3.0 [34]. We compute the probability of a protein complex being

present in the sample as the maximum probability of its proteins’ posterior probability mea-

sured by 1—accPEP. Then, we update the posterior probability of a protein being present with

the higher value compared between the protein’s original PP value and its parent complexes’

posterior probabilities, i.e., max(original PP, complexes’ PPs). For decoy proteins, PP derived

from corresponding decoy complexes will be used (similarly, calculated by max(original PP,

complexes’ PPs)). A decoy complex is constructed by replacing target proteins in its twin true

complex with decoy ones. The introduction of decoy complexes is to make the inference of

both target proteins and decoy proteins in a similar way to avoid bias in estimating FDR. This

propagation procedure is iterated until no additional target proteins are reported under a

given FDR.

Hyperparameter optimization and datasets

Protein inference is conducted following peptide identification, where PSMs are evaluated and

then filtered by a given PEP threshold. Retained PSMs are regarded as reliable. A strict PEP

threshold retains high confidence PSMs but also produces many false negatives. Conversely,

relaxed PEP thresholds alleviate the false negative problem but at the cost of introducing more

false positives. Different tools adopt different strategies for threshold optimization.

Tools such as EPIFANY, Fido and PIA have some tool-specific hyperparameters to be

tuned, e.g., greedy group resolution for EPIFANY [18] and Fido [16], regularization type for

EPIFANY [18], and input score type and scoring method for PIA [17]. For a fair comparison,

we optimized their hyperparameters with the same Hela cell line dataset initially. The Hela cell

line, derived from cervical cancer cells, is the oldest and most used human cell line [35]; it is

well-documented and widely applied in biochemical, biological, and medical experiments

[36]. 4-replicates Hela cell line raw data of Mehta et al [37] were downloaded from PRIDE [38]

with Project ID PXD022448 (see Table 1).

For performance benchmarking, the lung cancer data (lung cancer) of Li et al [39]

(PXD000853), the THP1 cell line and RAW264.7 mouse macrophage cell line of Li et al [40]

(PXD019800) were used. THP1 is a human leukemia monocytic cell line and is commonly

studied for estimating modulation of monocyte and macrophage activities [41]. RAW264.7 is

a mouse leukemia cell line of monocyte macrophage, where it has been extensively used to
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study macrophage functions, mechanisms, and signaling pathways [37,42]. The lung cancer

data was adopted to discover new anticancer therapeutic targets [39] (see Table 1).

Proteomic dataset processing

Raw data were converted to.mzML format with MSConvert [43] and processed as per flow-

chart in Fig 1A. MSFragger-3.4 [44] was used to conduct database search. A target-decoy

searching strategy [12] was adopted where the protein database contains human reviewed pro-

teins from UniProt [45] (UP000005640, downloaded in 5/5/2022) and known contaminants

from the common Repository of Adventitious Proteins (cRAP, https://www.thegpm.org/crap/,

added by FragPipe-17.1 [44], https://fragpipe.nesvilab.org/) database together with the decoy

proteins generated by sequence reversal. Search parameters are as follows: precursor mass tol-

erance (PMT) of 20ppm, fragment mass tolerance (FMT) of 0.05Da, and peptide length of 7 to

50 (remaining parameters are left as default). Prior to inputting to different protein inference

tools, we performed peptide indexing and feature extraction with OpenMS (version 2.7.0) [46]

for Percolator, which was then used to conduct peptide identification with PEP scores com-

puted for each PSM. With these scored PSMs, hyperparameters were optimized with grid

search: PSM filtering thresholds (PSMs with PEP scores bigger than the threshold are dropped)

were ranged among [0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.999], while for other tool-specific hyper-

parameters, all possible values are tested.

Validation and performance evaluation

The protein-expression tissue database, Human Protein Atlas (HPA) [47], is used for protein

validation. HPA (https://www.proteinatlas.org/) is a manually curated database that collects

human proteins in cells, tissues, and organs via integrating various omics technologies such as

antibody-based imaging, MS-based proteomics, transcriptomics, and systems biology [47].

Positive proteins for Hela cell line were downloaded (data were downloaded from https://

www.proteinatlas.org/search/NOT+celline_category_rna%3AHeLa%3BNot+detected). Pro-

teins having UniProt ids [45] were retained. For Hela cell line, there are 11806 validated pro-

teins (See detail protein list in S4 Table). We label the proteins predicted by different protein

inference tools, e.g., our ProInfer, EPIFANY, etc., and validated by the Human Protein Atlas

as true positives, otherwise they are considered false positives. We calculate several metrics for

evaluating competing tools and optimizing their hyperparameters including inferred protein

numbers, numbers of true positives, recall, precision and F1 score. Recall, precision and F1

score are given by:

recall ¼ TP=ðTPþ FNÞ ð16Þ

Table 1. Summary of datasets used for hyperparameter optimization and performance evaluation.

Dataset Condition Replicates/Samples PRIDE ID Purpose

Hela - DDA1,DDA2,DDA3,DDA3 PXD022448 hyperparameter optimization

THP1 M0 M0_1, M0_2, M0_3 PXD019800 Performance benchmarking

THP1 M1 M1_1, M1_2, M1_3 PXD019800 Performance benchmarking

RAW264.7 M0 M0_1, M0_2, M0_3 PXD019800 Performance benchmarking

RAW264.7 M1 M1_1, M1_2, M1_3 PXD019800 Performance benchmarking

lung cancer Normal N24742,N31945,N32813_r,N35480 PXD000853 Performance benchmarking

lung cancer Patient T24742,T31945,T32813_r,T35480 PXD000853 Performance benchmarking

https://doi.org/10.1371/journal.pcbi.1010961.t001
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precision ¼ TP=ðTPþ FPÞ ð17Þ

F1 ¼ 2 � recall � precision=ðrecallþ precisionÞ ð18Þ

where, TP (true positive) refers to a protein reported by an inference tool, e.g., our ProInfer

and validated by HPA, FN (false negative) means a protein in HPA but has not been reported

by a given protein inference tool, and FP is a protein not in HPA but has been reported.

The final performance evaluation of a tool is determined by the average performance across

the 4-replicates’ Hela cell line data and varying protein reporting FDR among 0.005, 0.01,

0.025 and 0.05. F1 score is one of the most widely used metrics for measuring performance of

a classifier and is used to select optimal hyperparameters.

Downstream differential expression analysis

A simple differential expression analysis workflow is shown in Fig 1A. This was used to bench-

mark protein inference tools by evaluating their ability to identify differentially expressed pro-

teins. Taking the lung cancer data as an example, proteins differentially expressed in patient

samples (4 biological replicates) when compared against normal samples, are expected to be

identified. In each of the 8 samples, proteins are inferred by different tools with their matched

spectra numbers being counted. An expression matrix for this lung cancer data is formed by

integrating the 8 samples’ protein (final protein list is a union of all 8 samples) spectra counts

where missing proteins are filled with counts of 0. We used this expression matrix as input to

edgeR, a widely used differential expression analysis tool [48], to identify differentially

expressed proteins. Those proteins with less than 2 non-missing values in samples of each con-

dition are dropped. We define a differentially expressed protein (DEP) as the protein with

absolute log2FC� 0.585 (FC means fold change, equals to |FC|� 1.5) and Benjamini & Hoch-

berg adjusted p-value (adj.pvalue)� 0.05 [49].

Results

Summary of optimized hyperparameters with Hela cell line data

We identified the optimal running conditions (or settings) for each tool (ProInfer, EPIFANY,

Fido, Percolator and PIA) given data of a particular nature. This would allow us to compare

the best outcomes possible for each tool.

For each method, during hyperparameter optimization, we ranked their hyperparameters

(or combinations of hyperparameters if more than one hyperparameter needs to be tuned) by

corresponding average F1 scores across the 4-replicates Hela cell line data. And returned the

best hyperparameter/combination.

Fig 1C and 1D shows the hyperparameter optimization results of ProInfer. Only PSM fil-

tering threshold (PEP) needs to be selected for ProInfer. Ostensibly, ProInfer has good resis-

tance to low reliability PSMs: When a loose PSM filtering threshold is used, ProInfer achieves

higher recall and F1 score with small decrease in precision. For example, when we set PSM fil-

tering threshold as PEP� 0.999, we increase coverage by ~400 more correct proteins in Hela

cell line than filtering with PEP� 0.01 (Fig 1C, 4595–4204). However, this comes at the cost of

introducing ~300 more false positive proteins (Fig 1C, 4806–4512). When filtering with PSM

PEP� 0.25, the highest precision of 0.963 is obtained, which is 0.007 bigger than PEP� 0.999

(0.956), but 0.02 less (Fig 1D, 0.554–0.534) for recall and 0.021 less (Fig 1D, 0.390–0.369) for

F1 score. Notably, stricter filtering condition also eradicated many target peptides, resulting in
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the loss of signals that are potentially rescuable via integration with network information.

Hence, a looser PSM filtering threshold for ProInfer is preferred. Accordingly, PSM

PEP� 0.999 is set as default hyperparameter for ProInfer in following tests.

We tuned hyperparameters for EPIFANY, Fido, Percolator and PIA accordingly. EPIFANY

works best when setting PSM PEP� 0.05 and parameter greedy_group_resolution to be

“remove_associations_only” and without regularize. For Fido, its optimal hyperparameters

are: PSM PEP� 0.1 and greedy_group_resolution setting as “true”. Like ProInfer, Percolator

also works best with PSM PEP� 0.999. For PIA, inference method of Spectrum Extractor,

multiplicative scoring method and PSM PEP score are chosen, and PEP� 0.999 is used. More

details are found in S2 Table.

Benchmarking competing tools with THP1 cell line data

We used the technical replicates of M0 THP1 (Table 1) for conducting independent bench-

marking. Positive proteins were obtained from HPA (11584 proteins, see S4 Table, data can be

downloaded via https://www.proteinatlas.org/search/NOT+celline_category_rna%3ATHP-1%

3BNot+detected). For each tool, optimal hyperparameters were determined as described

above. The average performance across the 3 M0 THP1 replicates were used. In addition, an

alternative positive protein set generated by filtering out proteins in HPA but without protein

level evidence (with 11483 proteins) were also tested, minor performance differences were

obtained, see S7 Table for more details.

In Fig 2A, we showed the proportions of true positives (deep colors) against false positives

(light colors). Protein reporting FDRs were set as 0.005, 0.01, 0.025 and 0.05 respectively.

Regardless of FDR threshold, ProInfer reports the most numbers of true positives (albeit, with

correspondingly more false positives as well). For instance, given FDR 0.01, ProInfer reports

5390 proteins in total, of which, 5041 are true positives. Compared against Percolator, 640

(Fig 2A, 5041–4401) more true positives were reported with just 230 (Fig 2A, 349–119) more

false positives, achieving a 1:2.78 ratio of false positives:true positives gain (230:640). Similarly,

the false positives:true positives gains comparing to EPIFANY, Fido and PIA are 1:2.90, 1:6.1

and 1:9.37. In addition, from Fig 2A, even with looser FDR thresholds, e.g., 0.025 and 0.05,

ProInfer reports more true positives without incurring great changes to the presence of false

positives (about 10 more false positives comparing to FDR 0.005 or 0.01). From Fig 2B, ProIn-

fer produces stable precisions while other tools acquire lower precisions as FDRs relaxes. In

Fig 2C and 2D, the line plots show that ProInfer always achieves the highest recall and F1

score. Notably, all methods obtain better recalls and F1 scores when FDR relaxes from 0.005 to

0.05. Amongst the methods, Percolator always gets highest precisions but lowest recalls and F1

scores.

In Fig 2E, we also used an upset plot to investigate overlaps among different methods’

reported proteins at FDR 0.01 in an example replicate of THP1 M0 cell line (refers to M0_1).

We identified 4093 proteins commonly reported by all 5 tools. The overlap amongst compet-

ing tools is deep, making up at least 75% of total reported proteins (from 77% for ProInfer to

92% for Percolator). Almost all EPIFANY reported proteins are also reported by at least one

tool. Notably, each of the remaining four tools can identify some proteins missed by others.

Thus, we added an additional Venn diagram on top of the upset plot to show the reliability of

these tool-unique proteins (Fig 2E inset). Amongst the 4093 commonly reported proteins,

4010 (98%) is validated by Human Protein Atlas (HPA detectable). Importantly, ProInfer

identified the biggest number (1014) of uniquely reported proteins of which 776 out of 1014

(76.5%) were validated. PIA uniquely reported just 166 proteins, with 57.8% (96 out of 166)

validated. Fido uniquely reported 83 proteins with less than half (38 out of 83) validated. For
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Percolator, the validation rate of its uniquely reported proteins is 85.7% (6/7), however the list

size is very small in comparison. Hence, the superior performance of ProInfer to report many

reliable proteins, not found by any other tool, makes it a promising tool to find novel protein

biomarkers.

Evaluations of protein inference tools in differential expression analysis

Following protein inference, downstream quantitative analysis is a key step for proteomics

data analysis. To investigate how protein inference tools affect differential expression analysis,

we used 3 published datasets for testing. FragPipe [44] and maxquant [50] are two popular

platforms for proteome quantification, thus are tested for comparison.

Bar plots in Fig 3A–3C present found DEP (in light colors) and non-DEP (in deep colors)

numbers in human lung cancer, mouse RAW264.7 and human THP1 data by five protein

inference tools, FragPipe and maxquant-based workflows. Given lung cancer and THP1 data,

ProInfer reports the most proteins (including DEPs and Non-DEPs) comparing to other four

protein inference tools and FragPipe or maxquant. In RAW264.7 data, PIA inferred the most

Fig 2. Performance evaluation of various tools tested on 3 replicates of human THP1 dataset. A shows average numbers of true positives (in deep colors)

and false positives (in light colors) reported in 3 replicates of THP1 sample with FDR of 0.005, 0.01, 0.025 and 0.05 respectively with hyperparameters

optimized with Hela data. B, C & D show the changes of precision, recall and F1 values of competing tools under different protein reporting FDRs. E is a Venn

diagram revealing the overlap of proteins reported by different tools and validation status of proteins that reported only by a specific tool.

https://doi.org/10.1371/journal.pcbi.1010961.g002
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proteins compared to other tools, however, ProInfer still found more proteins than other

workflows except for PIA. For DEPs, FragPipe and maxquant always report more DEPs than

these five protein inference tools except for the lung cancer data, where ProInfer identified

about 20 more DEPs. This may be due to both FragPipe and maxquant adopting the match-

between-runs (MBR) method to mitigate the missing value problem [51], where smaller miss-

ing rates will be obtained, e.g., about 15% for both FragPipe (15.11%) and maxquant (15.41%),

but more than 19% for ProInfer (19.43%) and PIA (22.77%) averagely in THP1 M0 and M1

samples. ProInfer performs stably in protein reporting and DEP identification compared to

other methods given the three tests.

We are interested in how DEPs identified by different workflows overlap. In Fig 3D, an

upset plot displays the intersections of DEPs found in lung cancer data by 7 workflows. 71

DEPs were reported by all 7 workflows, comprising 54% of all DEPs found by EPIFANY-

based workflow (highest) and 32% of ProInfer-based workflow (lowest). All 7 workflows

reported some unique DEPs, which is interesting. These unique DEPs may be valuable, e.g.,

novel biomarkers or drug targets. We drew an additional Venn diagram (Fig 3D inset) to

check the validation status of these unique DEPs, where literature proofs were searched to

prove they really associate with lung cancer. We searched literature by key words of given

Fig 3. Evaluation of methods on differential expression analysis. A, B & C show the numbers of differentially expressed proteins (DEPs) and non-

differentially expressed proteins (Non-DEPs) found by different protein inference tool-based, FragPipe and maxquant-based workflows from lung cancer,

RAW264.7 and THP1 cell line data. D shows overlapping of DEPs reported by different workflows from lung cancer data and the validation status of those

uniquely found DEPs. E gives the top10 example validation proofs of DEPs uniquely found by ProInfer.

https://doi.org/10.1371/journal.pcbi.1010961.g003
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protein and lung cancer at first. Then we read the literature to check whether they reported

any correlations between the protein and lung cancer. ProInfer found the largest number of

uniquely reported DEPs, where 46 out of 60 of these DEPs can be validated by literature. Simi-

larly, 44 DEPs were uniquely reported by Fido and 28 of them can be proved to play significant

roles in lung cancer. For FragPipe and maxquant, 31 and 25 unique DEPs were confirmed and

more than a half of them are supported by literature. In comparison, EPIFANY, PIA and per-

colator reported few unique DEPs. We listed the top 10 DEPs unique to ProInfer ranked by

their adj.pvalues in Fig 3E. We can find published papers or recent preprints to confirm that

these DEPs are lung cancer related. For example, the protein Fibulin-5 (Uniport id: Q9UBX5)

is a product of gene FBLN5, which was reported to suppress lung cancer invasion by inhibiting

matrix metalloproteinase-7 expression [52]. Pan et al. found that Dedicator of cytokinesis pro-

tein 1 (Uniport id: Q14185, product of gene DOCK1) plays significant role in cell migration,

Akt expression, and vimentin phosphorylation and it’s a drug target for lung cancer [53].

However, these two important DEPs were missed by all other tools. More details about the lit-

erature proofs for these uniquely reported DEPs can be found in S3 Table. In addition, those

unique DEPs with no existing evidence may be novel lung cancer related proteins. These

examples show that ProInfer improves protein inference and DEP identification. It is thus use-

ful for biomarker or drug target identification.

Discussion

Most protein assembly methods have limited coverage of underlying

proteomes

In HPA, there are 11584 confirmed proteins in THP1. Most protein inference methods except

ProInfer, identified fewer than 5000 true positives even at a loose protein FDR of 0.05 (Fig

2A). Percolator has the worst proteome coverage. This may be due to elimination of ambigu-

ous peptides alongside a simple approach towards protein inference. Though, both ProInfer

and other protein inference tools such as Percolator apply a loose PSM filtering threshold, i.e.,

PEP� 0.999, ProInfer always achieves excellent performance in protein inference, where high-

est recalls and F1 scores are always obtained. This may means dropping low confidence pep-

tides (including ambiguous peptides) too early adversely impact proteome coverage. Using

biological networks, ProInfer is a successful method that can make good use of peptides with

weaker signals (or with lower confidence that may be dropped by stricter filtering conditions)

to achieve good proteome coverage.

While ProInfer dominates in our benchmarks, it does have drawbacks

ProInfer works well on protein inference, especially when a looser peptide filtering criterion,

e.g., PSM PEP� 0.999, was applied. A strict filtering criterion may stave off more decoy pep-

tides, which benefits some tools e.g., EPIFANY and Fido (see Results). However, such conser-

vatism also results in widespread loss of informative target peptides, reducing proteome

coverage. To manage noise from looser criteria, ProInfer integrates biological network infor-

mation (e.g., protein complexes) to make good use of those peptides possessing relatively

lower confidences to rescue more target proteins. In our evaluations, this strategy has proven

effective in identifying more true positives than existing tools.

However, ProInfer has several drawbacks:

Firstly, ProInfer cannot manifest its full potential should biological networks be inapplica-

ble or unavailable in the analytical context (e.g., when we don’t have enough reliable protein

complexes or there is no complex network formable in the sample). In the current version of
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CORUM 3.0, there are 2916 curated human protein complexes, which is quite small, and does

not account for all possible networks and complexes partook by all human proteins. The lack

of a tissue-specific complexome database is a further limiting factor that we hope can be over-

come eventually. Moreover, there are limited number of other species with well-characterized

and extensive protein complex lists in this database; thus, unless homology mapping is an

option, ProInfer may not work well on samples from other species (e.g., mouse, where PIA

reports more proteins from mouse RAW264.7 cell line data).

Secondly, we see potential for further optimization: The parameters may yet be further

explored for ProInfer. For example, previously in a related study, we only used the com-

plexes with size � 5 to reduce instability issues [25]. Here, all curated complexes were used;

if a threshold of 5 were used, many complexes would be unavailable, resulting in loss of

many weak signal proteins. In future optimizations, we may study the impact of protein

complex filtering on ProInfer performance. Moreover, during the calculation of protein

complex existence probabilities, only a subset of proteins in a complex and in the candidate

protein list (cPj\Pros) are considered. The low coverages of complexes may cause overesti-

mation of the probabilities of complexes being present. However, if we filter out these low

coverage proteins, then only a few complexes are usable, thus the performance of ProInfer

also decreases. Other settings to be tuned includes how to better determine the probability

of a complex to be present from its proteins and the signal propagation approach from com-

plexes back to other same-complex proteins. Here, we simply assume the probability of a

complex to be present equals to the maximum posterior probability of its proteins while the

probability of a protein to be present from the complex side is measured as the maximum

probability of all complexes containing it. In S5 Table, we tested setting a complex’s proba-

bility to be present as the mean posterior probability of its proteins. However smaller F1

scores are always achieved especially when a higher psm threshold is configured. Though

using mean helps reduce false positive rates (within 1%), much more true positives are also

dropped (~10%). Using maximum is currently an optimal selection, more advanced meth-

ods that help reduce false positives but keep true positives could be tried, e.g., calculate a

prior probability of a complex to be present with enrichment test or our previous weighted

probability method [25].

Thirdly, for paralogous proteins that share the same peptides and can participate as mutu-

ally exclusive partners in protein complexes [54], ProInfer may possibly infer them as either

simultaneously present or absent. This is because ProInfer is dependent on prior knowledge

captured in the protein complex databases. It is possible to extend ProInfer by enriching pro-

tein complex data with information on gene expression and paralogs. This may reduce poten-

tial false positives.

Future work

Our future work will focus on three aspects. Firstly, we may also try to incorporate tissue-spe-

cific expression gene information, e.g., from database TissGDB [55] and housekeeping gene

information, e.g., from HRT Atlas [56], to help the identification of proteins with higher confi-

dence of existence based on their biological functions. Such proteins can be accorded higher

confidence scores even if their observable peptides present with low signals. Secondly, to cater

for big data, we may implement ProInfer in more efficient programming languages, e.g., Scala

[57] or C [58]. Finally, while we have evaluated across selective yet high-quality data, there are

many new technological advances. Hence, we may further evaluate ProInfer on exciting new

data such as single-cell proteomics [59] and spatial proteomics [60].
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Conclusion

We propose a novel biological network-guided method ProInfer for performing protein infer-

ence. ProInfer maximizes use of peptide information (including ambiguous peptides) via a

simple yet logical assignment rule. More importantly, biological networks, in the form of pro-

tein complexes, is integrated with ProInfer to rescue proteins with weak signals. In our evalua-

tions, ProInfer is robust, and stable even across a wide range of conditions. This is in stark

contrast to most other protein assembly tools which are sensitive to adjustments of filtering

parameters (especially important since the optimal cutoff is often unknown). Critically, ProIn-

fer can identify large numbers of validated novel proteins not found by any other tool. In our

evaluations, we find that these novel proteins are phenotype relevant. Thus, ProInfer is prom-

ising for functional profiling and discovering novel biomarkers or drug targets. Source codes

of ProInfer are publicly accessible at https://github.com/PennHui2016/ProInfer.

Supporting information

S1 Table. Data for generating figures in the main text. Sheets in S1_Table.xlsx with names

“Fig 1C” and “Fig 1D” show the tables containing the data for generating Fig 1C and Fig 1D in

our main text. Similarly, sheets “Fig 2A” to “Fig 2E” and “Fig 3A” to “Fig 3E” show the corre-

sponding data for generating our Fig 2A to Fig 2E and Fig 3A to Fig 3E in main text respec-

tively.

(XLSX)

S2 Table. Results of parameter optimization for competing protein inference tools. The

five Sheets with names “supp.tab1” to “supp.tab5” show the parameter optimization results for

EPIFANY, Fido, Percolator, PIA and ProInfer.

(XLSX)

S3 Table. Literature proofs for validating uniquely found differentially expressed proteins

based on different protein inference tools. The seven sheets with names “supp.tab1” to

“supp.tab7” show the literature proofs for validating uniquely found differentially expressed

proteins based on five protein inference tools ProInfer, EPIFANY, Fido, Percolator, PIA and

two quantification analysis platforms FragPipe and maxquant.

(XLSX)

S4 Table. Proteins obtained from the Human Protein Atlas for protein inference valida-

tion. Sheets “Hela detectable Protein in HPA” and “THP1 detectable Protein in HPA” contain

the lists of detectable proteins in Hela and THP1 from the Human Protein Atlas for validating

protein inference performances.

(XLSX)

S5 Table. Comparison of methods “mean” and “max” for calculating protein complex con-

fidence scores. Sheet 1 shows the comparison results of using “mean” and “max” to calculate

protein complex confidence scores.

(XLSX)

S6 Table. Results of testing the robustness of proposed ProInfer by removing pre-inferred

proteins. Sheet 1 shows the testing of robustness of ProInfer by removing 5~50% of pre-

inferred proteins.

(XLSX)

S7 Table. The alternative validation data and the comparisons of validating inferred pro-

teins with original validation data and the alternative validation data. Sheets
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“HPA_Hela_protein_level” and “HPA_THP1_protein_level” give the two alternative valida-

tion data by removing proteins without protein level evidence. Sheet “parameter optimization”

shows the detail parameter optimization results of different protein inference tools based on

the alternative validation data in sheet “HPA_Hela_protein_level”. The Sheets “Fig 1C”, and

“Fig 1D” show the minor changes in result data for generating our Fig 1C and Fig 1D in main

text when using the alternative validation data in sheet “HPA_Hela_protein_level”. Sheets

with names “Fig 2A” to “Fig 2E” show the minor changes when using the alternative validation

data in sheet “HPA_THP1_protein_level” for performance tests of different protein inference

tools.

(XLSX)
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59. Schoof EM, Furtwängler B, Üresin N, Rapin N, Savickas S, Gentil C, et al. Quantitative single-cell prote-

omics as a tool to characterize cellular hierarchies. Nat Commun. 2021; 12: 3341. https://doi.org/10.

1038/s41467-021-23667-y PMID: 34099695

60. Gatto L, Breckels LM, Wieczorek S, Burger T, Lilley KS. Mass-spectrometry-based spatial proteomics

data analysis using pRoloc and pRolocdata. Bioinformatics. 2014; 30: 1322–1324. https://doi.org/10.

1093/bioinformatics/btu013 PMID: 24413670

PLOS COMPUTATIONAL BIOLOGY ProInfer: An interpretable protein inference tool

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010961 March 17, 2023 19 / 19

https://doi.org/10.1093/nar/gkx850
http://www.ncbi.nlm.nih.gov/pubmed/29036590
https://doi.org/10.1093/nar/gkaa609
http://www.ncbi.nlm.nih.gov/pubmed/32663312
https://infoscience.epfl.ch/record/52656
https://doi.org/10.1038/s41467-021-23667-y
https://doi.org/10.1038/s41467-021-23667-y
http://www.ncbi.nlm.nih.gov/pubmed/34099695
https://doi.org/10.1093/bioinformatics/btu013
https://doi.org/10.1093/bioinformatics/btu013
http://www.ncbi.nlm.nih.gov/pubmed/24413670
https://doi.org/10.1371/journal.pcbi.1010961

