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Abstract: The primary factors contributing to road accidents are drowsiness and fatigue. Additionally, it diminishes 

productivity within work environments and elevates the likelihood of accidents. The analysis of bio-signals is crucial in 

the examination of various physical conditions and the physiological state of an individual. Various biological signals 

were utilized to identify the presence of fatigue and drowsiness that is associated with fatigue. Various physiological 

signals were employed to identify driver or operator fatigue and drowsiness. Out of all these non-invasive signals, 

electrooculogram (EOG) exhibits well-accepted outcomes for detecting drowsiness and fatigue. By employing an EOG-

based study, the real-time monitoring of the muscle and mental fatigue of the human subject can be done when they are 

engaging in their everyday activities. The present studies sought to employ a statistical analysis of electrooculograms 

(EOGs) to ascertain the stress levels of participants and provide insight into their state of fatigue and drowsiness. Two 

different experimental studies were performed with 120 and 80 healthy male and female research scholars of National 

Institute of Technology Durgapur, India. EOGs were recorded by the Biopac MP 45 data acquisition system at two and 

three different sessions of a day with huge cognitive tasks in between. Several entropies are evaluated from the time 

domain and frequency domain. The others complexity parameters are also incorporated to enrich the results of the 

experimental processes. An inferential statistical analysis based on the parametric t-test and non-parametric Wilcoxon 

test for study-I was considered to compare the stress levels between morning and evening sessions. Similarly, in study-

II, the parametric ANOVA test and non-parametric Friedman test were carried out to monitor stress level in three 

different sessions of a day. The Tukey-Kramer post-hoc test is also undertaken to compare the outcomes among three 

different sessions and find the statistical differences based on a 5% significance level. Most complexity parameters 

show excellent results and clear differences in fatigue states for both the experiments and these analyses indicates the 

presence of onset fatigue among the subjects under consideration. 
 

Index Terms: Electrooculogram (EOG), Fatigue, Stress, Visual cue, Entropy, Complexity parameter, Statistical 

analysis.
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1.  Introduction 

As per the 2018 WHO Global status report on road safety, an estimated 1.35 million people lose their lives in 

traffic-related accidents each year. The greatest cause of death for those aged 5 to 29 is increasingly traffic-related 

injuries. This indicates that 3700 people pass away on the planet's highways every day. According to the WHO, millions 

of individuals suffer injuries in auto accidents each year. These wounds may be serious or not. These factors have led to 

the emergence of studies on road safety, one of which is the detection of driver drowsiness. Pedestrians, bikers, and 

motorcyclists, particularly those who reside in developing nations, are disproportionately burdened [1]. A driver's 

mental state during driving has a substantial effect on driving behaviors and is a major threat to road safety [2]. Driving 

when fatigued is a harmful habit that is seriously compromising transportation safety [3]. Drowsiness is associated with 

a range of lifestyle and environmental factors. These factors include but are not limited to, length of sleep, quality of 

sleep, the circadian cycle, age, level of fitness, consumption of alcohol, noise levels at work environments, vehicle 

temperature, driving schedule, as well as road-related aspects such as monotonous driving conditions, vehicle density, 

as well as lane density [4]. The driving during nighttime hours is associated with an increased risk factor of 

approximately three to six times when compared to driving during daylight hours. This is due to the heightened 

likelihood of individuals experiencing drowsiness and impaired vision [5]. In comparison to other contextual variables, 

research has demonstrated that monotonous driving can have a notable adverse effect on the driver's cognitive 

stimulation, leading to rapid onset of drowsiness [6]. The failure of drivers to evaluate their level of drowsiness 

frequently results in fatalities. Drivers' situational awareness and reaction time are reduced when they fall asleep behind 

the wheel [7]. Furthermore, drowsiness weakens the driver's decision-making ability. Drowsiness monitoring systems at 

the wheel are designed to prevent drowsiness-related traffic fatalities, that are why installing these systems in vehicles is 

critical nowadays. Drowsiness has been categorized into three stages in the study [8], based on EEG band power, blink 

characteristics, and eye movement patterns. The initial stage of drowsiness, according to this study, is lower vigilance, 

which is indicated by increased EEG theta band power and decreased ocular (eye ball and eyelid) movements. The 

second stage, sleep tendency, is characterized by longer lid reopening and higher blink duration. Enhanced blink 

frequency characterizes the final phase in which a driver nearly loses the ability to respond to traffic situations. To 

investigate the detection of drowsiness, a variety of methods are used, such as surveilling vehicular measurements, 

behavioral measurements of drivers, as well as driver physiological measurements. Most of the time, police logs are 

used to come up with vehicle-based measures. Included in these statistics are the speed of driver, displacement of lane, 

movements of steering wheel, and different patterns of braking. Using a camera, behavioral measures are acquired from 

the driver's face/eye movement. Analyzing data such as heart rate, electrocardiogram (ECG) [9], electroencephalogram 

(EEG) [10, 11], electromyogram (EMG) [12, 13], and electrooculogram (EOG) [14] that might be utilized as markers of 

driver drowsiness is the basis for physiological measures. Physiological approaches are based on the concept of 

detecting the initiation of driver drowsiness by using physiological signals that change in the initial phases of 

drowsiness [15]. Early diagnosis of drowsiness may provide the system with additional time to inform a drowsy driver 

in time to prevent a traffic collision. The capacity to identify human fatigue with related drowsiness with a low rate of 

error has inspired a number of researchers to conduct several investigations using several electrophysiological signals of 

a human body, including the electrocardiogram (ECG) [16], electrooculogram (EOG), electroencephalogram (EEG) 

[17]. 

Short-term indicators in the workplace have been found to result in decreased performance, productivity, and work 

quality, as well as heightened occurrences of workplace accidents and human errors [18]. According to research, 

employees who experience fatigue are more likely to report instances of lost productivity time due to health issues, 

compared to their non-fatigued counterparts. This difference is observed to be more than two-fold [19]. 

Existing approaches for evaluating driver and operator fatigue are limited in some ways. Although subjective 

assessment is extensively employed, it has inherent flaws, such as the expectancy bias, and can disrupt normal work, 

making it inappropriate for continuous real-time assessment of mental fatigue. Furthermore, it is unreasonable to 

continuously require drivers/operators to disclose their condition [20]. Lighting has a substantial impact on the vision-

based monitoring strategy. 30% of the performance could be lost due to daylight reflection and glass reflection [21]. 

Present vision-based monitoring techniques are effective for frontal faces, but extreme head position will lead to 

inaccurate monitoring results [22]. Due to its low power consumption, low cost, commensurate speed, and lack of 

impact on the driver's field of view, EOG is a promising fatigue monitoring technique on the basis of physiological 

signals. EOG can also track eye movements in great detail. 

This study evaluates the fatigue and associated drowsiness experienced by individuals who engage in sedentary 

work or hold professional occupations. This paper assesses the fatigue and accompanying drowsiness of sedentary 

employees and professionals during experimental research. It describes a method for assessing statistical variations in 

the time domain, frequency domain entropies, and other complexity factors of EOG signals in order to investigate 

fatigue of volunteer participants. In a session-by-session analysis, the statistical technique experimentally assessed 

fatigue and drowsiness. All the statistical test were performed at 5% significance level. Performing statistical tests at a 5% 

significance level means that the probability of rejecting the null hypothesis when it is actually true (known as a Type I 

error) is limited to 5% or less.  
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The remainder of the paper is organized as follows. Material and proposed methodologies are given in section 2. 

Section 3 presents the experimental results and discussion. Section 4 discusses the experimental limitations. In section 5, 

the paper is concluded. 

2.  Material and Methodologies 

The obtained time series subsequently denoised to remove interference from power lines, respiration, and muscle 

movement that caused low- and high-frequency artifacts. Cue patterns were investigated in four different movements: 

RCW (clockwise rectangular motion), RAC (counterclockwise rectangular motion), TCW (clockwise triangular motion), 

and TAC (counterclockwise triangular motion). After pre-processing the data, all of the complexity parameters were 

assessed, and inferential statistical analysis was performed on the complexity parameters to verify the hypothesis about 

detecting fatigue and, consequently, drowsiness in the willing participants. 

2.1.  Participants 

In this experimental process two datasets were used to emphasize two different studies. First dataset of 120 healthy 

participants has been incorporated and out of that 72 were males with mean age of 27.61 (95% CI: 26.73-28.49) and 48 

were female with mean age of 24.96 (95% CI: 24.29-25.63). In the other study, a dataset of 80 participants was used, 

out of that 47 are males with mean age of 27.11 (95% CI: 26.12-28.10) and 33 are female with mean age of 25.36 (95% 

CI: 24.61-26.12). The number of participants is kept as much as possible to produce reliable outcome of this biomedical 

study [23]. The volunteer participants are basically the research scholars of the National Institute of Technology 

Durgapur, India. The data samples were taken on faith of good mental and physical health of the subjects and steps 

were taken to minimize the circadian effect. Table 1 and Table 2 show the vital data of the participants. 

Table 1. The vital data of the participants for study-I in term of Mean ± Sd with 95% CI. 

Parameters Male (N=72) Female (N=48) 

Mean ± SD 95% CI Mean ± SD 95% CI 

Age (years) 27.61 ± 3.74 26.73-28.49 24.96 ± 2.30 24.29-25.63 

Height (cm) 166.09 ± 6.07 164.66-167.51 157.07 ± 4.39 155.80-158.34 

Weight (Kg) 71.61 ± 8.03 69.72-73.50 60.25 ± 4.57 58.92-61.58 

BMI (Kg/m2) 25.93 ± 2.50 25.34-26.52 24.40 ± 1.05 24.09-24.70 

SBP (mmHg) 120.43 ± 5.30 119.19-121.68 116.44 ± 4.01 115.27-117.60 

DBP (mmHg) 80.90 ± 2.86 80.23-81.57 79.83 ± 2.22 79.22-80.45 

Table 2. The vital data of the participants for study-II in term of Mean ± Sd with 95% CI. 

Parameters Male (N=47) Female (N=33) 

Mean ± SD 95% CI Mean ± SD 95% CI 

Age (years) 27.11 ± 3.37 26.12-28.10 25.36 ± 2.13 24.61-26.12 

Height (cm) 165.58 ± 6.18 163.77-167.40 156.65 ± 3.96 155.24-158.05 

Weight (Kg) 70.83 ± 8.25 68.41-73.25 59.85 ± 4.02 58.42-61.28 

BMI (Kg/m2) 25.79 ± 2.48 25.07-26.52 24.37 ± 0.91 24.05-24.70 

SBP (mmHg) 120.92 ± 5.16 119.40-122.43 116.42 ± 4.12 114.96-117.89 

DBP (mmHg) 81.02 ± 2.95 80.15-81.88 79.24 ± 2.18 78.47-80.01 

2.2.  Experimental paradigm 

Under the broad version of this experimental process, here two studies are performed. In study-I, the EOG data of 

participants are recorded for 14 min 02 sec twice a day. One session is at morning at around 8 am and another session is 

at evening at around 8 pm. In study-II, beside the morning and evening, EOG data is also collected at afternoon session 

at around 2 pm. The participants are asked to engage in intense cognitive activity between data collection for study-I 

and as well as for study-II. Fig. 1 depicts the outline of the experimental methodology. Before data collection, the 

experimental protocol was explicitly communicated to participants and written consent was obtained from them. The 

Declaration of Helsinki Ethical Principles was followed in the entire experimental study. The Institutional Ethical 

Committee (IEC) of National Institute of Technology Durgapur, India has granted approval for the study and the 

collecting of physiological data. All participants were instructed to desist from alcohol consumption the night before 

and from caffeine, nicotine, and other amphetamines two hours prior to data collection. During acquisition, they are also 

instructed to remain calm, breathe regularly, inhibit voluntary eye blinking, and avoid body movement and speech. All 

the data were recorded in the Biomedical engineering laboratory at ambient temperature and with a minimum 

interference of radio waves. 



A Statistical Approach for Investigation and Comparison of Fatigue and Drowsiness based on Complexity Parameters of EOGs 

42                                                                                                                                                                       Volume 15 (2023), Issue 5 

 

Fig. 1. Outline of experimental methodology. 

2.3  Visual cue 

In this experimental investigation, a VR (virtual reality) -displayed video [24] of a visual cue was used to initiate 

and control eye movement in a predetermined direction and speed. Participants were instructed to adhere to the protocol 

[25, 26]. Four patterns were incorporated into the cue movement. Various eye movements like gazing, smooth pursuit, 

and saccades, were incorporated into the process of monitoring the movement of a cue in a predefined direction so that 

the reflection of those movements could be acquired effectively. There were four distinct cue movement patterns (each 

lasting 16 seconds), and a 10-second gazing period was inserted between each pair of patterns to make clear differences 

between two patterns. The cue movement pattern is depicted as  

 
Gazing  RCW  Gazing  RCW  Gazing  RCW  Gazing  RCW  Gazing  RCW  Gazing  RCW  

Gazing  RCW  Gazing  RCW  Gazing  RAC  Gazing  RAC  Gazing RAC  Gazing  RAC  Gazing 

 RAC  Gazing RAC  Gazing  RAC  Gazing  RAC  Gazing  TCW  Gazing  TCW  Gazing  TCW 

 Gazing  TCW  Gazing  TCW  Gazing  TCW  Gazing  TCW  Gazing  TCW  Gazing  TAC  

Gazing  TAC  Gazing  TAC  Gazing  TAC  Gazing  TAC  Gazing  TAC  Gazing  TAC  Gazing  

TAC  Gazing (RCW: Clockwise rectangular, RAC: Counter clockwise rectangular, TCW: Clockwise triangular, TCW: 

Counter clockwise triangular ) 

2.4  Data acquisition and pre-processing 

The EOGs of the participants were acquired at different time of throughout the day by a data acquisition device 

MP 45 made by BIOPAC Systems, Inc. MP 45 is a two channel 16-bit computer interfaceable data acquisition system. 

It is a CE marked device which complies with IEC 60601-1 (technical standards for the safety and effectiveness of 

medical electrical equipment) and IEC 60601-1-2 (Electromagnetic Compatibility of Medical Devices). Electrode lead 

wire (SS2LB) was connected as input device to MP 45 for this study. Medico electrodes Msglt_05 (disposable) were 

affixed with lead wire SS2LB connected to the surfaces of skin at specific facial locations to acquire electrical signal. 

The EOGs were recorded at 2 kHz sampling frequency. The experimental setup, electrode positioning layout and MP 45 

data acquisition system are depicted in Fig. 2, Fig. 3 and Fig. 4 respectively. The cornea movements and blinks were 

acquired by horizontal channel and the vertical channel of MP 45 respectively and were recorded at BIOPAC student 

Lab 4.1 software which was installed in computer and associated with MP 45 hardware system. The electrooculogram 

signal has a frequency range of 0 to 50 Hz. One of the essential phases in pre-processing EOG signal is to removing 

noise from the signal. This was done by using a suitable noise filter that removes and reduces noise components like 

baseline from different sources corresponding to breathing, muscle movement, and power line frequency interference 

(PLI) from cables that carry the electrooculogram signal. It makes the signal-to-noise ratio (SNR) better for further 

processing. Thus, raw electrooculogram signal was filtered before it was used for further analysis and processing.   
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Fig. 2. Experimental setup for EOG Data acquisition by BIOPAC MP45. 

 

Fig.3. MP 45 (BIOPAC) electrode positioning. 

 

Fig. 4. MP 45 (BIOPAC) Data acquisition system. 

2.5  Complexity parameters 

The complexity analysis of acquired EOGs were evaluated to measure fatigue and drowsiness of the participants. 

The overall EOG signals for the morning and evening horizontal movement activity periods in study-I was segregated 

into four distinct parts and examined individually. Eight clockwise rectangular (RCW), eight counterclockwise 

rectangular (RAC), eight clockwise triangular (TCW), and eight counterclockwise triangular (TAC) cue movements 

each of 128 sec durations were extracted in part-1 through part-4 to separate out the four different patterns effectively. 

In study-II, EOG signals from the horizontal movement activity periods in the morning, afternoon, and evening were 

taken into consideration individually to compose three different templates, each lasting for 512 seconds and without 

taking the gazing period into account. In the process of analyzing the dynamic properties of signals, entropy is one of 

the nonlinear notions that is utilized the majority of the time [27]. This is an index of complexity analysis that measures 

the level of system confusion inside a time series. These techniques take into account both the complexity and the 

unpredictable nature of the signal. Irregular signals are more complex than regular ones due of their greater 

unpredictable nature. According to some academics, these methods can be used to evaluate time series in the time 

domain or frequency domain. Entropy primarily reflects changes in time in the temporal domain, and these studies are 

continually getting better. There are many other ways to measure complexity besides the entropy method. The different 

complexity analysis was done with the horizontal EOG signal. 

2.5.1  Approximate entropy  

Appropriate entropy [28, 29, 30] (ApEn) is a measure of the overall features of the response signal in terms of the 

signal's complexity. It works well for separating the signal from random signals and is practical for small datasets. To 

calculate ApEn, m and r, two input parameters, must be fixed. m is the length of the runs being compared, and r acts 
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like a filter. For N data points { }u i creates vector array (1)x to ( 1)x N m   expressed by ( ) [ ( ),....., ( 1)]x i u i u i m   . 

These vectors indicate m successive u values, starting at the i
th

 position. The greatest difference between the scalar 

components of two vectors x(i) and x(j) are the distance between them, denoted as [ ( ), ( )]d x i x j . Employing the array

(1), (2),....., ( 1)x x x N m   to construct for every 1i N m   , 

( ) (number of - 1 such that [ ( ), ( ) ]) ( 1)
m

i
C r j N m d x i x j r n M       . The ( )

m

i
C r  measure the regularity or 

frequency of patterns comparable to a given pattern of window length m within a tolerance of r. By defining
1

1

1

( ) ( 1) ln ( )
N m

m m

i

i

r N m C r
 





    , where ln be the natural logarithm and for given values of m, r and n, approximate 

entropy is given as 

 
1) ( )( ), (, m mA E r rp n m r N         (1) 

2.5.2  Sample entropy  

Sample entropy [31] (SampEn) is a different approach for estimating entropy in real-world data. It is also a 

measure of complexity. However, it does not contain self-similar patterns as ApEn does. SampEn is the negative natural 

logarithm of the probability that if two sets of simultaneous data points of length m have distance r, then two sets of 

simultaneous data points of length m+1 also have distance r for a given embedding dimension m, tolerance r, and 

number of data points N. SampEn is calculated for a given embedding dimension m, tolerance r, and number of data 

points N. And we demonstrate this by utilizing SampEn (m, r, N). Assuming a time-series of length

1 2 3{ , , ,...., }NN x x x x   with constant interval of time 𝜏 . By defining the vector template of length m, such that 

1 2 1( ) { , , ,.... }m i i i i mX i x x x x     and the Chebyshev distance [ ( ), ( )] ( )m md X i X j i j . Therefore, sample entropy can be 

defined as 

ln
P

SampEn
Q

 
   

 

                                                             (2) 

 

where P = Number of vector template pairs having
1 1[ ( ), ( )]m md X i X j r   , Q = Number of vector template pairs having

[ ( ), ( )]m md X i X j r . 

2.5.3  Permutation entropy 

Permutation entropy is a measure of complexity used in the analysis of time series data. It is based on the concept 

of permutation of the order of values in a time series. In a time-series of length N, there are N! possible permutations. 

To calculate permutation entropy, first, the time series is transformed into a symbolic sequence by dividing the data into 

a set of ordinal patterns. Each ordinal pattern corresponds to the relative order of the values in a window of a certain 

length. Then, the frequency of occurrence of each ordinal pattern is calculated, and the Shannon entropy is calculated 

based on these frequencies. Permutation entropy has been found to be useful in detecting and characterizing complex 

dynamics in various systems, including physiological signals. 

The permutation entropy [32, 33] (PeEn) of order 2n  is expressed as ( ) ( ) log ( )H n p p   , where the sum is 

calculated for all n! permutations π of order n. This is the information obtained by comparing n consecutive time series 

data. 

2.5.4  Multiscale entropy 

Multiscale entropy (MultiEn) is a technique used to analyze time series data. It was developed as an extension of 

the sample entropy algorithm, which measures the amount of regularity or predictability in a signal. MSE takes into 

account the scale or resolution at which the signal is analyzed and is used to assess the complexity of a system across 

different temporal scales. 

The MultiEn [34] algorithm involves dividing the time series into different temporal scales by applying a coarse-

graining procedure. At each scale, the sample entropy is calculated and plotted against the scale factor. The resulting 

curve provides information about the complexity of the signal at different scales. 

In a multiscale entropy (MultiEn) method, for a time-series,
1{ ,.... ,...., }i Nx x x , initially, successive coarse-grained 

time series are generated by averaging an increasing number of data points in non-overlapping frames. Each coarse-

gained time series element,
jy , is calculated using the equation: 

( 1) 1

1

j

j i

i j

y x








  

  , where 𝜏 denotes the scale factor and

1 j N t  . The coarse-grained time series for scale 1 is just the original time series. Sample entropy (SampEn), a 

modification of the original ApEn statistics, was computed for each coarse-grained time series shown as a function of 

the scale factor 𝜏. 
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2.5.5  Fuzzy entropy 

Most of the time, fuzzy entropy [35] (FuzEn) may be used to assess the irregularity of a time series because it is 

accurate and independent of the size of the data. This method is somewhat slower as compared to sample entropy.  

For a given FuzEn power n and tolerance r, the degree of similarity
1 2t td can be calculated through a fuzzy function  

 

    1 2 1 2
, , exp /

n

t t t td n r d r                                                                   (3) 

The function  𝜙𝑚 can be expressed as 

 

    1 2

1 2 1 21 1,

1 1
, , exp /

1

N m N m n
m

t t

t t t t

x n r d r
N m N m


 

  

 
  

                                                       (4) 

 

The Fuzzy Entropy (FuzEn) can be mathematically expressed as a measure for a time series with an embedding 

dimension of m. 

 
1

( , , , ) ln
m

m
FuzEn x m n r





 
   

 

                                                               (5) 

2.5.6  Dispersion entropy 

The dispersion entropy (DispEn) algorithm [36] has four basic steps for a given univariate signal of length

1 2: , , ....., NN x x x x . Applying the normal cumulative distribution function (NCDF) to express x to 
1 2
, , .....,

N
y y y y

from 0 to 1 is the initial step. Then, using a linear approach, we assign each 
jy  a positive integer between 1 and c. To 

accomplish this, we utilize ( . 0.5)
c

j jz round c y  . For each component of the mapped signal, where 
c

jz  denotes j
th

 

component of the time series (classified) and rounding entails either reducing or increasing a number to the next digit. 

For each embedding vector
,m c

iz with embedding dimension m and time delay d is created according to

,

( 1)
{ , ,........, }

m c c c c

i i i d i m d
z z z z

  
 , where 1,2,..., ( 1)i N m d   . Each time series 

,m c

iz  is expressed (mapped) to a 

dispersion pattern
0 1 1..... mv v v


where 0 1 ( 1) 1, ,......,

c c c
i i d i m d mz v z v z v      . Number of different dispersion patterns 

that may be allocated to each time series 
,m c

iz  is
m

c , provided that the signal has m components and each component 

can be an integer between 1 and c. For every feasible dispersion pattern in
m

c , the relative frequency is calculated as: 

 

 
 0 1 -1

0 1 1

,
....

....

( 1) ,  has type  

( 1)

m

m

m c
v v vi

v v v

Number i i N m d z

p
N m d






  


 

                                   (6) 

 
The DE value with embedding dimension m, time delay d, and the number of classes c is calculated as follows, and 

always based on Shannon's concept of entropy: 

 

    
0 1 1 0 1 1.... ....

1

( , , , ) .ln

m

m m

c

v v v v v vDispEn x m c d p p


 
 



                                                      (7) 

2.5.7  Tsallis entropy 

Tsallis entropy [37, 38] (TsEn)is expressed as   1
1

q

q i i

i

j
s p p

q
 



 
 
 

 , for a given discrete set of probabilities pi, 

with predefined condition 1
i

i

p  , and for any real number q. where j is a positive constant and q is a real parameter 

frequently referred to as the entropic-index. Putting limit as 𝑞 → 1 , the recovered Boltzmann-Gibbs entropy is

1
( ) ln

BG i i

i

S S p j p p    , j with the Boltzmann constant may be identified as 
B

j . For normally continuous probability 

distributions, Tsallis entropy can be defined as 
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1

[ ] 1
1

q

q
S p p x dx

q
 


                                                                    (8) 

where p(x) is a probability density function. 

2.5.8  Renyi entropy 

Renyi entropy [37] (ReEn) of order β, where 𝛽 ≥ 0 and 𝛽 ≠ 1, is expressed as 

 

 
1

1
log

1

n

i

i

H Y p



 

 
  

  
                                                                     (9) 

 

Here, Y is a random variable discrete in nature with probable outcomes in the set  1 2
, ,.....,

N
B y y y and 

corresponding probabilities Pr( ) for 1,2,...., .
i i

p Y y i n    

2.5.9  Shannon entropy 

Shannon's Entropy [39] (ShEn) is just a variable's "amount of information." In information theory, the entropy of a 

random variable represents the average level of "information," "surprise," or "uncertainty" inherent to the variable's 

potential outcomes. Given a discrete random variable X, whose values are the letters of the alphabet 𝒳, and whose 

distribution follows 𝑝:𝒳 → [0,1]: 
 

 ( ) : ( ) log ( log ( ))
x

H x p x p x p X


                                                        (10) 

 
where Σ is the total range of potential values for the variable. For various purposes, the logarithm's base might be 

chosen in a different way. Bits (or "shannons") are represented by base 2; "natural units" (nat) are represented by base e; 

and "dits," "bans," or "hartleys" are represented by base 10. The expected value of a variable's self-information can 

serve as an alternative definition of entropy. 

2.5.10  Lempel–Ziv complexity 

The Lempel–Ziv complexity [40] (LZC) is related to the Kolmogorov complexity, however it employs simply the 

recursive copy function. The principle underpinning this complexity metric serves as the basis for many lossless data 

compression algorithms. Even though it is based on the simple word copying principle, this complexity measure is not 

overly restrictive in that it satisfies the key characteristics expected of a measure of this kind: sequences with a certain 

regularity do not have an excessive complexity, and complexity increases as the sequence increases in length and 

irregularity. Binary sequences and text, such as song lyrics or writing, can both have their repetitiveness measured using 

the Lempel-Ziv complexity. It has also been demonstrated that real-world data estimations of fractal dimension 

correspond with Lempel-Ziv complexity. 

2.5.11  Detrended fluctuation analysis 

Detrended fluctuation analysis [41] (DFA) is a technique used in stochastic processes, chaos theory, and time 

series analysis to determine the statistical self-affinity of a signal. It is helpful for analyzing time series that seem to be 

1/f noise or long-memory operations. The resultant exponent is comparable to the Hurst exponent, with the exception 

that DFA can also be applied to non-stationary signals whose underlying statistics include mean and variance or 

dynamics. It is connected to spectrum techniques like autocorrelation and Fourier transform. Considering a time series 

yt of length N, where 𝑡 ∈ ℕ, and let the mean value of the series is denoted as 〈𝑦〉. This is transformed into an 

unbounded process Yt through integration or summation i.e., 
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                                                                            (11) 

 

Yt is called cumulative sum. Yt is split into time windows with n samples each, and a local least squares straight-

line fit (the local trend) is found by finding the point where the squared errors in each time window are the smallest. Let 

Xt be the piecewise sequence of straight-line fits that is made as a result. Then, the fluctuation, which is the root-mean-

square deviation from the trend, is found: 
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2.5.12  Hurst exponent 

Time series' long-term memory is evaluated using the Hurst exponent [42] (HuEx). It is concerned with time series 

autocorrelations and the rate at which they decrease as the lag between pairs of values increases. The Hurst exponent 

was first used in hydrology to determine the best dam size for the Nile River's volatile rain and drought conditions, 

which had been observed over a long period of time. The term "Hurst exponent" or "Hurst coefficient" refers to the lead 

researcher in these studies, Harold Edwin Hurst (1880-1978); the use of the standard notation H for the coefficient also 

refers to him. According to the asymptotic behaviour of the rescaled range as a function of a time series' duration, the 

Hurst exponent, or H, is defined as, 

 

( )
 as 

( )

HR n
Cn n

S n
  

 
 
 

                                                                  (13) 

 

where; R(n) is the span of first n aggregate deviations from the mean, S(n) is the sum of the first n number of standard 

deviations, 𝔼[𝑥] is the expected value, n is the total number of data points of that time series, C is a constant. 

2.5.13  Correlation dimension 

The correlation dimension [43] (CD), which is frequently referred to as a particular kind of fractal dimension, is a 

measure of the dimensionality of the space occupied by a collection of random points in chaos theory. The correlation 

dimension's true utility is in determining the dimensions of fractal objects. In an m-dimensional space, any set of N 

points  1 2
( ) ( ), ( ),...., ( ) , 1,2,...,

m
y i y i y i x i i N  , then the correlation integral C(ε) is estimated by: 
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. where 

g represents the total amount of point pairings where the distance between them is smaller than distance ε. As the 

number of points approaches infinity and their separation approaches zero, the correlation integral for small values of 

will take the form:   v
C   . A log-log graph of the correlation integral versus ε will produce an estimate of v if the 

points are numerous and uniformly spaced. This concept can be comprehended qualitatively by recognizing that for 

higher-dimensional objects, there will be more ways for points to be close to one another, and so the number of pairs 

that are close together will increase more quickly for higher dimensions. 

2.5.14 Higuchi fractal dimension 

A rough estimate of the box-counting dimension of the graph of a real-valued function or time series is the Higuchi 

fractal dimension [44] (HFD). This figure was calculated using an algorithmic approximation; hence the Higuchi 

approach is also mentioned. For a time-series  : 1, 2,....,Y N  containing of N observations and a parameter 
max

2k   

the HFD of Y can be expressed as: for every  max1,2,......,k k  and  1, 2,......,j k defining the length 
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L(k) is determined by the mean of the k lengths 
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The slope of the linear function that best fits the data points   1
log , log L k

k

 
 
 

 is known to be Higuchi fractal 

dimension of the time-series Y. 

2.5.15  Lyapunov exponent 

Lyapunov exponent is a measure of the rate of divergence or convergence of nearby trajectories in a nonlinear 

dynamical system. In a nonlinear system, small perturbations in the initial conditions can lead to significantly different 

trajectories over time. The Lyapunov exponent measures the average rate at which these perturbations grow or decay 

exponentially along the trajectory. A positive Lyapunov exponent indicates that the nearby trajectories diverge 

exponentially, whereas a negative Lyapunov exponent indicates that they converge exponentially towards a common 

attractor. The rate at which two infinitesimally close trajectories separate is represented mathematically by the 

Lyapunov exponent, also known as the Lyapunov characteristic exponent [45] (LE) of a dynamical system. Two phase-

space trajectories with initial separation vectors 𝛿𝑍0 diverge quantitatively at a rate defined by 
0

( )
t

eZ t Z


   where 
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𝜆 is Lyapunov exponent. For various initial separation vector orientations, the rate of separation can vary. Thus, a 

spectrum of Lyapunov exponents exists, the number of which is proportional to the dimension of the phase space. 

2.6  Statistical analysis 

Using conventional procedures such as the Shapiro-Wilk test or the Kolmogorov-Smirnov test, the normal 

distribution of the data may be examined. In this experimental process the Shapiro-Wilk test was performed in both the 

study I and II to assess whether the distribution of data was normal or not. As usually most of the entropies and the 

complexity parameters were not distributed normally, therefore different suitable non-parametric tests were emphasized 

to measure the systematic differences among both the sessions in study I and among the three different sessions of the 

day in study II for EOG data acquired by the horizontal channel of Biopac MP 45 system. Beside the parametric test, 

non-parametric Wilcoxon test and Friedman test were also performed to assess the systematic differences among 

sessions in study I and as well as in study II. The Post hoc analysis was done by plug in the Tukey-Kramer test to 

compare and investigate the difference of complexity parameters in different sessions of the day. In order to execute the 

Tukey-Kramer test, morning-afternoon (MR-AN), morning-evening (MR-EV) and afternoon-evening (AN-EV) paired 

data i.e., entropies and complexity parameters were compared. To determine the agreement between the normal state 

and stressed state in terms of the different complexity parameters the Bland-Altman plots [46, 47] with 95% LOA were 

used. LOA values imply that 95% of the data points fall within the bounds of the mean difference and are used to 

visually examine the level of agreement between two states of fatigue. A two-way mixed intraclass correlation 

coefficient (ICC) was utilized to examine the relatedness or reliability index. It was used to assess the reliability of 

individual complexity parameter for both the sessions of fatigue in study-I and as well as for three different sessions of 

day in study-II. The reliability is classified as poor when ICC is less than 0.5, moderate when it is in-between 0.5-0.75, 

good when it is in-between 0.75-0.9 and excellent when it is above 0.9. Correlation analyses determine the degree of 

association between two variables. Non-parametric Kendall's Tau and Spearman's rank correlation coefficient were 

examined to evaluate statistical relationships between all the complexity parameters with ApEn, TsEn, ShEn, LZC. All 

the statistical tests were examined at a threshold of 5% significance level and were performed using MATLAB Release 

2018a. 

3.  Results and Discussion 

In this experimental process two studies were performed. In study-I, a well-designed inferetial statistical analysis 

of EOGs for both the sessions in connection with fatigue and drowsiness was performed for time domain entropy, 

frequency domain entropy and other complexity parameters of different patterns of the cue movements i.e., RCW, RAC, 

TCW and TAC separately. Those analyses are depicted clearly in Table 3, Table 4, Table 5 and Table 6 respectively. 

All the entropies and complexity parameters are expressed in mean ± SEM along with their confidence interval range of 

95%. A parametric t-test and a non-parametric Wilcoxon test were conducted, but as the most of complexity parameters 

were not distributed normally, the non-parametric Wilcoxon test was favored for determining the difference between 

two sessions. Conclusions are drawn at 5% (p≤0.05) significance level, while p>0.05 are considered as non-significant 

(NS). 

The effect of intensive cognitive activity on different complexity parameters for different pattern of cue 

movements on morning and evening EOGs are clearly reflected in the said tabular descriptions. In Table 3, for RCW, 

almost all the complexity parameters except SampEn and HuEx exhibit clear difference between entropies and 

complexity parameters between morning and evening sessions with significance level of 5%. 

Table 3. The comparison of complexity parameters of EOGs with cue pattern RCW between normal state and stressed state mentioned in study-I. 

Complexity 

parameters 

Morning Evening Wilcoxon test 

(p-value)  

t test  

(p-value) 

ICC 

Mean ± SEM 95%CI Mean ± SEM 95%CI 

Time domain entropy 

ApEn 2.32±0.15 2.01-2.64 2.95±0.17 2.60-3.30 <0.0001 <0.0001 0.89 

SampEn 2.25±0.14 1.96-2.55 2.46±0.17 2.11-2.82 0.8793 (NS) 0.0654 (NS) 0.87 

PeEn 4.34±0.22 3.91-4.77 5.38±0.21 4.96-5.80 <0.0001 <0.0001 0.87 

MultiEn 2.85±0.19 2.46-3.23 5.25±0.23 4.79-5.71 <0.0001 <0.0001 0.79 

FuzEn 4.91±0.21 4.48-5.34 3.80±0.22 3.35-4.25 <0.0001 <0.0001 0.85 

DispEn 6.15±0.10 5.95-6.35 5.62±0.13 5.35-5.89 <0.0001 <0.0001 0.73 

Frequency domain entropy 

TsEn 6.66±0.22 6.20-7.11 8.29±0.16 7.97-8.61 <0.0001 <0.0001 0.84 

ReEn 3.37±0.21 2.94-3.79 4.51±0.20 4.10-4.91 <0.0001 <0.0001 0.89 

ShEn 3.53±0.22 3.09-3.98 2.03±0.17 1.68-2.39 <0.0001 <0.0001 0.89 

Others 

LZC 2.10±0.15 1.79-2.41 3.38±0.19 2.99-3.77 <0.0001 <0.0001 0.83 

DFA 5.42±0.16 5.10-5.74 4.93±0.17 4.60-5.26 <0.0001 <0.0001 0.86 

HuEx 3.75±0.18 3.40-4.11 3.93±0.19 3.56-4.30 0.3391 (NS) 0.2681 (NS) 0.76 

CD 4.68±0.20 4.28-5.08 5.17±0.18 4.80-5.54 0.0301 0.0158 0.64 

HFD 2.38±0.16 2.06-2.70 3.47±0.22 3.03-3.90 <0.0001 <0.0001 0.83 

LE 2.77±0.16 2.43-3.10 4.42±0.20 4.01-4.84 <0.0001 <0.0001 0.89 
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Table 4. The comparison of complexity parameters of EOGs with cue pattern RAC between normal state and stressed state mentioned in study-I. 

Complexity parameters Morning Evening Wilcoxon test 

(p-value) 

t test 

(p-value) 

   ICC 

Mean ± SEM 95%CI Mean ± SEM 95%CI 

Time domain entropy 

ApEn 2.33±1.86 1.99-2.66 2.55±1.87 2.21-2.89 0.4763 (NS) 0.0950 (NS) 0.82 

SampEn 3.04±1.46 2.78-3.30 2.26±1.79 1.93-2.58 <0.0001 <0.0001 0.77 

PeEn 4.67±2.35 4.25-5.10 5.42±2.43 4.99-5.86 <0.0001 <0.0001 0.83 

MultiEn 3.17±2.12 2.79-3.56 5.78±3.15 5.21-6.35 <0.0001 <0.0001 0.79 

FuzEn 3.75±2.12 3.37-4.14 3.43±2.42 2.99-3.87 0.0237 0.0301 0.86 

DispEn 5.76±1.20 5.54-5.97 4.83±1.54 4.55-5.11 <0.0001 <0.0001 0.65 

Frequency domain entropy 

TsEn 7.64±2.07 7.26-8.01 7.98±1.88 7.64-8.32 0.0892 (NS) 0.0275 0.77 

ReEn 3.62±2.13 3.23-4.01 4.29±2.25 3.89-4.70 <0.001 <0.0001 0.84 

ShEn 3.14±2.35 2.71-3.56 2.31±2.09 1.93-2.69 <0.0001 <0.0001 0.82 

Others 

LZC 1.44±1.39 1.18-1.69 3.16±2.25 2.75-3.57 <0.0001 <0.0001 0.76 

DFA 5.43±1.88 5.09-5.77 6.04±1.86 5.71-6.38 <0.0001 <0.0001 0.85 

HuEx 3.48±1.91 3.13-3.82 4.83±2.49 4.38-5.28 <0.0001 <0.0001 0.68 

CD 4.17±1.80 3.84-4.49 6.17±2.16 5.78-6.56 <0.0001 <0.0001 0.69 

HFD 2.34±1.93 1.99-2.68 3.60±2.27 3.19-4.01 <0.0001 <0.0001 0.76 

LE 2.72±2.09 2.34-3.10 3.60±2.42 3.16-4.03 <0.0001 <0.0001 0.90 

 

For RAC, Table 4 justifies the significant difference between entropies and complexity parameters between 

morning and evening sessions with p<0.05 except ApEn, and TsEn. 

Table 5. The comparison of complexity parameters of EOGs with cue pattern TCW between normal state and stressed state mentioned in study-I. 

Complexity parameters Morning Evening Wilcoxon test 

(p-value) 

t test 

(p-value) 

ICC 

Mean ± SEM 95%CI Mean ± SEM 95%CI 

Time domain entropy 

ApEn 2.67±0.16 2.35-3.00 3.24±0.17 2.90-3.58 <0.001 <0.001 0.74 

SampEn 2.68±0.17 2.34-3.02 2.54±0.19 2.17-2.92 0.0464 0.4408 (NS) 0.69 

PeEn 4.81±0.19 4.43-5.18 5.16±0.21 4.73-5.58 0.0278 0.0256 0.83 

MultiEn 4.49±0.26 3.98-5.00 4.50±0.20 4.09-4.90 0.7100 (NS) 0.9709(NS) 0.80 

FuzEn 3.92±0.18 3.57-4.27 3.16±0.20 2.76-3.57 <0.0001 <0.0001 0.83 

DispEn 6.40±0.15 6.11-6.70 5.01±0.14 4.74-5.28 <0.0001 <0.0001 0.38 

Frequency domain entropy 

TsEn 8.05±0.14 7.78-8.33 8.26±0.17 7.92-8.59 0.0079 0.0732 (NS) 0.85 

ReEn 4.13±0.18 3.77-4.49 4.64±0.20 4.24-5.05 <0.001 <0.0001 0.87 

ShEn 2.35±0.16 2.03-2.67 1.91±0.17 1.57-2.25 <0.0001 <0.001 0.86 

Others 

LZC 2.37±0.15 2.08-2.66 3.49±0.20 3.09-3.89 <0.0001 <0.0001 0.71 

DFA 5.39±0.19 5.02-5.76 3.53±0.15 3.24-3.82 <0.0001 <0.0001 0.68 

HuEx 5.00±0.17 4.66-5.35 4.54±0.17 4.20-4.88 0.0028 0.0113 0.64 

CD 5.33±0.19 4.95-5.70 5.42±0.18 5.06-5.78 0.8875 (NS) 0.6023 (NS) 0.72 

HFD 3.84±0.20 3.44-4.24 3.82±0.19 3.43-4.20 0.1620 (NS) 0.8847 (NS) 0.79 

LE 3.11±0.16 2.81-3.42 4.26±0.20 3.85-4.66 <0.0001 <0.0001 0.87 

Table 6. The comparison of complexity parameters of EOGs with cue pattern TAC between normal state and stressed state mentioned in study-I. 

Complexity parameters Morning Evening Wilcoxon test 

(p-value) 

t test 

(p-value) 

ICC 

Mean ± SEM 95%CI Mean ± SEM 95%CI 

Time domain entropy 

ApEn 3.43±0.16 3.10-3.75 3.30±0.16 2.98-3.62 0.0055 0.4474 (NS) 0.63 

SampEn 2.92±0.14 2.64-3.19 2.98±0.18 2.62-3.34 0.3498 (NS) 0.7440 (NS) 0.50 

PeEn 4.55±0.20 4.15-4.95 4.86±0.19 4.48-5.23 0.0633 (NS) 0.0327 0.84 

MultiEn 3.96±0.23 3.50-4.42 5.76±0.27 5.23-6.29 <0.0001 <0.0001 0.82 

FuzEn 4.65±0.22 4.21-5.09 3.40±0.21 3.00-3.81 <0.0001 <0.0001 0.88 

DispEn 4.91±0.11 4.67-5.13 5.24±0.15 4.94-5.53 0.0069 0.0214 0.59 

Frequency domain entropy 

TsEn 7.33±0.18 6.97-7.69 8.12±0.17 7.77-8.47 <0.0001 <0.0001 0.85 

ReEn 4.48±0.22 4.40-4.92 4.91±0.21 4.49-5.32 0.0243 0.0066 0.85 

ShEn 3.04±0.20 2.63-3.44 2.07±0.18 1.72-2.42 <0.0001 <0.0001 0.88 

Others 

LZC 3.15±0.19 2.77-3.53 4.15±0.16 3.82-4.48 <0.0001 <0.0001 0.54 

DFA 4.03±0.19 3.64-4.43 4.83±0.15 4.51-5.15 <0.0001 <0.001 0.56 

HuEx 4.65±0.18 4.28-5.01 4.97±0.20 4.55-5.38 0.2273 (NS) 0.0924 (NS) 0.70 

CD 5.65±0.14 5.36-5.93 6.51±0.18 6.14-6.88 <0.0001 <0.0001 0.63 

HFD 3.47±0.19 3.09-3.84 3.48±0.18 3.10-3.85 0.1149 (NS) 0.9636 (NS) 0.66 

LE 2.77±0.16 2.45-3.10 3.80±0.20 3.41-4.20 <0.0001 <0.0001 0.85 
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For TCW, from Table 5, the complexity parameters like ApEn, PeEn, FuzEn, DispEn, ReEn, ShEn, LZC, DFA, 

HuEx and LE are showing prominent differences between the two sessions with threshold level p<0.05. Whereas the 

other complexity parameters like MultiEn, CD and HFD are showing non-significant differences for p<0.05. SampEn 

and TsEn of EOGs are significant for non-parametric Wilcoxon test (for p<0.05) but showing non-significant for 

parametric t test. 

For TAC, in Table 6, the MultiEn, FuzEn, DispEn, TsEn, ReEn, ShEn, LZC, DFA, CD, LE are showing significant 

differences at 5% significance level. The rests time domain entropies and others complexity parameters are non-

significant. ApEn, is significant for non-parametric Wilcoxon test but non-significant for t test. The PeEn is non-

significant for non-parametric Wilcoxon test but significant for parametric t test. 

Fig. 5 shows the violin plots for all the time domain, frequency domain and others complexity parameters of EOGs 

for both the morning and evening sessions under RCW cue movement. Fig. 6 shows the reference violin plot. Generally 

numeric data can be plotted using violin plots, which are a combination of the box plot and the kernel density plot. 

Visualizing the distribution of the data and the probability density of it may be done with the use of a violin plot. The p 

values given in Table 3 can be understood by analyzing violin plots shown in Fig. 5. Both the violins under the plots of 

SampEn and HuEx for morning and evening sessions are almost overlapping with each other and suggests no 

significant difference between them. The term "overlapping" refers to the phenomenon of either median overlapping or 

box overlapping. When the medians of two boxplots overlap or are in close proximity, it suggests that the central 

tendencies of the distributions are comparable. When the boxes of two boxplots overlap, it implies that there is an 

overlap in the middle 50% of the data, which suggests similarity. Figures 5 and 7-9 depict a total of 15 pairs of violins 

for each of the four cue movements, namely RCW, RAC, TCW, and TAC respectively.  For others complexity 

parameters as the boxes are not completely overlapping with each other, it signifies that there are prominent differences 

in EOGs between the morning and evening sessions. The other violin plots are also depicted for RAC, TCW and TAC 

in Fig. 7-9 respectively. 

 

 

Fig. 5. Violin plots for time domain, frequency domain and the others complexity parameters of RCW EOGs under normal and stressed states. 

 

Fig.6. Reference violin plot. 
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Fig. 7. Violin plots for time domain, frequency domain and the others complexity parameters of RAC EOGs under normal and stressed states. 

 

Fig. 8. Violin plots for time domain, frequency domain and the others complexity parameters of TCW EOGs under normal and stressed 

 

Fig. 9. Violin plots for time domain, frequency domain and the others complexity parameters of TAC EOGs under normal and stressed states. 

Upon examination of Figure 7 and Table 4, it can be discerned that in the case of RAC cue movement, the violins 

of the morning and evening sessions exhibit overlapping measurements of ApEn and TsEn. However, the remaining 

violins do not overlap completely, suggesting stress level variations between the morning and evening sessions. 

Consequently, the Wilcoxon test yielded a non-significant outcome for the aforementioned pair of complexity 
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parameters. The results obtained from Fig. 8 and Table 5 regarding the movement of TCW cues indicate that MultiEn, 

CD, and HFD exhibit similarities between morning and evening sessions, with no significant differences observed. 

Upon examination of Fig. 9 and Table 6 pertaining to TAC cue movement, it can be observed that both SampEn and 

PeEn exhibit overlapping characteristics, suggesting the absence of significant differences in stress levels between 

morning and evening sessions.    

ICCs were measured to detect the reliability of an experimental process. ICC ranged from 0.73 to 0.89, from 0.65 

to 0.90, from 0.38 to 0.87 and from 0.50 to 0.88 for RCW, RAC, TCW and TAC respectively. This means that random 

and systematic errors were reported [48] and also varies from 11%-36%, 10%-35%, 13%-62% and 12%-50% for RCW, 

RAC, TCW and TAC respectively. The highest reliability was reported as 0.89 for ApEn, ReEn, ShEn, LE, 0.90 for LE, 

0.87 for ReEn, LE and 0.88 for FuzEn, ShEn in RCW, RAC, TCW and TAC respectively. 

For estimating the agreement between the time domain, frequency domain and others complexity parameters of 

EOGs under morning and evening sessions, the Bland-Altman plot is used. It can be used to identify any systematic bias 

or variability between the entropies and complexity parameters of EOGs at morning and evening sessions, as well as 

any outliers or extreme differences. The Bland-Altman plots for time domain, frequency domain and others complexity 

parameters for RCW, RAC, TCW and TAC are depicted in Fig. 10-13 respectively. 

 

 

Fig. 10. Bland-Altman plots for time domain, frequency domain and the others complexity parameters of RCW EOGs. 

 

Fig. 11. Bland-Altman plots for time domain, frequency domain and the others complexity parameters of RAC EOGs.
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Fig. 12. Bland-Altman plots for time domain, frequency domain and the others complexity parameters of TCW EOGs 

 

Fig. 13. Bland-Altman plots for time domain, frequency domain and the others complexity parameters of TAC EOGs 

Bland-Altman plot is basically a scatter plot and can be used to compare entropies and complexity parameters 

among morning and evening sessions to comment on fatigue and drowsiness of the participants. To comprehend 

variable dispersion, a scatterplot is created using the X-axis (mean) and Y-axis (difference). In this plot, mean 

difference or mean bias is drawn at middle of Y-axis. The outer lines (i.e., the upper limit and lower limit) as 95% of 

LOA (limits of agreement) are calculated by mean ± 1.96 x standard deviation of the differences. If the data points are 

very close to zero line, then it indicates that there is a good level of agreement between the entropies and complexity 

parameters among the morning and evening sessions under consideration, otherwise it is treated as weak agreement. 

Strong agreement shows that there is no proportional bias on the distribution of data around the mean difference line. 

After getting the plots, it can be interpreted by linear regression method. The difference in entropies and complexity 

parameters expressed a nearly symmetrical distribution around the zero-line, indicating the absence of systematic 

changes as a function of the mean for DispEn, DFA in RCW; mean for SampEn, DispEn, TsEn in RAC; mean for ApEn, 

SampEn, TsEn, DFA in TCW and mean for ApEn, DispEn, in TAC. Other entropies and fatigue complexity indices like 

ApEn, SampEn, PeEn, MultiEn, FuzEn, TsEn, ReEn, ShEn, LZC, HuEx,, CD, HFD, LE in RCW; ApEn, PeEn, 

MultiEn, FuzEn, ReEn, ShEn, LZC, DFA, HuEx,, CD, HFD, LE in RAC; PeEn, MultiEn, FuzEn, DispEn, ReEn, ShEn, 

LZC, HuEx,, CD, HFD, LE in TCW and SampEn, PeEn, MultiEn, FuzEn, TsEn, ReEn, ShEn, LZC, DFA, HuEx,, CD, 

HFD, LE in TAC indicate a systematic change, i.e., heteroscedasticity for the morning and evening session entropies 

and fatigue complexity indices expressing differences in stress conditions obtained from morning and evening sessions. 

Hence, it may be concluded that the Bland-Altman plots accurately reflect the differences between fatigue complexity 

indices obtained from EOGs of morning and evening sessions. As depicted in Table 7, regression analysis is used to  
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further investigate weak agreements among entropies and complexity parameters. It is observed for SampEn, TsEn, 

ShEn, DFA, HuEx, CD & HFD in RCW cue movement, for ApEn, SampEn, TsEn, ShEn, CD & HFD in RAC cue 

movement, for DispEn, ReEn, DFA & HFD in TCW cue movement, and SampEn, DispEn, TsEn, ReEn, ShEn, LZC, 

HuEx, CD & HFD in TAC cue movement are showing weak agreements between the EOGs of morning and evening 

sessions. 

Table 7. Comparative statistics (p-values) of linear regression among RCW, RAC, TCW, TAC cue movements for post Bland-Altman normal and 

stressed states under study-I. 

Complexity 

parameters 

RCW 

(p-value) 

RAC 

(p-value) 

TCW 

(p-value) 

TAC 

(p-value) 

Weak agreements 

or statistically 

significant 

differences 
Time domain entropy 

ApEn 0.1340 (NS) 0.0359 0.0963 (NS) 0.1790 (NS) RAC 

SampEn 0.0485 0.0013 0.9980 (NS) <0.0001 RCW, RAC, TAC 

PeEn 0.2330 (NS) 0.7830 (NS) 0.1360 (NS) 0.7520 (NS) NONE 

MultiEn 0.9000 (NS) 0.8090 (NS) 0.5560 (NS) 0.7330 (NS) NONE 

FuzEn 0.3160 (NS) 0.1990 (NS) 0.2370 (NS) 0.4730 (NS) NONE 

DispEn 0.0970 (NS) 0.0553 (NS) <0.0001 <0.0001 TCW, TAC 

Frequency domain entropy  

TsEn 0.0230 <0.0001 0.4540 (NS) 0.0054 RCW, RAC, TAC 

ReEn 0.2760 (NS) 0.0690 (NS) 0.0028 0.0151 TCW, TAC 

ShEn 0.0243 0.0005 0.6670 (NS) 0.0013 RCW, RAC, TAC 

Others  

LZC 0.634 (NS) 0.7720 (NS) 0.7040 (NS) 0.0021 TAC 

DFA 0.0382 0.0680 (NS) 0.0098 0.3250 (NS) RCW, TCW 

HuEx 0.0017 0.9580 (NS) 0.2130 (NS) 0.0396 RCW, TAC 

CD 0.0012 <0.0001 0.3640 (NS) <0.0001 RCW, RAC, TAC 

HFD 0.0081 0.0086 0.0116 0.0003 
RCW, RAC, 

TCW, TAC 

LE 0.8280 (NS) 0.6130 (NS) 0.7730 (NS) 0.3700 (NS) NONE 

 

In study-II, the same inferential statistical analysis for time domain, frequency domain and other complexity 

parameters of EOGs of morning, afternoon and evening was performed to investigate fatigue and drowsiness. The said 

analysis is shown in Table 8. All the entropies and complexity parameters are expressed in mean ± SEM along with 

their confidence interval range of 95% as done in study-I. A non-parametric Friedman test and a parametric ANOVA 

test were conducted, but as the most of complexity parameters were not distributed normally, the non-parametric 

Friedman test was normally favoured for determining the difference between entropies and complexity parameters 

under morning, afternoon and evening sessions. Similarly, conclusions are drawn at 5% (p≤0.05) significance level, 

while p> 0.05 are taken as non-significant (NS). 

 

 

Fig. 14. Violin plots for time domain and frequency domain entropies of EOGs recorded in morning (MR), afternoon (AN) and evening. 

The outcome of intensive cognitive activity on the participants is reflected on the different complexity parameters 

in different sessions of the day. From the Table 8 it is evident that change in SampEn (p=0.0901) non-significant. 

Except SampEn, all the time domain, frequency domain entropies and the others complexity parameters are showing 

significant differences in recorded EOGs on different sessions of the day. The Tukey-Kramer test approves statistical 

variations between all the possible groups i.e., MR-AN, MR-EV and AN-EV having p<0.05. ApEn has p=0.0439, with  
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significant difference in MR-AN (p=0.0363), MultiEn has values p<0.001, with significant differences both in MR-AN 

(p=0.0066) and MR-EV (p=0.0017). DispEn is possessing p<0.0001, with clear differences both in MR-EV (p<0.0001) 

and AN-EV (p<0.0001). There are significant differences for all the frequency domain entropies at p<0.05 and 

differences are showing significant in MR-EV and also in AN-EV (except ReEn). In the others complexity parameters 

like LZC has p<0.0001 with clear differences in MR-AN (p< 0.0001) and AN-EV (p<0.0001), HuEx has p=0.0042 with 

clear difference in MR-AN (p=0.0030), CD has p<0.0001 with strong difference in MR-AN (p<0.0001), HFD is 

possessing p<0.0001 with clear differences in MR-EV (p<0.0001) and AN-EV (p<0.0001) and LE has p<0.0001 with 

strong differences in MR-AN (p<0.0001) and MR-EV (p<0.0001). 

Fig. 14 shows the violin plots for all the time domain and frequency domain entropies of recorded EOGs at three 

different sessions i.e., morning (MR), afternoon (AN) and evening (EV). The p values depicted in Table 8 is likely to be 

interpreted by analyzing violin plots shown in Fig. 14. All the violins under the plots under SampEn for three different 

sessions are almost overlapping with each other and confirms no significant differences between them. For the case of 

the other entropies under time and frequency domains, there are distinct differences in their medians of the box-violin 

plots, concludes that there are significant changes in stress levels of participants among the different sessions of the day 

which suggest the onset of drowsiness and fatigue in their muscles. 

Fig. 15 shows the violin plots for all the others complexity parameters of recorded EOGs at three different sessions 

i.e., morning (MR), afternoon (AN) and evening (EV). The depicted p (probability) values in Table 8 can probably be 

understood by observing the violin plots in Fig. 15. In the complexity parameters for each session of the day, a box-

violin plot is used to illustrate how the magnitudes are generally distributed over their quartiles. Most of the violins 

under the plots of the other complexity parameters show clear differences in their medians. This settles that the stress 

levels of the participants change significantly between the different sessions of the day, which suggests the induction of 

physical as well as mental fatigue and related drowsiness. 

 

 

Fig. 15. Violin plots for others complexity parameters of EOGs recorded in morning (MR), afternoon (AN) and evening (EV) sessions. 

Table 8. The comparison of complexity parameters of EOGs of morning (MR), afternoon (AN) and evening (EV) in study-II. 

 

 

Complexiy   

parameters 

Morning Afternoon Evening 

ANOVA 

test 

Friedman 

test  

Tukey-Kramer Test (post hoc 

analysis) ICC 

Mean ± 

SEM 

(95%CI) 

Mean ± 

SEM 

(95%CI) 

Mean ± 

SEM 

(95%CI) 

Time domain entropy  MR-AN MR-EV AN-EV 

ApEn 
2.76±0.26 

(2.23-3.30) 

2.32±0.21 

(1.90-2.75) 

2.35±0.21 

(1.94-2.77) 
0.3283 (NS) 0.0439 

0.0363 

(NS) 

0.2494 

(NS) 

0.6560 

(NS) 
0.91 

SampEn 
2.93±0.26 

(2.40-3.47) 

2.45±0.22 

(2.01-2.88) 

2.58±0.21 

(2.16-3.00) 

0.3138 

(NS) 
0.0901 (NS) 

0.0880 

(NS) 

0.8633 

(NS) 

0.2505 

(NS) 
0.90 

PeEn 
3.11±0.26 

(2.59-3.63) 

4.23±0.26 

(3.71-4.75) 

4.60±0.27 

(4.05-5.16) 
<0.001 <0.0001 <0.0001 <0.0001 <0.0001 0.84 

MultiEn 
3.93±0.31 

(3.30-4.55) 

5.36±0.27 

(4.83-5.90) 

5.23±0.31 

(4.60-5.86) 
0.0011 <0.001 0.0066 0.0017 

0.9155 

(NS) 
0.83 

FuzEn 
5.17±0.23 

(4.69-5.64) 

3.44±0.27 

(2.90-3.99) 

3.96±0.28 

(3.40-4.51) 
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.85 

DispEn 
4.02±0.21 

(3.58-4.46) 

3.88±0.19 

(3.49-4.27) 

3.07±0.20 

(2.66-3.48) 
0.0027 <0.0001 

0.5334 

(NS) 
<0.0001 <0.0001 0.88 

Frequency domain entropy 

TsEn 
6.94±0.24 
(6.46-7.42) 

6.78±0.25 
(6.27-7.29) 

7.40±0.26 
(6.87-7.93) 

0.2052 
(NS) 

<0.001 
0.5098 

(NS) 
0.0075 0.0001 0.81 

ReEn 
3.34±0.24 

(2.86-3.83) 

3.83±0.25 

(3.33-4.32) 

3.84±0.25 

(3.35-4.34) 
0.2700 0.0094 

0.5593 

(NS) 
0.0075 

0.1180 

(NS) 
0.91 

ShEn 
3.54±0.24 
(3.05-4.03) 

3.36±0.25 
(2.86-3.86) 

2.99±0.26 
(2.45-3.52) 

0.2905 
(NS) 

<0.001 
0.9464 

(NS) 
0.0045 0.0015 0.83 
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To determine the reliability of an experimental procedure, ICCs were measured. ICC varied between 0.68 and 0.91.  

This indicates that random and systematic errors were recorded [46, 47] and also varies from 9% to 32%. The 

highest reliability was reported as 0.91 for ApEn. 

Table 9. Spearman’s rank correlation coefficient (ρ) and Kendall rank correlation coefficient (τ) of complexity parameters of EOGs of morning (MR), 

afternoon (AN) and evening (EV) discussed in study-II. 

Complexity 

Parameter 

Spearman’s rank correlation coefficient 𝝆 w.r.t. ApEn, 

TsEn, ShEn, LZC. 

Kendall rank correlation coefficient 𝝉 w.r.t. ApEn, 

TsEn, ShEn, LZC. 

Morning Afternoon Evening Morning Afternoon Evening 

ApEn NA, 0.77, 

-0.76, 0.54 

NA, 0.91, 

-0.88, 0.52 

NA, 0.87, 

-0.85, 0.64 

NA, 0.59, 

-0.58, 0.39 

NA, 0.75, 

-0.72, 0.39 

NA, 0.69, 

-0.67, 0.46 

SampEn 0.85, 0.66, 
-0.62, 0.27 

0.95, 0.87, 
-0.85, 0.41 

0.94, 0.78, 
-0.75, 0.50 

0.69, 0.50, 
-0.45, 0.16 

0.83, 0.70, 
-0.67, 0.29 

0.82, 0.61, 
-0.59, 0.35 

PeEn 0.67, 0.80, 

-0.83, 0.71 

0.72, 0.80, 

-0.84, 0.67 

0.48, 0.83, 

-0.85, 0.78 

0.49, 0.62, 

-0.66, 0.53 

0.52, 0.62, 

-0.66, 0.50 

0.35, 0.65, 

-0.69, 0.61 

MultiEn 0.80, 0.94, 
-0.95, 0.67 

0.86, 0.92 
-0.92, 0.61 

0.53, 0.94 
-0.95, 0.77 

0.63, 0.81, 
-0.81, 0.48 

0.68, 0.77 
-0.76, 0.45 

0.38, 0.82 
-0.84, 0.59 

FuzEn -0.46, -0.83, 

0.85, -0.56 

-0.72, -0.87, 

0.91, -0.64 

-0.66, -0.91, 

0.93, -0.67 

-0.33, -0.66, 

0.68, -0.40 

-0.50, -0.69, 

0.74, -0.47 

-0.47, -0.74, 

0.78, -0.51 

DispEn 0.69, 0.43, 
-0.37, 0.24 

0.76, 0.56, 
-0.51, 0.10 

0.79, 0.55, 
-0.51, 0.27 

0.55, 0.30, 
-0.25, 0.16 

0.59, 0.41, 
-0.36, 0.07 

0.63, 0.42, 
-0.39, 0.20 

TsEn 0.77, NA, 

-0.98, 0.68 

0.91, NA, 

-0.98, 0.68 

0.87, NA, 

-0.99, 0.70 

0.59, NA, 

-0.90, 0.51 

0.75, NA, 

-0.90, 0.52 

0.69, NA, 

-0.92, 0.53 

ReEn 0.76, 0.98, 
-1, 0.71 

0.90, 0.99, 
-1, 0.70 

0.86, 0.99, 
-1, 0.74 

0.58, 0.92, 
-0.97, 0.53 

0.75, 0.91, 
-0.97, 0.53 

0.68, 0.92, 
-0.97, 0.57 

ShEn -0.76, -0.98, 

NA, -0.74 

-0.88, -0.98, 

NA, -0.71 

-0.85, -0.99, 

NA, -0.74 

-0.58, -0.90, 

NA, -0.56 

-0.72, -0.90, 

NA, -0.55 

-0.67, -0.92, 

NA, -0.58 

LZC 0.54, 0.68, 
-0.74, NA 

0.52, 0.68, 
-0.71, NA 

0.64, 0.70, 
-0.74, NA 

0.39, 0.51 
-0.56, NA 

0.39, 0.52, 
-0.55, NA 

0.46, 0.53, 
-0.58, NA 

DFA -0.08, -0.12, 

0.14, -0.41 

0.01, -0.03, 0.03, 

-0.32 

0.06, -0.02, 

0.06, -0.26 

-0.08, -0.09, 

0.10, -0.27 

0, -0.03, 0.03, -

0.22 

0.05, -0.02, 

0.05, -0.18 

HuEx 0.53, 0.52, 
-0.55, 0.43 

0.42, 0.44, 
-0.51, 0.47 

0.48, 0.58, 
-0.57, 0.46 

0.37, 0.36, 
-0.38, 0.31 

0.30, 0.33, 
-0.37, 0.33 

0.36, 0.42, 
-0.41, 0.34 

CD 0.72, 0.65, 

-0.66, 0.37 

0.60, 0.55, 

-0.49, 0.19 

0.80, 0.75, 

-0.75, 0.47 

0.52, 0.47, 

-0.47, 0.22 

0.42, 0.39, 

-0.34, 0.13 

0.60, 0.56, 

-0.56, 0.31 

HFD 0.63, 0.52, 
-0.56, 0.73 

0.57, 0.58, 
-0.59, 0.75 

0.62, 0.60, 
-0.61, 0.74 

0.45, 0.37, 
-0.40, 0.50 

0.42, 0.43, 
-0.44, 0.58 

0.44, 0.46, 
-0.47, 0.58 

LE -0.52, -0.74, 

0.77, -0.72 

-0.58, -0.71, 

0.75, -0.67 

-0.60, -0.68, 

0.70, -0.73 

-0.37, -0.56, 

0.59, -0.56 

-0.41, -0.52, 

0.56, -0.50 

-0.46, -0.51, 

0.53, -0.56 

 

The non-parametric spearman’s rank correlation coefficient (ρ) and Kendall rank correlation coefficient (τ) are 

used to compare the interaction between all the complexity parameters with time domain (ApEn), frequency domain 

(TsEn and ShEn) and others (LZC) complexity parameters are shown in Table 9. Excellent negative correlation 

(Spearman’s rank and Kendall rank) was found as ρ=-1 and τ=-0.97 between ReEn and ShEn irrespective of sessions of 

the day. Negative correlations were obtained due to inverse relation between two complexity parameters [49]. Excellent 

positive correlation (0.98, 0.99, 0.99 for spearman’s rank and 0.92, 0.91, 0.92 for Kendall rank) was also obtained 

between ReEn and TsEn. 

4.  Experimental Limitation 

The present investigation was conducted on male and female individuals who self-reported as being mentally and 

physically healthy, solely relying on the information provided by subjects. However, we cannot promise the accuracy or 

completeness of the self-reported history. As the subjects of the research were of a homogeneous age group, it is not 

possible to extrapolate any findings or inferences to other age demographics, such as children or older adults. As the 

data for all three sessions of a subject were collected on a same day, this study is unable to ascertain the extent of  

Others 

LZC 
3.11±0.24 
(2.61-3.61) 

4.00±0.24 
(3.56-4.44) 

2.89±0.22 
(2.44-3.35) 

0.0020 <0.0001 <0.0001 0.8820 (NS) <0.0001 0.80 

DFA 
4.54±0.26 

(4.02-5.06) 

5.22±0.24 

(4.74-5.70) 

3.43±0.25 

(2.94-3.92) 
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.90 

HuEx 
4.75±0.26 
(4.23-5.27) 

5.60±0.26 
(5.07-6.12) 

5.13±0.29 
(4.55-5.70) 

0.0874 (NS) 0.0042 0.0030 0.1118 (NS) 0.4059 (NS) 0.79 

CD 
3.88±0.25 

(3.37-4.38) 

5.31±0.22 

(4.86-5.76) 

4.36±0.24 

(3.88-4.84) 
<0.001 <0.0001 <0.0001 0.0558 (NS) 0.0558 (NS) 0.68 

HFD 
4.22±0.22 
(3.77-4.68) 

4.14±0.20 
(3.73-4.56) 

3.41±0.20 
(3.00-3.83) 

0.0140 (NS) <0.0001 0.9457 (NS) <0.0001 <0.0001 0.92 

LE 
7.94±0.25 

(7.43-8.46) 

6.87±0.24 

(6.38-7.36) 

6.89±0.27 

(6.35-7.43) 
0.0042 <0.0001 <0.0001 <0.0001 0.8017 (NS) 0.81 
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variation across multiple days. Several natural factors, such as inadequate sleep, prolonged mental or physical exertion, 

extended stress or anxiety, mood, alertness, lifestyle, and the menstrual cycle phases in women, are challenging to 

regulate in studies of this nature, as they can contribute to fatigue. 

5.  Conclusion 

The main aim is to investigate on fatigue and drowsiness of the research scholars of National Institute of 

Technology Durgapur, India, due to cognitive loading throughout the different sessions of the day. In this present study 

the variation of complexity parameters is experimentally and statistically analyzed. Study-I shows the variation of 

complexity parameters for four patterns of cue movement- for morning and evening and non-parametric Wilcoxon-test 

was performed to reinforce the experimental study. Study-II depicts the variation of complexity parameters in three 

different sessions viz. morning, afternoon and evening. Non parametric Friedman test was employed to find the 

statistical variations among these three sessions. Whenever significant difference is investigated among group measures, 

Tukey-Kramer post hoc analysis was performed. In study-I, the Wilcoxon test findings show that almost all of the 

complexity parameters of EOGs for RCW, with the exception of SampEn and HuEx, clearly differ between a morning 

and evening session with a p<0.05. With the exception of ApEn and TsEn, practically all complexity parameters with 

p<0.05 in the Wilcoxon test for RAC support the substantial difference between the morning session and evening 

session. The Wilcoxon test further supports ApEn, SampEn, PeEn, FuzEn, DispEn, TsEn, ReEn, ShEn, LZC, DFA, 

HuEx and LE are showing significant differences between morning and evening session at 5% significance level for 

TCW and ApEn, MultiEn, FuzEn, DispEn, TsEn, ReEn, ShEn, LZC, DFA, CD and LE are showing prominent 

differences between the two sessions with threshold level p<0.05 for TAC. The Bland-Altman plot also substantiate the 

difference in entropies and complexity parameters between morning and evening sessions and the most of complexity 

indices are not identical for all the four cue movements due to induced fatigue into muscle. In study-II, the Friedman 

test results evident that all the time domain entropies except SampEn, all the frequency domain entropies and all the 

others complexity parameters are showing a significant difference for p < 0.05 among morning, afternoon and evening 

sessions. In order to assess the changes between morning-afternoon, morning-evening and afternoon-evening, Tukey-

Kramer test was performed. Further ApEn, TsEn, ShEn, LZC as covariables, non-parametric Spearman’s rank and 

Kendall rank tests were conducted. ReEn has the highest (ρ=0.99, τ=0.92) positive association with TsEn and (ρ=-1, τ=-

0.97) negative association with ShEn. Therefore, it can be concluded that the, correlation coefficients do not alter with 

the session of the day, whereas the complexity parameters are affected by sessions of acquisition i.e., morning, 

afternoon and evening. These results help future fatigue studies apply to more extensive areas and people of diverse 

ages. Future research will attempt to apply this statistical approach or similar computational techniques to cluster and 

classify data to identify various fatigue levels and provide the person in question with a real-time alarm. In addition to 

cognitive activities, other factors like inadequate sleep, drugs, and additional physical or mental stress may also be 

considered. 
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