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REVIEW

Gene signatures in U-BIOPRED severe asthma for molecular phenotyping and 
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Gerard H. Koppelmanb,c, Martijn Nawijnb, Alen Faizd, Maarten van den Bergeb,e, Ian M. Adcocka and Kian Fan Chunga,f
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Medical Center Groningen, Groningen, Groningen, the Netherlands; dSchool of Life Sciences, Respiratory Bioinformatics and Molecular Biology, 
University of Technology Sydney, Sydney, Australia; eDepartment of Pulmonary Diseases, University of Groningen, University Medical Center 
Groningen, Groningen, the Netherlands; fRoyal Brompton and Harefield Hospital, London, UK

ABSTRACT
Introduction: The use and generation of gene signatures have been established as a method to define 
molecular endotypes in complex diseases such as severe asthma. Bioinformatic approaches have now 
been applied to large omics datasets to define the various co-existing inflammatory and cellular 
functional pathways driving or characterizing a particular molecular endotype.
Areas covered: Molecular phenotypes and endotypes of Type 2 inflammatory pathways and also of 
non-Type 2 inflammatory pathways, such as IL-6 trans-signaling, IL-17 activation, and IL-22 activation, 
have been defined in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes 
dataset. There has also been the identification of the role of mast cell activation and of macrophage 
dysfunction in various phenotypes of severe asthma.
Expert opinion: Phenotyping on the basis of clinical treatable traits is not sufficient for understanding of 
mechanisms driving the disease in severe asthma. It is time to consider whether certain patients with severe 
asthma, such as those non-responsive to current therapies, including Type 2 biologics, would be better 
served using an approach of molecular endotyping using gene signatures for management purposes rather 
than the current sole reliance on blood eosinophil counts or exhaled nitric oxide measurements.
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1. Toward molecular phenotypes and endotypes

Analysis of clinical, physiologic, and inflammatory features of 
asthma is not sufficient to derive mechanism-based clusters or 
to identify the molecular interactions that underlie these features 
of the disease in an individual person. Recent emphasis on the 
treatment of readily identifiable treatable traits in respiratory dis
ease has led to a path toward personalized medicine but does not 
address the issue of the underlying mechanisms of disease. In 
order to understand such mechanisms, one needs to approach 
the disease as a complex dynamic system with many interacting 
pathways that represent even more complexity than analyzing 
only each of its component parts separately. Thus, it is becoming 
clear that different clinical traits associated with severe asthma, 
such as airflow obstruction or blood eosinophilia, can be linked to 
different molecular pathways. Systems biology models biologic 
systems and processes such as those occurring in asthma through 
multi-scale mathematical and computing methods that integrate 
the biologic networks and pathways involved [1].

This approach is key to achieving the practice of precision 
medicine, which is ‘an approach to treat and prevent disease by 
taking into consideration the individual variability in genes, 
environment and lifestyle for each individual.’ This leads to 
the concept of treating ‘the right patient with the right drug 

at the right time,’ using treatments that are targeted for each 
particular individual [2]. Thus, the composite analysis of the 
genes, proteins, lipids, and metabolites in samples obtained 
from an individual is more likely to indicate potential patho
genic and causative pathways that would be necessary for the 
definition of molecular phenotypes or endotypes based on the 
identification of the driving mechanisms [3]. Targeting the 
mechanisms and pathways driving these phenotypes repre
sents a more successful strategy to achieve effective treatments 
than an analytical approach to clinical phenotypes, as exempli
fied by the success of personalized therapies in oncology.

Molecular phenotypes or endotypes are distinct from clinical 
phenotypes and represent the immune-inflammatory links 
between clinical features and disease-driving mechanisms. An 
endotype was defined in 2008 as ‘a subtype of disease defined 
functionally and pathologically by a molecular mechanism or by 
treatment response. . . ’ [4]. Due to the heterogeneity of asthma and 
the genetic and environmental factors involved in its pathogenesis, 
asthma is not composed of a single endotype, and many distinct 
endotypes may (co)-exist, each associated with specific clinical 
features but reflecting differing molecular causes and clinical 
responses to defined therapies. This may explain why not all severe 
asthma patients stratified to a Type 2 (T2) biomarker-high asthma 
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phenotype (high levels of blood eosinophils and fractional exhaled 
nitric oxide, FeNO) respond similarly to anti-T2 biologics [5].

To approach the definition of asthma endotypes, the focus 
has been on the integration of multi-omics data, which 
included genetics, epigenetics, transcriptomics (gene array 
and bulk and single-cell RNA-sequencing), proteomics 
(unbiased and focused multiplexing), lipidomics, metabolo
mics, and metagenomics, of various samples not only from 
the airways (bronchial biopsy, bronchial brushings, nasal 
brushings, bronchoalveolar lavage cells, and sputum samples) 
but also from other compartments such as blood, urine, and 
breath from patients with asthma of differing asthma severi
ties or clinical characteristics. This approach has been success
ful in identifying subgroups of Chronic Obstructive Pulmonary 
Disaese (COPD) patients within a Swedish cohort using an - 
omics fusion method known as Similarity Network Fusion [6]. 
A similar approach is being taken in the European asthma 
consortium of the Unbiased Biomarkers for the Prediction of 
Respiratory Disease Outcomes (U-BIOPRED) [7].

2. Signatures and gene expression profiling

The advent of high-throughput sequencing has enabled 
simultaneous assessment of the expression of thousands of 
genes in a given sample and has led to an increased interest in 
the identification and generation of gene signatures. The 
identification of disease mechanisms has been made possible 
through the statistical analysis of different levels of -omics 
data, such as transcriptomics or proteomics. This can be fol
lowed by annotation with up-to-date ontologies to generate 
biomarker signatures derived from data collected from 
a single -omics platform or those biomarker signatures derived 
from data collected from more than one -omics platform [8].

Gene signatures are specific group of genes that exhibit 
a coordinated gene expression pattern or alteration associated 

with, or in response to, a particular drug treatment, disease 
state, or biological process [9,10]. These gene signatures can 
therefore be used to classify groups of samples in any inde
pendent dataset. In the context of lung diseases, gene signa
tures can be derived from one’s own cell or tissue data or be 
knowledge-based and obtained from accessible gene ontol
ogy or pathway databases including newly described single- 
cell lung atlases [11,12]. These latter datasets define individual 
lung cell types and activation types. Thus, these signatures 
have been used to interpret the results of analyses of gene 
expression data such as differential expression analysis and 
clustering approaches.

Differentially expressed gene (DEG) analysis is one such 
method and is often employed to compare gene expression 
levels between different groups or conditions to identify 
genes that are differentially expressed. The approaches used 
to identify these signatures typically start by defining a null 
hypothesis, generating a p-value, and then applying 
a significance threshold that considers multiple comparisons 
to minimize the risk of Type 1 error [13]. Several common 
techniques apart from the Wilcoxon rank-sum test are avail
able to calculate different methods of dispersion to moderate 
gene-specific variance to give more accurate DEGs, especially 
for genes with low counts [14–16], and these DEGs can then 
be used as a candidate gene signature. A similar approach, 
albeit more computationally sophisticated, is used to define 
single-cell signatures and activation states and may possibly 
be used in the future to help define or predict super- 
responders to therapies.

Pathway analysis methods for utilizing gene signatures 
and assessing their enrichment in other samples include 
Gene Set Enrichment Analysis (GSEA) [17] and Gene Set 
Variation Analysis (GSVA) [18]. GSEA tests the hypothesis 
that none of the gene signatures is associated with the 
phenotype group. The genes are ranked by the mean 
expression level for the phenotype group and the control 
group. Each gene in the gene signature is then matched up 
to the rank of the gene from the previous step. If a gene is 
in the gene signature, the aggregate gene expression value 
for that group is added to the running sum of expression 
score, and if it is not in the gene signature, then a set value 
is subtracted from the running sum. The peak value of the 
running sum is set as the enrichment score of that 
phenotype.

GSVA is used to calculate the sample-wise enrichment 
(gene set score) of a set of genes (gene signatures) in 
a normalized gene expression matrix. First, the genes are 
ordered by the rank of the expression levels for each sam
ple [18]. Then, for each gene signature, the cumulative 
distribution function of the ranked expression values of 
genes within the gene signature and genes not in the 
gene signature is calculated for each sample. A p-value 
gives the probability they come from the same distribution. 
GSVA can also be applied using an unsupervised approach 
where sample-wise enrichment scores are calculated irre
spective of group labels that express the variation in activ
ity of a set of genes that represents a specific cell activation 
state or pathway over the whole sample population.

Article highlights

● The advent of high-throughput sequencing, enabling the simulta
neous characterization of the whole gene expression of a given 
clinical sample, is leading to the identification of disease 
mechanisms.

● Gene signatures can be used to examine coordinated gene expres
sion patterns or alterations associated with a disease state or biolo
gical process or in response to drug treatment by assessing their 
enrichment using differentially expressed gene analysis and GSVA.

● A semi-biased transcriptomic analysis together with unsupervised 
machine learning analysis of sputum samples identified a Type 2 
high severe eosinophilic asthma endotype and two other distinct low 
Type 2 molecular phenotypes.

● Analysis of gene expression data from bronchial biopsies and epithe
lial brushings identified two subtypes of patients with Type 2 eosi
nophilic inflammation and relative corticosteroid insensitivity.

● Supervised approaches using non-T2 signatures have identified 
patients expressing IL-6 trans-signaling, Th17, and IL-22-associated 
pathways identified within the neutrophilic inflammatory phenotype.

● The use of gene signatures in the clinical setting of the management 
of a patient with severe asthma would enhance our understanding 
of the pathways that may be driving the pathophysiology of severe 
asthma.
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3. Identification of molecular phenotypes in 
U-BIOPRED

All the analyses of gene signatures in severe asthma that 
will be presented in this review will come from the 
U-BIOPRED database, which is a unique database of patients 
with severe asthma with comparative groups of mild- 
moderate asthma and non-asthmatic controls [19]. In addi
tion, readily available biomarkers, samples of blood, sputum, 
urine, nasal brushings, bronchoscopic specimens, bronchial 
brushings, and bronchial biopsies were also obtained for 
various omics platform analyses. Bioinformatic ‘large data’ 
analytical approaches were undertaken in order to link the 
clinical, physiologic, and inflammatory characteristics with 
the omics data so that mechanistic pathways could be 
derived [8]. Hierarchical clustering of the DEGs in an 
unbiased manner and supervised machine learning algo
rithms to refine any signatures that are used to identify 
molecular clsuters have been used in the analysis of U- 
BIOPRED omics data. The molecular clusters so-derived are 
then characterized according to their clinico-physiologic 
features. One reason for focusing on the U-BIOPRED data
base apart from its extensive rich -omics data is that this 

single database has been analyzed in many different ways. 
This review will also bring in published analyses from other 
severe asthma cohorts if only to compare the molecular 
phenotype findings.

3.1. Hierarchical clustering of DEGs in sputum to yield 
gene signatures of endotypes

A semi-biased transcriptomic analysis together with unsuper
vised machine learning analysis of asthma sputum eosinophilic 
samples compared with non-eosinophilic samples identified 
three transcriptome-associated clusters (TAC) [20] (Figure 1). 
The first cluster, TAC1, was characterized by frequent exacerba
tions, severe airflow obstruction, oral corticosteroid-dependent 
asthma, high sputum eosinophilia, and high FeNO, together with 
the expression of IL33R, CCR3, and TSLPR genes. Using GSVA, this 
TAC1 cluster had the highest expression enrichment for the gene 
signatures of the IL-13-induced epithelial cell transcripts and of 
ILC2 activation transcripts, both representative of T2- 
inflammation gene signature. This molecular phenotype forms 
the basis for the severe eosinophilic asthma phenotype.

Figure 1. List of gene signatures associated with each of the transcriptome-associated clusters (TACs) and GSVA heatmap of signatures associated with specific 
pathways. Heatmap showing the GSVA enrichment score of the pathway signatures for IL13-Th2, ILC2, inflammasome, neutrophil, aging, and OXPHOS grouped by 
the TACs. (Data taken from Kuo et al. T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir 
J. 2017;49(2): 1602135.).
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In contrast, TAC2 was characterized by sputum neutrophi
lia, inflammasome activation, interferon (IFN)-α and tumor 
necrosis factor-α–associated genes, and high serum 
C-reactive protein levels, and clinically, these subjects had 
a higher prevalence of eczema and a moderate degree of 
airflow obstruction. Signatures of inflammasome and neutro
phil activation were by far mostly expressed in this molecular 
phenotype, but there was also high expression of the IL-13 T2 
signature, indicating that this phenotype is driven by both T1 
and T2 mechanisms.

TAC3 was associated with pauci-granulocytic asthma 
and the highest expression of metabolic, mitochondrial, 
and ubiquitination pathway genes. Clinically, these patients 
had moderate airflow obstruction and the least number of 
exacerbations. By GSVA, there was highest expression of 
signature for oxidative phosphorylation occurring in the 
mitochondria and for aging signature, which interestingly 
has a mitochondrial component. In a separate analysis of 
U-BIOPRED sputum proteomics, topological data analysis 
(TDA) identified three potential subsets or activation states 
of eosinophilic and neutrophilic asthma [21].

3.2. Clustering of DEGs in bronchial biopsies and 
brushings to yield gene signatures of endotypes

In U-BIOPRED, gene expression data from bronchial biopsies 
and epithelial brushings were used to define molecular phe
notypes of asthma by examining their gene expression pro
files on the basis of important disease drivers as described by 
specific gene sets and derived phenotypes from the gene set 
clusters. Nine gene set signatures applied to genes expressed 
in bronchial biopsies and airway epithelial brushings identified 
two subtypes of patients with Type 2 eosinophilic inflamma
tion and relative corticosteroid insensitivity. The TDA was used 
to provide a very clear way of visualizing the differences in 
gene expression and has been used elsewhere [21]. Feature 
reduction and machine learning (shrunken centroids) analysis 
of these nine gene signatures identified a subgroup of genes 
that were associated with corticosteroid insensitivity, and Type 
2 eosinophilic signatures showed an association between 
CD44 and the T2-associated genes, such as CCL26, IL1R2, 
and CST2. These were also associated with signatures of oxi
dative stress, and the patients exhibiting a high enrichment of 
these signatures were on the highest dose of daily oral corti
costeroids [22]. Using another machine learning tool, an infer
ence tree framework, the inflammatory biomarkers such as 
sputum eosinophilia and FeNO levels were found to predict 
the subtypes of patients with asthma described by gene 
expression profiling. This approach, using a subset of gene 
signatures relevant to asthma pathways, defined the impor
tance of the site of expression of these nine gene set signa
tures in either biopsies or brushings, or in both, in determining 
molecular phenotypes of asthma.

3.3. Omics analysis of clinical phenotypes

3.3.1. Type 2 pathways
We have previously used more than 100 GSVA signatures 
in our analysis of our clinical or molecular phenotypes. 

Several thousand signatures are now available in 
Reactome and MetaCore databases, which may help further 
refine subtype analysis and overcome the problem of tran
scriptomics in multi-omic analysis, i.e. there are far more 
genes (>22,000) than proteins and metabolites that can be 
identified with current technology (~100s to 1000s). 
However, a T2 signature of 34 genes that were shown to 
be upregulated after in vitro stimulation of airway epithelial 
cells with IL-13 was used to observe differences between 
clinical phenotypes [23]. Late-onset eosinophilic asthma 
was analyzed by applying GSVA to a signature of IL-13- 
regulated genes in airway epithelium; this revealed that 
the T2-high phenotype was more obstructed but showed 
no differences in exacerbations, with worse asthma control 
and high blood and sputum eosinophils [23]. Significant 
differentially enriched gene signatures were identified in 
nasal brushings, sputum, and endobronchial brushings in 
adult-onset severe asthma patients compared to child
hood-onset severe asthma [24]. These signatures indicated 
that adult-onset asthma was characterised by inflammatory 
pathways involving eosinophils, mast cells and Group 3 
innate lymphoid cells [24].

In another study of patients with chronic airflow obstruc
tion, differentially enriched gene signatures were associated 
with corticosteroid sensitivity, eosinophils, interleukin-13, IFN- 
α, specific CD4+ T cells, and airway remodeling [25]. Analysis 
of frequent exacerbators (two or more severe exacerbations 
reported in the previous year) versus infrequent exacerbations 
revealed higher Type 1 (T1) and T2 inflammatory pathways 
with steroid insensitivity pathways [26]. For obesity-associated 
asthma, an analysis of epithelial gene expression in severe 
asthmatics identified three clusters, one of which was enriched 
for obesity and gastro-esophageal reflux disease. This was 
a pauci-granulocytic group as a result of reduced mechanisms 
of cell recruitment linked to bile acid exposure and treatment 
with proton pump inhibitors [27]. Current smoking in severe 
asthma was associated with the enrichment of oxidative stress 
and endoplasmic reticulum stress, while CXCL5 and MMP12 
expressions were upregulated in ex-smoking severe asthma 
patients [28].

3.3.2. Non-T2 molecular phenotypes by GSVA
Similar to the use of IL-13-stimulated human bronchial epithe
lial cell (HBEC) signature to identify patients with T2 asthma, 
stimulation of HBECs with non-T2 stimuli has been used to 
define patients with non-T2 subtypes of asthma. Thus, expo
sure of HBECs to a combination of IL-6 and sIL-6R led to 
activation of IL-6 trans-signaling (IL-6TS), selecting a gene sig
nature distinct from that seen with IL-13 HBEC stimulation. 
This signature was upregulated in asthmatic subjects who do 
not express high levels of the IL-13 T2 signature [29]. Similarly, 
stimulation of HBECs with IL-17A produces a gene expression 
profile that is expressed inversely with the IL-13-stimulated 
HBEC signature in asthmatic patients, whose gene pattern 
resembles that reported in skin biopsies of patients with IL-17- 
driven psoriasis [30].

Using the concept of cross-disease stimulation signatures, 
the transcriptomic signature of a drug used in one disease 
may identify individuals who may respond to the same 
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medication in a different disease [31]. Applying the transcrip
tomic signatures obtained by analysis of differential gene 
expression in the skin of atopic dermatitis patients successfully 
treated with the anti-IL-22 monoclonal antibody, fezakinumab, 
to the sputum transcriptomics of patients with severe asthma 
showed a significant enrichment of the signatures in those 
with severe neutrophilic asthma. These subjects had high 
levels of sputum IL-22. Nasal epithelial brushings also gave 
a good prediction of the potential responder population. 
Clinical features and biomarkers identified may be used to 
pick up T2-low asthma patients that might respond to 
Fezakinumab.

4. Gene signatures of activated mast cells

Mast cells have been implicated in asthma, with an important 
role both in inflammation and in innate and adaptive immu
nity, but their contribution in driving the pathways of severe 
asthma is ill-defined. Mast cells respond to the local environ
ment of a mixture of inflammatory mediators that are liber
ated and are difficult to detect by standard methods. 
However, the effects of these mediators on the mast cells 
can be investigated by using gene signatures of mast cell 
stimulation through not only the IgE-FceR1 interaction but 
also IL-33 receptor, toll-like receptor 4, and IFN receptor to 
define severe asthma molecular phenotypes. The IL-33- 
stimulated mast cell signature was associated with severe 
neutrophilic asthma, whereas IgE-activated mast cell signature 
was associated with an eosinophilic phenotype [32]. This was 
the first indication that IL-33 was associated with neutrophilic 
or T2-low asthma rather than T2-high asthma, which has been 
confirmed in subsequent clinical trials [33,34]. These data also 
indicate that mast cells can be induced to take on distinct 
transcriptional phenotypes associated with specific clinical 
phenotypes. Interestingly, in an independent cohort of severe 
asthma from Australia examining differentially expressed path
ways in the transcriptome from endobronchial biopsies and 
induced sputum highlighted the role of CD4+ T cells, mast 
cells and pathways linked to ongoing airway remodeling as 
likely active mechanisms in the pathogenesis of severe 
asthma, a finding reproduced in U-BIOPRED cohort [35].

5. Gene signatures of macrophages

Macrophages and monocytes have also been implicated in the 
pathogenesis of asthma in terms of innate immune response, 
but the pathways involved also remain unclear. We assessed 
the role of various types of macrophages, namely lung tissue- 
resident cells (TR-Mφ) and two for their polarization (classically 
and alternatively activated macrophages: M1 and M2, respec
tively), using gene signatures representative of the activation 
status of these macrophage subtypes. Interestingly, the 
expression scores for most macrophage modules were signifi
cantly reduced in severe asthma except for three associated 
with inflammatory responses driven by TNF and Toll-like 
receptors via NF-κB, eicosanoid biosynthesis via the lipoxygen
ase pathway, and IL-2 biosynthesis [36]. The expression score 
for most macrophage signatures was higher in the TAC3 
group compared to TAC1 and TAC2 asthmatics. However, 

a high enrichment was found in TAC1 for three modules 
showing inflammatory pathways linked to Toll-like and TNF 
receptor activation and arachidonic acid metabolism and in 
TAC2 for the inflammasome and interferon signaling path
ways. TR-Mφ were enriched in TAC3 and associated with 
mitochondrial function. Thus, macrophage activation is atte
nuated in severe granulocytic asthma, highlighting defective 
innate immunity except for specific subsets characterized by 
distinct inflammatory pathways.

6. Future of gene signatures in molecular 
phenotyping and endotyping

There are increasing number of gene signatures now available 
for analyzing gene expression data, and many more are being 
identified and developed following the treatment of cells, tis
sues, and patients with specific therapeutic agents and the 
advent of single-cell analysis. These may be used to define 
changes in cell composition and/or activation states in disease 
or after therapy using cellular deconvolution. The recent pub
lication of the Human Lung Cell Atlas is a useful reference that 
will allow the wide use of this approach for lung diseases, 
including severe asthma [11]. The combination of these new 
signatures along with previously identified pathway and ontol
ogy signatures will enhance our understanding of disease pro
cesses in obstructive lung diseases such as asthma and COPD. 
They also hold the promise of aiding in the identification of 
novel targets/molecular phenotypes that together with new 
noninvasive biomarkers will enable future therapeutic interven
tion in specific subsets of patients. However, we need to 
develop methods to generate and validate these signatures; 
in addition, we need to be able to pick up the best signature to 
use for molecular phenotyping and endotyping of patients with 
severe asthma.

7. Expert opinion

Despite the usefulness of gene signatures in defining the 
molecular phenotypes and endotypes of severe asthma 
patients, their application in the clinical area has hardly 
begun. This approach has been used to support the validity 
of using bedside biomarkers such as blood eosinophil counts 
and exhaled nitric oxide levels as markers of Type 2 inflamma
tion [23]. These biomarkers have also been used to imply 
a non-Type 2 inflammatory mechanism when they fall below 
a certain threshold level. While there is a reasonable predict
ability of Type 2 inflammation in the use of these biomarkers, 
they are not specific enough to pinpoint the type of T2 or 
non-T2 inflammation driving the disease process in 
a particular patient with severe asthma. This is an issue in 
terms of non-Type 2 inflammatory mechanisms, which are 
likely to include several disparate inflammatory and cellular 
pathways. The use of gene signatures would directly enhance 
our understanding of the potential pathways that may be 
driving a particular patient’s severe asthma.

It is clear that taking such an approach will necessitate the 
obtention of cells or tissues that can be obtained through 
bronchoscopic procedure or through the induction of sputum 
cells and running a series of gene or protein expression 
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measurements. In addition, the data would need to be ana
lyzed. The cost of these procedures and assays will be more 
expensive than a blood eosinophil count or a FeNO measure
ment, but they will provide more precise information as to the 
underlying inflammatory and immune mechanisms underlying 
a patient’s severe asthma and more information to establish 
the targets that could be aimed at for a particular patient’s 
asthma. Such an approach would only be available in specia
lized centers. Very likely, this approach may be taken in the 
more severe cases of severe asthma that do not show evi
dence of T2-inflammation with the currently used bedside 
biomarkers or those who have failed on the currently available 
biologic therapies.
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