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ABSTRACT In this work, we investigate short-packet communications for multiple-input multiple-output
underlay cognitive multihop relay networks with multiple primary users, where transceivers transmit and
receive short packets to provide ultra-reliable and low-latency communications (uRLLCs). For performance
evaluation, the closed-form expressions of the end-to-end (E2E) block error rate (BLER) for the considered
systems are derived in a practical scenario under imperfect channel state information of the interference
channels, from which the E2E throughput, energy efficiency (EE), latency, reliability, and asymptotic
analysis are also studied. Based on the analytical results, we adapt some state-of-the-art machine learning
(ML)-aided estimators to predict the system performance in terms of the E2E throughput, EE, latency,
and reliability for real-time configurations. We also obtain the closed-form expressions for the optimal
power-allocation and relay-location strategies to minimize the asymptotic E2E BLER under the proportional
tolerable interference power and uRLLC constraints, which require negligible computational complexity
and offer significant power savings. Furthermore, the ML-based evaluation achieves equivalent performance
while significantly reducing the execution time compared to conventional analytical and simulationmethods.
Among the ML frameworks, the extreme gradient boosting model is demonstrated to be the most efficient
estimator for future practical real-time applications.

INDEX TERMS Short-packet communication (SPC), multiple-input multiple-output (MIMO), underlay
cognitive radio, multihop relaying, machine learning.

I. INTRODUCTION
Because of the spectral scarcity in fifth-generation (5G) and
beyond networks [2], [3], higher spectral efficiency (SE) is a
key challenge attracting research attention. To improve the
SE, the underlay cognitive radio (CR) enables secondary
users (SUs) to simultaneously leverage the licensed fre-
quency band of the primary network without causing any
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harmful interference to the primary users (PUs) [4]. In the CR
paradigm, the transmit power of the secondary transmitters
must be limited, which leads to performance degradation of
the secondary network.

Herein, a multiple-input multiple-output (MIMO) multi-
hop relay network along with CR has been proposed to
combat the spectrum scarcity and limited transmit power
problems, extend the network coverage, and improve reli-
ability. In particular, Gao et al. [5] investigated a joint
optimzation scheme of the channel assignment in a CR
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network and MIMO degree-of-freedom (DoF) allocation
to maximize user throughputs in a multihop network.
In [6], an optimal relay precoding scheme was devel-
oped for spectrum-sharing multihop MIMO-empowered
CR networks, aiming to maximize the capacity under the
constraints of the transmit power at SUs and allowable inter-
ference power at the PUs. Zaidi et al. [7] characterized
the system performance in terms of area SE and energy
efficiency (EE) of multihop MIMO underlay CR networks,
where suboptimal performance was achieved by arbitrar-
ily selecting one DoF and adapting the other to meet the
PUs’ quality-of-service requirements. Subsequently, in [8],
Zaidi et al. further quantified the achievable spatial through-
put of the same systemmodel in [7], where SUs operate under
slotted-ALOHA medium-access control and channel modu-
lation. Furthermore, the average forward progress, isolation
probability, maximum permissible medium-access probabil-
ity, and optimal spatial throughput were also characterized.
Meanwhile, [9] compared various diversity schemes for the
performance of multihop MIMO underlay CR networks,
including transmit antenna selection (TAS) with maximum
ratio combining (MRC) and TAS with/without receive inter-
ference cancellation. In addition, the power-allocation (PA)
and relay-location (RL) optimizations were also analyzed
in [9]. Xu et al. [10] proposed a jointly optimal framework
for multihop MIMO CR networks that optimizes the band-
width allocation, rate control, multihop/multipath routing,
and EE. In [11], the outage probability (OP), with the joint
constraints of limited interference and intercept probability,
was significantly decreased by exploiting MIMO CR mul-
tihop relay networks. Furthermore, the authors in [12] opti-
mized the throughput of multihop MIMO CR networks by
using energy harvesting (EH) with adaptive transmit power.

However, the techniques in the aforementioned studies
may not satisfy the rigorous conditions of ultra-reliable and
low-latency communications (uRLLCs) in 5G and beyond
networks. Because the uRLLCs’ stringent requirements for
5G and beyond require not only a very low latency of around
1 − 10 ms [13], but also ultra-reliable with a block error rate
(BLER) of less than 10−5 [14], short-packet communication
(SPC), also known as finite-blocklength (FBL) communica-
tion, has been considered as an efficient enabling technology
to support the uRLLCs. Specifically, in [15], the average
packet latency, EE, and reliability of uplink EH underlay
CR internet-of-things (IoT) networks were improved by uti-
lizing SPCs in accordance with the uRLLC requirements.
Reference [16] investigated SPCs for dual-hop relaying net-
works, where the system performance was evaluated via the
end-to-end (E2E) BLER, latency, and throughput. The opti-
mal PA and RL configurations were also provided in [16].
The authors in [17] investigated the BLER performance
of the amplify-and-forward dual-hop relaying networks,
wherein uRLLCs are conducted through SPCs under imper-
fect channel-state information (CSI) and hardware impair-
ments. In addition, an optimization problem for minimizing

the average BLER in the high signal-to-noise ratio (SNR)
and high blocklength regimes was studied in [17]. Makki
and Alouini [18] evaluated the E2E latency and through-
put of multihop SPCs to support uRLLCs, where either the
amplify-and-forward or decode-and-forward (DF) technique
was utilized. Meanwhile, [19] performed the decoding error
rate evaluation, optimal blocklength, and optimal RL allo-
cation for the unmanned aerial vehicle-based DF three-hop
relay networks. In [20], the secrecy throughput of dual-hop
relaying CR SPC IoT networks was analyzed under the con-
straints of secrecy and the decoding error probability, where
the DF relay utilizes either the MRC or zero-forcing beam-
forming scheme. Reference [21] investigated TAS/MRC and
TAS/selection-combining (SC) MIMO systems with SPCs to
gain the advantages of connectivity, SE, and uRLLCs. Sub-
sequently, our work [22], [23] recently focused on leveraging
the benefits of multihop MIMO relay networks in SPCs to
facilitate uRLLCs. In addition, the PA and RL optimizations
were also taken into account for the joint optimal problem
in [23].

It is conceivable that taking the closed-form expressions
of the performance analysis will no longer be sufficient
when the complexity and heterogeneity of future wireless
networks grow enormously. Numerical integration and sim-
ulation approaches can be utilized as alternative methods
to evaluate the system performance, but suffer from long
run times to exactly achieve the converged value. Recently,
machine learning (ML) has been realized as a powerful tool
to accurately evaluate system performance while dramati-
cally reducing the execution time compared to conventional
simulation methods [24]. Because ML-based applications
are able to accurately estimate non-linear functions with
low complexity, they enable a wide variety of networks
(e.g., SPC, MIMO, CR, and multihop relaying) for real-
time applications. For instance, [25] utilized a deep neu-
ral network (DNN) to efficiently predict the E2E BLER,
goodput, and EE of wireless-powered CR SPC dualhop IoT
systems, where an opportunistic relay selection scheme was
proposed to maximize the E2E SNR. Based on the results
in [25], performance prediction with high accuracy and low
DNN execution time, which can facilitate real-time config-
urations for IoT systems, was confirmed. Nguyen et al. [26]
adopted a convolution neural network (CNN) to estimate the
throughput of EH full-duplex dual-hop relay-selection IoT
systems using SPCs.Meanwhile, DNNwas applied to predict
the throughput of multihop wireless-powered networks with
SPCs [27]. In addition, the system performancewas evaluated
in terms of E2E BLER, reliability, latency, and throughput
in [27] to show the good support of the proposed net-
works in accordance with uRLLC constraints. Subsequently,
Vu et al. [28] leveraged a DNN framework for the ergodic
capacity prediction towards real-time configurations of EH
CR non-orthogonal multiple-access (NOMA) dual-hop relay
IoT networks. In [29], an extension of the DNNmodel in [28],
called a deep multi-output neural network, was designed to
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simultaneously predict the NOMA users’ throughput and
E2E BLER of wireless-powered CR NOMA IoT SPC sys-
tems. In addition to the DNN and CNN advantages, the
recurrent neural network (RNN) was further utilized for per-
formance prediction in terms of theOP and throughput, where
the network model of the dual-hop coordinated direct relay
transmissions and underlay CR NOMA was considered [30].
Although RNN provides the lowest root-mean-square error
(RMSE), it suffers from the highest computational complex-
ity and execution time compared to DNN and CNN.

This paper is the first to study MIMO CR multihop relay
networks with multiple PUs for SPCs to satisfy uRLLC
requirements, where the comprehensive analysis is conducted
in a general and practical scenario with imperfect CSI.
Subsequently, some state-of-the-art ML-aided estimators are
designed to effectively predict the system performance. Fur-
thermore, the practical optimization problems are also studied
under the defined system constraints. The main contributions
of this paper are summarized as follows:

• We propose and investigate a MIMO underlay CR mul-
tihop relay network with multiple PUs using SPCs
in accordance with uRLLC requirements, where the
closed-form expressions of the E2E BLER, throughput,
EE, latency, and reliability are obtained to evaluate the
system performance.

• To achieve more qualitative insights into performance
behaviors, we analyze the asymptotic BLER in the
high-SNR regime with two practical approaches, includ-
ing the fixed and proportional tolerable interference
power per PU. Here, the fixed interference-power
scheme can be split into near- and far-CR regimes.

• To tackle two important practical problems (i.e., the
optimal configurations of PA and RL) of the relaying
systems, we obtain the closed-form expressions of the
optimal PA and RL configurations that minimize the
asymptotic E2E BLER under the system constraints.
In addition, substantial power savings are observed in
the numerical results.

• To develop real-time system configurations for the pro-
posed networks, we design various state-of-the-art ML-
based models, i.e., DNN, CNN, and extreme gradient
boosting (XGB) algorithms, to estimate the system per-
formance in terms of E2E throughput, EE, latency,
and reliability. The numerical results confirm that our
proposed ML-aided estimators exhibit highly accurate
predictions with short execution times. Among the ML
frameworks, the XGBmodel achieves the lowest RMSE
while requiring the lowest computational complexity,
making it the most efficient estimator for future practical
real-time applications.

The remainder of this paper is organized as follows.
In Section II, the networks and channel model with the con-
ventional TAS/SC and TAS/MRC are described. Section III
presents the closed-form expressions for the E2E BLER,
throughput, EE, latency, and reliability in both the TAS/MRC
and TAS/SC schemes. Section IV provides further insights

FIGURE 1. The MIMO underlay cognitive multihop relay network
under SPCs.

into the network performance via the practical asymptotic
analysis. In Section V, we minimize the asymptotic E2E
BLER for the proportional tolerable interference power and
uRLLC requirements under the PA and RL constraints.
Section VI investigates the DNN, CNN, and XGB appli-
cations to predict the E2E throughput, EE, latency, and
reliability performance. To validate the correctness of our
analysis, Section VII shows the Monte Carlo simulations
and ML-based evaluation results. Finally, some concluding
remarks are presented in Section VIII.

II. NETWORKS AND CHANNEL MODEL
AMIMO underlay CRmultihop network for SPC is shown in
Fig. 1, where Rayleigh fading channels are assumed. In the
primary network, there coexist N PUs that share the same
licensed frequency band, whereas in the secondary network,
the signal is sent from the secondary source SU0 equipped
with NT transmit antennas to the secondary destination
SUK+1 equipped with NR receive antennas via K secondary
relays, named SU1, SU2, . . . , SUK , that are equippedwithNT
transmit and NR receive antennas. We assume that the direct
link between SU0 and SUK+1 is not supported and all sec-
ondary devices’ antennas are equipped with the half-duplex
mode, i.e., a single secondary device cannot transmit and
receive the signal simultaneously. Let h(i,j)k denote the fading
coefficient for the channel between transmit antenna i and
receive antenna j at hop k , whereas g(i)k,n denotes the channel
coefficient between transmit antenna i of SUk−1 and PUn.
Throughout this paper, i = 1,NT , j = 1,NR, k = 1,K + 1,
and n = 1,N are assumed.We note that only a single transmit
antenna of node SUk−1 is activated for transmission by the
TAS scheme, and gk,n represents the channel between the
activated transmit antenna of SUk−1 and PUn.

In the underlay CR systems, the transmit power at each
SU must be lower than the maximum tolerable interference
power to avoid severe interference at the PUs. Therefore,
the transmit power of SUk−1 can be expressed as Pk−1 =

min

(
Ps,

Ip
max

n=1,...,N
|gk,n|

2

)
, where Ps is the maximum allowable

transmit power per transmit station in the secondary network
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and Ip is the maximum allowable interference power for
a PU. However, perfect CSI of the interference channels is
not available in practice because of complex channel intri-
cacies, e.g., feedback delay, limited feedback, and channel
estimation (CE) errors. Henceforth, the estimate of the chan-
nel coefficient gk,n can be expressed as ĝk,n = βgk,n +√
1 − β2gerrk,n, where g

err
k,n is a circular symmetric complex

Gaussian random variable with zero-mean and the same vari-
ance of gk,n, whereas β ∈ [0, 1] represents the correlation
coefficient between the real and estimated channels, which
is utilized to measure the CSI condition.1 As a result, the
transmit power of SUk−1 with imperfect CSI is expressed

as P̂k−1 = min

(
Ps,

Ip
max

n=1,...,N
|ĝk,n|

2

)
. We note that a higher

value of β implies a lower CE error. As done in previous
studies [33], [34], [35], we assume that the distance between
the primary transmitter and the secondary network is suffi-
ciently large so that any interference to the secondary network
caused by the primary network is negligible. Accordingly, the
instantaneous received SNR at SUk with imperfect CSI for the
channel between the ith transmit antenna and the jth receive
antenna is determined by

γ
(i,j)
k =

P̂k−1

N0

∣∣∣h(i,j)k

∣∣∣2
= min

γ̄P, γ̄I

max
n=1,...,N

∣∣ĝk,n∣∣2
∣∣∣h(i,j)k

∣∣∣2, (1)

where γ̄P = Ps/N0, γ̄I = Ip/N0, and N0 is the noise

variance. For the Rayleigh fading channel,
∣∣∣h(i,j)k

∣∣∣2 and ∣∣gk,n∣∣2
follow an exponential distribution with characteristic param-
eters λ(i,j)k and λk,n. We assume the channel coefficients of
each hop and interference link are independent and identi-
cally distributed, i.e., λ(i,j)k = λk , λk,n = λkp, ∀i, j, n. For the
transmission schemes, the TAS technique is employed at the
transmit side to achieve transmit diversity, power consump-
tion reduction, and hardware cost reduction [36]. For TAS,
only a single optimal antenna out of NT providing the highest
received SNR is selected to transmit the signal. Meanwhile,
either MRC or SC is utilized at the receive side to achieve
receive diversity [23], [37].

According to the MRC principle, the received signals from
all branch channels are coherently combined [38]. In the kth
hop, when transmit antenna i is chosen based on the TAS
technique, the instantaneous output SNR after combining all

1β generally characterizes the influence of CE errors or hardware impair-
ments on the networks. In this work, we do not specify the particular CE
methods (e.g., minimum mean-square-error (MMSE), linear-MMSE, local-
partial-MMSE, maximum likelihood estimator, least-square estimator, etc.).
The details of these CE techniques are provided in [31, Chapter 11]. The
value of β can be determined by leveraging a pilot symbol modulated
parameter [32].

the received signals can be expressed as

γ
TAS/MRC
k = max

i=1,...,NT

NR∑
j=1

γ
(i,j)
k . (2)

Proposition 1: By denoting Xk =

NR∑
j=1

∣∣∣h(i,j)k

∣∣∣2 and Yk =

max
n=1,...,N

∣∣ĝk,n∣∣2, the cumulative distribution functions (CDFs)
and probability density functions (PDFs) of Xk and Yk are
given, respectively, by

FXk (x) = 1 − exp (−λkx)
NR−1∑
n=0

1
n!
(λkx)n, (3)

fXk (x) =
λ
NR
k xNR−1

(NR − 1)!
exp (−λkx) , (4)

FYk (x) = 1 −

N−1∑
i=0

φ (N , i)
2

exp
(
−λ̂

(i)
kpx
)
, (5)

fYk (x) =

N−1∑
i=0

φ (N , i)
2

λ̂
(i)
kp exp

(
−λ̂

(i)
kpx
)
, (6)

where φ (N , i) =
(N−1

i

) 2N (−1)i
i+1 and λ̂(i)kp =

(i+1)λkp
i+1−iβ2

. By sub-
stituting (1) into (2) and utilizing the CDFs and PDFs of Xk
and Yk , the CDF of γ TAS/MRC

k is obtained as

FTAS/MRC
γk

(γ )

=

{
FYk

(
γ̄I

γ̄P

)
FXk

(
γ

γ̄P

)
+

N−1∑
i=0

φ (N , i)
2

· exp
(

−λ̂
(i)
kp
γ̄I

γ̄P

)
−

N−1∑
i=0

φ (N , i)
2

λ̂
(i)
kp

NR−1∑
n=0

1
n!

(
λkγ

γ̄I

)n

·

(
λ̂
(i)
kp +

λkγ
γ̄I

)−n−1
0

(
n+ 1,

λ̂
(i)
kp γ̄I+λkγ

γ̄P

)}NT
,

(7)

where 0 (α, x) =

∞∫
x
e−t tα−1dt denotes the upper incomplete

gamma function [39, Eq. (8.350.2)].
Proof: Based on (2), the CDF of γ TAS/MRC

k is calculated
as

FTAS/MRC
γk

(γ )

=

NT∏
i=1

Pr

min

γ̄P, γ̄I

max
n=1,...,N

∣∣ĝk,n∣∣2
 NR∑

j=1

∣∣∣h(i,j)k

∣∣∣2 ≤ γ


=

{
Pr
(
γ̄P ≤

γ̄I

Yk
, γ̄PXk ≤ γ

)
+ Pr

(
γ̄P >

γ̄I

Yk
,
γ̄I

Yk
Xk ≤ γ

)}NT
. (8)
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It is noted that, in (8), the first term is the probability of two
independent events, whereas the second term is the probabil-
ity of two dependent events. Therefore, (8) can be rewritten
as

FTAS/MRC
γk

(γ ) =

{
FYk

(
γ̄I

γ̄P

)
FXk

(
γ

γ̄P

)

+

∞∫
γ̄I/γ̄P

fYk (y)FXk

(
γ

γ̄I
y
)
dy
}NT

. (9)

By substituting the CDFs and PDFs of Xk and Yk into
the integral in (9), after some mathematical manipulations,
we derive (7), which completes the proof. □

According to the SC principle, only the link with the
highest average received SNR is chosen to perform the signal
detection [40]. When utilizing both the TAS and SC schemes,
the instantaneous output SNR can be expressed as

γ
TAS/SC
k = max

i=1,...,NT
j=1,...,NR

γ
(i,j)
k . (10)

Proposition 2: Based on (10), the CDF of γ TAS/SC
k is

obtained as

FTAS/SC
γk

(γ )

=

{
FYk

(
γ̄I

γ̄P

)
F∣∣∣h(i,j)k

∣∣∣2
(
γ

γ̄P

)

+

N−1∑
i=0

φ (N , i)
2

exp
(

−λ̂
(i)
kp
γ̄I

γ̄P

)
−

N−1∑
i=0

φ (N , i)
2

·
λ̂
(i)
kp γ̄I

λ̂
(i)
kp γ̄I + λkγ

exp

(
−
λ̂
(i)
kp γ̄I + λkγ

γ̄P

)}NTNR
, (11)

where F∣∣∣h(i,j)k

∣∣∣2 (x) = 1 − exp (−λkx).

Proof: The proof of (11) follows the same steps as
Proposition 1. □

III. PERFORMANCE ANALYSIS
In this section, we analyze the E2E performance metrics,
including the E2E BLER, E2E throughput, EE, latency, and
reliability.

A. E2E BLER
We assume that SU0 sends B information bits to SUK+1
with the assistance of SU1, . . . , SUK via quasi-static fading
channels [41], where B information bits are encoded into a
block of τ channel uses (CUs). Thus, the channel coding rate
is given byR = B/τ . Under the FBL regime with an SPC of
τ > 100 CUs [42], [43], the average BLER at link k is given
by

ε̄Sk = E

Q
 log2

(
1 + γ Sk

)
− B/τ√

V
(
γ Sk
)
/τ

 , (12)

where S denotes one type of the transmission scheme, i.e.,
S ∈ {TAS/MRC,TAS/SC}; E(·) represents the expectation
operator, V

(
γ Sk
) 1

=

(
1 −

1(
1+γSk

)2
) (

log2e
)2 denotes the

channel dispersion [42]; andQ (·) is the Gaussian Q-function.
It is challenging to directly derive the closed-form expres-
sion of ε̄Sk in (12) because of the complicated Q-function.
To tackle this problem, we utilize a tight approximation of
the Q-function, as discussed in [43], which yields

ε̄Sk = ϑ
√
τ

ψH∫
ψL

FSγk (γ ) dγ , (13)

where ϑ =
[
2π
(
22B/τ − 1

)]−1/2
, ψL = θ − 1/

(
2ϑ

√
τ
)
,

ψH = θ + 1/
(
2ϑ

√
τ
)
, and θ = 2B/τ − 1.

It is noted that the integral in (13) is very strenuous to
calculate due to the complexity of the output SNR’s CDF.
Motivated by this issue, we utilize two approximations to
obtain a tightly bounded closed-form expression for the aver-
age BLER at each hop. These approximated frameworks can
achieve not only very high accuracy, but also low complexity,
as presented in the following propositions.
Proposition 3 (First-Order Riemann Integral Approximation):

The tightly bounded closed-form expression for the average
BLER in the kth hop can be derived by using the first-order
Riemann integral approximation [44]: ε̄S,Riek = FSγk (θ) .

Proof: When τ > 100 CUs, it is observed that ψH −

ψL =

√
2π
(
22B/τ − 1

)
/τ is very small. Therefore, it is

valid to utilize the first-order Riemann integral approximation
y∫
x
f (z) dz ∼= (y− x) f

(
x+y
2

)
for (13). As a result, (13) is

approximated as ε̄S,Riek = ϑ
√
τ (ψH − ψL)FSγk

(
ψH+ψL

2

)
(a)
= FSγk (θ) , where step (a) is based on the observation that
ψH −ψL = 1/

(
ϑ

√
τ
)
and ψH +ψL = 2θ , which completes

the proof. □
Proposition 4 (Gauss–Chebyshev quadrature): By using

the Gauss–Chebyshev quadrature integral
y∫
x
f (z) dz ∼=

(y−x)
2

T∑
u=1

π
T

√
1 − x2u f

(
y−x
2 xu +

y+x
2

)
, where xu =

cos
(
(2u−1)π

2T

)
and T denotes the number of tradeoff terms,

i.e., the tradeoff parameter between the complexity and accu-
racy [45], the tightly bounded closed-form expression for
the average BLER at link k can be obtained as ε̄S,GChebk =

T∑
u=1

π
2T

√
1 − x2uF

S
γk

(
xu

2ϑ
√
τ

+ θ
)
.

Remark 1: Based on Proposition 3 and Proposition 4, the
approximated BLERs are revealed to be directly dependent on
the original CDF forms. We can conclusively comment that
the first-order Riemann integral approximation offers lower
complexity than the Gauss-Chebyshev quadrature because
the latter suffers from the tradeoff constant T . In this
work, we not only utilize the first-order Riemann integral
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approximation to reduce calculation complexity but also val-
idate the correctness of the Gauss-Chebyshev quadrature
approach.

According to the selective DF principle [46], the E2E
BLER for the considered system is determined by

ε̄
S,Z
E2E = ε̄

S,Z
1 +

K∑
k=1

{
ε̄
S,Z
k+1 ·

k∏
m=1

(
1 − ε̄S,Zm

)}
, (14)

where Z ∈ {Rie,GCheb} indicates whether the Riemann
approach inProposition 3 or the Gauss–Chebyshev approach
in Proposition 4 is applied.

B. E2E THROUGHPUT, EE, LATENCY, AND RELIABILITY
We consider the latency-limited transmission mode, where
SU0 transmits its data with a fixed transmission rate of
R = B/τ . The system throughput is defined as the achievable
effective rate of the considered network, which is measured in
bits per CU (BPCU). As a result, the E2E system throughput
for scheme S is given by [47] and [48]

TPSE2E =

(
1 − ε̄SE2E

)
R/(K + 1). (15)

Furthermore, to obtain more insights into the tradeoff
between the system throughput and energy consumption,
we determine the EE for scheme S, which is measured in
BPCU per watt (BPCU/W) as [25]

EESE2E =

(
1 − ε̄SE2E

)
R

(K + 1)
K+1∑
k=1

P̂k−1

. (16)

The efficient gains from SPCs over long-packet conven-
tional communications are low latency and ultra-reliability,
where the latency and reliability for scheme S are presented,
respectively, as [25], [47], and [48]

LatencySE2E =
B

TPSE2E
=
τ (K + 1)

1 − ε̄SE2E
, (17)

ReliabilitySE2E =

(
1 − ε̄SE2E

)
· 100%. (18)

Remark 2: In the high-SNR regime, the bounded sys-
tem throughput can be directly determined as T̃P

S
E2E ≈(

1 − ε̃
S,Near
E2E

)
R/(K+1) ≈

(
1 − ε̃

S,Prop
E2E

)
R/(K+1), where

ε̃
S,Near
E2E and ε̃S,PropE2E are defined in (21) and (27), respectively.
When ε̃S,NearE2E and ε̃S,PropE2E are extremely small in a sufficiently
high-SNR regime, we can simplify the asymptotic system
throughput as T̃P

S
E2E ≈ R/(K + 1). In such a scenario,

R/(K + 1) is determined as the target throughput of the
system.
Remark 3 (Impact of a large number of hops): We note

that the E2E BLER dramatically increases and tends to
approach unity as K → ∞. The related explanation is
given in the discussion of Fig. 5(a). Furthermore, based
on (15)–(18), we can comment that TPSE2E → 0, EESE2E → 0,
ReliabilitySE2E → 0, and LatencySE2E → ∞ as K → ∞.
Consequently, we can conclude that an excessively large

number of hops causes performance degradation. Alterna-
tively, as verified by the simulation results in Section VII,
employing an appropriate number of relays not only achieves
optimal performance in terms of E2E BLER, throughput, EE,
latency, and reliability but also reduces the implementation
cost.
Remark 4 (Impact of a large number of antennas): It is

observed in (8) that FTAS/MRC
γk is a product of NT proba-

bilities. In addition, increasing NR implies that the DoF of
the chi-square random variable Xk also increases, leading
to a lower value of Pr {cXk ≤ γ } for any constant c. For the
TAS/SC scheme, based on (10), the calculation of FTAS/SC

γk

requires a product of NTNR probabilities. Since Pr {cXk ≤ γ }

is in the range [0, 1] and Pr {cXk ≤ γ } → 0 as NR → ∞,
we get FSγk → 0 as NT ,NR → ∞. Consequently, the
E2E BLER approaches zero as NT ,NR → ∞, which is
expected as a result of high diversity gains. Accordingly,
system performance in terms of throughput, EE, latency,
and reliability significantly improves for a large number of
antennas.

IV. ASYMPTOTIC ANALYSIS
In the CR environment, two practical approaches for the
asymptotic analysis include the fixed and proportional toler-
able interference power per PU. This analysis provides the
performance behaviors in special cases, which are useful
to obtain more insights into the influence of the system
parameters.

A. FIXED TOLERABLE INTERFERENCE POWER
CONSTRAINT
When the constraint IP for the network is fixed [49],
we investigate cases in which (i) the PUs are located close
to the secondary network, which is referred to as the near-CR
asymptotic regime; and (ii) the PUs are located very far from
the secondary network, which is referred to as the far-CR
asymptotic regime.

1) NEAR-CR ASYMPTOTIC REGIME
When the PUs are located close to the secondary network,
i.e.,

∣∣ĝk,n∣∣ becomes very large, which yields Ip
max

n=1,...,N
|ĝk,n|

2 ≪

Ps. In such a scenario, the instantaneous received SNR at
SUk with the channel between transmit antenna i and receive

antenna j becomes γ (i,j),Neark =
γ̄I

max
n=1,...,N

|ĝk,n|
2

∣∣∣h(i,j)k

∣∣∣2. Based
on (2) and (10), the CDFs of γ TAS/MRC,Near

k and γ TAS/SC,Near
k

are derived, respectively, as

FTAS/MRC,Near
γk

(γ )

=

{ N−1∑
i=0

φ (N , i)
2

·

[
1 − λ̂

(i)
kp

NR−1∑
n=0

(
λkγ
γ̄I

)n(
λ̂
(i)
kp +

λkγ
γ̄I

)−n−1
]}NT

,

(19)
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FTAS/SC,Near
γk

(γ )

=

[
N−1∑
i=0

φ (N , i)
2

λkγ

λ̂
(i)
kp γ̄I + λkγ

]NTNR
. (20)

Because the results from the first-order Riemann and
Gauss–Chebyshev quadrature integral approximations are
identical, for simplification, we only utilize the first-order
Riemann approach to derive the closed-form expression of
the asymptotic BLER. By applying (19) and (20) to Proposi-
tion 3, the closed-form expression for the asymptotic BLER
at link k is given by ε̃

S,Near
k

∼= FS,Nearγk
(θ) . Eventually,

similar to (14), the asymptotic E2E BLER for scheme S in
the near-CR asymptotic regime is obtained as

ε̃
S,Near
E2E = ε̃

S,Near
1 +

K∑
k=1

{
ε̃
S,Near
k+1 ·

k∏
m=1

(
1 − ε̃S,Nearm

)}
.

(21)

2) FAR-CR ASYMPTOTIC REGIME
The PUs are located very far from the secondary network
in the far regime, i.e.,

∣∣ĝk,n∣∣ becomes very small, which

yields Ps ≪
Ip

max
n=1,...,N

|ĝk,n|
2 . In this scenario, the instantaneous

received SNR for SUk is given by γ (i,j),Fark = γ̄P

∣∣∣h(i,j)k

∣∣∣2.
Accordingly, the asymptotic CDFs of γ TAS/MRC,Near

k and
γ
TAS/SC,Near
k are obtained, respectively, as

FTAS/MRC,Far
γk

(γ ) =

NT∏
i=1

Pr

γ̄P
NR∑
j=1

∣∣∣h(i,j)k

∣∣∣2 ≤ γ


=
[
FXk (γ /γ̄P)

]NT , (22)

FTAS/SC,Far
γk

(γ ) =

NT∏
i=1

NR∏
j=1

Pr
{
γ̄P

∣∣∣h(i,j)k

∣∣∣2 ≤ γ

}

=

[
F∣∣∣h(i,j)k

∣∣∣2 (γ /γ̄P)
]NTNR

. (23)

By inserting (22) and (23) to Proposition 3, the
closed-form expression for the asymptotic BLER at the kth
hop is obtained as ε̃S,Fark

∼= FS,Farγk
(θ) . Similarly, the asymp-

totic E2E BLER for scheme S in the far-CR asymptotic
regime is

ε̃
S,Far
E2E = ε̃

S,Far
1 +

K∑
k=1

{
ε̃
S,Far
k+1 ·

k∏
m=1

(
1 − ε̃S,Farm

)}
. (24)

B. PROPORTIONAL TOLERABLE INTERFERENCE POWER
CONSTRAINT
When PUs can tolerate a high level of interference from SUs,
the peak allowable interference power is proportional to the
maximum transmit power, i.e., Ip = µPs, where µ is a
proportional positive constant [50]. In the high-SNR regime,

i.e., γ̄P → ∞, the asymptotic CDFs for both the TAS/MRC
and TAS/SC schemes are given by

FTAS/MRC,Prop
γk (γ )

=

{
FYk (µ)
NR!

(
λkγ

γ̄P

)NR
+

N−1∑
i=0

φ(N ,i)
2×NR!

(
λkγ

λ̂
(i)
kp γ̄I

)NR
0
(
NR + 1, λ̂(i)kpµ

)}NT
,

(25)

FTAS/SC,Prop
γk (γ )

=

{
FYk (µ)

λkγ

γ̄P

+

N−1∑
i=0

φ (N , i)
2

λkγ

λ̂
(i)
kp γ̄I

0
(
2, λ̂(i)kpµ

)}NTNR
, (26)

where FXk (x) ≈ (λkx)NR/NR! and F∣∣∣h(i,j)k

∣∣∣2 (x) ≈ λkx are

utilized when x → 0 [51], which is evidently valid for our
analysis in the high-SNR regime.

By utilizing Proposition 3 for (25) and (26), the asymp-
totic BLER at link k for scheme S is determined as ε̃S,Propk

∼=

FS,Propγk (θ) . Note that ε̃S,Propk is very small when γ̄P → ∞,
yielding

∏
k≥2

ε̃
S,Prop
k ≈ 0. As a result, the asymptotic E2E

BLER for scheme S in the proportional tolerable interference
power constraint scenario is derived as

ε̃
S,Prop
E2E ≈

K+1∑
k=1

ε̃
S,Prop
k . (27)

Corollary 1: Based on the derived asymptotic results
under the proportional Ip constraint as γ̄P → ∞, the
diversity and array gains for scheme S are given respectively
by DS = NTNR and

GS =


min

k=1,...,K+1
(9k)

−
1
NR , ifS = TAS/MRC,

min
k=1,...,K+1

(4k)
−1, ifS = TAS/SC,

(28)

where 4k = FYk (µ) λkθ +

N−1∑
i=0

φ(N ,i)
2

λkθ

λ̂
(i)
kpµ
0
(
2, λ̂(i)kpµ

)
and

9k =
FYk (µ)
NR!

(λkθ)
NR

+

N−1∑
i=0

φ (N , i)
2 × NR!

(
λkθ

λ̂
(i)
kpµ

)NR
0
(
NR + 1, λ̂(i)kpµ

)
. (29)

Proof: The diversity gain is calculated by [52]

DS = − lim
γ̄P→∞

log ε̃S,PropE2E

log γ̄P
= NTNR. (30)
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For the diversity gain, rewritting the asymptotic E2E BLER
in (27) yields

ε̃
S,Prop
E2E

≈


K+1∑
k=1

(9k)
NT (γ̄P)

−NTNR , ifS = TAS/MRC,

K+1∑
k=1

(4k)
NTNR(γ̄P)

−NTNR , ifS = TAS/SC.

(31)

By mapping (31) to the form of ε̃S,PropE2E ≈ (GS γ̄P)−DS [9],
we determine (28). The proof is concluded. □
Remark 5: The maximum achievable diversity gains for

both the TAS/MRC and TAS/SC schemes are only feasible
under the condition that γ̄I = µγ̄P as γ̄P → ∞. When Ip
is fixed and γ̄P → ∞, the resultant E2E BLER for scheme S
becomes saturated, and hence the achievable diversity order
cannot be guaranteed, which results in no diversity gain for
scheme S.
Remark 6: The results in Corollary 1 have revealed that

TAS/MRC and TAS/SC offer the same maximum diversity
gains. Therefore, the tradeoff between them is solely charac-
terized by their array gains. As a result, the SNR gap between
TAS/MRC and TAS/SC is represented by the ratio of their
respective array gains, given by SNRGap =

GTAS/MRC
GTAS/SC =

min
k=1,...,K+1

4k

(9k )
1
NR

. This indicates that, for the same E2E

BLER, the power savings of TAS/MRC over TAS/SC are
10log10SNRGap.
Remark 7 (Observations From the CDFs): When the

approximated E2E BLERs can be represented directly via
the CDFs, observing the tendency of these CDFs is bene-
ficial. Based on Proposition 1 and Proposition 2, we can
observe that the CDFs primarily depend on the parameters
of γ̄I , γ̄P, N , NT , NR, λkp, λk , and β, where γ̄I and γ̄P are
major concerns in the CR environment. Particularly, when
γ̄I = µγ̄P (i.e., proportional tolerable interference power
constraint), FSγk linearly decreases to zero as γ̄P → ∞. This

is because increasing γ̄P to infinity leads to F
TAS/MRC
γk →

FTAS/MRC,Prop
γk in (25) and FTAS/SC

γk → FTAS/SC,Prop
γk in (26).

It is observed in (25) and (26) that FS,Propγk → 0 when
γ̄P, γ̄I → ∞. Contradictorily, when γ̄P → ∞ and all the
other parameters are fixed (i.e., near-CR asymptotic regime),
FTAS/MRC
γk and FTAS/SC

γk converge to the floor constants (19)
and (20), respectively.

V. OPTIMIZATION PROBLEMS
This section is dedicated to addressing the optimization prob-
lems for the considered system, including the PA and relay
placement.

A. OPTIMAL PA
For a given relay placement, we optimally allocate the trans-
mit power to minimize the E2E BLER. In particular, we for-
mulate the E2E BLER as an objective function under the

constraints of the total transmit power in the secondary net-
work, denoted by Ptot, and the maximum allowable interfer-
ence power limit per PU. For simplicity, the asymptotic E2E
BLER under the proportional tolerable interference power
constraint is considered. We note that our simplified consid-
eration is valid for the uRLLC requirements when the E2E
BLER falls below 10−5. As a result, the PA optimization
problem becomes

min
P
ε̃
S,Prop
E2E (P)

=


min
P

K+1∑
k=1

(9k)
NT (γ̄P)

−NTNR , ifS = TAS/MRC,

min
P

K+1∑
k=1

(4k)
NTNR(γ̄P)

−NTNR , ifS = TAS/SC,

(32a)

subject to
K+1∑
k=1

P̂k−1 ≤ Ptot, (32b)

P̂k−1 ≤ Ps, (32c)
K+1∑
k=1

λ̂kpP̂k−1 ≤ Ip, (32d)

where P =

(
P̂0, P̂1, . . . , P̂K

)
denotes a set of multiple

transmit power variables and λ̂kp =

(
β +

√
1 − β2

)
λkp.

It is worth noting that the asymptotic E2E BLER is convex
and the constraints are linear. Hence, (32) can be solved as a
convex optimization problem, in which the Lagrangian multi-
pliermethod is beneficial [53]. Besides that, it is observed that

(32) can be split into two constrained cases: Ptot ≤

K+1∑
k=1

Ip
λ̂kp

and otherwise [9].

1) CASE 1

When Ptot ≤

K+1∑
k=1

Ip
λ̂kp

holds, (32) can be rewritten as

min
P
ε̃
S,Prop
E2E (P)

=


min
P

K+1∑
k=1

(9k)
NT
(
N0

P̂k−1

)NTNR
, ifS = TAS/MRC,

min
P

K+1∑
k=1

(4k)
NTNR

(
N0

P̂k−1

)NTNR
, ifS = TAS/SC,

(33a)

subject to
K+1∑
k=1

λ̂kpP̂k−1

/
K+1∑
l=1

λ̂lp ≤ Ptot. (33b)

Based on (33), the Lagrangian functions with the Karush–
Kuhn–Tucker conditions for the TAS/MRC and TAS/SC
schemes are given, respectively, by

L1,TAS/MRC
(
P∗, ς1

)
=

K+1∑
k=1

(9k)
NT

(
N0

P̂∗

k−1

)NTNR
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+ ς1

(
K+1∑
k=1

λ̂kpP̂∗

k−1

/
K+1∑
l=1

λ̂lp − Ptot

)
, (34)

L1,TAS/SC
(
P∗, ς1

)
=

K+1∑
k=1

(4k)
NTNR

(
N0

P̂∗

k−1

)NTNR

+ ς1

(
K+1∑
k=1

λ̂kpP̂∗

k−1

/
K+1∑
l=1

λ̂lp − Ptot

)
, (35)

where P∗
=

(
P̂∗

0, P̂
∗

1, . . . , P̂
∗
K

)
is the optimal solution and

ς1 denotes a nonzero Lagrange multiplier constant.
By setting the derivatives of L1,S (P∗, ς1) with respect

to P̂∗

k−1 and ς1 to zero and subsequently solving a set of
K + 1 equations, we obtain the optimal PA solutions for
the TAS/MRC and TAS/SC schemes in Case 1, respectively,
in the forms of

P̂∗TAS/MRC
k−1 =

Ptot
K+1∑
l=1

λ̂lp

λ̂kp
K+1∑
u=1

(
9u
9k

) NT
NT NR+1

(
λ̂up

λ̂kp

) NT NR
NT NR+1

, (36)

P̂∗TAS/SC
k−1 =

Ptot
K+1∑
l=1

λ̂lp

λ̂kp
K+1∑
u=1

(
4uλ̂up

4k λ̂kp

) NT NR
NT NR+1

. (37)

2) CASE 2

Otherwise, Ptot >
K+1∑
k=1

Ip
λ̂kp

, and (32) can be formulated as

min
P
ε̃
S,Prop
E2E (P)

=


min
P

K+1∑
k=1

(9k)
NT
(
N0

P̂k−1

)NTNR
, ifS = TAS/MRC,

min
P

K+1∑
k=1

(4k)
NTNR

(
N0

P̂k−1

)NTNR
, ifS = TAS/SC,

(38a)

subject to
K+1∑
k=1

λ̂kpP̂k−1 ≤ Ip. (38b)

Similarly, by utilizing the Lagrangianmultipliermethod [53]
to solve (38), we obtain the optimal PA solutions for the
TAS/MRC and TAS/SC schemes in Case 2, respectively, as

P̂∗TAS/MRC
k−1 =

Ip

λ̂kp
K+1∑
u=1

(
9u
9k

) NT
NT NR+1

(
λ̂up

λ̂kp

) NT NR
NT NR+1

, (39)

P̂∗TAS/SC
k−1 =

Ip

λ̂kp
K+1∑
u=1

(
4uλ̂up

4k λ̂kp

) NT NR
NT NR+1

. (40)

B. OPTIMAL RL
This subsection aims to optimally allocate the RL tominimize
the E2E BLER. When the PA is defined, we consider the

constraint on the RL such that
K+1∑
k=1

dk = D, where a linear

topology is considered, D denotes the normalized transmis-
sion distance, and dk represents the distance between two
adjacent nodes. Similar to Section V-A, we utilize the asymp-
totic E2E BLER under the proportional tolerable interference
power constraint as an objective function, which is valid for
uRLLCs to simplify our optimization problems. Hence, the
RL optimization problem is formulated as

min
d
ε̃
S,Prop
E2E (d)

=


min
d

K+1∑
k=1

(
9̃k

)NT
(N0)

NT NR

P̂
NT NR
k−1 d

ηNT NR
k

, ifS = TAS/MRC,

min
d

K+1∑
k=1

(
4̃k

)NT NR
(N0)

NT NR

P̂
NT NR
k−1 d

ηNT NR
k

, ifS = TAS/SC,

(41a)

subject to
K+1∑
k=1

dk = D, (41b)

where the simplified path-loss model with λk = d−η
k is

employed [31], η represents the path-loss exponent, 9̃k =
9k

λ
NR
k

, 4̃ =
4
λk
, and d = (d1, d2, . . . , dK+1) is a set of multiple

distance variables.
When the objective function of (41) is convex and the con-

straint is linear, (41) can be solved as a convex optimization
problem by using the Lagrangianmultipliermethod [53]. As a
result, we obtain the optimal RL configuration for both the
TAS/MRC and TAS/SC schemes as

d∗
k =

D

1 +

K+1∑
u=1,u̸=k

(
P̂k−1

P̂u−1

) NT NR
ηNT NR+1

. (42)

Remark 8: In practice, the optimal relay coordinates can
be determined easily based on the derived optimal distances
established in (42) because of the linear topology considera-
tion.
Remark 9: The given closed-form solutions to the opti-

mization problems require negligible computational complex-
ity, which is beneficial compared with search methods that
require much higher complexity.

VI. MACHINE-LEARNING APPLICATIONS
In this section, we employ some state-of-the-art ML mod-
els, including multilayer perceptrons (i.e., DNN), CNN, and
a decision-tree-based ensemble ML algorithm (i.e., XGB),
to estimate the E2E performance in terms of the system
throughput, EE, latency, and reliability. For notational sim-
plicity, we define QSE2E as the output of the training data, i.e,

QSE2E ∈

{
TPSE2E,EE

S
E2E,Latency

S
E2E,Reliability

S
E2E

}
.
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A. MOTIVATION AND ML PROCESS DESCRIPTION
Unlike simulation and numerical integration methods that
are model-based approaches requiring long run times to con-
verge to the exact results, ML frameworks are data-driven
approaches that do not require mathematical derivations. As a
result, ML frameworks are rationally designed to enable
real-time performance evaluations with considerably high
predicted accuracies and short execution times. In addi-
tion, when future wireless networks become more complex
and heterogeneous, closed-form expressions can become
intractable; this will potentially necessitate data-driven
approaches for real-time configurations of such future wire-
less networks.

ML-based performance evaluation comprises two phases:
training and prediction. During the training phase, the ML
model is trained using historical data or simulated scenarios.
The training phase typically requires significant computa-
tional resources and can be conducted offline on any com-
puting device. It does not necessarily need to be performed
on the network nodes. Conversely, the prediction phase can
be conducted on the network nodes where the ML model
is deployed because it typically requires less computational
resources compared to the training phase. The trained model
can deliver high accuracy and real-time estimation of per-
formance metrics QSE2E whenever any new information is
available at the input.

B. DATASET GENERATION
The data is generated for training based on the first-order
Riemann integral approximation, as stated in Proposition 3,
and equations (15)–(18). The related system parameters are
chosen via an artificial stochastic process within their range.
Specifically, N ∈ [1, 5], K ∈ [0, 10], NT ∈ [1, 5], NR ∈

[1, 5], γ P ∈ [0, 35] dB, γ I ∈ [15, 20] dB, and the correlation
coefficient β ∈ [0, 1]. Suppose that the information length of
B ∈ [64, 8192] bits are encoded into the blocklength with the
number of τ ∈

[
102, 105

]
CUs. Then, the transmission rate

R ∈
[
6.4 × 10−4, 81.92

]
can be used as an input variable.

In short, the input features for the ML-based estimation is
vectorized as x = [γ̄P, γ̄I ,R,NT ,NR,K ,N , β]T . A dataset
with onemillion samples is generated based on these assump-
tions and 80% of the data points are used for training.

C. DESCRIPTION OF MODELS
1) MULTILAYER PERCEPTRONS
As shown in Fig. 2(a), the proposed methodology with multi-
layer perceptions, also known as a DNN or feedforward
neural network, comprises L1 layers, including an input layer,
(L1 − 2) hidden layers, and a single node in the output layer.
Let30 and3l be the number of input features and the number
of neurons in the lth layer of the DNN, respectively. Then,
the estimated output is obtained via consecutive nonlinear
transformations as

Q̂SE2E = T [L1]
DNN

(
. . .
(
T

[1]

DNN

(
x[0]; η

[1]
1

)
; . . .

)
, η

[L1]
1

)
, (43)

where η
[l]
1 =

{
W [l]

1 , b
[l]
1

}
contains the weight matrix W [l]

1 ∈

R3l×3l−1 and bias vector b[l]1 ∈ R3l×1 between the (l − 1)th
and lth layers of the model, whereas x[l] ∈ R3l×1 represents
the output of the lth layer. In (43), the transformation function
TDNN[l] (·) is defined as

T
[l]

DNN

(
x[l−1]

; η
[l]
1

)
= A[l]

(
W [l]

1 x
[l−1]

+ b[l]1
)
, (44)

where l ∈ [1,L1] andA[l] (·) denotes an activation function at
layer l’s output, which is determined by a scaled exponential
linear unit for its self-normalizing property and fast training
convergence [54]. We note that the proposed DNN model
is designed to estimate the system performance QSE2E as
a regression problem. As a result, the mean squared error
(MSE) is employed as the loss function, which is given by

J
({

η
[l]
1

}L1
l=1

)
=

1
ϒ

ϒ∑
b=1

[
QSE2E,b − Q̂SE2E,b

]2
, whereϒ is the

number of data points that are stochastically selected from
the training set in each training iteration, whereasQSE2E,b and
Q̂SE2E,b are the expected and estimated QSE2E corresponding
to the bth sample, respectively.

2) CONVOLUTIONAL NEURAL NETWORK
As can be seen in Fig. 2(b), the structure of our proposed
CNN comprises multiple 1-dimensional convolution layers,
a flattening layer, and fully connected layers. In the lth con-
volution, C filters with size h× 1 are employed to create the
feature map that summarizes the presence of specific features
of the input. The cth channel of this convolution result is
calculated by

T [l,c]
CNN

(
x[l−1]

;

{
W [l]

2 , b
[l]
2

})
= A[l]

 C∑
c′=1

W [l,c,c′]
2 ∗ x[l−1,c′] + b[l,c]2

 , (45)

where l ∈ [1,L2], c ∈ [1, C] , (∗) is the convolutional
operation, L2 is the number of convolution layers, and W [l]

2
and b[l]2 are the tensors of the weighting kernels and biases,
respectively. Unlike other CNN applications (e.g., image and
video processing), the amount of input information in this
work is small; therefore, we utilize a padding method and
single-stride convolutions to avoid rapid downsampling on
the feature spatial sizes. After feature extraction, the data is
flattened for conversion into a 1-dimensional array to feed
the subsequent layers. From this stage, the adjacent fully
connected block estimating QSE2E is similar to the DNN in
the previous subsection.

3) XGB ALGORITHM
The XGB model employs L3 consecutive trees to predict
QSE2E by summing the output values of all estimators as

Q̂SE2E =

L3∑
l=1

αlT [l]
XGB (x), (46)
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FIGURE 2. Description of the deep learning (DL)-aided estimators.

FIGURE 3. Description of the decision trees in the XGB algorithm.

where T [l]
XGB (x) and αl represent a nonlinear transformation

and a learning rate chosen at the lth iteration, respectively.
As shown in Fig. 3, the numbers of leaves are equally con-
figured as ℓ for all trees. Each leaf of the lth regression tree
is determined as a continuous value, denoted by w[l]

q , for
q ∈ [1, ℓ]. For a given sample x, a set of decision rules
ϖ assigns an input toward a target leaf. In other words,
we have T [l]

XGB (x) = w[l]
q for q = ϖ l (x). Furthermore,

we assume that the predicted value at the lth tree’s out-
put is modeled as y[l] = y[l−1]

+ αlT [l]
XGB (x), where y

[0]

equals the mean value of labels in the training dataset, which
yields y[L3] = Q̂SE2E. According to the additive training,
the regularized MSE loss function at the lth tree is given
by [55]

J
({
w[l]
q

}ℓ
q=1

)
=

ℓ∑
q=1

{ ∑
b∈I [l]q

2
ϒ

[
QSE2E,b − y[l−1]

b

]
w[l]
q

+

∑
b∈I [l]q

1
ϒ

+ χ

(w[l]
q

)2}
, (47)

where χ represents a regularization parameter to reduce the
overfitting problem during the training phase and I [l]q ={
b|π [l] (xb) = q

}
contains the indices of the data points ori-

ented to the qth leaf of the lth tree with input xb, whereas
y[l]b and QSE2E,b are the estimated residual value at step l and
the expected value of QSE2E corresponding to the bth sample
point, respectively.

D. ML–AIDED PERFORMANCE PREDICTION
When the offline training process is finished, the resulting
ML model comprising weights and biases can be utilized to
obtain performance prediction through a compact mapping
function, i.e.,

Q̂SE2E = M (x) . (48)

The trained network is used for the online prediction of
performance metrics QSE2E whenever any new information is
available at the input. In addition, (48) indicates that the pre-
dicted output is achieved without the requirement of complex
operations, implying a significant reduction in the execution
time that enables real-time performance prediction. We note
that the prediction phase can be conducted on the network
nodes where the ML model is deployed because it typically
necessitates requires computational resources in contrast to
the training phase.

E. COMPLEXITY ANALYSIS
The computational complexity of ML models is measured
based on the number of floating-point operations (FLOPs).
According to (44), the total number of FLOPs of the proposed
DNN is given by [56]

ODNN

(
{3l}

L1
l=0

)
= 2

L1∑
l=1

3l−13l . (49)

In the CNN architecture, the padding method guarantees
that the output size in each channel remains unchanged; there-
fore, we have x[l] ∈ R30×1×C , for l ∈ [1,L2]. According
to (45), the total number of FLOPs of the lth convolution
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layer with l ∈ [2,L2] is 230hC2. When there is only a single
channel in the input layer, the total number of FLOPs of
the first convolution layer is 230hC. Let L̃1 and 3̃l be the
number of fully-connected layers and the hidden neurons in
the lth layer with l ∈

[
0, L̃1

]
, respectively. Then, the total

complexity of the proposed CNN model is given by

OCNN

(
30, h, C,L2,

{
3̃l
}L̃1
l=0

)
= 230hC (L2C + 1)+ODNN

({
3̃l
}L̃1
l=0

)
. (50)

The number of FLOPs associated with employing a trained
XGB system is mainly a comparison of the feature values
in all nodes. In practical applications, the lth decision tree
with a depth ofDl infers the result of T [l]

XGB (x) after (Dl − 1)
FLOPs. Based on (46), the required operations of the analysis
based on the tree boosting algorithm are given by

OXGB

(
{Dl}

L3
l=0

)
=

L3∑
l=1

(Dl − 1)+ 2L3

=

L3∑
l=1

Dl + L3. (51)

VII. NUMERICAL RESULTS AND DISCUSSION
In this section,Monte Carlo simulations have been performed
to verify our theoretical analysis. Furthermore, the state-of-
the-art ML-based applications, including DNN, CNN, and
XGB, are utilized to predict the E2E throughput, EE, latency,
and reliability.

A. PERFORMANCE EVALUATION
This subsection presents the numerical results for the achiev-
able E2E performance of our proposed system with the
short-packet uRLLCs. For channel settings, we consider a
two-dimensional plane where PUn, SU0, SUK+1, and SUk are
located at coordinates (0.5, 0.5), (0, 0), (1, 0), and

(
k

K+1 , 0
)
,

respectively. Unless otherwise stated, we assume equal PA,
D = 1, η = 3, T = 50, β = 0.8, K = 3, N = 2,
NT = NR = 3, γ̄P = γ̄I = 20 dB, B = 1280 bits,
and τ = 128 CUs. In terms of training the DL models, the
DNN and CNNmodels are E2E trained with 200 epochs with
weights randomly initialized by utilizing the Adam optimizer
with a gradient decay factor of 0.95, whereas the learning rate
is initialized with 10−3 for the first 20 epochs and decreased
to 90% every 10 epochs. In the XBG model, the learning
factor is kept constant as αl = 0.3 in all trees, and we assume
that all trees have the same depth as Dl = D for l ∈ [1,L3].
Fig. 4 compares the E2E BLER of the proposed TAS/SC

and TAS/MRC schemes for the underlay cognitive mul-
tihop relay SPC system, where two practical approaches,
namely, the fixed γ̄I = 20 dB and proportional γ̄I = γ̄P,
are shown in Fig. 4(a) and Fig. 4(b), respectively. First,
in both Fig. 4(a) and Fig. 4(b), it is readily observed that
the TAS/MRC scheme achieves better performance than the
TAS/SC scheme over the entire SNR range. We note that,

as stated in Remark 6, there is no diversity gain in the fixed
Ip scenario in Fig. 4(a), whereas the TAS/MRC scheme out-
performs the TAS/SC scheme by a factor of 10log10SNRGap
in Fig. 4(b). Second, in Fig. 4(a), the E2E BLER becomes
saturated in the high-SNR regime as a result of the fixed tol-
erable interference power constraint, whereas in Fig. 4(b), the
E2E performance is continuously improved with increasing
average SNR γ̄P. We note that the E2E BLER floor in the
fixed γ̄I scenario can be improved significantly by adopting
a longer blocklength. Third, because the Riemann integral
analysis perfectly matches the Gauss–Chebyshev method,
we only implement the Riemann approach in the subsequent
figures for simplification. In Fig. 4(a), the near- and far-CR
asymptotic results agree well with the analysis results in
the high- and low-SNR regimes, respectively. Similarly, the
proportional asymptotic results in Fig. 4(b) also converge to
the analysis results in the high-SNR regime. More impor-
tantly, the Monte Carlo simulation results agree well with all
analytical results, which confirms of our analysis.

Fig. 5(a) presents the influence of the number of relays K
on the system performance. It is clear that the E2E BLER
as a function of K has convex formality, which yields the
existence of an optimal K . In particular, K = 3 is the optimal
choice in this simulation environment, which minimizes the
E2E BLER. This behavior can be explained by increasing
K leading to a smaller dk , which reduces the BLER at
each hop. As a result, the E2E BLER drops dramatically in
the low-K range. Nevertheless, when K becomes too large,
the number of time slots increases proportionally. In such
a scenario, under the total transmit power budget Ptot, Pk
becomes lower, which can result in performance degradation.
In other words, when K → ∞, the BLER at each hop
approaches unity, i.e., ε̄Sk → 1. Based on (14), the E2E
BLER tends to approach unity when K → ∞. In Fig. 5(a),
we also observe that (i) the TAS/MRC scheme offers better
performance than the TAS/SC scheme and (ii) the system
performance is substantially improved by increasing the aver-
age transmit SNR, which is consistent with the observations
in Fig. 4.

The influences of MIMO implementation and blocklength
are depicted in Fig. 5(b) and Fig. 5(c), respectively. As shown
in Fig. 5(b), increasing NT and NR leads to substantially
lower E2E BLERs, which is precise to the discussion in
Remark 4. In addition, it also shows that the TAS/MRC
scheme, represented by the lower layer, provides better per-
formance than the TAS/SC scheme, corresponding to the
upper layer. In Fig. 5(c), the longer blocklength offers higher
E2E performance, which is consistent with the observation
in Fig. 4. However, a short blocklength is expected in SPC
systems, as it is selected to achieve low latency. Motivated
by the tradeoff between the ultra-reliability and low-latency
requirements, the value of τ should be chosen carefully.
For instance, when a practical system with two relay nodes
is assumed with maximum transmit power of 20 dB for
each, to satisfy both the required E2E BLER on the order
of 10−5 for ultra-reliability and minimal latency, the optimal
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FIGURE 4. E2E BLER of the MIMO underlay CR multihop relay network under SPCs in spectrum sharing.

FIGURE 5. The impact of K , NT , NR , and τ on the E2E BLER.

FIGURE 6. RMSE validation of (a) DNN, (b) CNN with different numbers of hidden layers and neurons, and (c) XGB with
different numbers of trees and varying tree depth.

blocklengths of τ = 400 CUs and τ = 650 CUs can be
chosen for the TAS/MRC and TAS/SC schemes, respectively.

Fig. 6 compares the RMSE in the validation stage with
different configurations of ML-aided estimators for both the
TAS/MRC and TAS/SC schemes. In Fig. 6(a), the DNN

models with a higher number of hidden layers achieve sig-
nificantly lower RMSE values than those of the single-layer
networks. Because theDNNmodel with L1 = 3 at 140 hidden
neurons offers the lowest validating RMSE, these parameters
are chosen for later DNN experiments. Whereas increasing
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TABLE 1. Average run time (ms) versus K of the ML-based and analytical computations.

the number of hidden neurons causes a fluctuation in the
RMSE of the DNN system, the RMSE values in the CNN
model converge to a floor value, as illustrated in Fig. 6(b). Our
aim is to design ML models that not only satisfy the lowest
RMSE, but also that have low numbers of hidden neurons and
hidden layers to achieve low complexity and short run times
for real-time configurations. As a result, L2 = 2 and L̃1 = 3
with a total of 180 hidden nodes are applied to the CNN
estimator for later evaluations, which can balance the per-
formance, execution time, and complexity. In the case of the
XBG model, (D,L3) = (50, 95) and (D,L3) = (65, 65) are
the configurations that provide the best RMSE performance
on the TAS/MRC and TAS/SC testing datasets, respectively,
as shown in Fig. 6(c). Therefore, these parameters are utilized
for the XGB designs in subsequent simulations.

Table 1 shows the execution time of the ML-aided estima-
tors and the computation based on the closed-form expres-
sions. As can be observed, the amount of time spent on
computing based on the analytical derivations significantly
increases as K and N increase, whereas the ML approaches
remain fixed regardless of execution time. In other words,
the numbers of elements of the primary and secondary net-
works in the underlay CR multihop relay systems have no
impact on the performance prediction. In Table 1, the XGB
run time remains stable at around 0.3 ms. In contrast, for
the TAS/MRC scheme, as K and N increase to (K ,N ) =

(8, 10), the Riemann and Gauss–Chebyshev approximations
gradually increase to 6.12 ms and 180.46 ms, which are
approximately 20 and 600 times higher than the XGB pre-
diction, respectively. Furthermore, the estimation based on
the XGB algorithm always requires the shortest prediction
time. This is because the DL models need remarkably many
layers and neurons to achieve the lowest RMSE, as shown in
Fig. 6. This results in substantial computation time, as shown
in (49) and (50), whereas the XGB model applies compari-
son operators, which have a lower complexity of O (DL3).
Subsequently, Fig. 7 illustrates the performance of different
ML-based estimators on the prediction ability of the system
throughput, latency, EE, and reliability. It can be seen that,
the estimated results provided by the XGB algorithm tightly
fit the curve of the analytical calculation. In contrast, when
SNR is less than 18 dB, the predictions based on the DL
models (i.e., CNN and DNN) have larger errors, which can
be observed in Fig. 7(a) and Fig. 7(b). According to the
evidence in Table 1 and Fig. 7, we can conclude that the XGB
model provides superior performance in predicting the E2E

performance values. In later simulations, we only show the
estimated results of the XGB model for comparison of the
system performance.

The benefits of SPCs compared to long-packet communi-
cations (LPCs) are ultra-reliability and low latency, as shown
in Fig. 8. We can observe that short-message scenarios
(e.g., 128 bytes) offer higher reliability and lower latency
than long-message scenarios (e.g., 512 and 1024 bytes).
Encapsulating long messages into a long blocklength to guar-
antee ultra-reliability also causes higher latency. For example,
512 information bytes are encapsulated into packets with
over 5500 CUs by using channel coding techniques (e.g.,
low-density parity check, polar codes, and Turbo codes) to
satisfy the ultra-reliability requirement, as shown in Fig. 8(a).
However, for a CU duration of 3 µs [57], Fig. 8(b) shows that
the E2E latency is 22000 CUs = 66 ms, which is too high
to serve uRLLC applications that require lower latency of
10 ms [57]. Meanwhile, 128 information bytes encapsulated
into packets with 1000 CUs provide not only ultra-reliability,
but also low latency.

Fig. 9(a) and Fig. 9(b) plot the E2E throughput and EE
versus γ̄P for different MIMO settings, whereas Fig. 9(c)
and Fig. 9(d) display the E2E throughput and EE versus K .
In Fig. 9(a), we observe that the E2E throughput significantly
improves when γ̄P is increased. Apparently, in the region of
high γ̄P, the E2E throughput converges to the coding rate,
as stated in Remark 2. In Fig. 9(b), it can be seen that
there exists an optimal value of γ̄P to achieve the highest
EE. We also note that EE represents the tradeoff between the
system throughput and energy consumption. In the low-SNR
region, EE monotonically increases as γ̄P increases. Mean-
while, in the high-SNR region, EE is reduced. This is because
at a sufficiently high SNR value, the system throughput
achieves a target throughput and remains saturated, whereas
γ̄P still increases, leading to EE degradation. Furthermore,
it can be further observed that higher numbers of transmit
and receive antennas provide better performance in terms of
E2E throughput and EE, which is precise to the discussion in
Remark 4. Fig. 9(c) and Fig. 9(d) reveal that there exists an
optimal K to maximize the E2E throughput and EE. Notably,
the system throughput and EE approach zero when K →

∞, as indicated in Remark 3. We note that choosing the
value of K is important in multihop networks to balance the
tradeoffs among the implementation cost, transmit power,
and system performance (e.g., reliability, latency, throughput,
and EE).
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FIGURE 7. ML-based estimation of E2E throughput, latency, EE and reliability versus γ P .

FIGURE 8. The influence of blocklength τ and message length B on the
performance in terms of reliability and E2E latency.

Figs. 8 and 9 also show that the analysis, simulation, and
XGB prediction results are in excellent agreement, which
confirms our designed ML application and theoretical analy-
sis. Furthermore, the results reveal that the TAS/MRC scheme
achieves better performance than TAS/SC in terms of reliabil-
ity, latency, throughput, and EE.

B. OPTIMAL PERFORMANCE EVALUATION
To provide a general performance comparison between the
optimal and nonoptimal strategies, we adopt nonoptimal lin-
ear functions for the transmit PA and RL in [23], which are
determined, respectively, by

P̂k−1 (k) =

{
(k − 1)M−

K
2
M+

Ptot
K + 1

∣∣∣∣ K+1∑
k=1

P̂k−1=Ptot

}
,

dk (k) =

{
(k − 1)N −

K
2
N +

D
K + 1

∣∣∣∣ K+1∑
k=1

dk = D

}
,

whereM andN are the slopes of the linear functions. In such
a scenario, the non-optimal case studies can be defined by
the slopes only, which are compared to the optimal configu-
rations given in (36), (37), (39), (40), and (42). An illustration
of different non-optimal linear configurations for PA and RL
is depicted in Figs. 10(a) and 10(b). It is worth noting that
the equal PA and RL configurations occur when the uniform
configurations are assumed, i.e., M = 0 and N = 0,
respectively. For a fair comparison, the parameters K = 3,
N = 2, NT = 3, NR = 2, B = 1280 bits, τ = 128 CUs,
β = 0.8, D = 1, η = 3, and γ̄I = γ̄tot/ (K + 1) are fixed in
this subsection, where γ̄tot = Ptot/N0.
Fig. 10 compares the performance among various PA

and RL configurations for both the TAS/MRC and TAS/SC
schemes. To compare the performance for PA strategies in
Fig. 10(c) and Fig. 10(d), we fix the relay distance constraint
as

dk =

{
k · D

/
K+1∑
i=1

i

∣∣∣∣∣
K+1∑
k=1

dk = D

}
.

Otherwise, the fixed PA

P̂k−1 =

{
(K + 2 − k) · Ptot

/
K+1∑
i=1

i

∣∣∣∣∣
K+1∑
k=1

P̂k−1 = Ptot

}

is considered for Fig. 10(e) and Fig. 10(f). In Fig. 10,
it is clear that the optimal PA and RL strategies provide
significantly lower E2E BLERs than the nonoptimal linear
schemes. As a result, the power savings from employing
optimal PA/RL configurations are also observed. Specifi-
cally, at an E2E BLER of 10−5, the optimal PA strate-
gies in Fig. 10(c) and Fig. 10(d) achieve substantial SNR
gains of up to 9.75 dB over the worst nonoptimal scheme
(i.e., M5). Meanwhile, at an E2E BLER of 10−5, the opti-
mal RL strategies in Fig. 10(e) and Fig. 10(f) offer up to
14.25 dB power savings compared with the worst nonoptimal
case (i.e., N1).
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FIGURE 9. E2E throughput and EE versus the average SNR γ̄P and the number of relays K .

FIGURE 10. The performance of the optimal PA and RL strategies compared to different non-optimal linear configurations.

VIII. CONCLUSION
In this paper, we have investigated MIMO underlay CR mul-
tihop relay networks in the context of SPCs, where general
and practical scenarios are considered with multiple PUs
in the primary network and imperfect CSI of the interfer-
ence channels. In our proposed framework, SPCs aim to
support uRLLCs, underlay CR networks aim to tackle the
spectrum-scarcity problem, and multihop relay networks aim
to gain benefits from the limited-transmit-power problem.
The approximated E2E BLER closed-form expressions of
both the TAS/MRC and TAS/SC schemes are derived under
the consideration of quasi-static Rayleigh fading channels
and the FBL regime, from which their E2E throughput, EE,
latency, and reliability are analyzed. We have studied the
optimal PA and RL problems, which are two important practi-
cal problems of relaying systems. Subsequently, DNN-based,
CNN-based, and XGB-based estimators have been designed
to predict the system performance in terms of E2E through-
put, EE, latency, and reliability, which can assist the real-time
configurations for the proposed systems. The results from the
simulation, analysis, andML-aided prediction approaches are
consistent, which validates the correctness of our analysis.
The asymptotic curves in the contexts of the near-CR regime,
the far-CR regime, and the proportional tolerable interfer-
ence power regime completely converge to the analytical
results, which yield insights into the behaviors of the system

performance in the high-SNR regime. The strengths of the
MIMO implementation, SPC, and multihop relay networks
in accordance with uRLLC requirements are confirmed, and
the impacts of the average SNR and information length of bits
on the system performance are also shown. In addition, the
optimal PA and RL solutions offer negligible computational
complexity and substantial power savings, which minimize
the asymptotic E2E BLER under the system constraints. The
employed ML-aided estimators provide both highly accurate
predictions and a very short execution time, which demon-
strates the possibility of realizing real-time configurations.
Among the ML frameworks, the XGB algorithm gains the
most significant enhancement in prediction accuracy for per-
formance evaluation and reduction in execution time, which
makes XGB an efficient tool to estimate the system perfor-
mance in real-time performance evaluations.
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