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Abstract

Climate change and increasing human activities are impacting ecosystems and

their biodiversity. Quantitative measurements of essential biodiversity variables

(EBV) and essential climate variables are used to monitor biodiversity and car-

bon dynamics and evaluate policy and management interventions. Ecosystem

structure is at the core of EBVs and carbon stock estimation and can help to

inform assessments of species and species diversity. Ecosystem structure is also

used as an indirect indicator of habitat quality and expected species richness or

species community composition. Spaceborne measurements can provide large-

scale insight into monitoring the structural dynamics of ecosystems, but they

generally lack consistent, robust, timely and detailed information regarding

their full three-dimensional vegetation structure at local scales. Here we demon-

strate the potential of high-frequency ground-based laser scanning to systemati-

cally monitor structural changes in vegetation. We present a proof-of-concept

high-temporal ecosystem structure time series of 5 years in a temperate forest

using terrestrial laser scanning (TLS). We also present data from automated

high-temporal laser scanning that can allow upscaling of vegetation structure

scanning, overcoming the limitations of a typically opportunistic TLS measure-

ment approach. Automated monitoring will be a critical component to build a

network of field monitoring sites that can provide the required calibration data

for satellite missions to effectively monitor the structural dynamics of vegeta-

tion over large areas. Within this perspective, we reflect on how this network

could be designed and discuss implementation pathways.
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Introduction

Biodiversity is under increasing pressure, with approxi-

mately 25% of animal and plant species currently threat-

ened with extinction (IPBES, 2019). The main drivers of

biodiversity loss include the removal of habitats, climate

change and resource extraction pressures (Bowler

et al., 2020; Pimm et al., 2014). The United Nations Sus-

tainable Development Goals aim to address global biodi-

versity challenges through ambitious, community-led

conservation and restoration interventions, in particular

for habitats and associated ecosystem service provisions.

This acknowledges that natural habitats are necessary for

the maintenance of biodiversity (Maron et al., 2018; Sin-

clair et al., 1995). Healthy ecosystems provide resources

and services essential for a range of economic activities

supporting livelihoods, food and water security (D�ıaz &

Malhi, 2022). Loss of healthy ecosystems can impact

human health directly (pests and diseases) or indirectly

(water and soil quality) and can amplify the effects of cli-

mate change in both urban and rural areas (Mulu-

neh, 2021; Shin et al., 2022).

The development of essential biodiversity variables

(EBVs) provides a framework and set of indicators for

monitoring biodiversity (Scholes et al., 2012; Skidmore

et al., 2021). This framework has been developed to pro-

vide a reliable, technically feasible and economically viable

tool for evaluating the effectiveness of interventions aimed

at reversing or halting biodiversity decline. EBVs are mea-

surable indicators designed to capture critical scales and

dimensions of biodiversity with the ability to measure

change through time. Within the context of this paper,

we focus on vegetation ecosystems such as forests and

savannas. Their ecosystem structure (e.g. ecosystem live

cover fraction, ecosystem vertical profile) and function

(e.g. primary productivity, vegetation phenology) are two

of the six currently recognized classes of EBVs (https://

geobon.org/ebvs/what-are-ebvs/). They can be measured

using remote sensing and coupled with EBV classes relat-

ing to species and species traits (Valbuena et al., 2020),

making them attractive to ecologists and conservation

practitioners.

Ecosystem structure and function are often linked

(Calders, Phinn, et al., 2020). Forest canopy structure

affects movements and abundance of (semi)-arboreal spe-

cies, shaping resource and habitat availability, connected-

ness (Deere et al., 2020; G�amez & Harris, 2022; McLean

et al., 2016) and microclimate (Boyle et al., 2021; De

Frenne et al., 2013). Plant area volume density (PAVD, in

m2/m3) vertical profiles in forests or savannas provide a

direct measure of the degree of plant material occupying

the vertical niche space (Marselis et al., 2019). PAVD pro-

files capture the complexity of vertical strata within the

vegetation and are therefore directly related to EBV eco-

system vertical profile and biodiversity in general. PAVD

has been linked to tree species richness across savannas to

disturbed old-growth forests in Gabon (Marselis

et al., 2019), but also diversity of small mammals in for-

ests of the Brazilian Cerrado (de Camargo et al., 2018)

and Wisconsin, US (Schooler & Zald, 2019). Plant area

index (PAI, in m2/m2) refers to half of the surface area of

all aboveground canopy elements per unit of horizontal
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ground surface area and is the vertically integrated PAVD.

Leaf area index, the foliage component of PAI, exerts

major controls on exchanges of water, gas (including car-

bon dioxide) and energy in forest canopies.

Spaceborne remote sensing systems specifically designed

for vegetation structural assessment (e.g. NASA Global

Ecosystem Dynamics Investigation GEDI, ESA BIOMASS

and NASA/ISRO NISAR) have the potential to provide

insight into biodiversity at global scales (Skidmore

et al., 2021). Their utility in assessments of change in eco-

system structure (e.g. biomass, extent, height, fragmenta-

tion) and threats (e.g. logging, infrastructure expansion)

to biodiversity and ecosystems has been embraced by the

science community, with high-impact research demon-

strating global patterns of change (McDowell et al., 2020).

However, the interpretation of satellite data and derived

metrics for EBVs, especially in the context of programmes

for monitoring biodiversity at global scales, has been

shown to be challenging. This is due to spatial scale

effects (Comber & Wulder, 2019; Disney et al., 2019;

Marselis et al., 2022), non-frequent sampling (Valbuena

et al., 2020) and sensor data limitations (Pennisi, 2021).

The EBV ecosystem vertical profile can be quantified as

PAVD from a single observation; however, other EBVs

such as ecosystem phenology or monitoring the impact of

and recovery from disturbances (Bright et al., 2019)

require a time series of observations (De Keersmaecker

et al., 2022). Interpretations of satellite sensor data are

also highly dependent on the availability of accurate and

co-incident ground reference measurements used for the

calibration and validation of metrics generated from data

acquired by the sensor (Duncanson et al., 2020). The sites

used for collecting calibration measurements should be

representative of ecosystems at a global scale with suffi-

cient numbers and lifespans to allow the detection of

gradual changes in space and time. For EBVs related to

structure and function, such in situ data would ideally

capture full three-dimensional structure and dynamics at

local scales to allow capturing the forest structural com-

plexity relevant for biomass distribution, canopy density

and connectedness (Ehbrecht et al., 2021), driving vegeta-

tion ecosystem functions and ecosystem services (Calders,

Phinn, et al., 2020). In situ measurements of PAI and

PAVD have the ability to capture small but significant

shifts in structural dynamics (Calders, Origo, Disney,

et al., 2018), thus allowing for quantification of temporal

and spatial trends of EBVs. Previous work has demon-

strated the ability of terrestrial laser scanning (TLS, also

called terrestrial lidar) to capture forest structure and its

dynamics (Smith et al., 2019; Stark et al., 2012). Recent

advances in TLS sensors and algorithms have allowed us

to monitor three-dimensional vegetation structure with

high spatial detail (Calders, Adams, et al., 2020). Typical

measurements with TLS are mainly focused on acquiring

data at a single point in time (e.g. EBV Ecosystem Verti-

cal Profile) or non-frequent revisits of sites. However,

some studies have demonstrated the use of TLS for moni-

toring vegetation structural change with a high-temporal

frequency (Calders et al., 2015; Campos et al., 2020;

Nunes et al., 2022).

Within this paper, we demonstrate the potential of

high-frequency terrestrial lidar remote sensing to monitor

vegetation structural change at the timescales of processes

driving that change. We illustrate how a 5-year time series

of TLS data can be used to derive important metrics of

forest structure related to key EBVs, and for calibration

and validation of satellite-based global vegetation struc-

ture monitoring. We then discuss the limitations of tradi-

tional TLS systems for temporal studies and present an

automated structural monitoring concept based on a net-

work of field monitoring sites on a global scale. We iden-

tify the goal of a global network here because the

protection of our vegetation ecosystems and the biodiver-

sity they support require a global view and hence a sys-

tematic global network of calibration sites.

Proof of concept: high-temporal TLS

Approaches for analysing three-dimensional TLS data

from vegetation can be broadly categorized into (1)

explicit geometrical modelling and (2) turbid medium

methods (Newnham et al., 2015). The latter is typically

used to estimate PAI and PAVD using pulse-based

(Calders et al., 2014; Jupp et al., 2009) or voxel-based

(B�eland et al., 2014; Pimont et al., 2018) approaches, and

are well-suited for objective and automated processing of

large amounts of structural data related to EBVs. Both

turbid medium approaches have been extensively used to

characterize vegetation canopies and are implemented in

open-source libraries such as pylidar (www.pylidar.org)

or AMAPVox (Vincent et al., 2017).

Vegetation phenology typically encompass a permanent

signal (‘background signal’) and a variable signal that cor-

responds to seasonal dynamics (Clerici et al., 2012). This

variable signal can be characterized by an initial growing

period (e.g. leaf emergence), a maturity period (maxi-

mum leaf area) and a senescence period (e.g. leaf senes-

cence or abscission). As such, phenology determines, for

example, carbon uptake by trees, crop yield potential,

plant competition and resource availability for wildlife

and surface albedo and microclimate. We recently dem-

onstrated the potential of TLS data, acquired with a

RIEGL VZ-400 survey-grade TLS instrument at four sam-

pling locations in Dassenbos, a broadleaf deciduous forest

in Europe (Wageningen; the Netherlands; 51.9829°N,
5.6558°E) to monitor spring phenology and quantify
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structural impacts from storm damage (Calders

et al., 2015). TLS measurements of structural change gen-

erally corresponded well with field observations of leaf

phenology, overcoming limitations of MODIS-derived

NDVI time series, which showed a lag to detect the start

of the season (7–12 days). TLS measurements were also

capable of separating structural changes of tree canopies

and understory (Calders et al., 2015; Nunes et al., 2022),

which is not possible to do directly using satellite mea-

surements from passive sensors.

Continued repeat measurements over a 5-year period

at the same four sampling locations consolidated the

potential of TLS for monitoring phenology (Fig. 1). Fur-

thermore, the extended data collection periods in 2016,

2017 and 2018 demonstrated new opportunities, such as

capturing the start and end of the growing season, from

which one can calculate its duration. The latter could

prove invaluable for monitoring climate change effects

on vegetation senescence at regional scales, for which

evidence remains inconclusive or sparse (Gill

et al., 2015). It could therefore provide complementary

information to existing measurements such as the

PhenoCam network (Brown et al., 2016; Wingate

et al., 2015). However, our time series also illustrates the

practical limitations of this approach using TLS. This is

mostly due to the practical limitations of surveying TLS

instruments such as power requirements, the need for a

field crew or the robustness of re-measuring the same

location. The relatively high purchase costs can be diffi-

cult to justify for dedicated high-temporal measurements

at a single site (or a few sites in close proximity) only.

Restrictions in instrument availability are also present in

our data, where periods with no data correspond to

periods when instruments were unavailable. Furthermore,

TLS instruments are often over-designed for the purpose

of gap probability analysis and sensors with more sparse

angular sampling can be used (Calders et al., 2014) as

long as the onboard laser is powerful enough to exit the

canopy. Whereas our 5-year TLS time series illustrates

the potential of active ground-based monitoring, the

practical limitations discussed mean that this approach

is currently not scalable for establishing a global network

for high-temporal monitoring of structural dynamics of

forests.

Figure 1. Five-year dynamics of forest structure for the four sampling locations in Dassenbos. Data were collected using the same measurement

protocol and data analysis as described in Calders et al. (2015) using a zenith range of 35–70° for 184–186 (some scans were discarded for qual-

ity purposes) measurement days during the period from February 2014 to November 2018. Panel (A) represents total canopy plant area index

(PAI) estimates derived from a terrestrial laser scanning (TLS) vertical plant profile. Panel (B) shows plant area volume density (PAVD) for each mea-

surement at sampling location A.
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Automated high-temporal laser
scanning is necessary to build a
global-scale network for vegetation
structure monitoring

To make ground-based monitoring feasible at a network

scale, automated and cost-effective high-temporal laser

scanners are needed to overcome the practical limitations

of repeat monitoring of vegetation with TLS sensors. Eitel

et al. (2013) demonstrated a prototype for automated

laser scanning. The first automated laser scanning instru-

ment designed for permanent outdoor deployment was

the VEGNET In-Situ Monitoring Lidar (IML) (Culvenor

et al., 2014; Griebel et al., 2015; Portillo-Quintero

et al., 2014). This IML sensor used an off-the-shelf phase-

based laser rangefinder and scanned at a fixed zenith

angle, Θ, of 57.5°. At this ‘hinge angle’ of 57.5°, the

foliage angular projection function G(Θ) is essentially

invariant at 0.5 over different leaf angle distributions

(Ross, 1981), allowing for straightforward calculation of

PAI using directional gap probability-based methods such

as those described by Jupp et al. (2009). A major limita-

tion of the VEGNET IML sensor was the maximum range

of 60 m, which precluded monitoring very tall forests,

and the low reflectance of foliage at the laser wavelength

of 635 nm. The range is important because laser pulses

need to ideally be able to escape the canopy to correctly

calculate the gap fraction and derived vertical plant

profiles.

Recent developments in sensors overcome the range

limitation of the discontinued initial VEGNET IML. For

example, the LEAF sensor has an extended range of

100 m, as well as improved protection against dust and

rainfall. It uses a 905 nm time-of-flight laser with beam

divergence of 5 mrad and has a hemispherical scan range

of 0–360° in azimuth and 0–130° in zenith. Ancillary sen-

sors for monitoring instrument status increase the success

of long-term deployments, such as an internal humidity

sensor to alert water ingress, and a tilt sensor for detect-

ing movement of the sensor tripod, for example, from

wild animals or unstable ground following rain. In Fig-

ure 2, we demonstrate the use of a LEAF sensor at a trop-

ical savanna site near Darwin, in Northern Australia. The

region has a tropical climate with a distinct wet season

(November to April) and dry season (May to October).

The field site is characterized by a sparse Eucalypt over-

storey with sub-strata of small trees, shrubs and tall grass.

The site had a planned fuel reduction burn in May 2021,

resulting in the removal of grass fuel and some loss of

foliage from fire-tolerant trees. One LEAF sensor was

installed in mid-July 2021 and was configured to acquire

daily hemispherical scans with an angular resolution of

1.8° in azimuth and zenith, resulting in 14 400 laser

samples (‘shots’) and scan duration of 14 min. To maxi-

mize signal-to-noise ratio, scans commenced at 9 PM local

time, that is at a time of negligible solar illumination.

The instrument was removed on 31 May 2022 while

another fuel reduction burn was conducted. It was rein-

stalled 1 week later at the same location and another

6 weeks of data acquired for inclusion in analysis. The

dataset presented therefore spans 12 months and captures

the structural impact and response to two fuel reduction

burns.

From July to November 2021, Figure 2b shows a rela-

tively static understorey and overstorey and a gradual

increase in PAI in the mid-stratum from 6 to 9 m. Com-

mencement of the wet season in November was associated

with a sudden increase in PAI from understorey vegeta-

tion (1.5–4 m) and an accelerated increase in PAI

through the mid-stratum. The low-stratum and mid-

stratum trees are more shallow-rooted than the overstorey

trees and therefore more dependent on seasonal rains for

growth. These trees and shrubs will also have been more

affected by the fuel reduction burn than the overstorey

trees and thus may exhibit a more notable increase in

aboveground biomass under favourable growing

conditions.

Figure 3 demonstrates the co-deployment of two LEAF

sensors in Wytham Woods, UK (https://www.forestgeo.si.

edu/sites/europe/wytham-woods). The forest is a typical

temperate forest site in southern Great Britain (Kirby

et al., 2014) and is dominated by three deciduous species,

Fraxinus excelsior, Acer pseudoplatanus and Corylus avel-

lana. The sensors were installed in early March 2022 so

they could simultaneously capture the spring phenology

in close proximity, which typically results in an ‘S-curve’

that is characterized by a period of rapid growth and con-

vergence towards a stable plateau of maximum PAI

(Calders et al., 2015). The aim here was similar to phe-

nology monitoring in Dassenbos (Fig. 1), with an interest

in acquisitions from multiple instruments located in sepa-

rate plots with near proximity, thereby eliminating

between-plot variability due to sequential acquisitions and

potentially different background illumination and weather

conditions. The LEAF instruments were configured to

acquire daily ‘hinge’ angle scans, consisting of five azi-

muth scans, or ‘rings’, centred on 57.5° zenith with an

angular separation in zenith of 0.45°. Angular resolution

in azimuth was 0.067°, resulting in 27 000 shots over a

period of 21 min. Scans commenced at 10 PM local time

irrespective of weather conditions. The data show inter-

esting differences in PAI time series at the two plot loca-

tion within Wytham Woods. Sensor 302 has an overall

lower PAI in leaf-off conditions that continued until late

April. Sensor 302 sees a larger increase in PAI compared

to sensor 301, and Figure 3b and c suggests that this is

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 591
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mainly driven by a higher leaf onset in the canopy layer

between 10 and 15 m.

Irrespective of which automated lidar sensor is used,

filtering data due to adverse weather will be a necessary

step in time-series analysis. At a forest site in southern

Australia with a typical Mediterranean climate, Culvenor

et al. (2014) discarded approximately 50% of their IML

data due to wind and rain over a 1-year period. In con-

trast, Griebel et al. (2015) discarded just 16% of data

from the same instrument type due to high wind speeds

and condensation over a 2-year period, highlighting that

local site conditions can exert strong influences on data

quality and quantity. Dominant seasonal factors such as

monsoonal rainfall also need to be considered. For exam-

ple, while only 17% of scans were rain affected at our

study site in Northern Australia (Fig. 2), the absence of

any usable data during the high rainfall month of March

resulted in a notable gap in the time series. Data loss

from rainfall can partly be addressed by oversampling

temporally (i.e. more than one daily acquisition) at the

cost of increased demand for power and data storage.

Another solution currently being evaluated involves the

Figure 2. Time series of (A) total canopy plant area index (PAI) and (B) plant area volume density (PAVD) from high-temporal laser scanning at a

tropical savanna site in Northern Australia. Planned fuel reduction burns were conducted in May 2021 and June 2022. LEAF sensor was installed

in mid-July 2021. Data showing from installation until 20 July 2022. Of the 368 hemispherical scans acquired, 64 scans were identified as rain

affected and removed from the analysis. PAVD profiles were calculated for the remaining 304 hemispherical scans at 0.5 m height increments.

Gaps in the time series were filled using linear interpolation and then averaged at a weekly timescale for visualization, that is each ‘square’ in the

PAVD plot (B) represents 0.5 m in height and 1 week in time. All scans during March were rain affected and discarded with PAVD (and derived

PAI) assumed to be static during this time (red line).
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Figure 3. Time series of (A) total canopy plant area index (PAI) and (B, C) plant area volume density (PAVD) from high-temporal laser scanning

with LEAF at two locations in Wytham Woods, UK, from 5 March until 22 June 2022. Of the 110 scans acquired by each instrument, 20 scans

were rain affected and discarded from further analysis. PAVD profiles were calculated for the remaining 90 hinge angle scans at 0.5 m height

increments. Gaps in the time series were filled using linear interpolation and then averaged at a weekly timescale.
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use of rainfall sensors to reschedule scans if rainfall is

detected prior to a scan commencing.

Outlook and conclusion

Past work using passive sensors demonstrated the value

of global datasets of forest structure (Pfeifer et al., 2018)

or the use of automated measurements using digital

hemispherical photography (Brown et al., 2020). Within

this paper, we demonstrated the added value of the third

spatial dimension (detailed vertical profiling) to structural

monitoring through active ground-based sensors, and the

addition of the fourth dimension, time (monitoring verti-

cal structural changes), through automated monitoring.

These measurements enable the study of vertical struc-

tural dynamics of vegetation by separating multiple vege-

tation layers, which have been demonstrated to play an

important role in defining 3D niches in the context of

habitats and biodiversity (G�amez & Harris, 2022). A study

of forest leaf area in the Amazon by Smith et al. (2019)

showed how compensating shifts in overstorey and

understorey dynamics resulted in a net neutral PAI esti-

mate for all strata combined, emphasizing the importance

of vertical structural information for describing plant

phenological strategies in mixed species environments.

Similarly, the ability to monitor canopy layers separately

(as opposed to full canopy-integrated metrics) supports

inferences about where and how seasonal dynamics are

taking place in the canopy (Griebel et al., 2017; Nunes

et al., 2022). These continuous observations can also be

related to measurements from active airborne and space-

borne sensors including LiDAR waveforms and tomo-

graphic SAR backscatter profiles (Fatoyinbo et al., 2021).

Establishing a global network of 4D monitoring of veg-

etation structure, StrucNet, should be a high priority

within the research community. Conserving biodiversity

in vegetation requires a global view and hence a system-

atic global network of calibration sites. This is similar to

the drivers that led to the establishment of FLUXNET, a

global network of micrometeorological tower sites (Bal-

docchi et al., 2001). StrucNet would pair with existing

global vegetation monitoring networks (e.g. PhenoCam,

ForestGEO) and fill a critical data gap by adding vertical

vegetation structure, but also be adaptive to the local

requirements of land management agencies (e.g. post-fire

recovery monitoring). It will provide an essential link

between more traditional vegetation measurement tech-

niques and the increasingly detailed and accurate remotely

sensed signals from in situ (e.g. FluxNet), airborne (e.g.

NEON Airborne Observation Platform) and spaceborne

(e.g. NASA GEDI) instrumentation. StrucNet will not

only support calibration and validation of remote sensing

data, it will also provide data on the impact of climate

change on plant phenology (Piao et al., 2019) and forest

disturbances and recovery (e.g. fire impacts; see Fig. 2)

through objective 3D time series at scales relevant for

planning and decision-making on management and inter-

ventions. The examples shown in Figures 2 and 3 demon-

strate how these 4D measurements can be important to

monitor EBVs related to the structure and functioning of

vegetation ecosystems. Whereas we have demonstrated

that LEAF sensors can be used to build this global net-

work, this could essentially be any instrument that fits the

operation and data criteria, that is automated, unattended

operation and multi-angular vertically resolved structural

measurements at a plot scale. Currently, a number of

research sites, in practice early StrucNet adopters, have

been equipped with LEAF sensors already or will be

equipped in the near future as part of newly funded pro-

jects (Fig. 4). Despite these early adopters, several areas of

the world still lack adequate coverage, and the establish-

ment of additional StrucNet sites should aim to overcome

these data gaps.

The advancements in hardware and algorithms for

automated processing of 3D data in the past two decades

have now made it possible to deploy automated lidar sen-

sors for monitoring EBVs across a wider vegetation plot

network. The success of global networks like FLUXNET,

the PhenoCam network and national meteorological net-

works is defined by standardized protocols for instrument

setup, data collection and processing, instrument inter-

comparison and, if possible, calibration to a common

standard. In the case of essential climate variables, these

standards are often based on traceability to the interna-

tional system of units (SI), which guarantees a universal

and constant measurement framework over time. As vege-

tation vertical structure was recently declared an EBV

(Skidmore et al., 2021), there is an urgent need to estab-

lish such standards to reliably quantify the change in

EBVs within and across terrestrial ecosystems. In particu-

lar, traceability to a common standard or intercomparison

has priority as there is already a range of lidar instru-

ments with different laser and sampling properties at dif-

ferent scales available such as terrestrial, mobile, drone

and airborne laser scanning, plus a range of retrieval

methods. All of them allow the estimation of vegetation

structure but with unquantified uncertainties and biases.

In this context, calibration with direct, destructive mea-

surements is often labour-intense (B�eland et al., 2011)

and impossible at permanent monitoring plots. However,

relatively efficient procedures have been proposed to link

direct measurements of small canopy volumes to TLS,

and take into account scanner properties and setup

(Pimont et al., 2015; Soma et al., 2018). With the antici-

pated future development of a range of automated high-

temporal laser scanning sensors, benchmarking exercises
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as well as the use of radiative transfer modelling (Calders,

Origo, Burt, et al., 2018) will be key in the required inter-

operability of automated 4D data collected across a global

plot network.
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