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Abstract
Novel methods for rapidly estimating single-photon source (SPS) quality have been promoted in
recent literature to address the expensive and time-consuming nature of experimental validation
via intensity interferometry. However, the frequent lack of uncertainty discussions and
reproducible details raises concerns about their reliability. This study investigates the use of data
augmentation, a machine learning technique, to supplement experimental data with bootstrapped
samples and quantify the uncertainty of such estimates. Eight datasets obtained from
measurements involving a single InGaAs/GaAs epitaxial quantum dot serve as a proof-of-principle
example. Analysis of one of the SPS quality metrics derived from efficient histogram fitting of the
synthetic samples, i.e. the probability of multi-photon emission events, reveals significant
uncertainty contributed by stochastic variability in the Poisson processes that describe detection
rates. Ignoring this source of error risks severe overconfidence in both early quality estimates and
claims for state-of-the-art SPS devices. Additionally, this study finds that standard least-squares
fitting is comparable to using a Poisson likelihood, and expanding averages show some promise for
early estimation. Also, reducing background counts improves fitting accuracy but does not address
the Poisson-process variability. Ultimately, data augmentation demonstrates its value in
supplementing physical experiments; its benefit here is to emphasise the need for a cautious
assessment of SPS quality.

1. Introduction

The world is presently witnessing the advent of the ‘Quantum 2.0’ technological revolution, an era
distinguished by the development of devices that, in their operation, involve manipulating quantum states of
light and matter [1]. Indeed, these devices seek to exploit purely quantum phenomena, such as superposition
or entanglement. Unsurprisingly, many research fields are linked to this revolution, e.g. quantum
communication networks and cryptography [2–4], quantum computing and simulation [5–7], quantum
imaging [8–10], quantum sensing within magnetic [11, 12] and gravitational [13, 14] fields, and so on.
Likewise, considerably many engineering designs, both proposed and proven, take advantage of quantum
optical phenomena, e.g. by using photonic degrees of freedom as an information carrier, subject to
transmission/manipulation, or to probe the state of a system. However, to really exploit the quantum nature
of light, non-classical light sources, e.g. a single-photon source (SPS), are required.

Certainly, an SPS constitutes a valuable resource for both fundamental studies in quantum optics and
industrial applications of quantum technology. However, engineering an SPS is complicated as it must fulfil
the exacting requirements of practicality, e.g. a feasibly attainable operating temperature, as well as a desired
emission wavelength, emission rate and collection efficiency. More advanced application schemes may even
require polarisation control or indistinguishability between consecutive photons. Nonetheless, the most
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crucial characteristic of an intended SPS is the purity of single-photon emission. While other secondary
attributes are important, they become irrelevant if the essential criterion for an SPS is not fulfilled. This
purity is typically measured by a photon-intensity autocorrelation experiment, which determines the
second-order auto-correlation function g(2)(τ) [15–18].

Notably, many material systems have been proposed for the engineering of an SPS, starting with systems
based on atoms and ions. These are clean and reproducible, but require bulky and cumbersome setups,
limiting their practical applications [19, 20]. In contrast, solid-state systems appear to have better long-term
prospects, and several classes of related structures show promise as single-photon emitters: quantum dots
grown by colloidal [21, 22] or epitaxial techniques [4, 23, 24], as well as various defect centres, e.g. in
diamonds [25, 26], silicon carbide [27], hexagonal boron nitride [28], and 2D materials [29, 30].

Whatever the practical realisation of an SPS is, the quality of the final device must be precisely assessed.
This paper will focus solely on the purity of single-photon emission. Ideally, an SPS works as follows: a
quantum emitter with a discrete energy spectrum is repeatedly excited optically or electrically, each time with
relaxation following excitation, and thus emits a train of photons. Every excitation pulse it encounters should
result in the emission of just a single photon, i.e. it must act as an on-demand source of single photons.
Proving that an object is classifiable as an SPS typically requires using an intensity-based ‘Hanbury Brown
and Twiss’ interferometer [31] to experimentally determine g(2)(τ). Specifically, the emission is split equally
between two detection paths. A detector with single-photon sensitivity is placed at the end of each path.
Dedicated electronics then build up a histogram of two-photon events as a function of the temporal
separation between the output signals from the two detectors. These events occur when both detectors are
separately triggered. Any events at an effective time delay of zero imply the SPS underwent multi-photon
emission (MPE), i.e. g(2)(0)> 0. Indeed, the quality of an SPS depends on how often an MPE event triggers a
two-photon detection. Excessive MPE is undesirable as it limits the utility of an intended SPS, e.g. causing
errors in quantum communication and cryptography protocols [32].

The problem with determining SPS quality is that the measurement is statistical in nature and, therefore,
a sufficiently large amount of data needs to be collected to derive reliable conclusions. This accumulation can
take substantial time, even on the order of days, if the probability of observing two-photon events is low.
Likewise, measurements can be resource intensive, given that single-photon emission is typically observed at
expensive-to-maintain cryogenic temperatures. Specifically, the most efficient single-photon detectors need
to be kept below the critical temperature of a superconducting transition, while the highest-quality SPS
devices, i.e. III–V semiconductor epitaxial quantum dots, require cryogenic temperatures for optimal
performance. Then there is the aim of the measurement. For proof-of-principle experiments, obtaining a
value of g(2)(0)< 0.5 will be sufficient, while, for state-of-the-art engineering, ensuring a minimal g(2)(0) is
critical [33–35]. Obtaining statistical significance in the latter case can take a substantially longer
measurement. The situation worsens when working with more complex characteristics, e.g. photon
indistinguishability or the degree of quantum entanglement, for which quantum state tomography requires
many cross-correlation measurements to be performed in different bases [36, 37]. In short, physicists in the
field keenly await any improvements in data acquisition or analysis techniques that might give accurate SPS
quality estimates for far fewer two-photon event detections, i.e. significantly reduced experiment times.

Given this context, recent literature, such as an article proposing a maximum a posteriori (MAP)
scheme [38], has drawn much attention, suggesting that small data samples are sufficient to provide
reasonable estimates of SPS quality in terms of MPE probability, i.e. g(2)(0). This work investigates how true
such claims are. Exemplary experimental datasets are readily available for such an analysis, i.e. measurements
for epitaxial InGaAs/GaAs quantum dots within deterministic photonic nanostructures emitting at 1.3
µm [39], where a 10 s collection interval for two-photon events provides insight into how the correlation
histogram can build up over time. It is then not difficult to examine various statistical fitting methods,
assessing how estimates of SPS quality and their fitting-based accuracy develop with respect to the growing
number of detected two-photon events. However, herein lies a major weakness. Who is to say that one
sequence of observations, already very costly, is a typical reflection of how the histogram and associated
quality estimates evolve? How can one even be sure that the final long-time estimate, used as a baseline of
comparison for a short-time estimate, is itself accurate?

In data science and machine learning, when information is sparse, generative procedures are sometimes
used to simulate new data from existing datasets in a process often called ‘data augmentation’ [40, 41]. This
work continues the trend of applying data-science principles to experimental physics [42, 43] by leaning on a
technique that is effectively ‘bootstrapping’. Each experimental dataset is used to generate arbitrarily many
alternative samples that then determine the sampling-based variance of an SPS-quality estimand. After
highlighting the non-negligible error bars on even late-stage estimates of g(2)(0), this article reinforces a
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cautionary message when evaluating new approaches for fast estimation: do not underestimate stochastic
variability.

This work is organised and presented in the following manner. Section 2 provides, with a novel
reformulation suited for efficient computation, the theoretical equations that describe the expected structure
of a two-photon event histogram. Section 3 describes the eight datasets analysed in this work (3.1), the two
investigated methods of fitting data for SPS quality estimation (3.2), and the procedure for generating
synthetic data in support of calculating error bounds (3.3). Section 4 then presents the results of numerically
fitting theoretical equations to the data, both observed and synthetic, assessing (1) the expected
sample-based errors of g(2)(0), (2) whether a MAP scheme [38] is superior to least-squares histogram fitting,
(3) the possibility of using expanding averages for early g(2)(0) estimation, and (4) the impact of background
counts on accuracy. Section 5 subsequently takes the lessons learned here to critically reexamine and discuss
the article that motivated this work [38]. Finally, section 6 summarises the conclusions of this research.

2. Theory

SPS quality estimation typically leverages the technique of intensity interferometry with single-photon
detectors [31], albeit ones that cannot resolve the number of photons. Because of this limitation, the photon
flux must be kept sufficiently low for the measured histogram to reflect actual photon statistics. Thus, in
many cases, only a handful of two-photon events is detected, per second, within a temporal-separation
window of interest. Consequently, in ideal operating conditions, these independent events can be modelled
as elements of Poisson processes. Specifically, given any particular temporal separation τ between the two
photons incident on the two detectors, the probability of encountering n such events after t seconds is

Pr(n;R, t) =
(Rt)n

n!
e−Rt, (1)

where R is a mean detection rate in Hz. This rate technically depends on how τ values are binned, but matters
of discretisation are ignored in this section; they are trivial to apply during numerical implementation.

In theory, because the mean detection rate R is fixed for any given τ , an accumulated histogram of
detected events should closely approximate R(τ)× t in the long-time limit of t. Moreover, the expected form
of R(τ) is well-known in many cases. However, before defining this function, it is essential to note that many
experimental datasets report two-photon event delays in raw uncalibrated fashion, τr, so an offset that aligns
MPE events with a time separation of zero must often be determined, i.e. τ = τr − τ0. Part of the offset is due
to the difference in length between optical paths from the beam splitter to the detectors, as well as the length
of the electrical connections. It is constant for a given experimental configuration. Additionally, as the
triggering order of detectors determines the sign of a time delay, an electronic offset applied during
measurements will also typically be present, thus capturing a portion of the negative time delays. Now, in the
case of SPS emission driven by a pulsed laser with period Λ, detected two-photon events should peak in
number for temporal separations of kΛ, where k ̸= 0. This outcome represents the detector identifying pairs
of photons released by temporally neighbouring laser pulses. In scenarios where bunching on long time
scales is observed, the envelope of these peaks can be considered to decay over extended ranges of time
delays, i.e. by a factor of γe. As for the individual peaks, their spread across τ values can be modelled as
two-sided exponential functions with decay factor γp.

Putting this all together, the mean rate of observing two-photon events with time separation τ is

R(τ ;θ) = Rb +Rpe
−γe|τ |

ge−γp|τ | +
∑
k ̸=0

e−γp|τ−kΛ|

 , (2)

where Rb represents background detections predominantly caused by detector dark counts, Rp denotes the
peak rate of pulse-driven events, and g defines the ratio of MPE events to non-MPE events. Overall, the
function has seven parameters when compared against experimental data defined over τr,
i.e. θ =

{
τ0,Rb,Rp,g,γe,γp,Λ

}
. In particular, g is one of the indicators of SPS quality, and it is often written

as g(2)(0) to denote second-order coherence/correlation at zero time delay; the short form will be used in the
rest of the text for convenience. A value of g= 0 indicates a perfect SPS.

Now, much of the work in this article involves fitting equation (2) to experimental observations of
two-photon events and their time delays. However, infinite sums, even finitely truncated, are not
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computationally efficient to calculate. So, using the floor function to apply a modulo operation,
i.e. τm =mod(τ,Λ) = τ −Λ⌊τ/Λ⌋, a useful insight is as follows:∑

k∈Z

e−γp|τ−kΛ| =
∑
k∈Z

e−γp|τm−kΛ|,

= e−γpτm
∑
k∈Z+

0

e−kγpΛ + eγp(τm−Λ)
∑
k∈Z+

0

e−kγpΛ. (3)

Effectively, for any value of τ , this term has the same answer as it does for some τ between 0 and Λ, i.e. an
infinite sum of concave-right exponentials to the left and concave-left exponentials to the right. Here, a
particular equality proves useful: 1+ e−x + e−2x + . . .= e x/(e x − 1). Hence, defining T= γpτm and L= γpΛ
for convenience, equation (3) can be further manipulated as follows:

(
e−T + e(T−L)

)( eL

eL − 1

)
=

e(−T+ L
2 ) + e(T−

L
2 )

e
L
2 − e−

L
2

=
cosh

(
T− L

2

)
sinh

(
L
2

) . (4)

Thus, by trading an infinite series for reliance on the modulo function, equation (2) can be written as a
much more computationally amenable expression:

R(τ ;θ) = Rb +Rpe
−γe|τ |

×

(g− 1)e−γp|τ | +
cosh

(
γp

(
τm − Λ

2

))
sinh

(
γpΛ
2

)
 . (5)

This form of the equation makes it explicit that the mean rate for detected two-photon events appears as a
repeating cosh function over the domain of τ , albeit with the peak around τ = 0 diminished according to SPS
quality; this is the peak that represents MPE events.

3. Methodology

The research described in this article revolves around the computational analysis of experimental
interferometry measurements. To support reproducibility, the data and Python scripts are available at
https://github.com/UTS-CASLab/sps-quality, commit f1782ff. Here, the experimental datasets are detailed in
section 3.1, two fitting methods for estimating g are described in section 3.2, and the procedure for
augmenting the experimental data, i.e. generating synthetic samples of observations, is elaborated in
section 3.3.

3.1. The datasets
This work selects eight experimental datasets for investigation, all sourced from prior attempts to
engineer/assess a ‘fibre-coupled semiconductor SPS for secure quantum-communication in the 1.3 µm
range’ (FI-SEQUR). Specifically, they all involve the same transition for the same single InGaAs/GaAs
epitaxial quantum dot, which is positioned deterministically with respect to the centre of a photonic mesa
structure. The growth and deterministic fabrication methods [44, 45], as well as the optical setup for
assessing SPS quality [39], are detailed elsewhere.

Each dataset, summarised in table 1, results from a separate experiment where an 80 MHz laser of a fixed
output power excites the SPS into emitting a train of photons. Here, the excitation is above-band, with the
semiconductor laser operating at a wavelength of 805 nm and a pulse length of 50 ps. In contrast, many SPS
devices reaching state-of-the-art g(2)(0) values [33–35] rely on coherent excitation schemes. Their trade-off
is that the source laser tends to be more complex, both in physical implementation and size, and therefore
less practical, e.g. requiring precise wavelength tuning for each quantum dot and a heavy spectral filtering of
laser photons that reduces source brightness. However, excitation details are irrelevant to the data
augmentation/analysis technique in this paper; only the obtained histogram matters.

After emission, the actual number of photons received by each detector is then measured in counts per
second (CPS). This value depends on the efficiency and associated losses inherent within the experimental
setup, e.g. the quantum efficiency of the single-photon detectors, as well as the source itself. On the source
side, three factors are important: (1) the probability of occupation for the emitting state that is driven by the
excitation power, (2) internal quantum efficiency, i.e. the probability that the excited quantum dot emits a
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Table 1. Descriptive summary of the eight FI-SEQUR datasets.

Shorthand label
Laser intensity
(µW)

Single detector
counts per
second (Hz) Total events Total duration (s)

Average event
rate (Hz)

1p2uW 1.2 3 000 65 037 23 950 2.716
2p5uW 2.5 4 000 51 534 10 510 4.903
4uW 4 4 100 61 246 9 390 6.522
8uW 8 5 100 21 611 2 920 7.401
10uW– 10 6 000 28 817 3 010 9.574
10uW+ 10 12 000 45 198 1 210 37.354
20uW 20 7 000 55 469 4 780 11.604
30uW 30 7 000 52 088 4 780 10.897

Figure 1. The total number of two-photon events (0 ⩽ τr ≲ 5× 10−7) detected within every 10 s snapshot for the duration of the
4uW experiment.

photon rather than non-radiatively relaxing, and (3) collection efficiency, i.e. the percentage of emitted
photons that can be collected by the detection optics. Only the first factor should vary between the
investigated datasets. Specifically, increased excitation power means a higher number of carriers are available
to be captured by a quantum dot, resulting in shorter periods of time when the quantum dot is unoccupied.
Photons cannot be generated without this occupation. However, two of the datasets have the same excitation
power and different CPS values. This variation is possibly due to de-adjustment within the experimental
setup, e.g. from temperature fluctuations in the lab.

Regarding contents, each dataset is a 2D matrix of two-photon event counts, binned in 10-second
detection ‘snapshots’ along one axis and intervals of time separation along the other. Specifically, the delay
domain of interest ranges from 0 ns to approximately 500 ns, with each bin typically covering a∆τ of 0.256
ns; it is 0.128 ns for the 1.2 µW experiment. Importantly, these are raw τr values, and the actual zero delay,
i.e. MPE, occurs at about 60 ns due to the electronic offset discussed previously.

Notably, the dataset matrix can be summed along one axis to display how many two-photon events
within the delay domain of interest are detected over time. Such a summation also enables calculating an
average event rate within this domain. It is routine and unremarkable for each event rate to be far lower than
its corresponding CPS value; encountering a pair of photons across detectors with sub-microsecond
temporal separation is relatively rare. An example signal constructed from the 4 µW experiment is displayed
in figure 1, where the visually discernible mean of approximately 65 events per 10 s snapshot corresponds
with the average event rate of 6.522 Hz listed in table 1. However, the histogram compiled along the other
axis of the dataset, i.e. the τr domain, is of greater interest. As figure 2(a) shows, one snapshot of 10 s provides
a limited amount of information. In contrast, if the events from all snapshots are combined, a 40-peak
‘comb’ structure appears in the histogram. One of these peaks is smaller than all others, clarified by the
figure 2(b) closeup, and, after accounting for the background, the relative amplitude of this MPE peak
characterises the quality of an SPS.
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Figure 2. Histogram of two-photon events detected during the entire 4 µW experiment, as well as during the first 10 s snapshot.
The count axis is logarithmic. (a) A view of the entire τr domain. (b) A closeup around the MPE peak.

3.2. The fitting procedure
Core to this research is the notion of fitting equation (5) to histograms of data. Specifically, this work uses the
Python LMFIT package [46] to, by default, minimise a sum of squared errors, thus obtaining the following
optimised ‘least-squares’ (LS) parameters:

θLS = argmin
θ

∑
i

(R(τi;θ) t− di)
2
, (6)

where i is the index of a bin centred at τi—this implicitly redefines R as a discrete function—and di is the
number of events detected in that bin after t seconds. However, it has also been argued that there may be a
better way than least-squares fitting. In short, an MAP proposal [38] suggests using the following
‘Poisson-likelihood’ (P) objective function instead:

θP = argmin
θ

∑
i

(R(τi;θ) t− di ln(R(τi;θ) t)) . (7)
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Table 2. Initial values and parameter constraints used when fitting the mean-rate function in equation (5), times duration t, to the data
di accumulated over that period.

Parameter Vary Min Initial Value Max

τ0 (s) 4 55× 10−9 60× 10−9 65× 10−9

Rb (Hz) 4 0
(∑

i di/t
)
/
(
5× 10−7/∆τ

)
∞

Rp (Hz) 4 0
(∑

i di/t
)
/40 ∞

g 4 0 0.5 1
γe (s

−1) 8 — 0 —
1/γp (s) 4 ∆τ/10 ∆τ ∞
Λ (s) 8 — 1.25× 10−8 —

Conveniently, by way of defining a reduce_fcn argument, the LMFIT package allows fitting procedures to
minimise either of the two objectives described by equations (6) and (7) without affecting other processes,
e.g. the automatic calculation of standard errors.

To maintain consistency with the MAP proposal [38], this work employs the Powell method for the
fitting procedure, although paired with a subsequent Trust Region Reflective optimisation (method =
"least_squares"). For completeness, the optimisation bounds and initial values for the parameters are
listed in table 2, noting that pulse period Λ is experimentally fixed and γe, the envelope decay, is assumed to
be negligible. Given these settings, a single-threaded completion of the five-parameter fitting procedure
generally takes a second or less on a 3.50 GHz Intel Core i9-9900X CPU with 32 GB of RAM. Such speed
allows histogram fitting to be part of any online method for estimating g, easily running alongside an actual
event-detection experiment.

3.3. Data augmentation
Each of the eight datasets in table 1 represents a resource-expensive run of over 20 minutes, usually several
hours, and each experiment observes between 20 000 and 70 000 two-photon events of interest in that time,
i.e. with 0⩽ τr ≲ 5× 10−7. In theory, histograms compiled from the maximum number of events observed
are likely to provide the best estimates of quality parameter g. A naive approach then would be to engineer a
novel fitting algorithm and assess its virtues simply by how quickly its estimate of g—the fewer two-photon
events in a histogram, the better—lands within fitting-based error bars of the maximum-time g estimate.
However, the problem with this is as obvious as it is easily overlooked. What guarantee is there that the
evolution of a second-order auto-correlation function g(2)(τ), as exhibited by any one experiment, is typical?
It would be disingenuous to hype up an estimation approach based on the off-chance that early detections of
coincidences occur in just the right pattern. Then there is a more conservative question: are even
45 000 ± 25 000 observations sufficient to treat derived g(2)(0) values as ground truths?

One way to address these questions is to synthetically generate new data based on the existing datasets,
i.e. engage in data augmentation [40, 41]. Early versions of the research in this article considered doing so by
simply shuffling the 10 s snapshots available, assuming them to be independent. However, with such a
method, the benefit of statistical independence is gradually lost over the summation of snapshots. Instead,
the approach selected for this work leans on the accuracy of the assumptions introduced in section 2, namely
the Poisson statistics governing two-photon event detections. Expressly, per dataset, assume the optimised fit
of equation (5) applied to all observations is the ground-truth mean rate of detections, i.e. fit
R(τi;θbest)× ttotal. It is then possible to generate new data based on these ground truths as follows. For a given
duration tnew and a temporal-separation bin centred at τi, randomly sample from a Poisson distribution with
mean-value parameter R(τi;θbest)× tnew. Then, repeat this process for every bin index i until a new
histogram is generated across the entire delay domain.

The main benefits of this technique, reminiscent of bootstrapping approaches used in the field [47, 48],
are that (1) the new samples are independent, supporting statistical rigour, (2) thousands of synthetic
datasets can be generated computationally at speed, (3) the method can extrapolate real-world stochastic
data to simulate what is out of feasible reach for a typical experiment, e.g. the accumulation of a million
observations, and (4) subsequent fits of the synthetic histograms indicate expected sampling-based errors for
quality parameter g. Best of all, this procedure is generally applicable, provided that (1) two-photon event
detection adheres to Poisson statistics and (2) the long-term shape of a two-photon event histogram can be
theoretically described for an emission context. Thus, although eight variations involving a single quantum
dot are used in this paper to showcase the technique, hence enabling convenient comparative analysis with
minimal conflating factors, it can just as easily be applied to an SPS stimulated by a continuous-wave laser, a
thermal light source [38], and so on.
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Table 3. Optimised parameters with standard errors for the mean-rate function in equation (5) when fitting R(τ ;θ)× t to all the data
available in a dataset.

Best Fit g τ0 (s) Rb (Hz) Rp (Hz) 1/γp (s)

1p2uW LS 0.23 (±11.72%) 6.11× 10−8

(±0.05%)
2.54× 10−4

(±24.37%)
2.55× 10−3

(±1.20%)
1.10× 10−9

(±13.20%)
1p2uW P 0.22 (±12.17%) 6.11× 10−8

(±0.05%)
2.66× 10−4

(±22.90%)
2.59× 10−3

(±1.17%)
1.05× 10−9

(±13.40%)

2p5uW LS 0.32 (±8.79%) 6.11× 10−8

(±0.06%)
7.24× 10−4

(±39.84%)
9.76× 10−3

(±1.37%)
1.16× 10−9

(±15.13%)
2p5uW P 0.30 (±9.23%) 6.11× 10−8

(±0.06%)
7.79× 10−4

(±36.30%)
1.01× 10−2

(±1.32%)
1.10× 10−9

(±15.33%)

4uW LS 0.36 (±7.31%) 6.11× 10−8

(±0.05%)
9.13× 10−4

(±42.84%)
1.30× 10−2

(±1.35%)
1.18× 10−9

(±15.08%)
4uW P 0.34 (±8.01%) 6.11× 10−8

(±0.05%)
1.09× 10−3

(±34.90%)
1.34× 10−2

(±1.31%)
1.07× 10−9

(±16.01%)

8uW LS 0.49 (±9.15%) 6.11× 10−8

(±0.10%)
1.14× 10−3

(±79.85%)
1.36× 10−2

(±2.75%)
1.23× 10−9

(±32.09%)
8uW P 0.48 (±9.27%) 6.11× 10−8

(±0.09%)
1.09× 10−3

(±81.37%)
1.39× 10−2

(±2.66%)
1.23× 10−9

(±30.62%)

10uW– LS 0.53 (±7.20%) 6.11× 10−8

(±0.08%)
1.20× 10−3

(±91.99%)
1.74× 10−2

(±2.54%)
1.34× 10−9

(±27.54%)
10uW– P 0.50 (±7.44%) 6.11× 10−8

(±0.08%)
1.19× 10−3

(±87.34%)
1.79× 10−2

(±2.37%)
1.31× 10−9

(±26.15%)

10uW+ LS 0.51 (±5.92%) 6.11× 10−8

(±0.07%)
4.46× 10−3

(±78.09%)
7.33× 10−2

(±1.93%)
1.26× 10−9

(±22.14%)
10uW+ P 0.50 (±6.15%) 6.11× 10−8

(±0.06%)
4.92× 10−3

(±68.21%)
7.48× 10−2

(±1.85%)
1.20× 10−9

(±22.11%)

20uW LS 0.56 (±5.94%) 6.11× 10−8

(±0.07%)
2.18× 10−3

(±49.65%)
1.78× 10−2

(±2.39%)
1.34× 10−9

(±26.62%)
20uW P 0.57 (±6.05%) 6.11× 10−8

(±0.07%)
2.44× 10−3

(±44.00%)
1.81× 10−2

(±2.34%)
1.22× 10−9

(±28.61%)

30uW LS 0.68 (±5.97%) 6.11× 10−8

(±0.09%)
2.62× 10−3

(±50.86%)
1.34× 10−2

(±3.68%)
1.39× 10−9

(±41.80%)
30uW P 0.68 (±5.96%) 6.11× 10−8

(±0.09%)
2.76× 10−3

(±48.89%)
1.36× 10−2

(±3.67%)
1.31× 10−9

(±44.31%)

4. Results

The key question is as follows: at what point will an expensive SPS quality-assurance experiment have
collected enough data to warrant shutting down?

If allowed to run for a seemingly long time, detecting 45 000 ± 25 000 coincidences, the experimental
setups described by table 1 enable what will be called least-squares and Poisson-likelihood ‘best fits’ for the
parameters listed in table 2. These apparent ground truths are shown in table 3. Sure enough, as reported
earlier [39], increasing the output power of the exciting laser diminishes the SPS quality of the studied
InGaAs/GaAs epitaxial quantum dot. Also of note, the fitting errors for g are already not insubstantial. While
the location of the MPE peak and the maximum detection rate—recall the comb structure in
figure 2(a)—are easily identified, the background and the width of the peaks are harder to characterise with
certainty. But what of sampling-based errors?

For the present analysis, the generative method described in section 3.3 works to ‘Poisson-sample’
histograms representing the following numbers of total events: 1× 103, 1× 104, 1× 105, and 1× 106.
Naturally, every unique experiment is expected to accumulate these observations at different times. For
instance, based on the average event rate in table 1, 1p2uW should encounter 10 000 two-photon events at
t≃ 3 682 s, while 10uW+ should observe 100 000 at t≃ 2 677 s. Nonetheless, given that a unit of
information is more directly tied with an individual observation than the passage of a second, this
dataset-dependent normalisation is essential for a fair comparison.

8



Mach. Learn.: Sci. Technol. 4 (2023) 045042 D J Kedziora et al

Figure 3. Closeups of example histograms Poisson-sampled from the best least-squares fit for the 2p5uW experiment. Displays
the original best fit from which the histogram is sampled as well as a new fit, both scaled for the appropriate duration t.
Histogram contains approximately: (a) 1 000 events, (b) 51 534 events, i.e. the original size of the full dataset that dictated the best
fit, and (c) 1 000 000 events.

Accordingly, using the appropriate values of t, the next step is to optimise equation (5) for any synthetic
histograms generated. Immediate inspection shows, as exemplified by figure 3 for the 2p5uW experiment
and least-squares fitting methodology, that typical fits for sampled data become less and less visually
discrepant with the appropriately scaled ground truth as more events are ‘observed’. Of course, examining a
single fit is of limited use; synthetically generated histograms prove most informative in bulk. For instance,
figure 4 shows how the least-squares fitted parameter g varies across 250 Poisson-samplings for each of the
following sizes:∼1 000,∼10 000,∼100 000, and∼1 000 000. It also covers artificial histograms of the same
size as the full experimental dataset, i.e.∼51534 detections for 2p5uW.

This result reveals an unfortunate implication. Even after observing tens of thousands of two-photon
events during the characterisation of an SPS under 2.5 µW laser excitation power, the estimate of quality
parameter g will not just have a fitting-related uncertainty of∼0.025; it could be off from a true
characterisation by over∼0.1, simply due to variability in Poisson processes. Indeed, this sampling-revealed
variance impacts all eight experiments, as figure 5 demonstrates for histograms of size 1× 105. That said, in
fairness, the box plots in the figure indicate that most of the sampled fits are distributed much more tightly
than they appear in the scatter plots. Standard deviations are listed in table 4. Accordingly, if there is a
threshold for SPS quality, such as g= 0.5, most of the listed experiments will be clearly classifiable even after
observing only 10 000 events. Nevertheless, in the case of 8–10 µW, the stochastic nature of detection can
easily swing determinations one way or the other.

Turning to the fitting methodologies described in section 3.2, this work was unable to identify any
significant or systematic benefit to optimising the Poisson-likelihood objective function in equation (7)
proposed by previous research [38]. Generally, the fitting and sample-based errors appear reasonably similar
regardless of the method used. Worse yet, while minimising the least-squares residual appears robust, almost
universally aligning the mean value of fitted parameters for Poisson-sampled histograms with the original
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Figure 4. Comparison of least-squares fitted parameter g between the ‘ground-truth’ best fit for the 2p5uW experiment and fits
applied to subsequent Poisson-sampled histograms. There are 250 histograms generated for each of the following approximate
numbers of total events: 1× 103, 1× 104, 1× 105, and 1× 106. There are also 250 generated for approximately the same number
of events as used for the best fit, i.e. 51 534 for 2p5uW.

Figure 5. Comparison of least-squares fitted parameter g, per dataset, between the ‘ground-truth’ best fit and fits applied to 250
subsequent Poisson-sampled histograms of approximate size 1× 105.

‘best fit’ value—see the boxplots in figure 4 or figure 5—this is not the case for the Poisson-likelihood
method. For instance, figure 6 exemplifies cases where generated histograms should closely approximate the
shape of the function they were Poisson-sampled from, being of size 1× 106, yet their P fits do not align with
the best-fit parameter values. It is unclear why this is; one hypothesis is that converging to an optimum for
equation (7), where logarithms are involved, can face challenges of numerical stability. More investigation is
required to confirm this. Nonetheless, as this work cannot validate a substantial comparative advantage of
the MAP procedure, the rest of this article focusses solely on least-squares results.

Now, the takeaway thus far is necessarily cautioning. The quality parameter g is highly sensitive, crucially
dependent on a small fraction of detected events across the τ delay domain and easily distorted by an
incorrect background characterisation. Hoping for a rapid and authoritative estimate of g may be overly
optimistic when even hours of accumulated observations leave a sizeable uncertainty. Nonetheless, this work
indicates how much uncertainty to expect at different two-photon event counts, providing, at a minimum, a
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Table 4.Mean values and standard deviations for fitted parameter g, as derived from Poisson-sampled histograms of size 1× 104 and
1× 105 for different datasets. Both least-squares and Poisson-likelihood fits are represented. Also includes values for Poisson-sampled
histograms containing the same number of events as each full dataset. Importantly, the sample-based standard deviation here is not the
same as a fit-specific standard error.

Best Fit

1× 104 Event Histograms Same Size Histograms 1× 105 Event Histograms

µg σg µg σg µg σg

1p2uW LS 0.227 0.056 0.230 0.021 0.226 0.018
1p2uW P 0.218 0.059 0.219 0.022 0.211 0.017

2p5uW LS 0.315 0.054 0.317 0.025 0.315 0.017
2p5uW P 0.299 0.055 0.295 0.023 0.294 0.017

4uW LS 0.357 0.064 0.358 0.023 0.358 0.018
4uW P 0.333 0.056 0.332 0.023 0.332 0.019

8uW LS 0.486 0.072 0.492 0.052 0.494 0.021
8uW P 0.477 0.065 0.474 0.044 0.473 0.020

10uW– LS 0.519 0.065 0.520 0.036 0.527 0.021
10uW– P 0.492 0.060 0.494 0.039 0.494 0.020

10uW+ LS 0.511 0.073 0.507 0.034 0.512 0.020
10uW+ P 0.491 0.063 0.492 0.030 0.495 0.019

20uW LS 0.558 0.078 0.563 0.034 0.565 0.025
20uW P 0.567 0.074 0.566 0.035 0.567 0.026

30uW LS 0.664 0.100 0.674 0.045 0.674 0.032
30uW P 0.672 0.092 0.684 0.043 0.685 0.030

Figure 6. Comparison of least-squares (LS) and Poisson-likelihood (P) optimisation for both the 10µW—and 30µW experiments,
juxtaposing the ‘ground-truth’ best fits with those applied to 250 generated histograms of approximate size 1× 106. Specifically of
note, above the scatter plot, there is misalignment between the best-fit ‘tick’ and the corresponding box-plot mean for P fits.

‘bootstrapping’ procedure to apply in varying experimental contexts. Since different practical applications
involving single photons have varying requirements, one must decide what confidence level to embrace for a
particular quantum optical measurement, subsequently accumulating detected events until the fitting and
expected sampling errors are small enough to declare an SPS is ‘good’ or ‘bad’ for a particular purpose.
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Figure 7. The expected distributions for expanding averages of g, displayed for select datasets. Each expanding average is applied
to a random iterative selection of histograms, where each histogram contains∼1 000 events; the dotted lines exemplify one such
expanding average per dataset. Each shaded distribution is defined by the mean of 1 500 expanding averages, plus/minus one
standard deviation. The black vertical ‘whiskers’ mark the mean of g, plus/minus one standard deviation, derived from fitting
histograms that contain as many events as each original dataset.

Granted, while small samples of two-photon events are highly unreliable and unlikely to carry discernible
information about SPS quality, it is notable that averages over collections of small samples align well with
individual fits over larger sample sizes. The boxplots in figure 4 demonstrate this fact. Admittedly, there is a
lower limit for which this insight holds—histograms of size 100 are so sparse that there are systematic errors
in fitting—but sampling 1 000 events seems to meet this threshold decently. One might then lean on an idea
known well in machine learning and other fields, i.e. ensembling weak estimators to create a singular
powerful one.

Specifically, consider a steady accumulation of observed events in the vein of the eight datasets listed in
table 1. After every 1 000 events, construct a histogram from only those 1 000 events, maintaining
independent sampling, and then fit it. Subsequently, average the parameters of that fit with those derived
from all previous samples of size 1 000. This concept is called an expanding average, and the value should
generally improve over time. Of course, it is still possible for this procedure to produce and sum long
sequences of atypical histograms, e.g. ones in figure 4 that are far from the mean, so a rigorous analysis
requires the random but iterative Poisson-sampling of histograms, size 1× 103, to itself be redone numerous
times, e.g. in the form of 1 500 independent sequences generated for this work. Given all this, the
distributions of those 1 500 expanding averages, plus and minus one standard deviation, are displayed in
figure 7 for several datasets.

These results show, especially considering the whiskers that denote the uncertainty in g when fitting a
single histogram of large size, that decent estimates of quality might be possible earlier on by averaging
small-sample fits. For instance, fitting the combined 52 088 events in the 30uW dataset provides a lower
degree of confidence in g than averaging the parameter over 52 independent fits of 1 000 events. This
competitive advantage is true as early as 30 000 events. Moreover, even where there is no clear-cut difference,
the rapid tapering of confidence bounds still suggests that an expanding average can be a viable early
estimator of SPS quality. However, distributions provide no guarantee; the standard deviations of both
expanding averages and large-sample fitting, depicted in figure 7, are probabilistic. Some example
trajectories, e.g. for 8uW, veer substantially away from the distribution mean even at high numbers of
samples. Elsewhere, e.g. for 1p2uW, the distribution itself does not align perfectly with the ‘best fit’, possibly
suggesting a minor systematic error in fitting for histograms of size 1× 103, just as is present for size 1× 102.
Essentially, the stochastic nature of two-photon event observations induces many complex challenges that
stifle certainty for early estimates.

In theory, some of this uncertainty could be better constrained if there was a way to identify and eliminate
the background, i.e. the model component in equation (2) that is considered to be uniform across the delay
domain. After all, if the best-fit ‘ground truths’ are to be believed, all the analysed datasets involve substantial
counts of two-photon events, or at least triggered ‘detections’, that are not due to SPS emission. The ratios are
listed in table 5 and range from 0.23 to 0.47. So, to investigate the effect of eliminating the background, the
generative procedure in this work can be adjusted. After acquiring a ‘best fit’ of the five parameters in table 3,
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Table 5. Background (BG) rates for the best least-squares fit applied to each full dataset. Each rate indicates the portion of events that are
associated with BG detections, i.e. a BG ratio.

Dataset Best Fit BG Rate Rb (Hz) BG Events Total Events BG Ratio

1p2uW LS 2.54× 10−4 23 787 65 037 0.37
2p5uW LS 7.24× 10−4 14 868 51 534 0.29
4uW LS 9.13× 10−4 16 748 61 246 0.27
8uW LS 1.14× 10−3 6 507 21 611 0.30
10uW− LS 1.20× 10−3 7 028 28 817 0.24
10uW+ LS 4.46× 10−3 10 549 45 198 0.23
20uW LS 2.18× 10−3 20 317 55 469 0.37
30uW LS 2.62× 10−3 24 505 52 088 0.47

Figure 8. Removing the two-photon event background for the 30uW dataset. (a) Closeup of the best fit over the full dataset. (b) A
‘same-duration’ histogram Poisson-sampled from the best fit, but with Rb set to zero. Note the decrease of about 12.5 events per
bin, i.e. approximately 24 505 across 1 954 bins.

visually depicted by figure 8(a), the background rate Rb can be set to zero, subsequently allowing the
generation of a ‘No BG’ Poisson-sampled histogram, such as is exemplified in figure 8(b).

Crucially, without a background rate, the average event rate in table 1 and the total number of events in a
sampled histogram are scaled by a factor of one minus the ‘BG Ratio’ listed in table 5. So, for instance, a
30uW ‘No BG’ histogram of size 1× 104 actually contains around 5 300 events. Even so, despite the
substantially fewer events detected over the same measurement duration, figure 9 shows that four-parameter
fits applied to the ‘No BG’ histograms—Rb in table 2 is set to zero and not allowed to vary—considerably
tighten their standard errors. Background elimination is thus a worthwhile pursuit in acquiring better
estimates of SPS quality. However, as the figure demonstrates, this would not impact the variance intrinsic to
the Poisson process that describes event detection; a significant degree of uncertainty is
unavoidable.

As a final reminder, the data augmentation technique in this paper is generally applicable, provided that
certain physical assumptions hold. Accordingly, consider a state-of-the-art low-g SPS device [33–35] with the
following ground-truth emission profile: g= 1× 10−2, τ0 = 6.11× 10−8, Rb = 0, Rp = 9.76× 10−3, and
1/γp = 1.16× 10−9. As figure 10 shows, one can Poisson-sample histograms to quantify uncertainty for this
device in much the same manner as for the FI-SEQUR quantum dot. However, there are caveats. With such a
tiny MPE peak, sufficient detections must be gathered to even acknowledge its existence. For example, fitting
synthetic histograms of 1× 103 events predominantly and falsely suggests a perfect g= 0; any exceptions are
statistical outliers. Moreover, even when the number of two-photon events is sufficiently large to resolve g,
e.g. when the 250 histograms of size 1× 106 statistically indicate g= 9.368× 10−3 ± 0.847× 10−3, one must
also consider whether the standard error of the fitting algorithm itself washes out the g value of interest. The
unfortunate takeaway is that acquiring sufficient confidence in more extreme values of g requires a much
greater signal-to-noise ratio, e.g. by increasing CPS or integration times. Whatever the case, the power of the
data augmentation technique is that it can quantify these expectations for experimentalists.
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Figure 9. Differences in fitted parameter g between Poisson-sampled histograms that do and do not sample/fit background rate
Rb. Note that ‘No BG’ fits are applied to substantially less than 1× 104 events.

Figure 10. Demonstration of data augmentation applied in a low-g scenario. A confected ‘ground-truth’ histogram has best-fit
parameters g= 1× 10−2, τ0 = 6.11× 10−8, Rb = 0, Rp = 9.76× 10−3, and 1/γp = 1.16× 10−9. Subsequent fits are applied to
250 Poisson-sampled histograms per approximate size: 1× 103, 1× 104, 1× 105, and 1× 106. The resulting g estimates are
depicted, along with their least-squares fitting-based standard errors.

5. Discussion

One of the primary motivators of this work is the publication of a MAP method for SPS quality
estimation [38] that promised up to two orders of magnitude shorter data acquisition times. Such a claim is
understandably alluring to experimentalists, as performing statistical measurements on quantum emitters is
resource expensive and time consuming.

Unfortunately, this statement must be interpreted carefully. First of all, experimental context matters. For
instance, the laser pulses in the MAP publication [38] appear to have a period of 1 µs, as opposed to the 12.5
ns in this work. This detail means that sequential peaks in the data are well separated and distinct;
inaccuracies in fitting the decay factor γp are unlikely to affect confidence in g as much as they do for the
compressed comb structures in this work.

Admittedly, a reduced frequency of excitation pulses does decrease the number of photons detected
within a delay window of interest, so there is a trade-off. Indeed, in the case of many practical applications, it
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is appealing to drive the SPS as often as possible to maximise the single-photon generation rate. Hence,
assessing SPS quality under regimes of higher-frequency excitation retains its appeal. Of course, there is a
fundamental limit here, in that the SPS cannot be excited until it has time to relax; the spontaneous-emission
lifetime for the FI-SEQUR system is around one to two nanoseconds, and the peaks cannot be brought closer
to each other than that. However, if decay factor γp could be confidently fitted by a quick supplementary
experiment, e.g. involving distinct excitation pulses, then perhaps overlapping peaks would no longer be a
major factor of uncertainty, enabling many more valuable observations in the same amount of time without
any of the drawbacks.

Notably, time is a poor proxy for the pace of accumulating information if the rates of detecting
two-photon events vary dramatically between experiments. A brief measurement can correspond to many
two-photon events if the count rates are high. Such a reason is why this work aligned synthetic histograms
across datasets by the number of events observed rather than the time passed. Indeed, for the sake of fair
comparison between different methods of SPS quality estimation, one has to consider histograms of equal
information content: an equivalent number of events observed across the given time domains. If so, maybe
being able to sample so many repeated peaks proves minorly beneficial when fitting FI-SEQUR data, in that
Rp becomes accurately characterised. However, since g relies heavily on the MPE peak, early quality estimates
may actually benefit more from a relatively high proportion of observations existing in that central zone.
Essentially, the 50-second integration time presented in the MAP article [38] may provide many more
informative events within the relevant domain than most FI-SEQUR datasets do for the same amount of
time; see figure 2(b) and extrapolate from the ten-second histogram.

The signal-to-background ratio is another complicating factor. Table 5 in this work shows that the
FI-SEQUR datasets contain numerous ‘false’ detection events that, if eliminated, would significantly improve
estimates; see figure 9. In contrast, the experimental data considered in the MAP publication [38] appears to
have no background. Of course, the feasibility of independent background characterisation within an
experimental context, let alone its elimination, is another matter to discuss elsewhere. The point here is that,
second for second, the correlation measurement setup in the MAP paper appears to observe many more
two-photon events under adjacent peaks than the FI-SEQUR experiments detailed here.

Essentially, this work was unable to confirm the suggested advantage of the Poisson-likelihood
approach [38] compared to least-squares fitting. Uncertainties in g, due to both fitting errors and stochastic
effects, remain unavoidable for now. Of course, if the claim was instead referring to the efficiency of
computationally estimating g, regardless of its error, then the reformulation provided by equation (5) of this
work will find appreciation for its added algorithmic utility.

6. Conclusion

Determining the second-order correlation function that describes the emission statistics of a light source
requires the acquisition of two-photon events. In the context of intended SPS quantum dots, such
measurements are costly in both time and material resources. Consequently, there exists a research
endeavour focussed on estimating SPS quality as quickly and accurately as possible. However, this work
cautions that recent optimism in the literature, promoting new techniques capable of ‘fast estimates in under
a minute’ and ‘a one-to-two order of magnitude speed-up’, may need to be tempered.

A central concern is that novel estimation approaches may be promoted without validation on a
sufficient amount of data. One singular experiment, i.e. one instance of how a histogram binning observed
events evolves, is simply not enough. Hence, assuming detections adhere to Poisson statistics, this work
centres on a generative method similar to bootstrapping that allows for the computational synthesis/analysis
of new data from existing datasets. Specifically, having applied this process of data augmentation to eight
datasets studying a fibre-coupled InGaAs/GaAs epitaxial quantum dot, this work assesses estimates of the
SPS figure of merit g, a.k.a. g(2)(0), and discusses the impact of stochastic variability in the measurements.

The major contributions of this work are as follows:

• The reformulation of well-known theoretical equations describing the expected delay-domain histograms
of detected two-photon coincidences, in the context of an SPS excited by a pulsed laser, thus allowing data
to be fit in a computationally efficient manner.

• Proof of principle that data augmentation is a valuable tool in quantifying the unavoidable systematic errors
in g that result from the variability of Poisson processes. This work cautions that neglecting these errors, a
common oversight in the literature, can lead to unwarranted overconfidence in early g estimates and pre-
mature declarations of SPS devices as state-of-the-art.
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• A comparison between the standard least-squares approach and a recently proposed Poisson-likelihood
method, finding no significant/systematic advantage for the latter and even a potential vulnerability to
numerical instabilities during optimisation.

• An investigation of whether expanding averages over small-size histograms is competitive against g estima-
tion based on a single large-size histogram. The results suggest expanding averages show some promise for
early estimation, but deeper analysis is required to determine their general utility rigorously.

• The finding that suppressing background counts would boost the fitting accuracy of g but has no significant
discernible effect on the error from the stochastic variability in detections.

Ultimately, this research serves as another example of how experimental physics can benefit from applying
data-driven approaches commonly found in machine learning, such as data augmentation. In this case,
provided the real-world data adheres well to the assumptions underlying a theoretical model, experimental
observations can be supplemented with numerical ‘extrapolations’ from which bootstrapped statistics can be
deduced. Only with this improved understanding can methods for assessing SPS quality be judged
appropriately for speed and accuracy.
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