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Abstract The paper presents a study of networked control systems (NCSs) that are sub-
jected to periodic denial-of-service (DoS) attacks of varying intensity. The use of appropriate
Lyapunov–Krasovskii functionals (LKFs) help to reduce the constraints of the basic condi-
tions and lower the conservatism of the criteria. An optimization problem with constraints
is formulated to select the trigger threshold, which is solved using the gradient descent algo-
rithm (GDA) to improve resource utilization. An intelligent secure event-triggered controller
(ISETC) is designed to ensure the safe operation of the system under DoS attacks. The
approach is validated through experiments with an autonomous ground vehicle (AGV) sys-
tem based on the Simulink platform. The proposed method offers the potential for developing
effective defense mechanisms against DoS attacks in NCSs.
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1 Introduction

The 21st century has seen rapid development in network communication technology, which has revolution-
ized numerous fields, including industrial control. The integration of control theory, control technology,
computer technology, and network communication technology has facilitated the growth of networked
control systems (NCSs) [1, 2]. NCSs have been extensively utilized in diverse applications, as illustrated
in Figure 1, and have emerged as the preferred technology due to the incorporation of communication
and computer technology into the Internet-based TCP/IP protocol [3, 4].

The proposal of NCSs has allowed for the organic combination of regional control nodes and devices,
breaking the information island phenomenon of traditional control systems. This approach expands the
way information is transmitted and enables the diversification of management, monitoring, and control
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Figure 1. Networked control systems and application

strategies across different regions while simplifying the system’s design and improving its reliability and
flexibility [5, 6]. NCSs offer the favored development direction for future industrial control systems as they
can add or delete control inputs and sensors as nodes are added or removed, offering the ability to modify
and adapt the system to meet evolving requirements. Recent research on NCSs has focused on information
transmission security, covert false data injection attacks, and network protocol and bandwidth selection
to ensure that important closed-loop properties are maintained when inserting computer networks into
feedback loops [7–9]. In [7], the author studied the information transmission security problem of NCSs.
In [8], the design and detection of covert false data injection attacks against NCSs were studied from
different perspectives of attackers and defenders. In [9], the authors investigated the choice of network
protocols and bandwidth for NCSs to ensure that important closed-loop properties are preserved when
inserting computer networks into feedback loops.

The security of NCSs can be classified into three main areas, namely information security, functional
safety, and physical security [10]. Initially, functional and physical safety received more attention to
prevent equipment or control system failures [11, 12]. Even in the event of equipment failure, the system
should still be able to enter a safe, normal operating state. However, with the widespread adoption of
Internet communication technology in industrial control systems, the significance of information security
has become more prominent, and the industry has shifted its focus toward it [13]. Previous studies have
proposed various approaches to mitigating the impact of denial-of-service (DoS) attacks on NCSs. For
example, in [4], the authors proposed an improved approach to estimate performance errors caused by
DoS attacks in T-S fuzzy NCSs using suitable integral elastic event-triggered mechanisms and improved
Lyapunov–Krasovskii functionals (LKFs). In [14], a resilient event-triggered strategy was proposed for
nonlinear NCSs with interval type-2 fuzzy models subject to nonperiodic DoS attacks, which aimed
to reduce performance loss. The authors used a new mismatched membership function to simplify the
network control structure under DoS attacks. In [15], an event-triggered control method was presented
to analyze the impact of DoS attacks on NCSs in two cases: with and without DoS attacks. The authors
in [16] proposed the security control problem of NCSs under DoS attacks as a critical research topic.
Moreover, Cheng et al. [17] found that DoS attacks are periodic and studied the relationship between
DoS periodic attacks and decay rates.

This paper proposes a periodic DoS attack with an attacking intensity and studies its impact on NCSs,
building upon previous research. The study of DoS attacks is crucial for the security of NCSs due to the
increasing prominence of information security issues resulting from the application and development of
Internet communication technology in industrial control systems. As a result, there is a growing emphasis
on information security in the industry, and researchers are actively developing strategies to mitigate the
impact of DoS attacks on NCSs. Intelligent transportation systems heavily rely on autonomous ground
vehicles (AGVs), which integrate various high-tech technologies that have been the subject of extensive
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research [18, 19]. AGVs consist of multiple systems and technologies, including expert system planning
functions, computer vision, autonomous navigation, and advanced parallel processing. AGVs can make
independent judgments and plans, accept tasks in natural language, devise task execution methods, and
continuously revise their plans. This design concept enables AGVs to complete tasks autonomously, even
in complex terrain [20]. AGV control systems, as a new interdisciplinary field, can benefit from the use
of NCSs, a novel type of control technology that relies on the Internet after the industrialized control
system [21]. Therefore, combining NCSs with AGV control systems is an area of significant importance
for research.

Based on the previous discussion, this paper focuses on the basic theory of NCSs and AGVs and
conducts research on information security and intelligent secure event-triggered controller (ISETC) design
issues for AGVs. The main contributions to this paper are summarized below:

(1) The paper proposes a model for NCSs under periodic DoS attacks with varying attack intensity.
Suitable LKFs are constructed, and an optimized Linear Matrix Inequality (LMI) is used to analyze
the stability of NCSs.

(2) The paper transforms the selection of the trigger threshold into an optimization problem with
constraints and employs gradient descent algorithm (GDA) to optimize the threshold and ensure
maximum utilization of sampling resources.

(3) An ISETC is designed for AGV’s network communication. The ISETC is used to analyze the security
and stability of the system and ensure that data transmission is not affected by malicious attacks.

Notation: Sym{Q} denotes Q+QT . Rm×n denotes the set of m×n real matrices. In is the n×n identity
matrix. M > 0(≥ 0) indicates M is a positive definite matrix. diag{A1, A2, . . . , An} indicates a diagonal
matrix and the diagonal elements are Ai, i = 1, 2, . . . , n. P−1 indicates the inverse P . PT is the transpose
of matrix P . Rn is the n-dimensional Euclidean space.

2 Preliminaries

A. Event-trigger control and design of DoS attacks

In this paper, we focus on the study of NCSs that are subject to external disturbances as follows:

ẋ(t) = A x(t) + Bu(t) + Cω(t), (1)

where x(t) ∈ Rn means the current state vector; u(t) ∈ Rm is the signal to control the input; the external
disturbance is ω(t) ∈ L2[0,∞); A , B, C are constant matrices.

In addition to external disturbances, this paper also examines the security of NCSs during network
communication transmission. Specifically, we focus on the design of an ISETC to address DoS attacks
that occur periodically and with varying levels of intensity. To model these attacks, we assume that the
system is targeted by hackers at regular intervals, with tkh representing the instantaneous sampling time
point. The DoS attack design is based on prior research [22]:

ϕtkh
=
∞∑
k=1

G δ(t− tkh), (2)

where G is attack intensity; δ(t− tkh) means Dirac function. The S = {tkh}∞k=1 and limk→∞ tkh =∞ is
periodic attack signals. ∆x(tkh) = x(t+k h) − x(t−k h), where x(t+k h) = lim`→0+ x(tkh + `) and x(t−k h) =
lim`→0− x(tkh+ `). This paper assumes that x(t) is right continuous, then we get x(tkh) = x(t+k ) and has
a left limit and the DoS attack interval is shown in Definition 1.

The ZOH function generates a sequence of control signals where the sampling instant tkh satisfies
0 = t0 < t1h < t2h < · · · < tkh < · · · , tk+1h (k ∈ [0,∞)). Assuming that the sampling period satisfies
0 ≤ hm < tk+1h− tkh , hk ≤ hM , and ∀k ≥ 0. Then, we assume that x(tkh) is the value of the current
state of the system thread; x(t∗kh) is the system thread state of the last successful transmission of the
system. We have

e(tkh) = x(t∗kh)− x(tkh), (3)

where e(tkh) indicates the error between the current thread state of the system and the system thread
state of the system’s last successful transmission.
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Figure 2. Event-trigger under DoS attacks

Attacks launched by hackers may cause errors in the trigger control of the system, as shown in Figure 2.
To capture the impact of such attacks, we assume that x(t+k h + σh) represents the system thread state
at the last successful transmission following a DoS attack. The error is defined as follows:

e
(
t+k h

)
= x

(
t+k h+ σh

)
− x(tkh), (4)

where σ ∈ N, e(tkh) represents the error between the current state of the system and the last successful
transmission state when the hacker attacks.

Based on the above analysis, a new ETC is designed as follows [14]:

t+k+1h = tkh+ min
σ
{σ|Θ ≥ 0}, (5)

where

Θ = eT (tkh)Φe(tkh) + ϕt+kh
Υ
(
t+k+1h

)
− ρx(tkh)Φx(tkh),

Υ
(
t+k+1h

)
= eT

(
t+k h

)
Φe
(
t+k h

)
,

and Φ > 0 is a weighting matrix; ρ indicates a threshold parameter; G means attack strength.
Defined the delay at every two successful sampling moments τ , t− tkh. Then, the control signal is

designed as follows:
u(t) = K x(tkh), t ∈

[
tkh, t

+
k+1h

)
. (6)

Based on the analysis of (1)–(5), we can get the following NSCs:

ẋ(t) = A x(t) + BK x(tkh) + Cω(t), t ∈
[
tkh, t

+
k+1h

)
, (7)

where K is a controller gain matrix.

Remark 1. We considered the vulnerabilities of the ISETC in the presence of external attacks and
proposed a novel approach to mitigate the effects of a periodic DoS attack φtkh

with varying strengths G .
Unlike the existing methods proposed in [15, 23], our approach takes into account the attack’s periodicity
and strength, which has important implications for developing effective defense mechanisms. By studying
the behavior of the system under such attacks, we were able to design a robust and secure ISETC that
provides reliable communication in the presence of adversarial interference.

B. Parameter optimization based on gradient descent algorithm

Selecting an appropriate threshold parameter ρ is a crucial aspect of trigger threshold design. The opti-
mization of trigger threshold selection is a complex problem that can be formulated as an optimization
problem with constraints. Based on optimization methods in several studies [24, 25], we also propose
an optimal scheme for designing and optimizing trigger threshold selection. The main objective of the
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scheme is to maximize the utilization of the available sampling resources, subject to the satisfaction of
system performance and stability constraints. The following constraint problem is posed:

max
x∈Rn

F (ρ),

s.t. gk(ρ) ≤ 0, k = 1, · · · , r,
ρl ≤ ρ ≤ ρu,

(8)

where ρ is the threshold parameter that needs to be determined. F (ρ) : Rn −→ R is the objective function.
g(ρ) : Rn −→ Rm denotes a vector function for solving inequality constraint problems at ρ. ρl and ρu

represent the upper and lower bounds of ρ, respectively.
Then, the gradient descent method is used to optimize the target problem by updating the threshold

parameter iteratively. At each iteration, the step length is set as ρk+1 = ρk + mk, where mk is the step
size and lkρk is the descent direction. The optimal threshold parameter is obtained when the objective
function reaches its minimum value.

The parameter ρk is necessary for Pareto optimization, as there is no first-order descending direction
for all individual goals. For all individual goals, there is no first-order descending direction as follows:

range(∇TH(ρk)) ∩
(
−Rn+

)
= ∅, (9)

where Rn+ is said to the pyramid, TH(ρk) is H in ρk of the jacobian matrix. When n = 1, lk = −∇h1(ρk)
for the fastest decline in the direction, which is equivalent to minimizing threshold ∇h1(ρk)l + 1

2 ||l||
2 in

l. 
(lk, νk) ∈ arg max

l∈Rn,ν∈R
ν +

1
2
‖l‖2,

s.t. ∇hi(ρk)>l − ν ≤ 0, ∀i = 1, · · · ,m.
(10)

It is proved that the dual of (10) is a sub-problem
λk ∈ arg max

λ∈Rn

∥∥∥∥∥
n∑
i=1

λi∇hi(ρk)

∥∥∥∥∥
2

,

s.t. λ ∈ ∆n,

(11)

where ∆n = {λ :
∑n
i=1 λi, λi ≥ 0,∀i ∈ {1, · · · ,m}} is a simplex set. According to the theory in [25], we

get the following

∃σ ∈ ∆n → gk(ρ) =
n∑
i=1

λi∇hi(ρk) = 0. (12)

Remark 2. In accordance with the approach described in references [24, 25], selecting an appropriate
threshold parameter ρ is crucial for Pareto maximization. To address this problem, we transform the
process into an optimization problem, which enables us to iteratively determine the optimal threshold
parameter that satisfies the system requirements. By employing the gradient descent algorithm, we accel-
erate the search for the threshold parameter, resulting in optimized parameters that reduce the trigger
rate and save sampling resources. This method has been proven effective in expediting the search process
and enhancing the system’s performance.

The Pareto first-order stationary point, denoted as ρk ∈ P, is obtained by solving the optimization
problem in equation (8) using the proximal gradient algorithm. This iterative algorithm updates the
estimate of the Pareto front using the gradient of the objective function and the proximal operator of the
regularization term. The proximal operator enforces the constraint that the estimate of the Pareto front
belongs to the feasible set P. The algorithm continues to update the estimate of the Pareto front until
convergence is achieved, which is determined by a stopping criterion based on the norm of the difference
between successive estimates of the Pareto front. The algorithm also includes a step size parameter mk,
which controls the step size of the gradient descent update. This parameter is chosen using a backtracking
line search that ensures the update decreases the objective function. The specific steps of the algorithm
are as follows:
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Algorithm 1: Select the trigger threshold ρ based on the GDA
Input: ρk ∈ [ρl, ρu] ⊆ S and a step size sequence mk

Output: ρk+1

1 begin
2 for k = 0, 1, · · · do
3 Compute the gradients
4 ∃λ ∈ ∆n → gk(ρ) =

∑n
i=1 λi∇hi(ρk) = 0

5 Solve the objective function

6 λk ∈ arg maxλ∈Rn ‖
∑n
i=1 λi∇hi(ρk)‖2

7 λ ∈ {λ :
∑n
i=1 λi, λi ≥ 0,∀i = 1, · · · ,m}

8 Iterative the next updates ρk+1

9 ρk+1 = PS(ρk −mkgk(ρ))

10 end

11 end

Definition 1. [26] The average DoS attacks interval of the attack time sequence ϑ = {t1, · · · , tk, · · · } is
equal to Ta if there exist S0 ≥ 0 and Ta, we can get the DoS attacks interval as follow:

T − t
Ta

− S0 ≤ Nϑ(T, t) ≤ T − t
Ta

+ S0,

where ∀T ≥ t ≥ 0 and Nϑ(T, t) is the total number of times the attack sequence ϑ has been hacked over
the time period (t, T ).

Lemma 1. [27] Given a x satisfies x : [a, b]→ Rn. And there are the arbitrary matrices N1, N2 and N3

and the matrices M > 0. We can get the following inequality holds:

−
∫ b

a

ėTMėds ≤ ξTi Ωξi,

where

ξ1 = col

{
e(b), e(a),

1
b− a

∫ a

b

e ds,
2

(b− a)2

∫ b

a

∫ u

a

e(u) dsdu

}
,

ξ2 = col

{
e(b), e(a),

1
b− a

∫ a

b

e ds,
2

(b− a)2

∫ b

a

∫ s

a

e(u) dsdu

}
,

Ω = (b− a)
(
N1M

−1N1 +
1
3
N2M

−1N2 +
1
5
N3M

−1N3

)
+ sym

{
(N1ϑ1 +N2)ϑ2 +N3ϑ

i
3

}
,

ϑ1 = e1 − e2, ϑ2 = e1 + e2 − 2e3, ϑ1
3 = e1 − e2 − 6e3 + 6e4, ϑ2

3 = e1 − e2 + 6e3 − 6e4.

3 Main results

In this section, we consider the scenario where the control gain matrix K is known and establish the
asymptotic stability condition of the system under the designed safe trigger mechanism, which is presented
in Theorem 1. We then proceed to design and solve the controller gain matrix in Theorem 2. To simplify
the notation, we define the following symbols:

α(t) = col{x(t), x(tkh), x(tk+1h)}, hk = tk+1h− tk, hk = t− tkh, Π1 = col{e4 − e1}, Π2 = col{e1 − e3},
Π3 = col{e1, e3, e4}, Π4 = col{e5,0,0}, Φ = col{e1 − e2, e1 + e2 − 2e6, e1 − e2 + 6e6 − 12e7},

ξ(t) = col

{
x(t), x(t− τ), x(tkh), x(tk+1h), ẋ(t),

1
τ

∫ t

t−τ
x(s) ds,

1
τ2

∫ t

t−τ

∫ t

u

x(s) dsdu, e(tkh), edos
(
t+k h

)
, ω(t)

}
,

H̄ = diag{H , 3H , 5H }, ei =
[
0n×(i−1)n In×n 0n×(9−i)

]
, i = 1, 2, · · · , 9.
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Theorem 1. Let hM , hm, and ρ be positive scalars. The NCSs given by (7) are asymptotically stable if
there exist symmetric matrices P, H , any matrix of suitable dimension M , Q, and Yn (n = 1, 2, 3)
that satisfy the following LMIs:

P ≥ 0, H > 0, Ξ ≤ 0, (13)

where

Ξ = Ξa + Sym{Γ∆}+ Θ
(
Υ
(
t+k+1h

))
,

Ξa = Sym
{
eT1 Pe5

}
+ eT5 M Π1 −ΠT

2 M e5 + hkΠT
3 QΠ3 + τeT5 H e5 + Ω,

Ω = ΦH̃ Φ, Γ = eT1 Y1 + eT10Y2 + eT5 Y3, ∆ = A e1 + BK e3 + C e10 − e5,
Θ
(
Υ
(
t+k+1h

))
= eT8 Φe8 + G eT9 Φe9 − σeT3 Φe3.

Proof. Given the LKFs candidate as

V (t) =
3∑
i=1

Vi(t), (14)

where

V1(t) = xT (t)Px(t),

V2(t) = (x(t)− x(tkh))M (x(tk+1h)− x(t)) + hkhkα(t)Qα(t),

V3(t) =
∫ t

t−τ
(s− t+ τ)ẋT (s)H ẋ(s) ds.

We take the derivative of Vi(t), and we get

V̇1(t) = 2xT (t)Pẋ(t), (15)

V̇2(t) = ẋ(t)M (x(tk+1h)− x(t))− (x(t)− x(tkh))M ẋ(t)

+ hkα
T (t)Qα(t)− hkαT (t) + 2hkhkα

T (t)Q[ẋ(t),0,0]T , (16)

V̇3(t) = τ ẋT (t)H ẋ(t)−
∫ t

t−τ
ẋT (s)H ẋ(s) ds. (17)

Using the integral inequality in Lemma 1, the integral term in (17) can be scaled as follows:

−
∫ t

t−τ
ẋT (s)H ẋ(s) ds ≤ −

 x(t)− x(t− τ)
x(t) + x(t− τ)− 2

∫ t
t−τ

x(s)
τ ds

x(t)− x(t− τ) + 6
∫ t
t−τ

x(s)
τ ds− 12

∫ t
t−τ

∫ t
u
x(s)
τ2 dsdu


T

×

H 0 0
0 3H 0
0 0 5H


 x(t)− x(t− τ)

x(t) + x(t− τ)− 2
∫ t
t−τ

x(s)
τ ds

x(t)− x(t− τ) + 6
∫ t
t−τ

x(s)
τ ds− 12

∫ t
t−τ

∫ t
u
x(s)
τ2 dsdu

. (18)

Based on the above results, V̇3(t) can be rewritten as follows:

V̇3(t) ≤ τ ẋT (t)H ẋ(t) + Ω. (19)

The constraints of the unsafe ISETC (5) are considered, and the following inequality is obtained:

0 ≤ eT (tkh)Φe(tkh) + G Υ
(
t+k+1h

)
− ρx(tkh)Φx(tkh) = ξT (t)Θ

(
Υ
(
t+k+1h

))
ξ(t). (20)

Based on the system (7), the following equation is got

0 = 2
[
xT (t)Y1 + ωT (t)Y2 + ẋT (t)Y3

]
[A x(t) + Bu(t) + Cω(t)− ẋ(t)]

= 2
[
xT (t)Y1 + ωT (t)Y2 + ẋT (t)Y3

]
[A x(t) + BK x(tkh) + Cω(t)− ẋ(t)]
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= Sym
{
ξT (t)Γ∆ξ(t)

}
. (21)

According to (14)–(21), the following equation is had as follow

V̇i(t) ≤ ξT (t)Ξξ(t). (22)

Based on the linear convex combinations method [28], for all ξT (t)Ξξ(t) < 0 are established. We can get

Ξ(t = tkh) ≤ 0, Ξ(t = tk+1h) ≤ 0. (23)

Finally, we can conclude that the NCSs (7) are asymptotically stable if the conditions (11) of Theorem 1
are satisfied and if the inequality V̇i(t) ≤ ξT (t)Ξξ(t) ≤ 0 holds. This inequality ensures that the LKF V (t)
is decreasing along the system trajectory, and therefore, the system state will converge to the equilibrium
point. Thus, the designed safe trigger mechanism ensures the asymptotic stability of the NCSs in the
presence of DoS attacks.

Remark 3. Unlike the method in reference [29], the sampling time information is fully considered in
the looped function constructed by V2(t). It contains both the date information on x(tkh) and x(tk+1h),
satisfying limt→t+k h

V2(t) = limt→t−k
V2(t) = limt→t+k+1h

V2(t) = limt→t−k+1h
V2(t) = 0. This method intro-

duces more sampling time information based on reducing the initial constraints. Furthermore, increasing
the information storage of LKFs reduces the conservatism of the criteria.

Remark 4. Analyzing the computational complexity of control algorithms is essential. In this paper, a
loop function is constructed to reduce the initial constraints and therefore decrease the computational
complexity of the control algorithm. The resulting algorithm achieves effective control of AGVs with
relatively low computational complexity, specifically 6n2 +n. Moreover, we were able to verify the results
within an acceptable time using an Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz 1.99 GHz computer.

The control algorithm considers stability analysis and employs an optimization approach to determine
the maximum allowable delay and the controller gain matrix. This guarantees the system’s stability under
DoS attacks while minimizing their impact on the system’s performance. Control Algorithm 2 is based
on the presented stability analysis, and it aims to calculate the maximum allowable delay τmax and the
controller gain matrix K to ensure the system’s stability under DoS attacks. The algorithm is outlined
as follows:

Algorithm 2: The maximum acceptable time delay τmax and controller gain matrix K

Input: The known positive definite vector ρ, hm, hM , µ1, G and µ2

Output: The maximum acceptable time delay τmax and controller gain matrix K
1 Initialize the global counter δi;
2 Reset maximum acceptable time delay τmax;
3 for δi = 0 : 0.0001 : 1 do
4 P ≥ 0, H > 0, Ξ ≤ 0,
5 if There is not a feasible solution then
6 Replace τmax with τmax + δi;
7 Replace δi with δi+1;
8 Return Line 4
9 else break

10 end
11 end

Theorem 2. Let ρ, µ1, µ2, hm, and hM be positive scalars. Consider the NCSs (7) under the designed
safe trigger mechanism. The system is asymptotically stable if there exist symmetric matrices P̃, H̃ ,
and any matrices M̃ , Q̃, and W that satisfy the following LMIs:

P̃ ≥ 0, H̃ > 0, Ξ̃ ≤ 0, (24)

where

Ξ̃ = Ξ̃a + Sym
{

Γ̃∆̃
}

+ Θ̃
(
Υ
(
t+k+1h

))
,
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Figure 3. Schematic diagram of path following model

Table 1. Parameter values of the autonomous ground vehicles

Parameter m Is ln lm Cn Cm

Value 1500 2500 1.3 1.4 40 000 40 000
Unit kg kg· m m N/rad N/rad

Ξ̃a = Sym
{
eT1 P̃e5

}
+ eT5 M̃ Π1 −ΠT

2 M̃ e5 + hkΠT
3 Q̃Π3 + τeT5 H̃ e5 + Ω̃,

Ω̃ = Φ ˜̃H Φ, Γ̃ = eT1 + µ1e
T
10 + µ2e

T
5 , ∆̃ = A X e1 + BW e3 + C X e10 −X e5,

˜̄H = diag
{

H̃ , 3H̃ , 5H̃
}
,

Θ̃
(
Υ
(
t+k+1h

))
= eT8 Φ̃e8 + G eT9 Φ̃e9 − σeT3 Φ̃e3.

Proof. The gain matrix K = W X −1 and Φ = X −T Φ̃X−1 are defined. Pre-multiplying and post-
multiplying (13) by

Y1 = X −1, Y2 = µ1X
−1, Y3 = µ2X

−1, P̃ = X TPX ,

H̃ = X TH X , Q̃ = X TQX , M̃ = X TMX .

Then, the LMIs (23) can be obtained. The detailed proof process is similar to Theorem 1.

4 Illustrative example

We conducted simulation experiments on the Simulink joint platform to verify the effectiveness of the
proposed control algorithm in this paper, using the data provided in reference [19]. The experimental
setup is illustrated in Figure 3, and some data related to the vehicle are shown in Table 1:

The dynamic physics equations for AGV (see Figure 3) can be written as follows:
ė = vx$ + vxφ+ s1,

φ̇ = r − ρ(δc)vx,
$̇ = a11$ + a22r + b1σn + s2,

ṙ = a21$ + a22r + b2σn + s3.

Set the state vector is x(t) = [e, φ,$, r]T , the control input signal is u(t) = σf and the external
disturbance ω(t) = [s1,−ρ(δc)vx, s2, s3]T . Finally, the physical state space model of AGV is expressed as
follows:

ẋ(t) = A x(t) + Bu(t) + ω(t),
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Table 2. The maximum acceptable time delay τmax under different preset sampling periods h

h
Preset sampling periods

0.2 0.4 0.6 0.8 1.0

τmax 1.7963 1.3821 1.1725 0.9974 0.5104

Table 3. The maximum acceptable time delay τmax under different DoS attack strength

DoS attacks
Preset attack strength

1 3 5 8 10

τmax 2.3097 2.0715 1.7401 1.0092 0.5963

where

A =


0 vx vx 0

0 0 0 1

0 0 −Cn+Cm

mv2x
−
(

1 + lnCn+lmCm

mv2x

)
0 0 lnCn+lmCm

Is
− l

2
nCn+l2mCm

vxIs

, B =


0

0
Cn

mvx

lnCn

Is

.
The experimental setup was conducted on the Simulink joint platform to verify the effectiveness of the

proposed control algorithm in this paper using the data provided in reference [19]. The physical meanings
of the parameters were defined in [19]. Specifically, m denotes the weight of the vehicle, Is is the yaw
inertia of the vehicle, ln represents the distance from the rear wheel to the center of gravity, lm indicates
the distance from the front wheel to the center of gravity, and Cn and Cm denote the cornering stiffness
of the front and rear tires, respectively. We set the intensity to G = 10, with an attack period of 0.1,
and assume that hm = 0 and ρ = 0.5. To evaluate the impact of varying hM on the system, we used the
Yalmip toolbox to solve for the maximum acceptable time delay τmax.

As shown in Table 2, the proposed control algorithm in this paper has a maximum acceptable delay
limit of 1.3821 when hM = 0.4. In contrast, reference [19] limits the maximum acceptable latency to
τmax = 0.04. This comparison clearly demonstrates the superior performance of the proposed algorithm in
dealing with system delays and DoS attacks. The impact of DoS attacks on system performance is further
studied, and we conduct simulations with different attack strengths and maximum delay constraints.
Specifically, we set hM = 0.2 and examined the maximum acceptable delay of the DoS attack system
under different attack strengths. The results are presented in Table 3, where we observe that the maximum
acceptable time delay of the system changes with varying attack strengths. Notably, when the attack
strength is set to G = 10, the maximum transmission time delay of the system is τmax = 0.5963. These
results indicate the importance of implementing robust control strategies in NCSs that can handle and
mitigate the effects of attacks, especially high-intensity DoS attacks. The proposed control algorithm in
this paper has a computational complexity of 6n2 +n, which means that the system’s asymptotic stability
can be ensured even with a low number of decision variables. Moreover, the low computational complexity
of the control algorithm reduces processing time and energy consumption, making it more feasible for real-
time control applications. In summary, the proposed control algorithm not only guarantees the system’s
stability and security but also provides practical benefits by minimizing the computational burden and
optimizing resource allocation.

Then, the control gain matrix K = 104[2.0171−1.9720−0.9823−0.6937] was obtained using the
method in Theorem 2 when the parameters µ1 and µ2 were set to 1. This control gain matrix was then
used in a Simulink joint platform simulation experiment to verify the feasibility of the proposed control
design method. The results presented in Figures 4 and 5 demonstrate that the proposed control design
method is effective in mitigating the impact of DoS attacks on the system, as the system can still converge
smoothly under the designed controller and control algorithm, even when subjected to DoS attacks with
high intensity and a short attack period. Furthermore, the study found that the proposed control design
method is more effective than the method presented in [19], as it enables the system to tolerate a higher
maximum delay limit under DoS attacks, as shown in Table 2. These results provide valuable insights into
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Figure 4. System parameter state trajectory response with DoS attacks

Figure 5. System parameter state trajectory response without DoS attacks

the development of robust control algorithms for NCSs that are vulnerable to DoS attacks, highlighting
the importance of implementing such algorithms to ensure system stability and security. Additionally, the
proposed control algorithm has relatively low computational complexity, making it a practical solution
for real-time control applications.

Furthermore, selecting appropriate trigger thresholds is crucial for mitigating DoS attacks in practice.
In this paper, we propose a novel approach based on GDA for optimizing trigger thresholds. By formu-
lating the threshold selection as a constrained optimization problem, we can find optimal thresholds that
minimize the trigger rate of legitimate traffic while maintaining high mitigation of DoS attacks. First, we
iterate through the ρk values using the Python toolbox and then bring the results into the Yalmip toolbox
for solving. This learning algorithm significantly improves resource efficiency by iteratively searching for a
suitable value of ρk. The intelligent trigger threshold search mechanism employs machine learning to find
the optimal threshold, denoted by ρ, by iteratively traversing the range [0, 1] as shown in the sequence
ρ1 → · · · → ρ2 → · · · → ρk−1 → · · · → ρk → · · · . In this way, the algorithm iteratively learns and searches
for the ρk with the lowest trigger rate. Additionally, we present the number of system triggers under GDA
and traditional algorithms are in Figures 6 and 7, respectively. Our results show that GDA-optimized
thresholds can significantly reduce the number of false triggers compared to the conventional method,
resulting in a lower trigger rate of 86.62% for GDA versus 88.5% for the traditional algorithm. These
findings demonstrate the effectiveness of our proposed approach in reducing the impact of DoS attacks
on network performance.

Finally, the optimized trigger thresholds can also provide additional benefits in terms of resource
allocation and system resilience. By reducing the number of false triggers, our approach can free up
more resources for other tasks or mitigate the impact of DoS attacks on system performance. In a word,
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Figure 6. Release instants and time intervals under GDA
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Figure 7. Release instants and time intervals under regular algorithm

our approach can enhance the security and reliability of network systems in the face of increasingly
sophisticated DoS attacks.

5 Conclusion

This paper addressed the issue of NCSs under DoS attacks with periodicity and attack intensity. The
research on the power of the DoS attacks was significant for establishing suitable defense mechanisms. The
paper presented a method to construct appropriate LKFs, reducing the constraints of basic conditions and
mitigating criterion conservatism. Additionally, the paper transformed the selection problem of the trigger
threshold into an optimization problem with constraints and used the GDA to optimize the threshold,
saving sampling resources. An ISETC was designed to ensure the normal operation of AGVs under DoS
attacks. Finally, the proposed method’s effectiveness was verified by simulating the AGVs system based
on the Simulink platform. In the future, further research could focus on developing more sophisticated
defense mechanisms to protect NCSs from different types of cyber-attacks and enhancing the performance
and robustness of AGVs systems under various adverse conditions.
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