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Abstract

Predicting a researcher's knowledge trajectories beyond their current foci can

leverage potential inter-/cross-/multi-disciplinary interactions to achieve

exploratory innovation. In this study, we present a method of diffusion-based

network analytics for knowledge trajectory recommendation. The method

begins by constructing a heterogeneous bibliometric network consisting of a

co-topic layer and a co-authorship layer. A novel link prediction approach with

a diffusion strategy is then used to capture the interactions between social ele-

ments (e.g., collaboration) and knowledge elements (e.g., technological simi-

larity) in the process of exploratory innovation. This diffusion strategy

differentiates the interactions occurring among homogeneous and heteroge-

neous nodes in the heterogeneous bibliometric network and weights the

strengths of these interactions. Two sets of experiments—one with a local data-

set and the other with a global dataset—demonstrate that the proposed

method is prior to 10 selected baselines in link prediction, recommender sys-

tems, and upstream graph representation learning. A case study recommend-

ing knowledge trajectories of information scientists with topical hierarchy and

explainable mediators reveals the proposed method's reliability and potential

practical uses in broad scenarios.

1 | INTRODUCTION

Dating back to the early 1980s, the continuous and dis-
continuous technological changes drew attention from
Dosi (1982). He defined the continuous changes as tech-
nological trajectories, emphasizing the cumulative pro-
cess of technical advances in an established routine.
When assembling scientific research and technological
development as knowledge, knowledge trajectories refer to
how knowledge is integrated and differentiated within
this dynamic changing process (Barley et al., 2018).

Understanding the dynamics of knowledge trajectories is
relevant to the broad interests of science, technology, and
innovation (ST&I) studies. For example, disruptive inno-
vation (Christensen et al., 2018) and recombinant innova-
tion (Uzzi et al., 2013) investigate how knowledge
interacts with each other in creating inventions. When
differentiating the type of knowledge in an innovation
process, exploratory innovation is known as a radical
exploration with external knowledge, and exploitative
innovation is an incremental exploitation that deepens
internal knowledge and skills (Jansen et al., 2006).
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Social scientists recognize exploration and exploitation as
alternative research strategies for scholars to shape/reshape
knowledge trajectories and promote research productivity
and impact (Foster et al., 2015; Huang et al., 2022). Besides
science policies, the literature has identified several crucial
determinants of exploratory innovation (Keshavarz &
Shekari, 2020; Liu, Wang, et al., 2018a; Zeng et al., 2019), for
example, career age and hot streaks, research achievement
and reputation, and topic nature. More significantly, social
interactions on the ST&I dynamics have been extensively
investigated (Acar et al., 2019; Sun et al., 2013) and were
specified into broad collaborations between multiple disci-
plines (Nicolini et al., 2012) and between academia and
industry (Steinmo & Rasmussen, 2018). The insights inspire
us that internal knowledge interactions and external social
interactions can trigger the dynamics of knowledge trajecto-
ries, and thus covering both aspects could be essential for
predicting knowledge trajectories.

Network analytics, particularly bibliometric network
analytics, has been widely applied in ST&I studies, for
example, measuring research impact (Yan & Ding, 2009)
and tracing technological trends (Leydesdorff &
Rafols, 2011). Significantly, link prediction, with its core
assumption that two unconnected nodes can be linked in
the future if common neighbors exist (Liben-Nowell &
Kleinberg, 2007), surprisingly coincides with the recom-
bination theory (Uzzi et al., 2013). Under this assump-
tion, some studies used link prediction to recommend
potential collaborators (Yan & Guns, 2014) and predict
emerging technologies (�Erdi et al., 2013; Zhou
et al., 2019) by analyzing a homogeneous bibliometric
network, for example, a co-term, co-citation, or co-
authorship network. However, aiming to highlight the
internal and external determinants of exploratory innova-
tion, we argue that a heterogeneous network consisting
of social elements (e.g., co-authorships) and knowledge
elements (e.g., term co-occurrence) can comprehensively
describe the scenario that knowledge diffuses through
research collaboration and between similar technologies.
Then, predicting missing links between these social and
knowledge elements can identify how their interactions
will evolve in the future and foresee future knowledge
trajectories. However, modeling and measuring the com-
plicated social and knowledge interactions in a heteroge-
neous bibliometric network is still challenging.

Following the definition given by Barley et al. (2018),
this study considers the knowledge trajectories of an indi-
vidual researcher as the historical and future changing
processes of their research topics. It aims to predict the
changing process by recommending research topics
beyond their existing knowledge base to achieve explor-
atory innovation. Although developing knowledge trajec-
tories is influenced by various internal and external

factors, particularly a scholar's research foci, our recom-
mendations emphasize extending a scholar's existing
knowledge base from the perspective of inter-/cross-/
multi-disciplinary interactions; that is, what we call
“stepping beyond the comfort zone.” Even so, this study
simulates social and knowledge interactions within
knowledge diffusion to consider the role of a scholar's
knowledge accumulation and interpersonal communica-
tions in establishing their knowledge trajectories.

This paper proposes a novel method for analyzing a
heterogeneous bibliometric network and recommending
knowledge trajectories to target researchers. The method
begins by constructing a heterogeneous bibliometric net-
work with a co-topic layer and a co-authorship layer. The
interactions among homogeneous and heterogeneous
nodes in this network are then predicted by a model of
diffusion-based link prediction that relies on network-
based inference (NBI) (Zhou et al., 2007). While modern
deep learning-based approaches cannot sufficiently
explain their results, the diffusion process provides clues
for interpreting recommendations through involved
mediators, that is, common neighbors such as collabora-
tors and similar technologies. Furthermore, our model
extends the scope of the inference from a bipartite net-
work to a bi-layer network, since bipartite network ana-
lytics ignores knowledge diffusion between homogeneous
nodes. Yet, as argued above, such interactions may reflect
significant academic activities.

Ten baselines are selected for validation measure-
ments: Six link prediction baselines, two recommenda-
tion baselines, and two upstream machine learning
baselines on graph representation learning. We assem-
bled two datasets for testing: a local dataset that contains
11,399 journal articles from the information science liter-
ature, and a global dataset comprising the complete set of
the Digital Bibliography & Library Project (DBLP) data-
base, covering 4.89 million research articles in computer
science. The validation demonstrates the reliability of our
method in recommending knowledge trajectories.
Beyond our experiments, we conducted a case study
using the local dataset to reveal the practical application
of the proposed method. These insights can help provide
empirical decision support to individual researchers,
research institutions, and funding agencies in the infor-
mation science discipline.

2 | RELATED WORK

2.1 | Bibliometric network analytics

In this paper, a bibliometric network refers to a network
consisting of bibliometric entities (e.g., terms and
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authors) and their relationships (e.g., co-occurrence).
Information scientists leapt at the opportunity to apply net-
work analytics to explore insights from network topologies
(Björneborn, 2004). Previous bibliometric network analytics
have: (a) used topological indicators (e.g., centrality) to
identify key nodes, for example, influential researchers in a
co-authorship network (Li et al., 2013; Yan & Ding, 2009);
(b) used topology-based approaches (e.g., community detec-
tion and link prediction) to recognize specific behaviors and
patterns, for example, collaborations (Yan & Guns, 2014),
disciplinary interactions (Huang et al., 2020), and problem-
solving patterns (Zhang, Wu, Hu, et al., 2021a); and
(c) connected bibliometric networks with broad ST&I para-
digms, for example, technology roadmaps (Jeong et al., 2021)
and technology opportunity analysis (Ren & Zhao, 2021).

Sun and Han (2012) argued, “the interactions among
multi-typed objects play a key role in disclosing the rich
semantics that a network carries” and defined a meta
path as sequential links between any two entities in a
heterogeneous network. With pre-defined meta paths,
link prediction has been widely recognized as a down-
stream task of heterogeneous network mining, which
holds interpretable capabilities in inferring potential con-
nections between pairwise nodes through their common
neighbors (Dong et al., 2020). Rich studies have been
observed on elaborating heterogeneous entities and rela-
tionships within meta paths for link prediction, for exam-
ple, tracing co-authorship evolution using a knowledge
graph with multi-entities and multi-relations (Zhang, 2017),
measuring emerging technologies through a bi-layer net-
work (Zhang, Wu, Miao, et al., 2021b), and recommending
publication venues based on a network with multiple bib-
liometric entities (Klemi�nski et al., 2021).

This study follows the tradition of heterogeneous net-
work mining. Its core method aligns with link prediction,
highlighting (a) the design of meta paths reflecting
knowledge diffusion with social and knowledge interac-
tions in exploratory innovation; and (b) its interpretable
capabilities in explaining prediction results through the
mediators in a diffusion process.

2.2 | Scholarly recommendation

Recommending knowledge trajectories aligns with schol-
arly recommendations, targeting academic researchers
and recommending academic outlets (Alhoori &
Furuta, 2017) and counterparts (e.g., collaborators,
reviewers, and supervisors) (Liu, Xie, & Chen, 2018b;
Rahdari et al., 2020). Besides traditional content-based
and collaborative filtering-based approaches, previous stud-
ies extensively facilitated the natural tie of scholarly recom-
mendations with knowledge graphs, and introduced graph

representation learning to assemble heterogeneous attri-
butes and represent entities in low dimensional vectors
(Sun et al., 2021). For scholarly recommendations with bib-
liometric networks, Zhu et al. (2022) applied a translation-
based approach to embed multiple bibliometric entities
(e.g., authors, papers, and departments) and their relation-
ships in a million-scale bibliometric network for co-
authorship prediction. Aiming at research leadership
recommendation, He et al. (2022) adopted an autoen-
coder model to represent authors with diverse features,
for example, cognitive, geographical, and organiza-
tional proximities.

While traditional recommender systems usually con-
sider homogeneous relationships, this study highlights
the understanding of heterogeneous entities and their
relationships (e.g., social and knowledge interactions)
within the theoretical framework of exploratory innova-
tion. Methodologically, we fully acknowledge the advan-
tages of graph representation learning techniques (Dong
et al., 2020) in large-scale recommendations. However,
we also appreciate detailed meta-paths (e.g., diffusion)
defined in a heterogeneous network, which avoid poten-
tial information loss and provide extra information for
interpreting recommendations—tracing back along with
a meta-path to identify core meditators. Additionally,
with a shared focus on discovering user-item connec-
tions, link prediction and recommender systems are cate-
gorized as two overlapped downstream tasks in the
computer science literature (Zhang et al., 2019). This
study targets a recommendation task, but its core meth-
odology is built on link prediction, highlighting the use
of meta-paths defined from a heterogeneous bibliometric
network.

3 | METHODOLOGY: DIFFUSION-
BASED NETWORK ANALYTICS

3.1 | Theoretical basis: Exploratory
innovation and knowledge diffusion

When the recombinant innovation theory well studied
the role of knowledge interactions in an innovation pro-
cess (Uzzi et al., 2013), the literature thoroughly dis-
cussed the positive correlations between a firm's
collaborative network and its ability to exploratory inno-
vation (Phelps, 2010), known as a radical innovation that
“require(s) new knowledge or departure(s) from existing
knowledge” (Jansen et al., 2006). Besides isolated interac-
tions with either social or knowledge determinants, their
synthesized impacts on the dynamics of ST&I are signifi-
cant (Sun et al., 2013; Wang et al., 2014). In a large-scale
science of science study, Huang et al. (2022) observed the
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preference of productive and impactful researchers in
exploratory innovation. We thus summarized:

Assumption 1. Exploratory innovation is
positively correlated with research productiv-
ity and impacts, and is synergistically influ-
enced by social and knowledge interactions.

Knowledge diffusion, known as the adaptations of sci-
entific knowledge from scientific research to technological
innovation (Sorenson & Fleming, 2004), follows a general
process of innovation diffusion—“an innovation is commu-
nicated through different channels in a certain time among
the members of a social system” (Rogers, 2003). The litera-
ture discussed the importance of knowledge features and
the channels of transmitting knowledge in a diffusion pro-
cess (Zanello et al., 2016). It highlighted close interpersonal
ties promote knowledge diffusions, such as research collab-
oration, geographical localisation, and firm boundaries
(Singh, 2005). Given that, we drew the following:

Assumption 2. Knowledge diffuses between
knowledge elements, between social elements,
and between social and knowledge elements.
The three types of diffusion represent techno-
logical similarity, research collaboration, and
knowledge adoption, respectively.

Following the two assumptions, this paper designs a bi-
layer bibliometric network, consisting of a co-topic layer and
a co-authorship layer, to describe scientific activities through
a socio-technical system (Assumption 1). The diffusion-based
network analytics simulates an innovation process in
which knowledge diffuses among social and knowledge ele-
ments (Assumption 2), and predicts future interactions
between a target social element and broad knowledge ele-
ments. The newly established interactions may create clues
for exploratory innovation (Assumption 1), referring to
inter�/cross-disciplinary recombinations with either
upstream methodologies or downstream applications.

This study is on the trail of intelligent bibliometrics
(Zhang et al., 2020)—developing computational models that
elaborate artificial intelligence and data science techniques
with bibliometric indicators for handling issues in ST&I
studies. The research framework is given in Figure 1. It
includes three phases: data pre-processing, bi-layer network
construction, and diffusion-based prediction.

3.2 | Phase I: Data pre-processing

The proposed method targets bibliometric data, such as
scientific documents, patents, and academic proposals.

More specifically, two fields of bibliographical informa-
tion are focused: the combined text of an article's title
and abstract, and its authorship information. Thus, two
pre-processing tasks are required:

• Pre-processing author names: Author names in raw bib-
liometric data may vary hugely, appearing as, say,
“Eugene Garfield,” “Garfield, Eugene,” “Garfield, E,”
and “E Garfield.” Author name disambiguation is there-
fore required to consolidate variations and remove uni-
dentified names.

• Topic extraction and representation: Targeting the titles
and abstracts, topic extraction (e.g., topic models) is
conducted to identify and label topics from the corpus.

Recently, most knowledge graphs (e.g., Microsoft
Academic Graph, MAG) have disambiguated author
names and identified topics, and thus appropriately facili-
tating these benefits may skip off this pre-processing
phase.

3.3 | Phase II: Bi-layer network
construction

Following Assumption 1 and highlighting the social and
knowledge interactions in the process of exploratory inno-
vation, the bi-layer network consists of a co-authorship
layer and a co-topic layer. Briefly, on the co-authorship/co-
topic layer, a node represents an author/topic. An edge rep-
resents the co-occurrence between connected authors/
topics, weighted by their co-occurrent frequency. Notably,
one of the most recent studies on topic taxonomy construc-
tion (Shang et al., 2020) raised a significant drawback of
embedding in local text data, that is, word embedding tech-
niques cannot effectively distinguish highly coupled words
in a specific domain. We decided to keep the co-occurrence
on the co-topic layer in our default setting. However, using
a semantic layer to replace the topic player can be an alter-
native in cases with broad disciplinary interactions.

Referring to Figure 1, the bi-layer network is
described as follows:

G Ga Va,Eaað Þ,Gt Vt,Ettð Þ,Eatf g

where Ga Va,Eaað Þ represents a co-authorship layer with
the author nodes Va and the edges Eaa. Gt Vt,Ettð Þ repre-
sents a co-topic layer, with topic nodes Vt and edges Ett;
and Eat represents the edges between the two layers.

Let jEj represent the weight of an edge E. Let Vi
a and

Vc
a be nodes in the co-authorship layer and let Vk

t and Vj
t

be nodes on the co-topic layer. Then the weights of the
three types of edges can be represented as:

778 ZHANG ET AL.
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jEVi
a,V

c
a
j ¼ θVi

a,V
c
a

ð1Þ

jEVk
t ,V

j
t
j ¼φVk

t ,V
j
t

ð2Þ

jEVi
a,V

j
t
j ¼ μVi

a,V
j
t

ð3Þ

where θVi
a,V

c
a
, φVk

t ,V
j
t
, and μVi

a,V
j
t
are constants, represent-

ing the co-occurrent frequency between connected nodes.

3.4 | Phase III: Diffusion-based
prediction

Following Assumption 2 and aiming to comprehensively
describe knowledge diffusion among social and knowl-
edge elements with diverse diffusion strategies, this study
adopts the concept of resource allocation. Initially, in the
NBI, Zhou et al. (2007) creatively designed a process of
resource allocation in a bipartite network—a network
consists of two sets of nodes, in which resources diffuse
only between nodes from different sets and their com-
mon neighbors (CNs) serve as transmitters to distribute

resources (Ou et al., 2007). Introducing the resource allo-
cation process to a bi-layer network highlights: (a) the
core of research collaboration, that is, collaborators
exchange and recombine ideas to achieve innovation
(Wang et al., 2014); and (b) the basic assumption of CNs
in social network analytics, that is, if two nodes have
CNs, they may have relations (Yang & Zhang, 2016). Sig-
nificantly, these CNs act as core mediators in a diffusion
process and help interpret recommendations.

Within the NBI's framework, a user's potential prefer-
ence for an item is measured by the number of resources
the item eventually receives from the user (Zhou
et al., 2007). Following this trail, our pilot study applied a
resource allocation-based link prediction approach (Zhou
et al., 2009) to recommend a researcher's potential
research interests if the bipartite consisted of authors and
terms (Zhang et al., 2018). We further developed a
weighted index according to the diffusion strength and
applied it to predict potential term–term and term–
author connections (Zhang, Wu, Miao, et al., 2021b).
However, when describing exploratory innovation in a
bipartite network, we may encounter the following
issues:

FIGURE 1 Research framework of diffusion-based network analytics for recommending knowledge trajectories.
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• The interactions between homogeneous nodes in a
bipartite bibliometric network are essential for captur-
ing the impacts of social and knowledge interactions
on exploratory innovation (Assumption 1).

• Differentiating the diffusion strategies between homo-
geneous nodes and between heterogenous nodes is
necessary for reflecting actual knowledge diffusion
between collaborators and between similar technolo-
gies (Assumption 2).

These two issues inspired the methodological devel-
opment, including extending the scope of the resource
allocation from a bipartite network to a bi-layer network
and using different diffusion strategies to describe diverse
diffusion processes. For this reason, we focus on analyz-
ing three types of edges in the bi-layer network G: Eaa,
Ett, and Eat . Additionally, we redesigned the resource dif-
fusion strategy to predict the potential edges Eat between
a target author and topics. The algorithm of the
diffusion-based prediction for a target author Vi

a is
described as follows:

Step 1—Diffusion via author-topic edges V i
a !Vj

t:
This is a typical resource allocation process designed by
the NBI approach but with a weighting solution added to
the diffusion strategy. If an author Vi

a holds the initial
resources r V i

a

� �
, a portion of those resources will spread

to the connected topics Vj
t. The resource f V j

t

� �
that topic

Vj
t will receive from author Vi

a can be calculated as:

f V j
t

� �
¼

jEVi
a,V

j
t
j

P

EVia ,V
p
t
≠ 0

jEVi
a,V

p
t
jr V i

a

� � ð4Þ

Step 2—Diffusion via author–author edges Vi
a !Vc

a:
Assuming academic researchers are willing to share
knowledge with their co-authors, author Vi

a will “copy”
the same amount of initial resources r Vi

a

� �
and spread

them to connected authors Vc
a (i.e., co-authors) based on

their co-authorship strengths. The resources f Vc
a

� �
that

author Vc
a will receive from author Vi

a can be calcu-
lated as:

f Vc
a

� �¼ jEVi
a,V

c
a
j

P

EVia ,V
q
a
≠ 0

jEVi
a,V

q
a
jr V i

a

� � ð5Þ

Step 3—Diffusion via topic–topic edges Vj
t !Vk

t :
Assuming the co-occurrence between research topics
indicates pairwise knowledge sharing, a topic Vj

t will
spread the resources it has acquired to connected topics
based on their co-occurrence strengths. The resource
f Vk

t ,V
j
t

� �
that topic Vk

t will receive from topic Vj
t and the

total resource f t Vk
t

� �
that topic Vk

t will receive from con-
nected topics can be calculated as:

f Vk
t ,V

j
t

� �
¼

jEVj
t ,V

k
t
j

P

E
V
j
t ,V

p
t
≠ 0

jEVj
t ,V

p
t
j f V j

t

� �
ð6Þ

f t Vk
t

� �¼
X

EVkt ,V
p
t
≠ 0

f Vk
t ,V

p
t

� � ð7Þ

Step 4—Diffusion via author-topic edges Vc
a !Vk

t :
Repeat step 1 but for the target author's co-authors Vc

a,
who will also diffuse their resources to connected topics.
Thus, the resources f Vk

t ,V
c
a

� �
that topic Vk

t will receive
from the author Vc

a and the total resources f a Vk
t

� �
that

topic Vk
t will receive from the target author's co-authors

can be calculated as:

f Vk
t ,V

c
a

� �¼ jEVc
a,V

k
t
j

P

EVca ,V
p
t
≠ 0

jEVc
a,V

p
t
j f Vc

a,V
i
a

� � ð8Þ

f a Vk
t

� �¼
X

E
V
q
a ,V

k
t
≠ 0

f Vk
t ,V

q
a

� � ð9Þ

Step 5—Resource finalization: Since the objective of
this prediction is to recommend new research topics to a
target author—that is, topics beyond their comfort
zone—our focus is solely on topics unconnected to the
target author, that is, topics Vk

t . Thus, the final resource
f Vk

t

� �
that topic Vk

t will receive can be calculated as:

f Vk
t

� �¼ f t Vk
t

� �þ f a Vk
t

� � ð10Þ

Outputs—Ranking and personalized recommenda-
tion: The output of the proposed method is a ranking list
R containing a list of the target author's Vi

a unconnected
topics Vk

t , ranked by their final resource f Vk
t

� �
. This list

is personalized, since this list R is generated based on this
target author's co-authorships and their research topics.
Such a list of recommendations will be different case
by case.

Steps 1 and 2 describe a scenario where authors are
open to sharing knowledge with their co-authors. Step
3 reveals that co-occurred topics can act as a mediator for
knowledge sharing. Both scenarios are designed to effec-
tively simulate knowledge diffusion in real-world scien-
tific activities, and these involved mediators will be
identified for interpreting recommendations. Eventually,
the model recommends research topics the target author
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has never touched, referring to future knowledge trajec-
tories beyond their comfort zone.

3.5 | Validation measurements
(10 baselines and 3 measures)

1. Data splitting strategies for training and test sets

Facilitating the publication year of scientific articles,
we divided the data into two sub-datasets—one for train-
ing and the other for testing. Following the use of 3- or
5-year citation windows to track research impact (Aksnes
et al., 2019), we split the data with two strategies for
robust check:

• Strategy 1: Articles published in the most recent
5 years as the testing set and the remaining “old” data
for training.

• Strategy 2: Splitting the data with the threshold of the
most recent 3 years.

2. Baselines and measures

The key contribution of the proposed method is to
develop a link prediction-based approach to recommend
knowledge trajectories for target researchers. Thus, we
compared the proposed method with total 10 baselines in
link prediction, recommender systems, and upstream
graph representation learning.

Our method was built on link prediction, and thus we
selected the most mainstream link prediction baselines, cov-
ering traditional models and some recent developments:

• Jaccard Coefficient (JC): A common neighbor (CN)-
based algorithm that calculates the proportion of com-
mon neighbors between two unlinked nodes.

• Adamic-Adar Index (AA): A CN-based algorithm that
assigns more weights to common neighbors with smal-
ler degrees (Adamic & Adar, 2003).

• Preferential Attachment (PA): An algorithm assuming
that the more connected a node is, the more likely it is
to receive new links (Newman, 2001).

• Resource Allocation (RA): A CN-based algorithm that
allocates resources according to the degree of their
CNs (Zhou et al., 2009).

• Weighted Resource Allocation (WRA): A refined RA
algorithm that uses a weighted index to involve edge
weights (Zhang, Wu, Miao, et al., 2021b).

• Semantic Diffusion (SD): To examine whether the
drawback of embedding in local text data (Shang
et al., 2020) exists in our local bibliometric dataset, we
followed the general process of the proposed method

but constructed a semantic layer to replace the co-topic
layer. We generated node vectors using word embed-
ding (Mikolov et al., 2013) and then measured their
semantic similarities.

Considering the overlaps between link prediction and
recommender systems, we specifically chose two typical
recommender system baselines:

• Content-based (Content): Recommending topics simi-
lar to an author's current foci.

• Collaborative filtering (CF): Recommending the topics
of co-authors.

Since machine learning, particularly deep learning,
has been widely applied to either link prediction or rec-
ommender systems, we selected two upstream machine
learning baselines using state-of-the-art graph representa-
tion learning techniques:

• Node2Vec: Considering the bi-layer network as a
homogeneous graph, we represented nodes via node
embedding (Grover & Leskovec, 2016) and trained a
Support Vector Machine (SVM)-based model to predict
the possible connections between researchers and their
unconnected topics.

• Heterogeneous graph neural network (HetGNN): Con-
sidering the bi-layer network as a heterogenous graph
with extra features, for example, papers and venues,
we transformed the graph into low-dimensional
embeddings using HetGNN (Zhang et al., 2019). Then,
similar to Node2Vec, an SVM-based model was applied
for predicting researcher-topic connections.

In terms of validation measures, we exploited three
measures as follows:

• Receiver operating characteristics (ROC) and area
under the curve (AUC).

• Precision: Given a test set with N edges that only exist
in this test set, we measured the proportion of these
edges appearing in the top N prediction list.

• Top k hits: Given a relatively small k, we measured the
proportion of edges correctly predicted in the top
k prediction list.

4 | RESULTS

4.1 | Data description and pre-processing

The DBLP database1 is well known for covering research
articles published in major computer science (CS) journals
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and proceedings, highlighting the CS community's specific
recognition in high-quality journals and reputable confer-
ences. With the open data platform AMiner (Tang
et al., 2008), we collected 4,894,081 articles indexed by
DBLP on April 9, 2020, and before—that is, the DBLP-Cita-
tion-network v12.

We chose AMiner since its released data have already
been pre-processed and stored in knowledge graphs. Specifi-
cally: (1) AMiner has worked on author name disambigua-
tion for years and achieved appealing accomplishments
(Tang et al., 2011). We directly used their disambiguated
names, and retrieved 4,398,138 distinctive authors identified
in the collected dataset; and (2) DBLP articles are linked to
MAG's topic tags, called the field of study (FoS). The FoS
tags were created by hierarchical topic modeling (Shen
et al., 2018), with each article containing one or more FoS
tags. We directly translated these well-recognized FoS tags
as topics, identifying 89,504 distinctive topics. On average,
each topic was mentioned in around 54.68 papers to indi-
cate the topic scale.

In addition to the entire DBLP dataset, we retrieved
11,399 articles on the information science (IS) disciplines
from nine representative IS journals, defined by Hou et al.
(2018)—that is, JASIST, Information Processing & Manage-
ment, Journal of Informetrics, Information Research, Library &
Information Science Research, Scientometrics, Research Evalu-
ation, Journal of Documentation, and Journal of Information
Science. This sub-dataset contained 14,521 distinctive authors
and 7,028 FoS tags, and became our “local” dataset.

Two sets of experiments were designed to examine
the performance of the proposed method in diverse data
scenarios:

• Experiment I: Local dataset (the sub-dataset for the
information science disciplines)—It contains a control-
lable number of articles with relatively high coupling
but not-too-narrow topics, and a general preference for
research collaboration.

• Experiment II: Global dataset2 (the DBLP dataset)—As
a large-scale dataset covering distinct research topics,
the DBLP dataset spans seven of the Web of Science
research areas3: artificial intelligence, cybernetics,
information systems, software engineering, theory and
methods, hardware and architecture, and interdisci-
plinary applications.

For each experiment, we split the data with two strat-
egies: Articles published in 2015/2018 and before as the
training sets, and articles after 2015/2018 as the testing
sets. We used authors, FoS tags, and their co-occurrences
to build up the co-authorship layer and the co-topic layer,
as well as edges connecting authors and topics. With
these steps completed, we constructed two bi-layer

networks, one for the training purpose and the other for
testing. The statistical information of the two experi-
ments is given in Table 1.

4.2 | Experimental results

We applied the diffusion-based network analytics to
Experiments I and II, that is, conducting heterogeneous
network analytics, and scoring and ranking candidate
edges (e.g., >1 million in Experiment I and �30 billion in
Experiment II, see Table 1). Considering the data scale,
we practised two different strategies: For Experiment I,
we conducted a full-set validation by ranking all candi-
date edges; but for Experiment II, we practised two sam-
pling strategies:

• Experiment II (a)—random sampling: We randomly
selected 25,000 positive edges and 25,000 negative
edges, and composed a testing set.

• Experiment II (b)—distribution-retained sampling:
Following the original distribution of the positive and
negative edges in the global dataset, we randomly
selected 1% common authors and 1% common topics
to compose a test set. Generally, the 2015 set contains
2.7 million candidate edges, and the 2018 one has 1.3
million.

Sampling-based validation strategies have been
widely applied in network analytics and graph learning
(Grover & Leskovec, 2016; Zhang et al., 2019). Our sam-
pling strategies followed the validation schemes preva-
lently used by Zhou et al. (2009). However, compared to
randomly selected edges from the entire network, we
sampled candidate edges from the test set—the time win-
dow between the training and test sets may reflect the
actual innovation process. More importantly, aiming to
examine the robustness, for each sampling strategy in
Experiment II, we practised 10-fold cross-validations and
measured the performance via the average values of the
three measures. Table 2 presents the validation results for
Experiments I and II, crossing two data-splitting strate-
gies and the two sampling strategies of Experiment
II. Besides that, we draw the ROC curves and AUC
values of the proposed method and the 10 baselines in all
experiments; see Figures4 in the Supporting Information.

Our method demonstrates recognizable advantages
across the two experiments and the three measures, com-
pared to the 10 baselines. We made the following
interpretations:

• The prior and consistent performance of the proposed
method in both local and global datasets, both data
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splitting strategies, and both sampling strategies, dem-
onstrates its reliability and robustness. Particularly, the
method is superior in the top 100 hits, highlighting its
accuracy in top-ranked topics and reflecting its useful-
ness in actual recommendations—since top-ranked
items are easier to get user attention, their accuracy
could be more practically crucial than that of the over-
all recommendation.

• Resource allocation-based models (e.g., the proposed
method, RA, and WRA) can achieve relatively favorite
performance, since they algorithmically highlight
the role of meta paths in capturing knowledge diffu-
sion in exploratory innovation. In contrast, simply
relying on semantic similarities (e.g., Content and
SD), co-authorships (e.g., CF), and common neigh-
bors (e.g., JC and AA), and sloppily embedding

heterogeneous features (e.g., Node2Vec and HetGNN)
are insufficient.

• SD's unpreferred performance has been expected, dem-
onstrating the drawback of embedding techniques in a
local bibliometric dataset. Compared to a large sparse
co-topic layer, a well-connected semantic layer might
introduce much noise.

In general, the full-set validation of Experiment I
illustrates the remarkable advantage of our method in
recommending knowledge trajectories in a local dataset,
highlighting the nature of interdisciplinary interactions
in exploratory innovation. Despite a sampling-based vali-
dation, the results of Experiment II can still statistically
demonstrate its prior performance on a large-scale global
dataset.

TABLE 1 Statistical information of Experiments I and II.

Experiment I Experiment II

Training set Test set Training set Test set

#
Nodes1

#
Edges

#
Nodes

#
Edges # Nodes # Edges # Nodes # Edges

2015

Co-authorship layer 11,836 15,510 3,415 5,525 3,173,445 9,089,406 1,692,287 5,746,287

Co-topic layer 6,497 122,531 2,348 24,226 83,563 13,493,950 65,904 6,757,798

Eat 18,333 137,779 5,763 30,329 3,257,008 56,547,787 1,758,191 26,175,654

# Papers 9,908 (86.9%) 1,491 (13.1%) 3,610,096 (73.8%) 1,283,985 (26.2%)

# Common authors/common topics/
possible edge2

730/1,817/1,326,410 467,594/59,960/28,036,936,240

# Existing edges (training set)3 14,184 23,158,903

# Positive edges4 4,955 8,982,483

# Negative edges5 1,307,271 28,004,794,854

# Candidate edges6 1,312,226 28,013,777,337

2018

Co-authorship layer 13,612 18,823 1,281 2,046 4,067,201 12,797,994 658,528 18,636,98

Co-topic layer 6,885 133,313 1,019 7,256 88,290 15,669,947 41,826 2,365,718

Eat 20,497 157,167 2,300 9,229 4,155,491 73,125,911 700,354 7,340,919

# Papers 10,948 (96.0%) 451 (4.0%) 4,578,978 (93.6%) 315,103 (6.4%)

# Common authors/common topics/
possible edges

372/876/325,872 327,591/40,609/13,303,142,919

# Existing edges (training set) 6,366 20,794,415

# Positive edges 1,569 2,439,640

# Negative edges 317,937 13,279,908,864

# Candidate edges 319,506 13,282,348,504

Note: (a) # represents the number of related items. (b) Common items are items appearing in training and testing sets, and possible edges represent the
maximum number of edges that can appear between common authors and topics. (c) The subset of possible edges that exist in the training set. (d) The subset
of possible edges that exist in the testing set but not in the training set. (e) The subset of possible edges that exist in neither the test set nor the training set. (f)
The subset of possible edges that do not exist in the training set. Candidate edges = Possible edges � Existing edges.
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4.3 | Algorithm complexity analysis

Computational efficiency is not a key pursuance of most
information studies, as well as ours, but this complexity
analysis demonstrates the balanced performance of our
method in seeking the trade-offs between effectiveness
and efficiency. The experiments were performed on a
high-performance computing server: Intel Xeon Gold
6238R 2.2GHz 28cores (26 cores enabled); 38.5 MB L3
Cache (Max Turbo Freq. 4.0GHz, Min 3.0GHz); 180GB
RAM (Six Channels). Table 3 reports the experimental
time of our method and the 10 baselines in Experiments I
and II (a).

Generally, the proposed method is not the most effi-
cient one among the baselines, but it is far more efficient
than the two traditional recommendation baselines and
the three baselines with neural networks (i.e., Node2Vec,

HetGNN, and SD). Considering the trade-off between
efficiency and performance (Table 2), our method is
superior to the baselines.

One interesting observation reveals that our method
calls data beyond the sample, and algorithmically, it relies
on the topological structure of the network (i.e., reaching
nodes and edges out of the sample data through the diffu-
sion process), which in some sense endorses the reliability
of our sampling-based validation. Specifically, compared to
the 1.3 million candidate edges in Experiment I, Experi-
ment II(a) uses 50,000 candidate edges (i.e., 25,000 positive
edges and 25,000 negative edges). So, in terms of data scale,
Experiment II(a) is smaller than Experiment I, and thus
most baselines require less time in Experiment II(a). In con-
trast, our method requires a much longer experimental
time, indicating its complexity is related to the network
structure rather than the sample scale.

TABLE 2 Validation results for Experiments I and II.

Experiment I Experiment II (a)—10-fold Experiment II (b)—10-fold

Method AUC Precision Top k hit2 AUC Precision Top k hit AUC Precision Top k hit

2015

CF3 0.6997 0.0327 0.120 0.9147 0.8590 1.000 N/A N/A N/A

Content 0.7191 0.0307 0.030 0.9000 0.8339 0.999 N/A N/A N/A

AA 0.7385 0.0379 0.080 0.9274 0.8683 1.000 0.9352 0.0428 0.070

JC 0.3824 0.0024 0.000 0.4841 0.4765 0.864 0.4278 0.0020 0.003

PA 0.7301 0.0575 0.140 0.9223 0.8564 0.996 0.9291 0.0613 0.119

RA 0.7536 0.0555 0.100 0.9542 0.8928 0.996 0.9585 0.0840 0.156

WRA 0.7688 0.0823 0.300 0.9653 0.9127 1.000 0.9678 0.1106 0.234

SD 0.5981 0.0508 0.000 N/A N/A N/A N/A N/A N/A

Node2Vec 0.6336 0.0823 0.300 0.8493 0.9128 1.000 0.8354 0.1107 0.233

HetGNN 0.7175 0.0823 0.300 0.8280 0.9128 1.000 0.8350 0.1107 0.233

Diffusion 0.7740 0.1009 0.530 0.9704 0.9139 1.000 0.9685 0.1166 0.279

2018

CF 0.6350 0.0255 0.050 0.8981 0.8299 1.000 N/A N/A N/A

Content 0.6439 0.0198 0.000 0.8690 0.8010 1.000 N/A N/A N/A

AA 0.6706 0.0242 0.040 0.9028 0.8259 1.000 0.8862 0.0141 0.020

JC 0.4340 0.0064 0.020 0.4247 0.4249 0.945 0.3459 0.0012 0.002

PA 0.6471 0.0529 0.160 0.9078 0.8367 1.000 0.9016 0.0277 0.031

RA 0.6862 0.0389 0.050 0.9445 0.8766 1.000 0.9384 0.0402 0.051

WRA 0.6964 0.0637 0.210 0.9621 0.9055 1.000 0.9560 0.0533 0.059

SD 0.6537 0.0742 0.350 N/A N/A N/A N/A N/A N/A

Node2Vec 0.6110 0.0637 0.210 0.8432 0.9057 1.000 0.8203 0.0535 0.059

HetGNN 0.6965 0.0637 0.210 0.8502 0.9057 1.000 0.8357 0.0535 0.059

Diffusion 0.7009 0.0784 0.370 0.9650 0.9062 1.000 0.9627 0.1058 0.151

Note: (a) We ran each sampling experiment 10 times and recorded the average values of the measures. (b) K = 100. (3) We skipped off CF and Content in
Experiment II(b) and SD in Experiment II due to the extremely high computational cost and its relatively unappealing performance in Experiment I.
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4.4 | Case study: Recommending
knowledge trajectories for information
scientists

To further verify the practical merits of the method, we
conducted a case study with the local dataset. Our goal
was to chart the knowledge trajectories of information
scientists in the dataset. The results of the study not only
showcase the qualitative substance of the proposed
method, but also demonstrate a feasible way to support
decision-making for individual researchers, policy-
makers, and entrepreneurs.

Unlike Experiment I, in the case study, we used the
entire local dataset to construct the bi-layer network,
which included 14,521 authors and 7,028 FoS tags. We
recommended knowledge trajectories for these 14,521
authors to help them step beyond their comfort zones.
The statistical information of the bi-layer network is
given in Table 4.

As noted, MAG's FoS tags were based on hierarchical
topic modeling (Shen et al., 2018). One example regard-
ing this topical hierarchy is “computer science (Level
1)—library science (Level 1.1)—scientific communica-
tions (Level 1.1.1)”. See a sample of FoS' topical hierarchy
in Figure 2. In this case study, we fully facilitated this
hierarchy and used the following strategy to recommend
knowledge trajectories supporting target researchers to
step beyond their comfort zones: Given a target
researcher has already published articles on Topic 1.1, we
marked the sub-branch of Topic 1.1, including Topics
1, 1.1, and 1.1.1, as the comfort zone topics (Green). We
recommended two types of topics beyond the com-
fort zone:

• Neighbor topics (Orange)—topics in the same branch
but different sub-branches, which may refer to inter-
disciplinary exploration.

• Outsider topics (Blue)—topics in other branches, which
may represent new knowledge beyond established
knowledge base.

The complete list of this recommendation can be
found in Table S1, including the top 100 neighbor topics
and the top 100 outsider topics for the 14,521 information
scientists. We also traced the diffusion process and lever-
aged the mediators (i.e., collaborators who have ever
been involved in this topic and may offer helps, and simi-
lar topics which share certain common features with the
recommended topic) in the meta paths to interpret rec-
ommendation results, see Table S2a,b.

Aiming to further showcase the performance of our
recommendation, we specifically chose the recommenda-
tion lists and their explanations for Dr Ying Ding
(Figure 3) and Dr Alan L. Porter (Figure 4), and visual-
ized them in a hierarchical tree—neighbor topics are in
orange and blue nodes represent outsider topics; items
after the recommended topics and linked with dash lines
are related mediators, interpreting why the model recom-
mends. The topical hierarchy (i.e., topic levels and their
upstream-downstream relationships) strictly follows
MAG's FoS system.

We strategically chose the two showcases—both
researchers are involved in inter-/cross-disciplinary

TABLE 3 Complexity analysis.

Method
Experiment I Experiment II (a)
Time (s) Time (s)

CF 36,743 28,562

Content 36,461 3,332

JC 71 270

AA 11 12

PA 11 1

RA 128 12

Node2Vec 28,746 (T) + 65 (I)2 72,368 (T) + 15 (I)

HetGNN 3,548 (T) + 80 (I) 129,653 (T) + 21 (I)

WRA 132 13

SD 21,658 (T) + 135 (I)

Diffusion 126 1,098

Note: For the same reason in Table 2, we skipped off SD in Experiment II(a).

Abbreviations: I, inference time; T, training time.

TABLE 4 Statistical information of the bi-layer networks (case

study).

# Node # Edge

Co-authorship layer 14,521 20,704

Co-topic layer 7,028 137,088

Eat 21,549 165,222

Total 21,549 536,299

FIGURE 2 Sample of the topical hierarchy of FoS tags.
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FIGURE 3 Showcase 1—Recommendations for Dr Ying Ding.
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studies, but with diverse emphases, for example, Dr Por-
ter highlights ST&I studies using bibliometrics and text
mining techniques, and Dr Ding introduces data

analytical models from computer science disciplines for
methodological development in the science of science
studies. Interestingly, in Figure 3, the recommended

FIGURE 4 Showcase 2—Recommendations for Dr Alan L. Porter.
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neighbor topics coincide with Dr Ding's close tie with
data science, particularly information retrieval and
semantic web. Figure 4 recommends upstream data ana-
lytical models and measures to Dr Porter, in line with his
application-driven research foci. Significantly, we col-
lected some inspiring feedback on the two showcases, in
terms of the practical use of the proposed method:

• Different understandings on exploratory innovation:
Application-driven researchers may hold interest on
developing a universal analytical framework for broad
cases and thus prefer exploring cross-disciplinary applica-
tions with outsider topics. In contrast, methodology-
driven researchers are attracted by handleable models
connecting with their current foci, that is, interdisciplin-
ary innovation with neighbor topics.

• System interactivity: Current interpretation may pro-
vide hints on who may have knowledge on the topic
and can offer helps, bur annotations to explain “what
the topic is” will help understand which kind of spe-
cific problems this technique can handle and how tar-
get researchers can adopt this novel tool to their
practical uses.

5 | DISCUSSION AND
CONCLUSIONS

Following the assumptions on exploratory innovation
and knowledge diffusion, this study developed a method
of diffusion-based network analytics for recommending
knowledge trajectories. We constructed a heterogeneous
bibliometric network consisting of a co-authorship layer
and a co-topic layer, analyzed the process of knowledge
diffusion between authors and research topics, and
recommended personalized topics for target authors,
which lie out of their current research foci and could be
their future knowledge trajectories to help step beyond
their comfort zones.

5.1 | Technical and practical
implications

Highlighted as a method of heterogeneous link prediction
with a novel diffusion process, this study brings several
technical contributions and practical implications to the
literature:

Non-parametric and explainable recommendations:
This method contains no super parameters requiring
human intervention or extra experiments. More signifi-
cantly, it inherits the benefits of heterogeneous network
mining, which transparently analyses topological

structures with pre-defined meta paths and achieves
explainable recommendations through mediators in the
diffusion process.

A diffusion process among heterogeneous and homoge-
neous nodes in a bibliometric network: This method
designs a diffusion process to reflect real-world social and
knowledge interactions through pre-defined diffusion
strategies with heterogeneous nodes (e.g., author–term)
and homogeneous nodes (e.g., author–author and term–
term). A heterogeneous link prediction with novel diffu-
sion strategies is then developed, which is new to the
literature.

Comfort-zone topics: Compared to emerging topics,
comfort-zone topics might not be new and have existed
for decades. However, the key point is they have never
been studied by the target researcher, and may enlighten
the recombination with their existing knowledge base
and eventually achieve exploratory innovation. Practi-
cally, different understandings of exploratory innovation
(e.g., application-driven vs. method-driven) may lead to
various preferences, and despite explanations provided
by the topic hierarchy and the diffusion mediators, fur-
ther interpretations on what the recommended topic is
and how to use it could be value-added.

5.2 | Limitations and future directions

As with all studies, ours has limitations that provide
opportunities for future research. (a) As a key drawback
of heterogeneous network mining, the efficiency of the
proposed method could be critical in a large-scale biblio-
metric network (see the complexity analysis in Table 3).
Despite its consistent prior performance in different data
splitting strategies and sampling strategies, using distrib-
uted systems and parallel computing techniques to refine
our algorithm could be among future directions.
(b) Despite acceptable reasons for using the DBLP data as
a global dataset, applying the proposed method to some
well-recognized global datasets (e.g., MAG, Web of Sci-
ence, and Scopus) may create practical significance, such
as understanding multidisciplinary interactions. (c) One
interesting follow-up direction to this study includes
introducing dynamic network analytics to capture the
cumulative changes over time when knowledge trajecto-
ries emphasize the dynamic process of scientific and tech-
nological evolution. (d) A function to recognize and
evaluate emerging/trendy topics will add extra practical
significance.
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ENDNOTES
1 https://dblp.org/
2 Although the DBLP data focuses on computer science and may
not be a typical global dataset, we argue that the rapid develop-
ment of information technology over past decades has led to
active disciplinary interactions that cross relatively broad and
diverse research areas.

3 https://incites.help.clarivate.com/Content/Research-Areas/wos-
research-areas.htm

4 Two figures for Experiment I with the two data-splitting strate-
gies; Forty figures for Experiment II with 10 folders, two data-
splitting strategies, and two sampling strategies.
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