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Abstract: Intelligent transportation systems (ITSs) have become an indispensable component of
modern global technological development, as they play a massive role in the accurate statistical
estimation of vehicles or individuals commuting to a particular transportation facility at a given
time. This provides the perfect backdrop for designing and engineering an adequate infrastructural
capacity for transportation analyses. However, traffic prediction remains a daunting task due to
the non-Euclidean and complex distribution of road networks and the topological constraints of
urbanized road networks. To solve this challenge, this paper presents a traffic forecasting model
which combines a graph convolutional network, a gated recurrent unit, and a multi-head attention
mechanism to simultaneously capture and incorporate the spatio-temporal dependence and dynamic
variation in the topological sequence of traffic data effectively. By achieving 91.8% accuracy on the
Los Angeles highway traffic (Los-loop) test data for 15-min traffic prediction and an R2 score of
85% on the Shenzhen City (SZ-taxi) test dataset for 15- and 30-min predictions, the proposed model
demonstrated that it can learn the global spatial variation and the dynamic temporal sequence of
traffic data over time. This has resulted in state-of-the-art traffic forecasting for the SZ-taxi and
Los-loop datasets.

Keywords: traffic forecasting; graph convolutional network; gated recurrent unit; multi-head attention

1. Introduction

In most developed cities, developing an intelligent transportation system (ITS) is of
utmost importance to achieve sophisticated traffic control and extensive transportation
management. This extends to forecasting the number of commuters and vehicles using a
route, as displayed in Figure 1, and predicting the traffic congestion at a determined time.
As a result, this ensures the security of passengers and the efficiency of travel routes by
determining key factors based on an analysis of the road during specific periods [1,2].

Generally, traffic prediction involves studying various transportation variables such
as vehicular speed flow, traffic patterns, region industrialization, and various other topo-
graphical features involved in the exploratory analysis and forecasting of traffic trends [3,4].
Subsequently, this drives precise real-time traffic forecasting, an integral part of intelligent
traffic systems, as well as traffic control and management [5,6]. Correspondingly, most
countries’ transportation ministries are currently deploying such intelligent transportation
models to combat the various challenges of modern day transportation [7].
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Figure 1. Sample road network mapped into graph connections.

However, because of the topological design of most urban road networks, the com-
plexity of road connectivity and the dynamic variations in traffic trends over time, traffic
forecasting requires sophisticated modeling to achieve accurate prediction and analysis [8].
This is because traffic forecasting systems involve spatial and temporal components that
are represented by non-Euclidean graphical structures that change from neighborhood to
neighborhood in the time-space coordinate spectrum [9].

Therefore, the motivation of this work is to learn the complex topological spatial and
temporal dependencies of traffic analyses. To achieve this, we implement a special type of
graph neural network (GNN) called a graph convolutional network (GCN), particularly
suitable for graphical structures. In GNNs, the structure of data is represented as nodes
that occupy arbitrary positions in space, while the edges are a representation of the nodes’
connectivity and relationships [10].

A GCN is a unique extension of a CNN [11] that learns representation in non-Euclidean
structures from neighboring nodes as embeddings containing all the information about
the graph network while maintaining the weight-sharing filter operations of the vanilla
convolutional neural network (CNN) [12,13]. Generally, graphs can describe several sce-
narios such as the connection of molecules; however, in our work, the graph network is
represented as a transportation system network where the road represents nodes, and the
interconnection of these roads is represented by the edges.

There are presently several models used for traffic forecasting which are based on
different approaches, some of which focus on spatial feature extraction and analyses. Other
models study the temporal dependence of the graphical road network, while both spatial
and temporal dependence of the graphical road networks are considered in some [14].
This study proposes the multi-head spatiotemporal attention graph convolutional network
(MHSTA–GCN) for traffic prediction to solve this problem. Our MHAST-GCN model
incorporates a graph convolutional network (GCN), gated recurrent units (GRU), and multi-
head attention (MHA) models to achieve high accuracy traffic estimation and prediction.

Maintaining the matrix multiplication operation of CNNs [15], the GCN helps to
extract and learn complex features from inter-connected neighboring nodes in each iteration
through the convolution filter weight update [16]. Furthermore, the gated recurrent units
play a vital role in capturing and modeling the dynamic temporal features of the road
network [17], while the attention mechanism causes the model to focus on the exact essential
characteristics which correlate to the traffic flow at a particular time [18,19]. In a nutshell,
the following contributions are made in this research:

1. This study proposes a spatiotemporal multi-head attention graph convolutional net-
work to model the non-Euclidean temporal interrelationships between road networks
to predict traffic flow.

2. The proposed model translates traffic features into learned embedding representa-
tions with a graph convolution network and then transforms them as time series
sequences into a recurrent network using internal states and memory to model the
temporal representations.
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3. This study estimates the importance of features via a multi-head attention mechanism
to generate a context vector of significant weights, emphasizing relevant features
which play the most crucial role in the traffic forecast at a particular time.

For a graph-like structured task such as road networks and, by extension, traffic
prediction, the GCN enables effective structural information extraction by leveraging an
extensive neighborhood aggregation rule to obtain representative feature engineering and
learning. The network features are learned by taking the node features and an adjacency
matrix as inputs. Applying the tremendous expressive potential of GNNs, the feature
representation of each node in the network is captured and the associated embeddings are
learned. These embeddings are then processed as a sequence of inputs using a recurrent
neural network with an internal state and memory to produce accurate traffic estimations.

The graph convolutional network is beneficially able to capture the spatial dependen-
cies in traffic data by modeling the relationships between the various longitude–latitude
locations on the road network. Similarly, the gated recurrent unit is efficient at capturing
the temporal dependencies of traffic data through the time-based modeling of sequential
patterns of traffic flow over time. Finally, the multi-head attention mechanism is used to
capture the long-range dependencies in traffic data patterns by permitting the model to
focus on the different but most important parts of the traffic input sequence.

By combining all of these three techniques, the proposed method aims to improve the
accuracy of traffic prediction. While each of these techniques has been used individually in
the past, the novelty of the proposed method lies in the way they are combined to improve
traffic prediction. Therefore, the contribution of this article is the development of a novel
method for traffic prediction that leverages multiple techniques to improve the accuracy
of predictions.

The organization of the rest of this paper is structured as follows: Section 2 reviews the
summary of essential traffic forecasting models, while Section 3 presents a comprehensive
description of the proposed MHSA–GCN model. Section 4 highlights the model’s experi-
mental implementation and an analysis is presented, and finally, Section 5 summarizes the
paper in the conclusion.

2. Related Work
2.1. Traffic Prediction

Several existing traffic forecasting methods can be classified as either model-driven or
data-driven based on how the road network’s nodes and edge relationships are mapped.
This includes the use of classical machine learning models such as the K-nearest neigh-
bor [20], support vector regressor [21], Bayesian models [22], and hybrid auto-regressive
integrated moving average (H-ARIMA) [23] models. The downside of these techniques
is that although they consider the temporal transformation of traffic data, the spatial de-
pendencies are neglected. This problem also applies to artificial neural network multilayer
perception models.

To accurately predict traffic data, the spatial characteristics are considered via the use of
a convolutional neural network (CNN) to learn space invariant feature maps [24]. However,
CNNs are most advantageous for Euclidean data types, particularly images, resulting in a
less accurate traffic prediction. Recurrent models such as gated recurrent unit (GRU) [25],
long short-term memory (LSTM) [26], and their variants employ extensive gated memory
cells to learn compelling temporal features as a sequence, where previous time steps
influence the current time step prediction [27]. Osipov et al. [28] applied a self-learning
recurrent neural network with a spiral structure of layers to resolve some deficiencies
of time-series samples. As such, the model permits continuous training and advanced
associative recall of cues from previous cells to improve the forecast accuracy. Similarly,
the gradient boosting, recurrent neural network (RNN), and multilayer perceptron neural
network (MLP-NN) models have been implemented to achieve traffic flow predictions
via the use of a sampled number of vehicles and region intersections as input features
for training [29]. J. Zhang et al. explored the conversion of road networks into grid-like
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structures for effective convolutional sliding. They represented the grid as a region of
longitudinal and latitude bisections and then extracted spatial features and their correlation
with different grid regions [30].

2.2. Graph Convolutional Networks

Maximizing the capability of CNNs and RNNs, both architectures are often merged to
take advantage of the temporal and spatial dependence of road networks for speed and
traffic prediction [31]. For instance, the LC-RNN model of Zhongjian et al. [32] employed
an embedded convolution technique to learn essential spatial features via topology-aware
look-up operations. The learned spatial representation is then integrated into a recurrent
network as a time-series sequence, resulting in extensive neighborhood referencing dynam-
ics. Likewise, a hybrid nonvolutional neural network (CNN) and recurrent neural network
(RNN) architecture was developed by Guo et al. [33] to model vehicle global positioning
system (GPS) trajectory data. The technique proposed applying three-dimensional convolu-
tional networks to model complex urban topography. While 3D CNNs are pretty effective,
they require extensive computation which could be time-consuming. To tackle this problem,
graph convolutional neural networks, which are more suitable for non-Euclidean data, are
often promoted for analyzing traffic patterns [34].

A kernel-weighted graph network which learns convolutional kernels and their lin-
ear weights achieved satisfactory accuracy in capturing the non-grid traffic data [35].
Furthermore, to tackle complex, nonlinear traffic data, the DualGraph model explored
the interrelationship of nodes and edges with two graph networks. The technique em-
ployed the Simulation of Urban Mobility (SUMO) software to obtain traffic data which
were effectively evaluated [36]. The graph convolution recurrent architecture was opti-
mized by Kan et al. [37] through a data-driven approach while training, affirming the
latent relationship between road segments. Road segment importance was analyzed and
weighted to capture global temporal features using attention models [38]. Additionally,
external historical factors such as facilities and weather conditions were integrated into
an attribute-augmented spatiotemporal network, resulting in a state-of-the-art model in
traffic prediction [39].

2.3. Attention Mechanism

In a bid to improve neural networks’ capability to predict traffic forecasts accurately,
attention models are often developed to create a vector of importance and illustrate how
specific features influence traffic inference at a particular time [40,41]. For instance, attention
models were utilized to analyze the significance of road segments and assign weights
that capture previous timestamp characteristics [38], culminating in the simultaneous
capturing of point significance and temporal dynamics. Using recent, daily periodic,
and weekly periodic dependencies, the dynamic spatiotemporal correlations of data points
were weighted with an attention mechanism on the Caltrans Performance Measurement
System (PeMSD4 and PeMSD8) datasets [42].

Furthermore, normalized spatial attention weights were evaluated by Weiwei et al. to
measure the influence of grids in sampled data and points of interest. It was concluded that
grids with strong connections had a more considerable influence on other such grids [43].
For the graph attention convolutional network (GAC-Net), new learnable parameters were
introduced with a self-attention network for spatial feature extraction, producing a valid
result in the temporal correlation of the sequential series [44]. A self-attention mechanism
was also incorporated into a graph convolutional network by Ke et al. [45], which improved
the extraction of complex spatial correlations inside the traffic network. The self-attention-
based spatiotemporal graph neural network (SAST–GNN) added channels and residual
blocks to the temporal dimension to improve the short-term and mid-term prediction
accuracies [46]. Inspired by Google’s transformer framework, Ling et al. designed a traffic
transformer to capture the continuity and periodicity of traffic sequences as time series,
demonstrating a significant ability to forecast traffic flow [47]. A comparative analysis
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of the proposed model with recent literature models is presented in Tables 1 and 2 with
well-known evaluation metrics.

Table 1. MHSA–GCN traffic prediction evaluation on the SZ-taxi and Los-loop datasets.

Time (min) Metric SZ-Taxi Los-Loop

R2 0.8553 0.8659
Var 0.8553 0.8659

15 MAE 2.6624 3.0126
RMSE 3.8017 4.8812

Accuracy 0.7372 0.9183

R2 0.8499 0.8153
Var 0.8499 0.8153

30 MAE 2.7101 3.4800
RMSE 3.8801 5.6744

Accuracy 0.7360 0.8992

R2 0.8471 0.7694
Var 0.8473 0.7694

45 MAE 2.7221 4.1098
RMSE 3.9014 6.6127

Accuracy 0.7301 0.8875

R2 0.8466 0.7521
Var 0.8466 0.7553

60 MAE 2.7361 4.2190
RMSE 3.9678 7.0165

Accuracy 0.7274 0.8812
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Table 2. MHSA–GCN traffic prediction comparison with other models on SZ-taxi and Los-loop datasets. Higher accuracies are in bold.

Metric Time
SZ-Taxi Los-loop

HA [48] GCN [49] GRU [34] T-GCN [34] A3T-GCN [38] MHSA–
GCN HA [48] GCN [49] GRU [34] T-GCN [38] A3T-GCN [27] MHSA–

GCN

R2

15 min 0.8307 0.6654 0.8329 0.8541 0.8512 0.8553 0.7121 0.6843 0.8576 0.8634 0.8653 0.8659

30 min 0.8307 0.6616 0.8249 0.8456 0.8493 0.8499 0.7121 0.6402 0.7957 0.8098 0.8137 0.8153

45 min 0.8307 0.6589 0.8198 0.8441 0.8474 0.8471 0.7121 0.5999 0.7446 0.7679 0.7694 0.7694

60 min 0.8307 0.6564 0.8266 0.8422 0.8454 0.8466 0.7121 0.5583 0.6980 0.7283 0.7407 0.7521

Var

15 min 0.8307 0.6655 0.8329 0.8541 0.8512 0.8553 0.7121 0.6844 0.8577 0.8634 0.8653 0.8659

30 min 0.8307 0.6617 0.8250 0.8457 0.8493 0.8499 0.7121 0.6404 0.7958 0.8100 0.8137 0.8153

45 min 0.8307 0.6590 0.8199 0.8441 0.8474 0.8473 0.7121 0.6001 0.7451 0.7684 0.7705 0.7694

60 min 0.8307 0.6564 0.8267 0.8423 0.8454 0.8466 0.7121 0.5593 0.6984 0.7290 0.7415 0.7553

MAE

15 min 2.7815 4.2367 2.5955 2.7117 2.6840 2.6624 4.0145 5.3525 3.0602 3.1802 3.1365 3.0126

30 min 2.7815 4.2647 2.6906 2.7410 2.7038 2.7101 4.0145 5.6118 3.6505 3.7466 3.6610 3.4800

45 min 2.7815 4.2844 2.7743 2.7612 2.7261 2.7221 4.0145 5.9534 4.0915 4.1158 4.1712 4.1098

60 min 2.7815 4.3034 2.7712 2.7889 2.7391 2.7361 4.0145 6.2892 4.5186 4.6021 4.2343 4.2190

RMSE

15 min 4.2951 5.6596 3.9994 3.9265 3.8989 3.8017 7.4427 7.7922 5.2182 5.1264 5.0904 4.8812

30 min 4.2951 5.6918 4.0942 3.9663 3.9228 3.8801 7.4427 8.3353 6.2802 6.0598 5.9974 5.6744

45 min 4.2951 5.7142 4.1534 3.9859 3.9461 3.9014 7.4427 8.8036 7.0343 6.7065 6.6840 6.6127

60 min 4.2951 5.7361 4.0747 4.0048 3.9707 3.9678 7.4427 9.2657 7.6621 7.2677 7.0990 7.0165

Accuracy

15 min 0.7008 0.6107 0.7249 0.7299 0.7318 0.7372 0.8733 0.8673 0.9109 0.9127 0.9133 0.9183

30 min 0.7008 0.6085 0.7184 0.7272 0.7302 0.7360 0.8733 0.8581 0.8931 0.8968 0.8979 0.8992

45 min 0.7008 0.6069 0.7143 0.7258 0.7286 0.7301 0.8733 0.8500 0.8801 0.8857 0.8861 0.8875

60 min 0.7008 0.6054 0.7197 0.7243 0.7269 0.7274 0.8733 0.8421 0.8694 0.8762 0.8790 0.8812
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3. Multi-Head Spatiotemporal Attention GCN

This section describes the network design of the MHSAGCN model and its architec-
tural representation, as shown in Figure 2.

Figure 2. Proposed MHSA–GCN architectural overview of GCN, GTU, and attention.

3.1. Graph Convolutional Network (GCN)

With the interconnection of road networks represented as a graph, using a graph
convolutional network, we represent the association of road networks as graph G presented
as G = (V, E), where each major road in the network is represented as a node, V, and the
connections between the roads are referred to as edges, E. V is represented as the set of
major roads V = [v1, v2, v3, . . . , vN ], where N is the total number of road nodes available in
the graph.

For a standard GCN, two inputs are required: the feature matrix, X, and the adjacency
matrix, A. The feature matrix, X, represents node attribute features and, in this work, refers
to the traffic speed recorded for each node over time, expressed as X ∈ RN∗P. P is the
total traffic speed attribute recorded, while the adjacency matrix, A, is the symmetrical
representation of the graph connection. In the road network, every connected nodes are
valued at one, and zero at nodes without connection. 1 at connected nodes and 0 otherwise.
The adjacency matrix is therefore expressed as A ∈ RN∗N .

With the observed traffic speed historical time series n, the forecasting problem is
defined as learning the traffic mapping function, f , of the next time steps, T, denoted in
Equation (1) as:

[Xt+1, Xt+2, . . . , Xt+T ] = f
(
G(Xt−n, . . . , Xt−1, Xt)

)
(1)

Finally, given feature matrix X and adjacency matrix A, the GCN computes the first-
order neighborhood weighted average and matrix multiplication of the feature vector,
expressed in Equation (2) as:

H(l+1) = σ
(

D̃−1/2 Ã D̃−1/2 X θ(l)
)

(2)

where Ã is the addition of the adjacency matrix A with its identity matrix IN to achieve self
feature connection. D̃ and D̃−1/2 represent the node degree matrix and its inverse for matrix
scaling, respectively. X is the input representing the feature matrix, θ represents learnable
parameters, l is the number of layers in the GCN, and σ is the nonlinear sigmoid function.



Sensors 2023, 23, 3836 8 of 16

The inverse of the degree matrix, D̃−1/2, is multiplied on both sides of Ã to get a
weighted average of the nodes such that low degree and high degree nodes have an
appropriate influence on their neighbors. As in our model, a two-layer GCN was stacked
on each other to learn the complex spatial dependence of the graph network, and this can
be expressed in Equation (2) as:

f (X, A) = σ
(

Â ReLU(Â X W0) W1
)

(3)

where Â = D̃−1/2 Ã D̃−1/2, W0 is the weight matrix for the first GCN layer, W1 is the weight
matrix for the second GCN layer, and ReLU is the network’s activation function.

3.2. Gated Recurrent Unit (GRU)

In the time series data, we take advantage of the recurrent neural network’s memory
cells to model the temporal dependence of traffic sequence forecasting. Having extracted
the spatial features and dependence of the data using the GCN, the series is fed to a
gated recurrent unit for sequence modeling while considering the previous time step in
the prediction.

Given a sequence, the GRU uses the update gate and reset gate to create a hidden
state of the current time step in conjunction with the previous hidden state, allowing it to
maintain relevant information from a distant step without eroding over time. This helps the
GRU to overcome the vanishing gradient problem of a standard recurrent neural network.

Given an input sequence at time t, the update gate, ut, determines how much in-
formation from the earlier time steps is rolled into the future, while the reset gate, rt,
decides how much of the preceding information is forgotten. Both gates are calculated in
Equations (4) and (5) as:

ut = σ
(
Wu ∗ [Xt, ht−1] + bu

)
(4)

rt = σ
(
Wr ∗ [Xt, ht−1] + br

)
(5)

where Xt is the input X at time t, ht−1 is the hidden state from previous time step t− 1, W is
the trainable weight, b is the trainable bias, and σ is the sigmoid activation function employed
to squash the resulting output between 0 and 1. The two gates are then combined to obtain a
new memory content, ct, and output state, ht, of time t as shown in Equations (6) and (7).

ct = tanh
(
Wc [Xt, (rt ∗ ht−1)] + bc

)
(6)

ht = ut ∗ ht−1 + (1− ut) + ct. (7)

3.3. Attention Model

As evident by the outstanding results achieved in computer vision, natural language
processing, and other areas of artificial intelligence, attention has presented dynamic ways
of adaptively focusing on pertinent features of the input data. Extending the attention
mechanism to capture spatiotemporal features, we applied multi-head attention to our
GCN–GRU model to embed a spatial and temporal representation of the processed in-
put sequence.

This ensures that the model sequence analysis focuses on the most significant features
of traffic forecasts at each time step, based on the incorporation of relevant traffic properties
such as individual road nodes in the road network and their interconnections to other
road nodes.

First, the input data, X, is fed to the GCN to extract the spatial dependence and then
to the GRU to model the temporal features, producing hidden states, hi(i = 1, 2, . . . , n).
To train and weigh the importance of the hidden states, the hidden states vector is fed into
a two-layer single multi-head attention. The multi-head attention consists of query, key,
and value heads, each consisting of a two-layer multilayer perceptron to obtain a scoring
function adopted to compute the score of the output hidden state (H = h1, h2, . . . , hn) via a
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softmax function αij. Using a two-layer feed-forward network, eij and the softmax αij are
computed as shown in Equations (8) and (9), respectively.

eij = w2
(
w1H + b1

)
+ b2 (8)

αij =
exp(eij)

∑n
k=1 exp(eik)

(9)

where H is the final hidden state output and w and b are learnable weights and bias for
feed-forward network layers 1 and 2, respectively. The scores are multiplied by the hidden
state vectors, h, and then summed to obtain the attention context vector Ct.

Ct =
n

∑
j=1

αij hj (10)

3.4. Loss Function

To estimate the network parameters, we utilize a loss function to optimize the trained
parameters by reducing the error in each iteration. A modified mean absolute error (MAE),
as suggested in [23], is defined in Equation (11).

` = ||Yt − Ŷt||+ λLreg (11)

where Yt is the absolute real traffic speed values, Ŷt represents the model’s predicted
absolute values, λ is a learnable hyperparameter, and Lreg is the L2 regularization function
which measures the loss regularization rate.

3.5. Overview

For a high-level intuition of the proposed model illustrated in Figure 2, MHSA–GCN
is modeled for predicting traffic forecasts based on the graph convolutional network
design, the recurrent neural network’s gated recurrent unit, and the multi-head attention
mechanism, all combined to capture the complex topological structure of the road network
effectively. The GCN is a compelling neural network architecture capable of producing
useful feature representations of grid-like structures such as the road network. Thus,
a GCN is used to extract road spatial relationships and connections, given adjacency
and feature matrices. The aggregated representation of nodes is then fed to the gated
recurrent unit for modeling the sequential time series features for temporal dependence.
The attention mechanism is finally incorporated to ensure a particular focus is applied
to the most significant features which cause the most considerable impact on the traffic
forecast. As a supervised learning task, the model is trained iteratively, while the loss of the
predicted values to the correct values is minimized via the update of learnable parameters
through back propagation.

4. Experimental Analysis
4.1. Dataset

For evaluation, two real-world traffic forecast datasets were used in this work: the
taxi trajectory dataset (SZ-taxi) and the loop detector dataset (Los-loop). Traffic midblock
segments are not considered in this work, which relate to estimated traffic analyses at
designated pedestrian intersections. The analysis included in this research investigates
traffic prediction in flowing traffic.

The SZ-taxi dataset contains a taxi trajectory record of 156 major roads in the Lu-
ohu district of Shenzhen City, China. The data were collected from 1 to 31 January 2015,
with each row representing a single road. About a thousand taxis participated in the
data upload, which includes the vehicles’ latitude–longitude location and instantaneous
speed measurements.
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Framed as a graph convolution task, the model requires an adjacency matrix and a
features matrix as inputs. Therefore, since there are 156 major roads, the adjacency matrix
is a 156 × 156 matrix, with a value of 1 indicating connections between two roads and
0 indicating a lack of connection. Furthermore, the feature matrix is a 156 × 2976 matrix
representing the change in traffic speed over time. The traffic speed was aggregated every
15 min, resulting in 2976 records over 31 days.

Secondly, the Los-loop data were recorded on 207 highway loop sensors from Los
Angeles County from 1 to 7 March 2017 every 30 s. The data were then aggregated into
5-min intervals, so the adjacency matrix is a 207 × 207 matrix, while the feature matrix is a
207 × 2016 matrix.

4.2. Metrics

To assess the performance of the proposed MHSTA–GCN model, we evaluated the
model on the Los-loop and SZ-taxi datasets. First, the error, which is the difference between
the predicted values and the actual values, were computed and then the following metrics
were examined and expressed. For example, in Table 1, the proposed MHSTA–GCN model
was evaluated on the SZ-taxi and Los-loop test data for traffic prediction ranging from
15 min to 60 min.

1. Mean absolute error (MAE): The MAE is also known as the L1-norm loss and is
computed as the mean sum of the absolute error, which is the absolute difference
between the absolute values and the actual values. The MAE is non-negative, and it
is more suitable for penalizing smaller errors. The best MAE score is 0.0, and it is
computed as shown in Equation (12).

MAE =
∑n

i=1 |yt − ŷt|
n

(12)

2. Root mean square error (RMSE): The RMSE is the square root of the squared error
differences, and it measures the standard deviation of the predicted errors or how
spread out the errors are. This details how concentrated the predicted data are along
the line of best fit and is computed as shown in Equation (13).

RMSE =
1
2

√
1
n

n

∑
t=1

(yt − ŷt)2 (13)

3. The R2 score or the coefficient of determination expresses the distribution of the
variance of actual labels that the independent variables in the model have interpreted.
The best R2 score is 1, and it measures the model’s capability to predict new data
correctly. It is computed as shown in Equation (14).

R2 = 1− ∑t=1(yt − ŷt)2

∑t=1(yt − ȳt)2 (14)

4. Explained variation (VAR): Explained variation measures the proportion of model
variation influenced by actual factors in the data rather than the error variance. It is
computed as shown in Equation (15).

VAR = 1− Var(yt − ŷt)

Var(y)
(15)

5. Accuracy: Accuracy describes how close the model prediction is to the actual values,
whereby a perfect accuracy would result in a score of 1. It is defined as shown in
Equation (16).

Accuracy = 1− ||y− ŷ||F
||y||F

(16)
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where y is the actual traffic value, ŷ is the predicted value, ȳ is the average of y, and ||.||F
represents the Frobenius norm.

4.3. Training Details

The MHSA–GCN model consists of a graph convolutional network, a gated recurrent
unit, and an attention mechanism to give traffic forecasts based on traffic speed. The model
was trained for 5000 epochs, with a training batch size of 32, a learning rate of 0.001, and an
Adam optimizer to minimize the computed loss.

For the SZ-taxi dataset, the model’s hidden unit was set to 100, while the hidden
unit for the Los-loop dataset was set to 64. These specific values were used as the most
optimal values for obtaining a good result without fear of underfitting or overfitting. This
is achieved using machine learning tuner mechanisms and regularizers such as dropout.

To verify the performance efficiency of the model, the complete dataset was partitioned
into a train–test split, whereby 80% of the data were used for model training while the
remaining 20% were used for model testing. Furthermore, the model prediction for both
datasets was forecasted for the next 15, 30, 45, and 60 min, respectively.

For the two-layer multi-head attention model, since the recurrent network’s hidden
unit for the SZ-taxi dataset was 100, the attention model’s first layer was set to 100 neurons,
while the second layer was set to 156—the number of major roads in the data. Similarly,
for the Los-loop dataset, the first and second layers of the attention neurons were set to the
number of recurrent hidden units and numbers of sensors in the data, respectively.

Since the model is trained as an end-to-end network, the model loss is computed with
each iteration and the weights are updated to minimize the loss, therefore refining the
model’s ability to make accurate predictions.

4.4. Baselines

The following baselines were compared to the MHSA–GCN model to investigate the
effects of the model parameters and hyperparameters and how they translate to predic-
tion accuracy.

1. History average model (HA) [48]: this technique computes the prediction by averaging
the total amount of available historical data by classifying them into periods.

2. Graph convolutional network model (GCN) [49]: the GCN model uses the feature and
adjacency matrix attributes to model the spatial features of the traffic data by treating
the roads as nodes alongside their connectivity.

3. Gated recurrent unit model (GRU) [34]: to handle the temporal complexity of the
urban roads, a recurrent model with a gated flow of states is implemented to follow
the sequential time analysis.

4.5. Experimental Results

As shown in Table 2, the MHSA–GCN model presents the best prediction performance
of the highlighted models for almost all of the predicted periods of 15, 30, 45, and 60 min.
This shows the effectiveness and efficiency of the MHSA–GCN model in modeling the
complex spatiotemporal topological structure of the road and traffic data, indicating how
important it is to combine both the spatial and temporal feature representations to establish
a learning feature.

For instance, compared to the HA model for the 15 min forecast on the SZ-taxi and
Los-loop datasets, the MHSA–GCN model exhibited a reduction of 4.28% and 7.50% in
the MAE error, respectively. Furthermore, for the RMSE error for the 60 min prediction,
the MHSA–GCN model exhibits a reduction of 7.62% and 5.73%, respectively, compared
to the HA model. Since the HA model only averages the historical traffic data to forecast
traffic, it cannot learn the seasonality and trends of the data, which constitute a significant
component of time series data.

Furthermore, the MHSA–GCN model exhibits increased accuracy and explained
variation (VAR) compared to the other models. For both the SZ-taxi and Los-loop datasets,
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the MHSA–GCN model exhibits an increase of 17% and 5.5% compared to the GCN, as
well as a 1.67% and 0.81% increase compared to the GRU model for the 15 min prediction.
For the 60 min prediction, the MHSA–GCN model also exhibits an increase of 16.7% and
4.43% compared to the GCN, as well as a 1.06% and 1.43% increase compared to the
GRU model.

The increased accuracy values compared to the GCN and the GRU indicate the advan-
tage of combining both the spatial and temporal feature representations of the data rather
than exploring just one of them, such as in the GCN (spatial features only) and in the GRU
(temporal features only). The explained variance, which suggests how much of the model
variation is influenced by fundamental factors in the data rather than the error variance,
reinforces this. The MHSA–GCN model also displayed superior outcomes in the explained
variance values compared to the other models. This is because the MHSA–GCN model can
learn the mapping of the variations in the actual data based on seasonality, trends, and their
resulting peaks and troughs.

4.6. Ablation Study

To demonstrate the dynamic efficiency of the appended multi-head spatiotemporal
attention on the graph convolutional network, we compared the ablation experiment of
MHSA–GCN with the following models.

1. Temporal graph convolutional network (T-GCN) [34]: this technique also combines
a recurrent network with a graph convolutional network to manage the complex
spatiotemporal topological structure; however, any attention model is used.

2. Attention temporal graph convolutional network (A3T-GCN) [38]: the A3T-GCN
model explores the impact of a different attention mechanism (soft attention model)
on traffic forecasts.

Without an attention mechanism, the T-GCN model forecast short-term and long-term
traffic forecasts better than the HA, GCN, and GRU models. However, in comparison to
the MHSA–GCN model, the results are less accurate. This proves the capability of the
attention mechanism to increase the robustness of the model and the ability to capture
global variation effectively.

For example, the MHSA–GCN model exhibits a 1.82% and 5.29% reduction in the
MAE error on the SZ-taxi and Los-loop dataset (15 min prediction) compared to the T-
GCN model. Furthermore, for the 60 min prediction, the MHSA–GCN model exhibits
a reduction of 1.89% and 8.32%, respectively, in the MAE error compared to the T-GCN
model. Similarly, MHSA–GCN also has a better RMSE error, showing that the model
converges better to find the global minima and updates the weights to achieve a lower loss
and therefore better accuracy.

Considering the 15 min prediction, 3.18% and 4.78% reductions in the RMSE error
compared to the T-GCN model are recorded by the MHSA–GCN model on the SZ-taxi and
Losloop datasets, while 0.93% and 3.46% reductions are recorded for the 60 min prediction.
This confirms that MHSA–GCN has both a better short-term and long-term prediction
capability than the T-GCN model, showing the superiority of the attention mechanism.
This is because the attention model helps the network focus on features that are the most
significant to the traffic forecast, and it also shows superiority in capturing global variation.

Although the A3T-GCN model incorporates an attention mechanism, the MHSA–GCN
achieves better results compared to this model as well; this is because of the differences in
the dynamic capability of the different attention mechanisms to capture global variation.
The A3T-GCN model implements soft attention, while the MHSA–GCN model implements
multi-head attention, consisting of three attention heads or modules that run several
computations in parallel, dynamically attending to sections of a sequence differently.
This results in an advantageous effect of mapping varying features such as longer-term
dependencies and shorter-term dependencies.

Considering the 15 min prediction, 0.81% and 3.95% reductions in the MAE error
compared to the A3T-GCN model are recorded by the MHSA–GCN model on the SZ-taxi
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and Losloop datasets, respectively, while 0.11% and 0.36% reductions are recorded for
the 60 min prediction. In a similar manner, MHSA–GCN also has a better RMSE error,
with 2.49% and 4.11% error reductions for the SZ-taxi and Los-loop datasets, respectively, for
the 15 min prediction, as well as 0.07% and 1.16% error reductions for the 60 min prediction.

While the differences between the A3T-GCN and MHSAGCN model in the smaller
prediction range, such as 15 min, are very small, the differences between both models in
more extended predictions such as 60 min are quite significant. This shows that although
the A3T-GCN model can learn shorter-term dependencies, the MHSA–GCN model displays
superiority, especially with longer-term dependencies.

4.7. Visualization Analysis

To extensively understand the forecasting capability of the MHSA–GCN model, we
visualized the model’s predictions in comparison to the actual values of traffic for specific
periods. This was done for both the SZ-taxi and Los-loop datasets for the 15, 30, 45,
and 60 min time series prediction.

As shown in Figures 3 and 4, the visualization shows that the predicted traffic speed
depicts comparable trends and flow to the actual traffic values for the predicted periods.
This further validates the capability of the MHSA–GCN model to map varying features of
shorter-term dependencies and longer-term dependencies and to capture global variation
in traffic flow efficiently. Furthermore, during training, the model is able to continuously
converge to the global minimum to achieve a better prediction accuracy, as depicted in
Figure 4.

Figure 3. MHSA–GCN traffic prediction display compared to the true values for 15, 30, 45, and
60 min from top to bottom on both SZ-taxi and Los-loop datasets.

Figure 4. Train and test loss graph for the 15 minutes prediction for the SZ-taxi (right) and Los-loop
(left) datasets.
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5. Conclusions

This paper proposed a novel automatic traffic prediction model named multi-head
spatiotemporal attention graph convolutional network (MHSTA–GCN), which combines
a graph convolutional network (GCN), a gated recurrent unit (GRU), and a multi-head
attention module to learn feature representation of road traffic speed as nodes in a connected
network. Given the interconnected nodes and historical traffic speed data, the GCN
was used to learn the fundamental attributes of the nodes by capturing the complex
spatial topological structure of the graph. Furthermore, the GRU model was introduced to
understand the dynamic temporal dependence of the node attributes. Finally, the multi-
head attention mechanism was employed to give more consideration to the significant
features that contribute more to the traffic state at a given time. Thus, the dynamic variation
in the time steps is sequentially and efficiently analyzed to capture and incorporate the
global variation over time.

Combining these three modules proved to be an effective and robust model for captur-
ing the essential spatio-temporal sequential features for traffic prediction, as evaluated on
the SZ-taxi and Los-loop datasets. With 91.8% and 89.9% accuracy on the Los-loop data for
15- and 30-min prediction, and an R2 score of 0.85 on the SZ-taxi dataset for the 15- and
30-min prediction, the MHSTA–GCN model performance demonstrates state-of-the-art
traffic forecasting and superiority compared to other traffic prediction models.

As with most large machine learning models, the process of iteratively finetuning the
model’s hyperparameters can be quite daunting and often affects the model’s ability to
reach the global minimum. Therefore, in the future, we will extensively investigate the
possibility of using an attention network to dynamically incorporate external factors such
as weather, population, and geographical features for traffic prediction with the use of a
graph convolutional network. Furthermore, the advantage of midblock segments, traffic
peaks and troughs, and road lane availability will be explored.
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