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A B S T R A C T   

According to the recent world bank report, around 80% of a life-cycle cost of a road is devoted to maintenance 
which includes monitoring and repair processes. To more effectively keep road serviceability, knowing the 
current status of road health is crucial. Typically, the monitoring processes are handled by human-intensive 
procedures. So, automating this task could lead to saving time and cost and also, improve efficiency. 
Although, this task has been optimized by Ground Vehicles further. Yet it lacks the disadvantages of human- 
intensive procedure. As they are still semi-manual, creates traffic issues, and not being eco-friendly or cost 
efficient. In recent years, UAVs have been successfully utilized to handle a wide range of labor-based tasks 
including road assessments. This paper presents a drone-based solution to automate road monitoring and seg-
mentation as well as addressing the practical challenges of using drones for this purpose. To do so, a platform is 
developed that controls a drone through a road monitoring flight using computer vision-based techniques. The 
platform, rather than sending maneuvering commands to the drone during a flight starting from takeoff to 
landing, firstly could detect road boundaries by finding vanishing points, and secondly, could identify the dash 
lines and the center of the road. Finally, the captured road is segmented and labeled with the temporal and 
geographical information supplied by the Inertial Measurement Unit (IMU) of the drone. It has been tried to 
optimize the platform in order to handle all the processes in real-time while the UAV is following the road during 
a flight. To evaluate the proposed idea, the developed platform is tested in urban areas. The achieved results 
demonstrate how effectively could detect and segment a road in different environments using an off-the-shelf 
UAV. This platform could improve the automation of the data gathering process required in road maintenance.   

1. Introduction 

Roads are one of the most important fundamental facilities in the 
world which are built to facilitate transportation and supply chain. This 
shows that roads are critical for economic development and their health 
needs to be assured by maintaining them in good condition. Road health 
conditions could bring immediate and sometimes dramatic benefits to 
users through better access to hospitals, schools, and markets. In 
contrast, bad road conditions could affect transportation capacity which 
could increase the travel time and cost. Moreover, Road condition shows 
an important aspect of the development of a country and its economic 
level and it has been adopted as rating criteria by the World Bank [1]. 

Thus, transportation agencies constantly make sure that they are doing 
appropriate maintenance planning decisions for road health and moni-
toring [2,3]. Hence, to keep the road in service, it’s regularly 
maintained. 

Road maintenance is a periodic task that requires construction re-
pairs and monitoring to maintain roads in a good health. But road 
maintenance is a costly task, as its been reviewed in Ref. [4] this periodic 
work activity allocates about $500-$700 per kilometer per year. 
Furthermore, delaying road maintenance task causes high direct and 
indirect costs but if road defects repair promptly, they will cost less. As 
the South African National Road Agency Ltd. estimates, repairing costs 
rise to six times maintenance costs after three years of neglect and to 18 
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times after five years of neglect [4]. Due to the labor-intensive procedure 
that road maintenance has, an enormous amount of money debit is is-
sued that obliges many countries to spend only 1/5 to 1/2 of what they 
should initially spend on road maintenance of their own road networks 
[4]. 

Although there has been some type of work in this field of research, 
most of them try to satisfy the problem with equipment that costs as 
much as maintaining it labor-based (e.g. ground vehicles with onboard 
sensors) [5,6]. But both of these mentioned researches [5,6] are 
currently based on manned ground vehicles that are not the best-suited 
device to do this task perfectly and cost-effective. Since they have 
challenges such as environmental pollution and the need of driving 
vehicles. 

Hopefully, in recent years, autonomous navigation systems have 
assisted a wide range of industries to establish more reliable, efficient, 
and faster procedures [7–21]. 

In addition to the adaptation of UAVs in industries, road monitoring 
is another field in which UAVs can be utilized on. With the help of UAVs, 
road infrastructures can have a significant improvement in time effi-
ciency and reduce human intervention for monitoring road health. 
Therefore, UAVs could be hired to find road distress and segment road 
very easily by flying in mid-altitude or low-altitude areas. Doing this 
task with an economic drone helps to reduce the cost of maintaining 
outland or crowded roads. On top of that in terms of being cost-effective, 
it could assist authorities to save money allocated for road maintenance 
tasks. 

In this paper, a platform is developed to automatize and tackle the 
road monitoring task. This platform consists of an out-of-shelf UAV and 
an application to communicate with a drone by giving it commands. The 
platform starts with road detection by using geometry features and 
vanishing points. Furthermore, a road following technique is developed 
for the drone. Meanwhile, the application of the drone tries to segment 
the road based on the dashed line on the road whether it is detected or 
not. Finally, the segmented road is attached with the temporal and 
geographical information supplied by the inertial measurement unit of 
the drone. This procedure of the platform should be able to operate in 
real-time even in high-quality video streams. It is being tried to do this 
task with an out-of-shelf drone which among the other UAV is in the 
mid-range class. All of these processes altogether could provide a reli-
able chance that makes a unique system for road surface monitoring 
with UAVs which also is a cost-effective solution. 

In the rest of the paper, related works are presented in section II and 
then there is methodology in section III, and finally, experimental results 
and conclusion are presented in sections IV and V. 

2. Background and related work 

Automating the road monitoring task can be separated into two 
procedures that’s has been widely adopted:  

i) road detection  
ii) road following 

Road Detection means segmenting a targeted road from a given 

image. Road following can be the next step for autonomous road moni-
toring. It’s a collection of maneuvering commands to trace the road 
within self-navigation. Table 1, summarized the picked approaches of 
the most related works of road detection. As it can be perceived from 
Tables 1 and in this road detection aspect mostly the introduced papers 
are focused on Appearance Cue based methods and learning-based 
methods. 

In the following sections, the most related works in road detection 
and road following are reviewed in detail. 

2.1. Road detection 

Road detection approaches are used vastly in other platforms such as 
Advanced Driver Assistance Systems (ADAS) [28], and road network 
detection as a utility [29]. These approaches can be grouped into two 
factors: i) the altitude of the observer device, and ii) the road structure. 

The distance to the road imagery is based on the altitude of the 
capturing devices to the surface of the ground (referencing point) which 
creates different approaches for road detection techniques. Based on 
altitude, these devices can be categorized into three methods: i) satellites 
as the highest-altitude imagery robots [29]. ii) Ground Vehicles that have 
the lowest referencing point [22], iii) UAVs either Modern drones 
(known as copter drones) or Wing copter drones which perform in mid 
and high altitudes [30]. From these three mentioned methods, moni-
toring roads at high altitudes (e.g. satellite images, aerial images) is 
useless due to the loss of quality of captured road images and being a 
highly expansive method. However, the reason for this imaging is to 
identify the road network for Geographic Information System, [31–33]. 
For instance, Mokhtarzade et al. [29] developed an Artificial Neural 
Network (ANN) for road network detection to extinguish road pixels 
from non-road pixels. Now the hardware technology proceeded, satel-
lites have been equipped with multispectral channel sensors such as 
Quickbird, IKONOS, and SPOT-5, which provided richer spatial infor-
mation. Therefore some of the methods have been utilized on these 
sensors [34,35]. Another type of road detection approach is for the 
low-altitude referencing point mostly used in ground vehicles with an 
onboard camera. In this referencing point, most approaches are based on 
color cue (texture) detection [36–38], geometry features [39–43], a 
combination of road color and geometry features (like road boundary 
information) [36], and machine learning-based approaches for road 
detection [44]. One of the machine learning methods that have gained 
popularity owing to its accuracy is deep learning approaches [24,25,27, 
44–46]. Where it can be more commonly seen in Semantic Segmenta-
tion, and Image Classification field where methods are trained on urban 
datum [47]. Even though this approach outperforms other road detec-
tion approaches in accuracy but still the lack of a specific dataset (road 
images in mid-range altitude) for UAVs and its limitation in processing 
power at the moment, makes using this approach useless. Besides, a 
fine-tuned CNN that have been trained for road detection in ground 
vehicles cannot be used to detect road images that have been captured 
by UAVs at higher altitude. It’s because of the unrelated dataset that the 
CNN was trained on. Although these methods mostly are used in 
monocular cameras because of their beneficial price, but in some 
studies, it’s worth mentioning that laser [48], radar [27,49], and ster-
eovision [50] concepts have been used for road detection. Whereas 
monocular cameras, could be a better choice owing to their low-cost 
price and low energy consumption. 

The second factor of road detection was road structure causes 
different approaches for road detection it can be classified into two 
classes: i) structured roads (e.g., urban roads) and ii) unstructured ones (e. 
g., dirt roads). In structured road detection also called lane detection, the 
most common approaches are Color cues [36–38], which use segmen-
tation of road based on the color of the road. Alongside color cue ap-
proaches there are Hough Line transform [39,40], Steerable filters [51, 
52], and Spline model [41–43] approaches which work with spatial 
features of the road to detect it. They have efficient computation time 

Table 1 
Overview of the most related works focused on Road Detection.  

Road Detection Technique Reference 

Appearance Cue Kong, 2010 [22] 
Appearance Cue Kühnl, 2011 [23] 
Convolutional neural networks (CNN) Alvarez, 2012 [24] 
CNN Laddha, 2016 [25] 
Appearance Cue (Color Based) Wang, 2014 [26] 
Deep CNN and LiDAR Chen, 2019 [27]  
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which makes them suitable for real-time approaches. Alternatively, for 
unstructured roads or roads without remarkable boundaries Alon et al 
[53], have combined the Adaboost-based region segmentation and the 
boundary detection constrained by geometric projection to find the 
“drivable” road area. However, it needs different types of road images to 
train a region classifier, which might be onerous in gathering and la-
beling the data. Kong et al. [22], created an algorithm named Locally 
Adaptive Soft-Voting (LASV) based upon road vanishing point estima-
tion. This algorithm uses two dominant edges for the segmentation of 
the road area. 

2.2. Road following 

Road following task for UAV means following the path of the road 
while trying to centralize the drone with the road. During the naviga-
tion, segmentation should be done along with navigation. Rathinam 
et al. [54] proposed a method for river following using a fixed-wing UAV 
flying at 20 m/s with an onboard monocular camera. Similarly, Rathi-
nam et al. [55] addressed linear structure followed by UAV which they 
followed a canal in their experiment. Frew et al. [56] proposed a road 
following in a wing-copter drone that tracks the roadway to determine 
UAV flight motion. They verified their strategies by hardware in loop 
(HIL) simulation over several kilometers of a straight line. Also, they did 
a hardware experiment with a successful road following an airfield 
runway. They aimed to present a control strategy for Wing copter UAVs 

to follow the road track by using only the vision-based methods. 
In this study, the road detection approach tries to find the road 

boundaries automatically without any human interference. While 
keeping the minimum computation power to make real-time detection 
as the aircraft flies over the road. Hence, a new road detection for UAVs 
by using the main idea of [22] is introduced to detect the subject road 
with a single image without any previous data and in real-time with 
minimum computation. The authors in Ref. [22] presented a road 
detection method with adequate computation power in real-time sce-
narios for Ground vehicles by finding the perpendicular vanishing point. 
But instead of multiple Gabor filters for finding the vanishing point. In 
this proposed method, an enhanced method for vanishing point esti-
mation based on [57] with several tweaks is used for road detection. 
Which makes the algorithm to require less computation power and 
faster. 

3. Proposed methodology 

In this paper, a platform is developed to automatically segment a 
targeted road surface captured by non-expensive UAVs. The proposed 
platform could be used for practical applications such as road moni-
toring and infrastructure health assessment. This platform consists of 
low complexity and, high-performance computer vision algorithms 
which are in charge of three main modules (Fig. 1). 

Fig. 1. The platform overview consists of three modules in the application, Road detection, Road segmentation, and Road following.  
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(a) Road detection  
(b) Road segmentation and rectification  
(c) Road following 

The platform uses the UAV camera to detect the road boundaries and 
segmentize the captured road while the aircraft is flying. The GPS sensor 
of the aircraft embedded in the Inertial Measurement Unit (IMU) is used 
to obtain geographical coordination which later will be used to label 
each road segment. The entire tasks related to the drone are controlled 
by the platform automatically without human interference. This auto- 
pilot feature of the developed platform provides a chance to reduce 
human costs and avoid human errors. Auto-pilot module of the devel-
oped platform is in charge of all flight commands (excluding take-off) as 
well as flight safety issues to make sure that the aircraft stays at the 
center of the road while it’s moving forward. Also, to be noted the 
methodology assumes the road that is going to be inspected is a straight 
road without curved angles. 

The platform needs a routine initialization including locating the 
drone close to a road, connecting the drone to the control unit, and take- 
off. After platform initialization, the aircraft starts to detect the road by 
finding the road boundaries with the help of the perpendicular vanishing 
point. Then, the detected road frame is segmented and labeled with the 
2D position of the aircraft (including latitude, and longitude) for 
possible further maintenance works. In parallel with road segmentation, 
the road following module that consists of the auto-pilot module of the 
platform is in charge of making sure that the drone always flies along 
with the center of the road. This module also corrects the drone flying 
path if wind deviates the aircraft. 

The tangible outcome of the developed platform is a number of 
captured images labeled with spatial and temporal information. The 
acquired images can be utilized to diagnose the health condition of each 
part of the road. 

In the following sections, the three main modules of the platform are 
described in detail. 

3.1. Road detection 

Assuming the aircraft is deployed successfully at the point of the 
subject road at midrange altitude the first step is to find the vertical 
vanishing point of the image. If the vanishing point vp is the hypothesis 
vertical vanishing point of the image there is a set of li that are all the 
edge lines intersect with the vp. These lines are all parallel to each other 
in the real world. It can be assumed that the road is between one of those 
two parallel lines. So, in li set, there is at least a combination of two lines 
which are the right and left boundary of the image frame road. With this 
assumption, the algorithm starts to estimate the vp. 

3.2. Vanishing point estimation 

To begin the vanishing point estimation there are a couple of pre-
processing steps that need to be performed. First, the connected device 
receives the image frame of the streaming video from the drone as a raw 
input. Then, size reduction is applied in order to increase the perfor-
mance and promote real-time ability in weaker devices (portable devices 
like mobile). After size reduction, the frame consists three-dimensional 
array with (1280,720,3) size where the first, and second dimensions 
are the width and height of the frame respectively, and the third 
dimension is the color channel of the frame. 

After that, histogram equalization (HE) and the canny edge detector 
algorithm [58] with a default sigma value of σ = 3 are applied respec-
tively for detecting the edges in the given frame of the video. For HE 
method the cumulative histogram equalization is used [58]: 

HE(v)= round
(

cdf (v) − cdfmin

(M × N) − cdfmin
×(L − 1)

)

(1) 

Where v is the pixel intensity in the frame and cdfmin is the minimum 
value of the cumulative distribution function, M × N gives the image’s 
size and L is the number of image grayscale levels. 

The resulted image from HE equation and canny edge detection is 
used in a probabilistic approach of Hough Line transform [59] to detect 
straight lines of the frame. Extracted lines are filtered by minimum line 
height and maximum gap point based on the image size. The minimum 
line height and maximum gap are calculated as follows where M and N 
are the width and height of the raw input image frame respectively. p 
and e are the static ratios: (both p and e in our experiments were set to be 
0.006 and 0.0016 respectively.) 

min Length=
⌊ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

M2 × N2
√

× p
⌋

(2)  

maxGap=
⌊ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

M2 × N2
√

× e
⌋

(3) 

This thresholding gives an advantage over flexing the algorithm to 
accept the different sizes of an image without manually setting new 
values for each. After the thresholding, to avoid unwanted noise that is 
made by the objects beside the road i.e. grass, trees, or buildings, the 
angle θ between each line and the vertical axis of the image is calculated 
should be θ > 25◦ or it is discarded and not used in vertical vanishing 

point detection. Every resulting edgelet can be represented as E =

{ x→, d
→
, s} where x→ represents the edge line coordinates, d

→
represents 

the edge direction (gotten from the eigen value of the covariance ma-

trix), s is the edge strength. In short, an edgelet line, lE
→

, corresponds to an 

edgelet E where the line passes through x→ and it’s parallel to d
→

. These 
edgelets are sorted in an array, edgelet array, by their edge strength in 
descending way. Then, RANSAC [60] based Vanishing Point algorithm 
detection is used for finding the vanishing point in the frame of the 
image with the help of the edgelets. 

The algorithm that is used to detect vertical vanishing points is 
similar to the one in the Auto-rectification of user photos [57] algorithm. 
The RANSAC algorithm uses random pair of edgelets E to calculate the 

vanishing point. Every pair of edgelet E1( x→1, d
→

1, s1),E2( x→2, d
→

2, s2) can 
be modeled as M(E1,E2) which makes the hypothesis vanishing point 
that is the intersection of the two edgelet lines. The intersection of the 
model M can be calculated as a cross-product of the two edgelet lines: 

vp(E1 ,E2) = l
→

E1 × l
→

E2 . The hypothesis vanishing point can always be 
calculated except in the cases where the random pair of edgelets are the 
same. These exception pairs are dismissed in the calculation. To achieve 
better performance the edgelet pairs aren’t selected completely 
randomly. Instead, the first edgelet, E1, is selected from the top 20 
percentile of the edgelet array (mentioned above) and the second 
edgelet, E2, is selected from top 50 percentile [57]. This effectively 
biases the algorithm towards stronger edges. 

After finding hypothesis vanishing point vp(E1 ,E2) for every model 

M(E1,E2) the algorithm iterates over all other edgelets Ei( x→i, d
→

i, si). 
Each Ei casts a vote for model M as follows [57]: 

vote(Ei,M(E1,E2))=

⎧
⎪⎨

⎪⎩

1 − e− λ cos2 θ

1 − e− λ if θ ≤ 5◦

0 otherwise
(4)  

Where θ is the smaller angle between l
→

Ei and the line consisting of two 
points xi

→ and the hypothesis vanishing point from model M and also λ is 
a system parameter. This voting system gives the maximum vote when 
the edgelet Ei and model M have θ = 0 and the voting rate decreases 
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when θ goes to 90◦ but it has a threshold that votes to zero when the θ >

5◦. The model Mi with the maximal vote is the estimated vanishing point 
vpe. For better insight there is an algorithm overview on Algorithm. 1.  

Once the best model is identified, a re-estimation is done to achieve a 
more accurate vanishing point. For the estimated vanishing point, vpe, 
we find the inlier edgelet lines corresponding to, the vpe with S =

{Ei | vote(Ei,Mbest)}〉0 this makes a list of inlier edgelets. For finding the 

optimal vp∗, ideally the edgelet line l
→

Ei from set of S should pass 
through vp∗ point. In homogenous mathematics, it can be achieved with 

dot production as l
→

Ei .vp∗ = 0 also this formula can be more efficient by 
adding weight for each inlier by having its vote into dot production 
which makes [57]: 

wi × l
→

Ei .vp∗ = 0 (5) 

Having (5) solved in the least squares regression gives out the 
optimal vanishing point only with the defined inlier edgelets. This leads 
to the final calculation of vanishing point vp∗. 

3.3. Road boundary detection 

After estimating the vanishing point vp∗, Road boundary detection 
begins. In the detected edgelets Ei only the ones from set of S are 

included for the road boundaries criteria. Furthermore, every computed 
edgelet line, {E1, E2,…, En}, n ≥ 2, is assigned to the same group set if 

they have 
⃒
⃒
⃒di
→

− dj
→⃒⃒
⃒ < 5◦. In every set only the edgelet that is closer to 

the bottom of the frame is selected as the candidate of the set because the 
bottom edgelets have better image quality and its more noise prone. This 
work reduces the edgelet candidates which help in better performance 
optimization (see Fig. 2). 

Then, each parallel line in the real world intersects with the van-
ishing point of the frame, and a pair of these candidates are able to be the 
boundaries of the frame road. Also, for these candidates each edgelet Ei 
with endpoint ei is calculated as lEi = (xi,N) where N is the height of the 
frame (Meaning that the xi is the horizontal coordinate where the line lEi 

intersects with the vertical bottom of the frame) After calculating the 
candidate xis, those points that fall out of − 0.3 × M < xi < M × 1.3, ei =

[xi,N] threshold where M is the width of the frame are discarded. In 

Fig. 2. Reducing line candidates. a) is before thresholding b) is after thresholding.  

Algorithm. 1 
Vanishing point estimation algorithm 
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other words, those edgelets whose endpoints are positioned more than 
30% (this ratio is calculated by the width of the current frame) outer 
scope of the frame will be deleted. This filtering can be done because this 
study assumes that UAV is hovered on the road hence the road bound-
aries never exceeds the UAV camera angle of view. 

Next, road competence measurement is applied. Each pair of 
candidate areas is measured with edge pixel density. Before, measuring 
the authenticity of road boundaries. The distance between the candidate 
pair’s endpoint needs to be more than 40% of the width of the image. 
Otherwise, the candidate pair will be discarded. 

Now that every pair creates a segmented area, for every pixel in that 
area an image I is formed by with sets of pixels I = {uxy, (x, y)ε β} and β⊂ 
R2 which every uxy is a binary value of being edge or not labeled as uxy ∈

{0,1}. uxy is assigned to the pixel at the position (x, y) of the area. If the 
quantity in I pixels is shown by n, then edge pixel density is calculated as 
(6). Eventually, the road boundary is selected by calculating m for every 
combination of two candidate lines i and getting the minimum i pair 
candidate as shown in (7). 

m=

∑
uxy

n
(6)  

b= argi min

(∑i
xyuxy

ni

)

(7)  

3.4. Road rectification and road segmentation 

After finding the road region in the frame, the detected road can be 
segmented for further inspections that it’s used in the road monitoring 
procedure. These segments need to be added with temporal and spatial 
metadata of their own to ensure that when and where distress or other 
abnormalities are found in one of the road segments. To do so, framing 
the whole road region is unnecessary because in road monitoring as the 
drone moves forward only the lowest portion of the road can be truly 
labeled with accurate metadata and image quality which comes from the 
aircraft IMU and camera. 

In our study, based on the road characteristics there are two methods 
for road region segmentation: 1) cropping a portion of the frame while 
the drone moves forward in a linear speed and 2) dash line tracking 
which means cropping the frame based on the dashed line marking of 
the road. 

When there are no dash lines detected in the road, the algorithm 
crops p percent of the image height from the bottom in every f frame 
(these two parameters depend on the speed and distance that UAV can 
travel in every second) as shown for an illustration in Fig. 3. (In tested 
experiments 15% portion of the road region and 5 frames per segment 
was completely fit). 

If the road has dash line marking in its region, segmentation is done 
by dash line tracking to the targeted road. In-dash line segmentation, the 
road is segmented by the detected dash line marks in the road region. As 
the road boundaries are known to the system, the dash line segmentation 
is applied only on the road mask to reduce detection error of finding the 
dash lines, then finding contours with outer retrieval and simple approx. 
the approach is used [61]. For removing noise objects and saving in 
memory management, contours that areas are less than 10 pixels are 
ignored. Then, The Minimum Bounding Rectangle (MBR) is applied to 
the contours. Now, each valid contour is presented by a rectangle which 
is a dashed line. The center of these dash lines is calculated by their 
up-left and down-right points as shown below: 

centroidi =
(x1 + x2

2
,
y1 + y2

2

)
(8) 

Next, these dash line rectangles contours are sorted by y-axis with 
their centroid. 

Now in every frame, each rectangle is tracked. In the first frame, the 
algorithm sets all centroid point to a unique ID, then in the next frame it 
tries to update centroids by finding their new location, this helps in 
finding new frame centroids and checking the nearest centroid to the old 
one. If there was a distance below a certain threshold (in these experi-
ments 50 pixels as distance threshold worked decently) the centroids are 
updated to their new location, after that all unlabeled new centroids are 
assigned as new centroids. The method uses a unique ID for every dash 
line object and updates their centroid. Meanwhile, if there is a dashed 
line that has not been seen in consecutive frames for about a threshold 
(in these experiments 3 consecutive frames worked decently), it is 
discarded. 

After dash line tracking, each dashed line is labeled with a unique ID 
along with the position they are on. So, in that frame the labeled dash 
line can be shown as (Id,X,Y), and all of them are sorted by their Y’s as 
their position in the vertical axis. The segmentation is applied when on 
the road the lowest dash lines (the lowest is the one that has the mini-
mum Y amount) are dismissed from the video frame. When segmenta-
tion is triggered, the specific road region from the bottom to the next 
dashed line is captured. If the next dash line can’t be found, p percent of 
image frame height is captured (In the experiments 15% portion is 
used). The p percentage of the image frame is user variable which is 
mostly based on the camera resolution, and user preferences. 

Whether any of the two mentioned road segmentation approaches is 
applied to the road, the segmented road region is rectified to enhance 
the monitoring experience. Also, in every road region segmentation with 
the help of UAV IMU, the GPS coordinate of the drone and the captured 
region segment timestamp can be collected to be monitored for later use. 

Fig. 3. Road segmentation and rectifying overview. This figure shows the two mentioned methodology procedures in road segmentation if the dashed line 
is detected. 
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3.5. Road following 

While drone saves image segments of the road, sequentially to be 
able to do road segmentation, road following is needed as well in this 
system, thus after finding road boundaries, the road following technique 
is measured by using the centerline of the road boundaries. This center 
line is calculated by vanishing point and the center of the road bound-
aries end-points (Fig. 4. Illustrate this). Then, maneuvering commands 
are utilized to center the aircraft with the target road. Which makes the 
UAV to localize itself toward the center of the road. 

By assuming that drone flight controls can be translated into lateral 
movement, forwardness, and rotation, the road following method gives 
relative instructions based on center line angle with horizon and dis-
tance of the center line to the center of the image. Here in our experi-
ment as fully mentioned in section IV the tested drone is completely able 
to translate instructions with help of converting the speed into the 
duration of them to happen. As shown in the top-left of Fig. 1 the drone 
control system has Roll, Pitch, and Yaw values for movement. Which is 
equivalent of X, Y, and Z rotation on their axes respectively. In drone 
Flight handling, Pitch is used for heading the drone forward and back-
ward and needs to be chosen correctly to prevent noise and distortion 
production. Roll for lateral moving and lastly Yaw to change the face of 
the drone clockwise or counterclockwise (rotation) so there is no angle 
with the road center line. Making drones centralized to the road is easier 
and better for detection as shown in Fig. 4. The drone at every seg-
mentation goes forward with the help of pitch value and then uses the 
yaw and roll to centralize itself with the road. Yaw is changed when the 
center line of the road makes an angle with horizon more than a specific 
angle which is a user variable (in this study it was 20◦) so centralizing of 
the road is done by rotating clockwise or counterclockwise. Roll 
movement used a similar method to yaw but with distance measure-
ments. The method only uses roll when the distance of the center line is 
more than the specific threshold (in this study it was 10% of the frame 
width). The rolled amount is set based on the direction and distance of 
the center line to the center of the image. The roll movement is the 
measurement of angle, and velocity that will be giving to the aircraft 
SDK as command to tilt the spacecraft either to left or right which will be 
discussed more in Section IV. And other options for in-flight movement 

like the altitude of the drone never change in these experiments. 

4. Experiments and results 

This section describes the configuration and setup of the proposed 
method. Then, two different datasets are introduced. Next, the main 
experimental results are provided. Finally, the performance of the al-
gorithms is estimated with the main metrics. 

4.1. Hardware and software configuration 

The UAV that is used in this research is a quadcopter camera drone 
that is used for overall aerial photography. These drones are quite the 
best known for environmental photography by their price level. Oper-
ating on low-altitude or mid-altitude to capture the best quality images. 
The model of the drone that is used in this research is a DJI Phantom 3 
Standard. It’s one of the most economical drones that can be purchased 
in the industry with a satisfactory camera. The camera of the drone can 
move in 2-axis and provide a front view. This camera is a 4 K resolution 
camera with stability gimbals to avoid blurriness and video noise 
reduction while flying. Also, for the research, an Android mobile device 
with Exynos 9810 CPU, 6 GB of ram, and Android 10 OS (Android Q) has 
been used as a wireless bridge to connect the mobile device to the UAVs’ 
controller and give the aircraft flighting command through the UAV SDK 
command. 

Developed code, UI, App, and test data are available as supplemen-
tary documents to this manuscript. 

4.2. Experimental setup 

To evaluate the platform that is created, a mobile application has 
been developed. This mobile application in order to command the UAV 
that it is used (DJI Phantom 3 Standard) the mobile application com-
municates with the drone by using DJI mobile SDK [62]. DJI SDK also 
has another platform such as Windows PC and an Onboard chip that 
enables the platform to control the drone’s movement and camera of it. 
Although Desktop platform SDKs have more flexibility in coding and can 
have better performance, yet these abilities require a higher-end class of 

Fig. 4. Following the road by controlling Yaw and Roll of the drone.  
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DJI aircraft which are more expensive and it lacks the mobility feature. 
For cost and mobility efficient approach mobile SDK is used. In mobile 
SDK two software environment has been used:  

• The application is developed with Java as native android code and 
the code base interacts with DJI mobile SDK. The application 
transfers the flight commands and receives camera data and logs. 
Additionally, it’s used to save road segments with the help of the 
drone Inertial Measurement Unit (IMU) to tag it along with GPS 
coordinates and the time.  

• Python code is used for Machine Vision algorithm as its the fast way 
to implement these codes. This platform is integrated with the 
Android OS with using Chaquopy SDK which runs python codes in 
android environment. The python version used as implementation 
was 3.7. Also, the scikit-image library and OpenCV 4.0 (Open-Source 
Computer Vision Library) has been used in python. 

4.3. Datasets 

In Order to carry out the experiments, two datasets we gathered: 1) A 

Fig. 5. First dataset samples.  

Fig. 6. Second dataset samples.  
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dataset from videos over the internet with 1920x1080 pixels quality 
(available as sup), 2) Video streams used in live tests from UAV drone, 
DJI Phantom 3 Standard, by using the 1/2.3 CMOS camera mounted on 
the drone. The second dataset is made while the drone was streaming a 
number of roads with variant illumination and surroundings at Ferdowsi 
University Campus roads. Dataset one is used only for road segmentation 
experiments and dataset two is used over the whole procedure of 
experiment process. The first dataset has more road lanes marking vis-
ibility using dashed line segmentation method, but the second one used 

a more practical style with no dashed line marking appearance. Figs. 5 
and 6 are showing several sample frames in these two datasets. Out of 
the second dataset footage, 100 frames of it have been randomly 
exported for the experiment’s evaluation. 

4.4. Road detection measurement criteria 

The accuracy of algorithms is mostly estimated by recall and preci-
sion concepts. The recall is computed as (9) and Precision is the ratio of 

Fig. 7. This figure illustrates the road detection accuracy, Bt is the ground truth of the road area and Bs is the algorithm result of the road detected area.  

Fig. 8. An example of road divisoning for level based evaluation.  

H. Ranjbar et al.                                                                                                                                                                                                                                



Results in Engineering 18 (2023) 101130

10

true positive to whole retrieved detected road as its showed in (10). 

recall=
Bt ∩ Bs (True Positive)

Bt (Positive)
(9)  

precision=
Bt ∩ Bs (True Positive)

Bs (Detected Road)
(10) 

In equations (9) and (10), as shown in Fig. 7, the ground truth is Bt 
and the detected road from the algorithm is Bs. To compute the per-
formance of the road detection, F1-Score (F1) is used which is the har-
monic mean of precision (Pr) and recall (Re) that it is mentioned above. 
The F1 equation is defined as below: 

F1=
2 × Pr × Re

Pe + Re
(11) 

As it was mentioned in the proposed methodology, road segments 
which are the final result of this study are a portion of the targeted road. 
Hence, the entire detected road accuracy is not necessary. That’s why in 
road segmentation average accuracy is based on a portion of the road. As 
shown in Fig. 8, the performance evaluation in Table 2 is divided by the 
portion of the road. Also, to be noted in Fig. 8, the 6th road segment has 
10% portion which is different to other divisions. This is simply due to 
the reason that the image frame isn’t divisible to 15% and better road 
area distribution for accuracy evaluation. 

As its shown in Table 2 the road detection algorithm shows an 
acceptable performance. While having adequate time processing per-
formance on the whole proposed methodology including segmentation 
and following. Table 3 lists the running time on the proposed method-
ology based on the image size it gets as input on 8 core processors based 
on ARM architecture. 

4.5. Vanishing point estimation 

Measuring the correctness of the vanishing point is tested on 60 
images from the second dataset. All images have been resized and 

questioned by three individuals to manually pick out the vanishing 
point. The overall ground truth vanishing point for the selected image is 
estimated to be the mean of the manually picked-up vanishing points. 
Hence, Vg is the 2D location of the vanishing point that is been asked and 
the Vs is the 2D location of the vanishing point that is estimated by the 
algorithm. Then the accuracy has been calculated for every I image in 
the dataset using (12). Considering Vg and Vs being in (x,y) sets d(Vg,Vs)

is the Euclidean distance of these two. Also, M and N are respectively the 
width and height of image I. 

Vi =
d
(
Vg,Vs

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
M2 + N2

√ (12) 

The accuracy of the vanishing point estimation is shown in Table 4. 
For the performance measurements, the processing time in our spe-

cific android device is tested. The algorithm works in real-time (every 
frame takes 0.0625 ms average which is about 16–17 fps) in the mobile 
phone when it’s connected to the UAV beside. To increase the efficiency 
some top percent of the frame can be ignored (like ignoring 10% top of 
the frames). 

4.6. Probabilistic hough line transform thresholds 

For getting the best results from our experiments in Hough line 
transforms, two factors are required: i) line length and ii) maximum line 
gap. Line length is tested from 5 to 30 and the maximum line gap from 3 
to 10. This test ran on over 150 sample images on the second dataset 
with different urban road areas in color and illumination. The best line 
length and line gap were achieved was 0.6% and 0.16% dependent on 
the image diagonal size calculated in (13) which W is the width of the 
image and H is the height of it. Table 5 shows in different factors how 
road detection recall accuracy (9) behaves. 

image size=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
W2 + H2

√
(13)  

4.7. Road following 

In this study, the drone localization system that is been used is the 
body coordinate system. Which means the aircraft movement is 
dependent on the location and orientation of coordinate axes that is 
made and referenced by the drone itself. So, the perpendicular axes are 
defined such that the origin is the center of aircraft mass. As its been 
illustrated in Fig. 1, the X axis is directed through the front of the aircraft 
and the Y axis through the right of the aircraft (related to itself). Using 

Table 2 
Performance evaluation of the proposed detection algorithm based on the 
portion of the road on the second dataset.  

Portion of the Road Precision Recall F1-score 

0–15% 93.48% 92.70% 94.23% 
15–30% 96.57% 92.37% 94.06% 
30–45% 96.67% 92.03% 93.87% 
45–60% 96.71% 91.49% 93.54% 
60–75% 96.53% 90.46% 92.80% 
75–85% 95.87% 88.45% 91.26% 
>85% 92.25% 77.39% 82.51%  

Table 3 
Time-consuming performance on the proposed methodology.  

Image Size Processing Time (sec.) 

1280×

720 
0.35 

800× 600 0.26 
640× 480 0.21  

Table 4 
This tables shows the Vanishing Point accuracy through the second dataset, it 
shows more than 75% of the images are below 1% of the distance between their 
threshold.  

Difference of the Vanishing point in Percentage Number of Images in the dataset 

Below 1% 78% 
Between 1 and 2% 4% 
>2% and <3% 18%  

Table 5 
This table illustrates the average accuracy of the second dataset over different 
line lengths and maximum gap difference.  

Minimum Length Maximum Gap Distance Road Detection Accuracy 

25 10 84.478281 
25 8 90.74258 
25 5 93.424519 
25 3 93.968856 
20 10 81.710503 
20 8 87.507017 
20 5 90.04567 
20 3 93.878717 
15 10 88.648974 
15 8 84.524158 
15 5 89.314293 
15 3 89.767359 
10 10 76.879832 
10 8 81.061006 
10 5 86.221437 
10 3 89.798193 
5 10 84.86027 
5 8 80.000824 
5 5 89.970831 
5 3 80.935054  
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the coordinate right hand rule, the Z axis is then through the bottom of 
the aircraft. Now, each definition of rotational change with certain de-
gree of angle while having velocity on the perpendicular X, Y, and Z axes 
creates the body coordinate system roll, pitch, and yaw respectively. 
Which further results in X, Y, and Z movement in these coordinates. This 
translation happens inside the DJI SDK as the rotation, and thrust (which 

are adjusted) makes the drone to move around these axes. For example, 
if the aircraft is commanded to go forward by a positive angle on Y axis 
(positive Pitch value) and thrust, the back propellors spin faster and 
have move thrust than the front propellors which creates the aircraft to 
go forward. The flight controller automatically balances the thrust on 
each propellor. 

Fig. 9. Inaccuracies in finding the road boundaries. In the example images, road boundaries can’t be estimated correctly because of the car object or trees presenting 
themselves as strong edges. 

Fig. 10. Segmented road fragments with a spatial and temporal label ready to be monitored for a road health condition.  
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The road following system is tested at Ferdowsi University Campus 
Roads and Regions. For Road following five roads had been selected and 
tested. After the drone is set on the center of the road, take off would 
initiate with certain altitude which is based on the user preference. 
Then, the drone can localize itself based on the maneuvering commands 
to the center of the road while it follows it with efficient velocity. The 
altitude in this study varied from 15 m to 20 m, until this threshold 
won’t affect the segmentation module. Also, after several tests, the 
efficient velocity for the drone was chosen to be 3 m/s. Road following 
system has done well in the experiments without the drone being 
deviated. Despite that, the drone camera was able to have a good view of 
the road almost center itself. Also, it’s noteworthy that the calibration of 
the drone helps in more accurate drone command execution. 

4.8. Limitations and generalization of the experiment 

Considering the whole system has been tested infield, the approach 
suffers from a couple of limitations. On road detection technique, due to 
the use of edge detection technique that is implemented. Strong edges 
(objects in the road i.e., cars or shadows) on the road area cause 
inconsistency in finding the road boundaries or even miscalculating in 
finding the vanishing point. Though these limitations were rare on the 
tested dataset as shown in Fig. 9. Although, the proposed methodology 
shows promising result in these experiments. It has only been tested in 
limited number of flights in a metropolitan area. Hence, it’s advised for 
future works to expand the methodology and experiments further to 
adapt the platform methodology on wide range of roads, e.g., rural, 
mountain, and dark road areas. 

In addition, there are also several limitations in controlling the UAV. 
Due to the restriction that it’s in the UAV manufacturer SDK, controlling 
the UAV to its best is impossible. Hence, the system was able to control 
the drone only by some basic maneuvering commanding. 

Also, to be noted in our study the accuracy of the GPS coordinates 
which it’s been used for localizing the resulted segments was around 
±0.5 m. This accuracy although it’s not perfect but shows promising 
result for road monitoring task. 

4.9. Experimental results 

After the whole system is processed through, road segments with 
spatial and temporal information are produced. Fig. 10 Shows some 
examples of the results that is been produced infield. As its illustrated in 
Fig. 10, whenever a successful segmentation happens with utilizing the 
UAV SDK, here DJI SDK, the temporal and spatial information will be 
assigned to each segment for further investigation capability. 

5. Conclusion 

Automating road monitoring tasks is an effective improvement for 
road maintenance planning. UAVs are a better asset in automating road 
monitoring, as compared with other automatic inspection vehicles. In 
this study, a fully automatic system is introduced that automates road 
monitoring with an out-of-shelf UAV. The UAV detects and segmentizes 
the road as it is following the road. The system showed it can work in 
real-time upon tests and its efficiency. The road detection algorithm was 
based on a RANSAC vanishing point and geometry features of the road in 
the referencing point. And centroid tracking-based algorithm was used 
for the segmentation road uniquely. Then, a centerline following-based 
algorithm was used for the road following system. After segmentation, 
the resulted segment is added with its geolocation tag that was gotten 
from IMU, to be helpful in monitoring later on and the whole procedure 
has been tested infield. For future works, we will consider applying deep 
learning methods such as CNN to increase the efficiency of the system in 
general on the dataset. Furthermore, to decrease complexity in the 
proposed approach we will design an end-to-end system for autopilot 

drones in asphalt surface monitoring instead of using a system with three 
separate main parts. 
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