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Upper bounds for the clock speeds of fault-tolerant distributed quantum computation
using satellites to supply entangled photon pairs
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Despite recent advances in quantum repeater networks, entanglement distribution on a continental scale
remains prohibitively difficult and resource intensive. Using satellites to distribute maximally entangled photons
(Bell pairs) between distant stations is an intriguing alternative. Quantum satellite networks are known to
be viable for quantum key distribution, but the question of if such a network is feasible for fault tolerant
distributed quantum computation (FTDQC) has so far been unaddressed. In this paper we determine a closed
form expression for the rate at which logical Bell pairs can be produced between distant surface code encoded
qubits using a satellite network to supply imperfect physical Bell pairs. With generous parameter assumptions,
our results show that FTDQC with satellite networks over statewide distances (500–999 km) is possible up to a
collective clock rate on the order of 1 MHz, while continental (1000–4999 km) and transcontinental (5000+ km)
distances run on the order of 10 kHz and 100 Hz, respectively.
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I. INTRODUCTION

It is well known that the Hilbert space of a quantum system
grows exponentially with the number of qubits processed.
This fact motivates research into quantum computer network-
ing since multiple such devices working together is thought to
have more computational power than the sum of its parts. One
complication of communicating quantum information though
is that conventional repeater networks cannot be used to am-
plify a quantum signal in transit. This is because unknown
quantum information cannot be perfectly copied [1]. It is
therefore necessary to use ultrareliable transmission strategies
which ensure that a state is delivered with near certainty. One
well established strategy is quantum state teleportation, which
uses a bipartite entangled state distributed between two distant
parties as a resource for one party to communicate a qubit of
information to the other [2].

The quantum repeater was the first technology proposed
for long distance entanglement distribution [3] but is presently
considered infeasible for continental distances since it re-
quires expensive repeater stations every 100 km or so [4–10].
A more viable alternative may be to use satellites to distribute
maximally entangled photons (Bell pairs) between distant
ground stations. The seminal Quantum Experiments at Space
Scale (QUESS) project demonstrated that a quantum satellite
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today can distribute Bell pairs over distances of 1200 km at a
rate around one kilohertz [11]. Additional theoretic work indi-
cates that satellite networks perform suitably well for quantum
key distribution (QKD) [12,13]. Unlike QKD, however, a
fault-tolerant distributed quantum computation requires a con-
tinuous, high-volume supply of high-fidelity Bell pairs.

In this paper, we determine a closed form expression for the
rate at which satellites can produce logical Bell pairs between
distant error-corrected qubits. This in turn is the rate at which
fault-tolerant quantum state teleportation can be performed
and equivalently is the clock speed of the distributed quan-
tum computer. Using generous parameter assumptions, we
find that this clock speed is upper bounded on the orders of
1 MHz for state distances, 10 kHz for continental distances,
and 100 Hz for transcontinental distances. Since the power
available to a satellite naturally limits the rate at which entan-
glement can be supplied, this suggests long-term scalability
issues for satellite based FTDQC. The choice of computa-
tional problem is incidental to our consideration of resource
estimation, but, for the sake of completeness, we choose to
consider RSA public key factorization using Shor’s algorithm.
We chose the surface code as our logical qubit encoding due
to its high physical error tolerance, inexpensive two qubit op-
erations via lattice surgery [14], and because it is the preferred
encoding method for current hardware [15,16]. Similarly, we
believe this choice of encoding is incidental to our final result
since most of the Bell pairs are expended—not on the codes
themselves, but on free-space attenuation and atmospheric
effects. Based on the logical error tolerance required for
this algorithm, we compute the required rate of high-fidelity
Bell pairs needed to perform a lattice surgery operation (the
fault tolerant parity check that is used to produce the logi-
cal Bell state). Working backwards, we calculate the rate of
lower fidelity Bell pairs incident on the ground needed to
perform entanglement purification with sufficiently high con-
fidence. Finally, we incorporate free space and atmospheric
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FIG. 1. Basic schematic of our scenario: a satellite in a constel-
lation distributes entangled photon pairs between two distant ground
stations. We assume an average double down-link attenuation η due
to atmospheric and free-space effects with ideal weather conditions,
and we assume perfect photon capture and conversion at the ground
stations. To compensate for entanglement degradation, a nondeter-
ministic recursion protocol is used to purify χ pairs into a single pair
of sufficient quality. Finally, the purified pair is used to implement
a fault-tolerant lattice surgery operation to create a logical Bell pair
between the code patches.

attenuation to estimate the rate of Bell pairs that a given satel-
lite must be able to produce. Figure 1 shows a diagrammatic
overview of our scenario. We convert this rate to the required
satellite power assuming the use of the brightest available
Bell source and with an estimate of the maximum power of
a commercially available satellite. Finally, we calculate the
creation rate of the logical Bell state.

II. INTRODUCING THE SURFACE CODE
AND LATTICE SURGERY

We begin with a brief overview of the surface code and
the lattice surgery operation. For a more complete description,
we advise the reader to consult [14]. A surface code is a
stabilizer code consisting of two types of qubits (differing
only in their respective function) arranged in a checkerboard
pattern [Fig. 2(a)]. Each lattice can encode one logical qubit
and the larger the lattice is, the less likely the logical qubit is
to suffer an undetectable error. The data qubits of the lattice
encode the quantum information of the logical qubit, while
the syndrome qubits are used to periodically measure the
stabilizer generators of the code. This process of measuring
the stabilizer generators is also known as syndrome extraction.
By performing syndrome extraction, one gains partial infor-
mation about any accumulated errors on the data qubits, which
allows one to correct the encoded state with high probability.
There are two types of syndrome extraction for the surface
code, each of which can be represented as a five qubit circuit
[Figs. 2(b) and 2(c)]. These circuits differ only with respect
to their measurement bases and are shown diagrammatically
as cloverlike tiles that cover the lattice. Importantly, all syn-

FIG. 2. (a) Top-down schematic of the surface code. The white
(black) circles are the data (syndrome) qubits and the green (yellow)
clover structures are the vertex (face) plaquettes. (b), (c) Syndrome
extraction circuits for the two types of stabilizer generators for the
surface code, respectively. Figure reproduced from Horsman et al.
[15].

drome extraction circuits can be run in parallel, meaning the
time it takes to implement a single syndrome extraction cycle
is 6T —the depth of the circuit multiplied by the average gate
time of the architecture.

We couple two surface code qubits using a technique called
lattice surgery. This is done by performing a syndrome ex-
traction cycle over two code patches as if they were merged
together (Fig. 3). We uncouple the state by measuring the
qubits along the seam connecting the patches. This merging
and splitting is equivalent to performing an XX parity mea-
surement between the two logical qubits. When both codes
are initialized as |0〉L, the resulting state is a maximally entan-
gled Bell pair. Notably, lattice surgery can be performed on
surface codes that are not directly adjacent. Distributed Bell
pairs can be used to teleport the two-qubit gates needed for
the syndrome extraction circuits along the seam of the code
(Fig. 3). What this means is that two parties can establish
error-corrected entanglement between a pair of surface codes
provided they have sufficiently many physical Bell pairs to
perform the lattice surgery operation.

How many entangled pairs are required for lattice surgery
and what is the rate at which they are required? These will
depend on the size of the surface codes. It was previously
mentioned that larger codes are more fault tolerant than
smaller ones. This is quantified with code distance, which for
a square lattice is roughly equal to the number of qubits on
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FIG. 3. Illustration of lattice surgery between two spatially sep-
arated surface codes A and B. (1) A buffer of syndrome and data
qubits is initialized between the two surfaces for continuity of the
qubit pattern. (2) The buffer qubits are merged into surface B and
Bell pairs are delivered for each qubit pair on the boundary. (3) The
syndrome extraction cycle of the code proceeds as normal. This joins
the two patches into a single code.

either edge of the lattice. For two codes of distance D, each
lattice surgery would ideally require D Bell pairs, as indicated
in Fig. 3. One subtlety that must be addressed, however, is that
measurement errors make syndrome extraction unreliable. In
practice, we require D syndrome extraction cycles for each
logical operation of the surface codes. This means that D2 Bell
pairs are required in total. Given that the time to implement
one round of syndrome extraction is 6T , we require 6T D
units of time for the D rounds of fault-tolerant surgery. The
corresponding production rate of logical pairs is therefore

RLP ≡ 1

6T D
, (1)

which, when multiplied by the required number of Bell pairs,
gives us the rate of ideal physical pairs needed to sustain
logical pair production at a rate of RLP:

RIP = D2RLP = D

6T
. (2)

We advise the reader at this stage that Table V catalogs
the definitions of constants used throughout the paper for easy
reference.

FIG. 4. Simplified space-time diagram for generating a logical
Bell state between two surface codes. Each solid cube represents
D cycles of syndrome extraction where D is the code distance. (i)
Initialization of surface code qubits in the |00〉L state. (ii) Lattice
merging with shared entanglement represented by the wavy cube
connecting the two code patches. (iii) Lattice splitting, which re-
quires a single round of syndrome extraction.

III. ESTABLISHING CODE DISTANCE

In general, we want to reduce the code distance in order
to minimize the number of physical pairs needed for lat-
tice surgery. We therefore aim to find the smallest possible
code distance that is still sufficiently large to protect logical
qubits in a practical instance of quantum computing. This first
requires an understanding of how the code distance relates
to the error rate of the encoded qubit. That relationship is
given as

PL = α(βp)
D+1

2 , (3)

where p is the physical error rate and PL is the logical error
rate per syndrome extraction cycle. Devitt et al. [17] propose
parameter values α = 0.3 and β = 70 based on their numeri-
cal data which we will adopt as well. Recall that one round of
syndrome extraction is unreliable due to measurement errors
and that all surface code operations require D rounds of syn-
drome extraction for fault-tolerant execution. Assuming that
PL is small, we approximate the overall success rate for a
surface code operation to the first order as

(1 − PL )D ≈ (1 − DPL ). (4)

The process of generating a logical pair from start to finish
requires four surface code operations in total. This is most eas-
ily visualized with a space-time diagram as shown in Fig. 4.
Here, each solid cube represents the D counts of syndrome
extraction required for each operation. The two disjoint cubes
at the base represent the preparation of the |00〉L state. The
middle two cubes with the wavy cube in between represent a
lattice surgery with shared entanglement on the code bound-
ary. Finally, a splitting operation is done which (unlike the
other operations) requires only one syndrome cycle and is
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therefore considered negligible. The total success rate of the
logical pair preparation is therefore

(1 − DPL )4 ≈ 1 − 4DPL, (5)

which means the failure rate of logical pair production as a
function of code distance is

PLB ≡ 4DPL = 4Dα(βp)
D+1

2 . (6)

To determine a reasonable value for D, we need to sub-
stitute PLB with the tolerable error rate for some nontrivial
quantum circuit. For our calculations, we consider Shor’s
prime-factorization algorithm for RSA public key breaking.
This is a well established benchmark with implications in
cybersecurity, though itself has little bearing in the context
of this paper. The circuit we consider for implementing this
factorization is given by Beauregard [18], which in the case
of 2048 bit factorization can tolerate a logical error rate of
4.28 × 10−21 [19]. Given PLB = 4.28 × 10−21 and, assuming
a physical error rate p = 0.001, we find that D ≈ 37.

IV. ACCOUNTING FOR PURIFICATION

An entangled pair distributed through a noisy channel nat-
urally loses some of its entanglement through decoherence.
The same is true for an entangled photon pair passing through
the atmosphere. This decay must be rectified with an entangle-
ment distillation (purification) protocol, which takes a number
of low-quality pairs and produces a high-quality pair with
some overall success probability using local operations and
classical communications [20]. For lattice surgery to succeed
with satellite based entanglement communication, we require
an additional resource overhead to account for the losses due
to purification—not only because n pairs are converted into
one, but also because the protocol is nondeterministic. On
this latter point, we require the entire purification process to
succeed with a rate S close to one. This means that given
some initial quantity of imperfect pairs, we need to be sure
up to confidence S that we can purify the required number
of pairs needed for lattice surgery to succeed. This is done
by circuit multiplexing, wherein many instances of a protocol
are performed in parallel in order to improve the probability
of a successful outcome. Circuit multiplexing is a common
technique in linear-optical quantum computing where most
operations are nondeterministic.

Note that entanglement purification cannot produce max-
imally entangled pairs in practice because of experimental
uncertainty. For this reason, we define an ideal pair to be
a state ρAB such that its fidelity with respect to a maximally
entangled pair (for example |φ+〉〈φ+|) is close to one:

F (ρ, |φ+〉〈φ+|) � 1 − ε, (7)

F (ρ, σ ) = [Tr(
√√

σρ
√

σ )]2. (8)

Let the purification factor χ be the number of nonideal
pairs required to generate one ideal pair with confidence S.
The rate of physical pairs required for lattice surgery at rate
RLP given some purification process is therefore

RIP+P = RIP χ. (9)

In general, the purification factor will depend on the initial
state ρin, the required output fidelity Fid , the required success
rate S, and the choice of purification protocol. Determining
optimal purification protocols for arbitrary mixed states re-
mains an open challenge so, for the sake of argument, we
choose to consider the well-established parity-check recur-
rence protocol by Bennett et al. [21]. In the most optimistic
scenario, this protocol takes two pairs of the form

ρ0 = F |φ+〉〈φ+| + (1 − F )|φ−〉〈φ−| (10)

and with probability F 2 + (1 − F )2 returns a state of the same
form with a new fidelity of

f (F ) = F 2

F 2 + (1 − F )2
. (11)

The reason the protocol is said to be a recurrence protocol
is because the output pairs can be used as inputs for a sub-
sequent round of purification. In this way, the protocol can
be repeated until the target fidelity is reached. Let N be the
minimum number of purification rounds needed to reach the
threshold fidelity Fid from an initial fidelity of F0.

Given the required number of purification rounds, what is
the overall likelihood of the multiround protocol succeeding?
Let p(F ) denote the success probability of a single 2 → 1
purification block

p(F ) = F 2 + (1 − F )2 (12)

and let F0, F1, . . . , FN−1 denote the input pair fidelities for the
respective purification rounds. Note that the kth purification
round contains 2k−1 many 2 → 1 purification blocks that each
need to succeed in order for the next round to go ahead. The
overall success probability for the protocol is therefore

P ≡ p(F0)2N−1 × p(F1)2N−2 × · · · × p(FN−1)20
. (13)

How many times must we multiplex a protocol with overall
success probability P in order to guarantee one success with a
confidence of at least S? Let B(P, k) be a binomial distribution
where k is some number of trials and let 
(B(P, k), x) denote
the cumulative distribution function of the binomial up to x.
The probability that at least one purification is successful is
then

P�1 ≡ 1 − 
(B(P, k), 1). (14)

The minimum number of circuits needed to achieve an overall
confidence S is therefore

K ≡ min
k

(P�1 � S). (15)

The purification factor is now the number of multiplexed
circuits times the number of pairs needed for each circuit:

χ = K × 2N . (16)

Another important consideration for satellite based entan-
glement distribution is how the entanglement ought to be
encoded into the photon pairs. One established and robust
option is the polarization basis. Corroborating theoretical and
experimental results indicate that polarization mode errors
are comparatively small for atmospheric transmission [12].
For our study we let F0 = 0.87, which is the collection fi-
delity reported by the Quantum Experiments at Space Scale
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(QUESS) group [11]. For the sake of argument we set our
target fidelity to be Fid = 0.999 and our confidence rating
as S = 0.999. With these parameters we find that N = 2
rounds of purification are sufficient to meet the target fidelity.
This has a corresponding success rate of P = 0.573, which
indicates K = 9 and χ = 36.

V. ATMOSPHERIC AND FREE-SPACE ATTENUATION

Let η be the double down-link attenuation of a photon
pair from a satellite or, in other words, the success rate of
pair transmission. Our objective now is to determine the rate
of photon pairs required to meet the RIP+P rate needed for
purification and lattice surgery, again with some confidence S.
The number of pairs that reach the ground after k attempts
is a random variable that follows a binomial distribution;
however, since the attempt rate is very large (k � 1), we
approximate this as a normal distribution with mean kη and
variance kη(1 − η):

N (kη, kη(1 − η)). (17)

Similar to our calculations for the purification factor, the
probability that at least RIP+P photon pairs are transmitted
given k attempts is the upper area of the probability density
function from the point RIP+P:

P�RIP+P ≡ 1 − 
(N (kη, kη(1 − η)), RIP+P ). (18)

The required pair generation rate of the satellite, RPG, is
therefore the minimum value of k such that the probability of
exceeding RIP+P is greater than or equal to the success rate:

RPG = min
k

(P�RIP+P ). (19)

A further simplification is possible using Markov’s in-
equality, which gives an upper bound for the probability that
a random variable X of some distribution is greater than a
constant a:

P(X � a) � E (X )

a
. (20)

Adapting this inequality for our case by setting X → RPG,
a → RIP+P, and E (X ) → RPG × η, we find that

S = P(RPG � RIP+P ) � RPG η

RIP+P
. (21)

Therefore, if S = 1 − ε where 0 < ε 	 1, we can approxi-
mate the pair generation rate as

RPG ≈ RIP+P

η
. (22)

Substituting with Eqs. (9) and (2), respectively, we momentar-
ily conclude by obtaining an expression that relates the photon
pair rate to the logical pair rate:

RPG = D2RLP χ

η
. (23)

Let us now focus our attention on choosing a suitable value
for η. Much work has been done to characterize atmospheric
attenuation for satellite based entanglement distribution. Bon-
ato et al. developed a model for η in the context of quantum
key distribution (QKD) [12] as did Mazzarella et al. [22]

and Khatri et al. [13]. The results of Khatri et al. are espe-
cially relevant for our discussion, as they demonstrated the
feasibility of a quantum satellite network for QKD and con-
ducted extensive simulations on a 400 satellite constellation to
find average down-link attenuations between major cities. We
elected to use their three most optimistic attenuation rates for
state, continental, and transcontinental distances, the values of
which are presented in Table I. Due to the importance of these
results in our calculations, a brief overview of their attenuation
model and satellite constellation is provided for completeness.

The major contribution in down-link attenuation is at-
tributed to beam widening. This has contributions from
natural free-space widening and atmospheric diffraction. Al-
though atmospheric diffraction contributes a higher widening
rate, the team counterintuitively demonstrates that free-space
widening is the more significant of the two contributions. This
is because the atmospheric depth over which diffraction takes
place is considerably smaller than the free-space distance.
Beam wandering, where the median of the Gaussian profile
shifts in the (x, y) plane, is known to be negligible for down-
link transmission and so is not considered. Perfect weather
conditions are assumed and the atmosphere is taken to be a
homogeneous layer of constant density. The effects of ambient
light are considered on the daytime regions of the globe since
sunlight contributes a significantly higher signal to noise ratio
and therefore decreases transmission efficiency.

The design objective of the constellation is to supply con-
tinuous global coverage with as few satellites as possible such
that no double down-link channel ever exceeds 90 dB. The
constellation consists of a number of equally spaced rings of
satellites in polar orbits with an identical number of satellites
in each ring. The optimal satellite configuration was decided
as follows: in the worst case scenario, two ground stations
each located on the equator are separated by some distance
d . A constellation of 400 satellites was proposed which opti-
mizes their figure of merit: the ratio of average entanglement
distribution to the total number of satellites.

VI. REQUIRED PAIR GENERATION RATE
AND SATELLITE POWER

In this section, we relate the pair generation rate RPG to
the required satellite power Ps. We assume all power is ex-
clusively allocated to the task of pair production. The rate
at which a satellite can generate pairs (SPG) depends on the
brightness of the source (Np), the power consumption of each
source (Pr ), and the power available to the satellite (Ps):

SPG = PsNp

Pr
. (24)

Rearranging this and setting SPG → RPG gives us the re-
quired satellite power for a particular generation rate:

Ps = RPGPr

Np
. (25)

Substituting RPG with Eq. (22), we obtain a closed form ex-
pression relating the satellite power to the rate of logical pair
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TABLE I. Most optimistic average double down-link losses for three distance classifications over a 24 h period for a 400 satellite
constellation [13].

Classification City pairs Average loss (dB)

State (500–999 km) Toronto - New York City 45.1
Continental (1000–4999 km) Sydney - Auckland 65.6
Transcontinental (5000 km+) New York City - London 79.1

production:

Ps = D2RLP χPr

Npη
. (26)

To determine a realistic upper bound for the maximum
satellite power, we present a brief survey of the power ratings
of Indian communication satellites in Table II. The most pow-
erful of these, the GSAT-11, has a considerably larger power
rating than the others but at a comparable budget. We therefore
estimate that a satellite with a power rating of 10 kW is on the
order of the most powerful commercial satellite possible with
current technology.

The brightest available Bell-pair source reported at the
time of writing is a waveguide integrated AlGaAson microres-
onator with a brightness of 20 × 109 Bell pairs s−1mW−2

[23]. Its high output combined with a micrometer scale form
factor makes it a promising candidate as a satellite-based
entanglement source. From the experimental data, the highest
attainable rate reported was 4 × 106 pairs per second at a
power of 15 μW. According to the team, increasing the power
beyond this point would exceed the lasing threshold of the
microresonator, which would reduce the overall entanglement
visibility. With this information, we set NP and Pr to the
aforementioned values of brightness and power per source,
respectively.

VII. RESULTS AND DISCUSSION

Let us begin by discussing the significance of estimat-
ing maximum achievable logical pair rates in the context of
distributed quantum computation. The rate at which logical
Bell pairs can be generated is essentially the global clock
speed of a distributed quantum computer. More precisely, the
logical operations of state teleportation, gate teleportation, and
nonlocal two qubit operations are all rate limited by logical
pair production. By estimating the maximum possible rate of
logical pairs, we indicate the rate at which nonlocal operations
between distant qubits can be performed.

TABLE II. Survey of Indian communication satellites launched
between 2018 and 2019 with power ratings and costs.

Satellite name Power Budget (10 million USD)

GSAT-11 13.6 kW 7.43
GSAT-31 4.7 kW 6.46
GSAT-7A 3.3 kW 6.32–10.11
GSAT-29 4.6 kW 2.08
GSAT-30 6 kW 6.46

How does the global clock speed of a distributed quantum
computer relate to its overall utility? This is a difficult (if not
impossible) question to answer in the absolute sense, but in
general we understand that a fast quantum computer is prefer-
able over a slow one. Let us propose a thought experiment
to resolve this insight with greater resolution. Suppose we
have a quantum computer q and a quantum algorithm j that
takes an integer as input. Let J be a fictitious oracle that
takes a clock speed as input and returns the smallest integer
such that the quantum algorithm j achieves supremacy on
q (i.e., completes the computation faster than any existing
classical computer). We expect that J is a continuous func-
tion since in principle supremacy is possible at any clock
rate (provided one chooses a sufficiently big input) and we
expect that J is monotonically increasing since it would be
absurd for a slow quantum computer to achieve supremacy
before a fast one. From these properties of J , we see that
fast quantum computers can reach supremacy with smaller
computational problems than slow ones. This means that fast
quantum computers are likely to be useful for a broad range of
problems, whereas slow quantum computers will only realize
an advantage for very large calculations. Additionally, a slow
quantum computer will require more physical resources than
a fast one in order to achieve supremacy. It is for these two
reasons that fast quantum computers are strongly preferred
over slow ones. Although we cannot quantify the utility of a
distributed quantum computer given its global clock speed, we
can at least compare our estimates to the average gate times of
a variety of physical qubits (Table III). In this way, we get an
idea of how powerful our hypothetical distributed system is
given our current understanding of what is possible with these
contemporary systems.

Our numerical results are presented in Fig. 5. Here,
we plot the generation rate of logical Bell pairs [as given
by Eq. (26)] versus the required satellite power for state,

TABLE III. Sample of average gate times for common qubit
architectures.

Architecture Average gate time Rate

Superconducting qubits [24] 50 ns 2 × 107 Hz
NV diamond [25] 0.05 μs 2 × 107 Hz
Ion trap [26] 1.6 μs 6.25 × 105 Hz
NMR spins [27] 1 ms 1 × 103 Hz

Distance category Rate

State 2 × 106

Continental 1 × 104

Transcontinental 6 × 102
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FIG. 5. Rate at which logical surface code Bell pairs can be generated versus the available satellite power [Eq. (26)] for three different
distance ratings (Table I). The vertical dashed line indicates the approximate maximum power of a commercial satellite [29].

continental, and transcontinental distance ratings (Table I).
Additionally, we plot a vertical dashed line indicating the
approximate maximum power of a commercial satellite (10
kW). We estimate the fastest possible logical pair rates for
each distance category by looking at where the three curves
intersect this vertical. For state distances, this rate is around
2 × 106 s−1. For continental distances, ≈1 × 104 s−1, and
for transcontinental distances, ≈6 × 102 s−1. Let us compare
these estimates with the average gate times of common qubit
technologies (Table III). Here we see that the maximum
achievable rate at the statewide distance is comparable to the
rate of trapped-ion systems. Continental and transcontinental
distances in turn are comparable to the speeds of an NMR-spin
quantum computer.

With this in mind, we stress that these upper bounds
are far from realistically achievable due to the numerous
highly optimistic parameter assumptions and simplifications
we made throughout this work. We treated photon capture and
conversion as a lossless process and assumed that quantum
memories and local operations are effectively noiseless. We
treated incoming pairs with a special noise model to improve
the purification rate. Our adapted model for double-down link
attenuation assumes ideal weather conditions and we assume
that 100% of a satellite’s power can be allocated exclusively
to photon pair production. We also point out that all resource
estimation up to this point has been done with respect to a
single pair of distributed surface codes, which suggests the
communication infrastructure would need to scale in propor-
tion to the number of distributed qubits.

Let us now consider the ways in which we might improve
the performance of a quantum satellite network. Our options

are to increase the throughput of the satellites, decrease the
required pair generation rate, improve the efficiency of our
purification, or reduce the relative attenuation of the down-
link channel. In the first case, the only possibilities are to
increase the satellite power or to improve the brightness of
the photon pair source. It is unlikely that the power available
to a commercial satellite will dramatically increase, though
we suspect the brightness of entanglement sources will be
improved at least an order of magnitude in the near-distant
future. With respect to the pair generation rate [Eq. (22)], we
find that the code distance contributes one order of magni-
tude and is almost certainly irreducible for the surface code
since error-corrected logical qubits are required for distributed
quantum computation. It is possible however that choosing an-
other code type may yield a small advantage. In our work, we
considered a parity check recurrence purification and showed
the corresponding purification factor contributes one order of
magnitude to the required pair rate. Given our optimistic noise
assumptions, we do not consider it likely that our estimate of
χ = 36 will be dramatically improved, though this remains an
open question.

It was brought to our attention that it may be possible to
avoid nondeterministic recurrence purification by using a pair
generation protocol that is different from the one depicted
in Fig. 4. Here, the idea is to implement an error correcting
code over multiple imperfect logical Bell states, which would
eliminate the need to purify initial entanglement resources.
For a specific example, we extend our gratitude to Gidney for
providing us with a Stim implementation of a surface-code
purification using a 5-qubit code [28]. One drawback with
this approach, however, is that concatenating error-correcting
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TABLE IV. Summary of selected parameter values with
justifications.

Parameter Value Justification

D 37 Required code distance for FT RSA
F0 0.87 QUESS Satellite data [11]
Fid 0.999 Required fidelity rating
S 0.999 Requirement of surface code
χ 36 Best estimate
Ps 10 kW Highest power rating for comms sat.
Pr 15 μW Power of brightest Bell source [23]
NP 4 × 106 s−1 Throughput of Bell source [23]

codes increases the length of the space-time circuit which in
turn decreases the rate at which logical pairs can be gener-
ated. A promising direction for further research is whether or
not such a strategy could yield an advantage for logical pair
production.

By far the most significant contribution to the required
rate of photon pairs is the double down-link attenuation. The
optimistic results we selected from Khatri et al. contribute
between five and eight orders of magnitude depending on the
distance between stations. As this loss results from free-space
transmission and atmospheric diffraction, there are few op-
tions for mitigating this effect. One notable strategy is to store
half of a pair on the satellite as the other transmits rather than
sending both halves at the same time. We credit Shaw with this
idea. At first this seems like only a superficial difference, but
it turns out that this trick can effectively halve the attenuation
rate. This is because when half of a pair is established on the
ground, the other half can be used for entanglement swapping
with another established pair (albeit with a success probability
of 50%). A significant disadvantage with this approach though
is that the satellite must reliably control, process, and measure
an enormous number of pairs, which is presently infeasible
for a satellite.

Up to this point we considered a down-link transmission
model where entanglement is generated in satellites and dis-

TABLE V. Table of the most significant constants with definitions.

Constant Definition

D Surface code distance
RLP Logical pair generation rate
RIP Rate of ideal Bell pairs required to produce

logical pairs at rate RLP

PLB Tolerable error rate of logical pair production
S The likelihood that a given routine succeeds (also

called the confidence)
χ Number of imperfect pairs needed to purify down

to one ideal pair with confidence S
RPG Required photon pair rate to generate logical

pairs at rate RLP

η Double down-link attenuation rate (the success
rate of a photon-pair transmitting)

Ps Satellite power
Pr Power consumption per photon pair source
NP Brightness of Bell source (pairs per unit time)

tributed between ground stations. The reverse case is up-link
transmission where entanglement pairs are prepared on the
ground and fired up to a satellite which performs entangle-
ment swapping to project the pair between the stations. The
main advantage of this approach is that ground stations can
generate significantly more photon pairs since power is no
longer a major limiting factor. The downside, however, is
that the attenuation rate for up link is significantly higher
than for down link. This is because beam wandering effects
from atmospheric turbulence are more significant when the
Gaussian profile is small. Engineering challenges are another
difficulty for these hypothetical networks. Unlike down-link
satellites, which are relatively passive, the up-link satellite
would be required to control and measure incoming photon
pairs with quantum precision. This is a demanding task even
for a laboratory on Earth. Whether or not these trade-offs are
overall beneficial remains to be seen, though our group is
currently investigating this in greater detail.

We believe our results indicate a need to reconsider the
problem of long-distance entanglement distribution. One un-
derstated consideration of quantum networks is that they
have no latency requirements. Unlike classical data networks,
entanglement can be stored as a physical resource and trans-
ported by moving error corrected memory units. This is the
motivating principle of the quantum sneakernet [17], which
may be a more viable long-term alternative to quantum satel-
lite networks. We note that the quantum sneakernet has its
own significant engineering challenges since it is predicated
on the aspiration it is possible to make a sufficiently portable
and scalable quantum memory unit that can be transported
long distances. Given the alternatives, however, we feel that
the sneakernet has a greater potential for scalability than any
quantum satellite network. This is because satellites will al-
ways be rate limited by power consumption, which is not a
problem in the sneakernet model.

In this work, we determined upper bounds for the rates of
logical pair generation between surface code qubits at a vari-
ety of distances when the physical entanglement is supplied
by a quantum satellite network. We began by establishing a
reasonable code distance that was predicated on an arbitrar-
ily “hard” computational problem. We accounted for losses
in entanglement purification by considering a 2 → 1 parity
check recurrence protocol under an optimal noise model. In
order to calculate our estimates for attainable pair rates, we
also developed a closed form equation relating the available
satellite power to the achievable logical pair production rate.
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APPENDIX: TABLES OF CONSTANTS

This appendix contains Tables IV and V which, respec-
tively, summarize our experimental parameters and catalogue
the most important constants used throughout the paper.
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