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Abstract

In recent years, attention mechanisms have gained popularity in sequential rec-

ommender systems (SRSs) due to obtaining dynamic user preferences efficiently.

However, over-parameterization of these models often increases the risk of over-

fitting. To address this challenge, we propose a Transformer model based on

tensor train networks. Initially, we propose a tensor train layer (TTL) to ac-

commodate the original weight matrix, thus reducing the space complexity of

the mapping layer. Based on the TTL, we reconfigure the multi-head atten-

tion module and the position-wise feed-forward network. Finally, a tensor train

layer replaces the output layer to complete the overall compression. According

to the experimental results, the proposed model compresses SRSs parameters

effectively, achieving compression rates of 76.2% − 85.0%, while maintaining or

enhancing sequence recommendation performance. To our knowledge, the Ten-

sor Train Transformer is the first model compression approach for Transformer-

based SRSs, and the model is broadly applicable.
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1. Introduction

Recommender systems (RSs) have become effective tools for tackling the

problem of information overload and are widely applied in various fields, such

as e-commerce and social media. Among them, sequential recommender sys-

tems (SRSs), which model user behavior sequences and simulate their interest

changes using neural networks such as Recurrent neural network (RNN) (Jan-

nach & Ludewig, 2017), Convolutional neural network (CNN) (Tang & Wang,

2018), Memory network (Chen et al., 2018), and Attention network (Kang &

McAuley, 2018; Sun et al., 2019), has become a hot research topic in the rec-

ommendation field due to its ability to capture dynamic preference. RNN is

commonly used for sequence modeling, CNN can capture union-level patterns

in sequences, memory networks introduce memory modules to store sequence

interaction information, and attention networks consider the importance of user

sequence behavior interaction and long-distance correlation to capture users’

dynamic preferences more accurately, which has gained widespread recognition.

Although attention models are widely popular, their complex structure is

inevitable, especially in the case of Transformer models. As user interaction

behavior becomes increasingly complex, model sizes grow larger and require

stacking multiple layers of network structures involving numerous learnable pa-

rameters, leading to over-parameterization1 and parameter redundancy issues.

Moreover, training SRSs is not an easy task. For example, the BERT4Rec

(Sun et al., 2019) model involves over 9 million parameters on the MovieLens-

20M dataset, and training the complete model takes approximately three hours.

This also limits the effective deployment of the model under limited resources.

Therefore, to mitigate over-parameterization and reduce the number of model

1Over-parameterization usually means the situation in which the amount of information

is insufficient to estimate a large number of parameters of deep networks, which leads to

inaccuracy and high cost for the model’s inference.(Fan et al., 2021)
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parameters, our primary objective is to compress Transformer-based SRSs.

In the field of model compression research, various techniques have emerged

(Novikov et al., 2015; Ma et al., 2019; Pan et al., 2019; Zafrir et al., 2019; Shen

et al., 2020) that can reduce the scale of neural networks with limited loss in

accuracy. However, compressing Transformer-based SRSs presents unique chal-

lenges. Firstly, the Transformer-based models are more complex and have more

parameters compared to CNN-based and RNN-based models. The Transformer-

based models are composed of multiple network layers, including input layer,

Transformer layer, and output layer. The Transformer layer can be divided

into multi-head attention (MHA) and position-wise feed-forward (PWFF) net-

works. MHA can alse be considered a nonlinear function (Ma et al., 2019),

further increasing the models’ complexity. The second challenge lies in ensuring

end-to-end training. To effectively model user preferences, SRSs typically have

multiple network components. However, the structure of these components is

not uniform. After compressing the model, it becomes essential to retrain these

components to ensure their accuracy.

Among the many compression methods, tensor decomposition (Ma et al.,

2019) is a parameter fitting method that can fit the original parameters with

limited parameters. Tensor train decomposition has been adopted by lower

space complexity (Yin et al., 2021). Our goal is to reduce the size of the model

parameters. To do this, we analyze the model and locate its parameter positions.

A few parameters are used to fit the original parameters and end-to-end training

is ensured to reduce the loss of accuracy.

To address the aforementioned challenges, this paper proposes a Tensor Train

Transformer model for SRSs, namely T3SRS. Firstly, the Transformer model

architecture comprises two key components, MHA and PWFF, whose learnable

parameters mainly concentrate on linear layers, with the scaled dot-product

attention only involving attention matrix computation. Thus, we design tensor

train layer (TTL) to handle these parameters, using multiple learnable fourth-

order tensor train factors to fit the weights and adding bias weights. Next,

multi-head attention with tensor train layers (TT-HMA) is proposed to replace
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the traditional MHA module. TT-MHA integrates TTLs into the multi-head

attention to effectively reduce parameters of MHA. In the PWFF network, a

similar method is adopted, and position-wise feed-forward with tensor train

layers (TT-PWFF) is proposed. In the SRSs, the final classification layer is also

replaced with a TTL, and the replaced module can be connected with other

model structures for joint training. In summary, the contributions of this paper

are as follows.

1. In addressing the challenge of parameter redundancy in SRSs, we propose

the Tensor Train Transformer. By utilizing tensor train decomposition,

this model represents the parameter matrices in the form of a tensor net-

work. To our knowledge, this work is the first to apply tensor train net-

works specifically for compressing SRSs, and fills the gap in the research

on compression of Transformer-based SRSs.

2. Through a systematic and comprehensive examination of the space com-

plexity, we propose a tensor train layer. Unlike traditional tensor decom-

position approaches, within the Transformer framework, we innovate by

substituting the original third-order TT factors with several fourth-order

tensors. This format effectively compresses storage and computational

complexity and maintains higher accuracy compared to the original model,

as verified in Section 5.2.

3. To address the challenges associated with the training process in com-

pressed models, we design the TT-MHA and TT-PWFF components to

ensure end-to-end training. In addition, we replace the traditional classifi-

cation layer of SRSs with the tensor train layer to further reduce the space

complexity. Compared with similar compression methods, our method has

a larger compression scope, as verified in Section 5.6.

The remaining structure of this paper is as follows. Related work will be

presented in Section 2. Section 3 will mainly describe the background and

preparation work. Section 4 will describe the compressed model and specific

details. The experiment and the analysis of the results will be described in
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Section 5. Finally, we will summarize the advantages and disadvantages of this

work in Section 6, and describe the future work.

2. Related work

2.1. Sequential recommendation

In recent years, various SRSs based on deep neural networks have emerged.

RNN (Jannach & Ludewig, 2017) was the first to be applied in SRSs. Hidasi

et al. (2016b) used RNNs to extract high-quality features and proposed the

parallel RNN framework, which utilizes different RNN architectures to build

user feature vectors and predict the next user behavior. However, when there is

no strong correlation between the previous and next sequences, the performance

of the RNN model is not satisfactory. Therefore, CNN has also been applied

to sequence recommendation tasks. The Caser model (Tang & Wang, 2018)

uses convolutional kernels to capture the local features of item embeddings and

provides the ability to model general preferences and sequential preferences.

The model mentioned above does not consider the importance of past in-

teractions. To overcome this, attention mechanisms have been employed in

sequential data modeling, yielding impressive results (Kang & McAuley, 2018).

For instance, the hierarchical attention mechanism (Du et al., 2022) is used to

capture the dependencies of high-level items and, through weighting, infer the

main objective of sequence recommendation. The STAMP model (Liu et al.,

2018) introduces a limited short-term attention/memory model, which learns

the unified embedding space of the entire session item. These models all in-

tegrate attention mechanisms into the original model. With the Transformer

model composed entirely of attention mechanisms (Vaswani et al., 2017), the at-

tention model’s sequence extraction ability was fully utilized. Subsequently, the

BERT model’s (Devlin et al., 2019) introduction achieved cutting-edge outcomes

in numerous natural language processing tasks. In sequence recommendation,

there also exist entirely attention-based systems (Kang & McAuley, 2018; Sun

et al., 2019; Wu et al., 2020; Li et al., 2020; Liu et al., 2021; Fan et al., 2021;
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Hou et al., 2022). SASRec is a self-attention based SRS proposed by Kang

& McAuley (2018), and BERT4Rec (Sun et al., 2019) is a two-way sequential

recommender system trained through Cloze tasks. While these attention-based

sequential recommendation models have demonstrated significant effects, model

compression research has become critical due to many training parameters and

the high training costs.

2.2. Model compression

Generally, the current model compression approaches can be classified into

pruning (Lin et al., 2022), quantization (Bartol et al., 2015; Shen et al., 2020),

weight sharing (Dehghani et al., 2019; Lan et al., 2019), and low rank fitting

(Novikov et al., 2015; Ma et al., 2019; Pan et al., 2019). The application of tensor

networks to neural networks and the creation of tensor networks is an emerging

field because of the superior ability of tensor networks to fit original weights with

a small number of parameters (Wang et al., 2023). For instance, in literature

(Novikov et al., 2015; Qiang & Ji, 2022), researchers successfully employed tensor

decomposition methods to compress convolutional layer neural networks. The

Tensorizing Neural Network (Novikov et al., 2015) represents the weight matrix

in a convolutional neural network using tensor train decomposition. Wang et al.

(2022b) utilized CP decomposition to compress convolutional neural networks,

while Aggarwal et al. (2018) constructed the tensor ring network using tensor

ring decomposition to compress the full connectivity layer and convolution layer.

RNN (Xu et al., 2021) also adopts this form of weight matrix representation.

Although these techniques effectively reduce the parameters of neural networks,

their suitability for attention models remains unexplored.

In the Transformer model, the Sparse Transformer (Child et al., 2019) applies

sparse technology to attention matrix computation and reduces the number of

parameters. This technique utilizes a sparse attention matrix to decrease model

parameters by selecting certain positional information on the attention matrix,

but the number of reduced parameters is limited. Ma et al. (2019) proposed

a novel attention model that utilizes Block Term Tensor Composition (BTD),
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achieving good results in natural language processing tasks. Pham Minh et al.

(2022) proposed a compressed Transformer, based on tensor train decomposi-

tion in image classification task. However, the BTD-Transformer and TT-ViT

models only deal with original multi-head attention modules. In addition, the

TT-ViT model uses a TT matrix-by-vector product, which fails to preserve the

originally existing bias term. Inspired by Tucker decomposition representations,

Tuformer (Liu et al., 2022) designed a data-driven trainable header Transformer

with a theoretically reliable framework. Nevertheless, most of these methods

focus on language models, and model compression in the recommendation field,

especially attention models, has not been extensively studied. In the recommen-

dation field, Hrinchuk et al. (2020) proposed using tensor train decomposition to

process the embedded layer, which can be applied to various model structures.

TT-rec (Yin et al., 2021) replaces large embedded tables in the deep learn-

ing recommendation model with a series of matrix products and introduces a

new initialization method. However, Tensorized Embedding (Hrinchuk et al.,

2020) and TT-Rec compress only the Embedding layer and do not consider the

main structure of the sequential recommender systems, such as the Transformer

layer. CpRec (Sun et al., 2020) applies low-rank decomposition and weight shar-

ing to compress the parameter amount of the NextItNet model. While CpRec

compresses the feature interaction layer and the Embedding layer, it operates

within a multi-layered CNN architecture, rendering it ill-suited for the intri-

cacies of the Transformer architecture. Despite being inspired by models in

the field of natural language processing, some attention models in sequential

recommender systems, such as SASRec and BERT4Rec, still face challenges in

model compression. In this paper, we propose a Tensor Train Transformer for

SRSs, namely T3SRS. T3SRS takes advantage of the powerful fitting ability of

tensor train networks and the rationality of approximating higher-order tensors

to reduce the space consumption of SRSs. Unlike the above compression meth-

ods, the T3SRS model has a stronger compression capability, which realizes

the parameter compression of the multi-head attention layer, the position-wise

feed-forward network, and the classification layer. At the same time, the T3SRS
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model is able to retain the original bias terms present in the network, as detailed

in Section 4.2.

3. Background and preliminaries

In this section, for ease of understanding, we will provide some background

and preliminary work related to tensors, including definitions of symbols, some

operations of tensors, and tensor train networks.

3.1. Tensor and tensor contraction

Following the paper (Kolda & Bader, 2009), a tensor is a multidimen-

sional array. As shown in Table 1, an Nth-order tensor is represented by

X ∈ RI1×I2×···×IN . A vector is a first-order tensor, represented by bold low-

ercase letter x ∈ RI1 . A matrix is a second-order tensor, represented by bold

uppercase letter X ∈ RI1×I2 . Similarly, the elements of tensor X are denoted

by handwritten uppercase letter Xi1,...,iN , with indices (i1, i2, . . . , iN ).

Table 1: Tensor notations

Symbol Explanation

x ∈ RI1 vector

X ∈ RI1×I2 matrix

X ∈ RI1×I2×···×IN Nth-order tensor

I dimensionality

◦ outer product operation

A tensor network is a countable collection of small-scale tensors that are

interconnected through tensor contractions (Qiang & Ji, 2022). A fundamental

tensor diagram is depicted in Figure 1, where tensors are visualized as nodes

and edges. Each node represents an independent algebraic object, and each

edge represents a mode (or index) of the algebraic object.
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𝐼1

𝐼2

𝐼1

𝐼3

𝐼2

𝐼1

1
𝐼1 𝐼1 𝐼2 𝐼1 𝐼2

𝐼3
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𝐼2

𝐼1

𝐼3

𝐼2

𝐼1

1
𝐼1 𝐼1 𝐼2 𝐼1 𝐼2

𝐼3

(b) Tensor diagram representation

Figure 1: Two modes of representation Vector x ∈ RI1 , Matrix X ∈ RI1×I2 , Tensor X ∈

RI1×I2×I3 .

As depicted in Figure 2, the connection of two algebraic objects on the

same mode represents summation over that mode. Figure 2 (a) shows the

contraction of two matrices
∑

I2
AI1,I2BJ1,J2

, where I2 = J1. Figure 2 (b) shows

the contraction of two vectors, which is the inner product operation
∑

I2
aI2bJ1 .

Figures 2 (c) and (d) illustrate more complex tensor operations.

𝐼1 𝐼2 𝐽1 𝐽2 𝐼2 𝐽1

(𝐚) (𝐛)

(𝐜) (𝐝)

Figure 2: Graphical representation of tensor operations.

Tensor contraction refers to the process of merging two tensors on one or

more modes to form a new tensor. It requires that the dimensions of the con-

tracted modes be consistent between the two tensors, as shown in Figure 3.

Tensor contraction can be viewed as a higher-order extension of matrix multi-

plication in the field of tensors. For example, given tensor A ∈ RI1×I2×I3×I4×I5

and B ∈ RJ1×J2×J3×J4×J5 , where I5 = J3 and I3 = J2, contracting the two ten-

sors on the common indices I5, I3 yields tensor C ∈ RI1×I2×I4×J1×J3×J4 , whose

elements are computed according to Eq. 1.

Ci1,i2,i4,j1,j3,j4 =
∑
i3,i5

Ai1,i2,i3,i4,i5Bj1,j2,j3,j4,j5 (1)
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𝐼4

𝐽1

𝐽3

𝐽4

𝓐 𝓑 𝓒

𝓧

⋯

𝓖(𝑛)

𝓨

𝐱 𝐲

tensorization vectorization

𝐽1

𝐽2

𝐽𝑁

𝐽𝑁−1
⋯

𝓑
+

Figure 3: Diagram for tensor contraction.

3.2. Tensor train network

The traditional tensor train (TT) decomposition aims to decompose a higher-

order tensor into several third-order tensors. For a N -th order tensor X ∈

RI1×···×In , the TT decomposition is given by

X =

R1∑
r1=1

· · ·
RN+1∑

rN+1=1

G(1)(r1, :, r2) ◦ G(2)(r2, :, r3) ◦ · · · ◦ G(N)(rN , :, rN+1) (2)

where G(n) ∈ RRn×In×Rn+1 , n = 1, . . . , N are the core factors. {Rn}N+1
n=1 rep-

resent the ranks of TT decomposition factors, with R1 = RN+1 = 1. Figure 4

illustrates the TT decomposition form of an N -th order tensor.

𝐼1

𝐼2

𝐼𝑁

𝐼𝑛

⋯

⋯

𝑅1 = 1 𝑅2 𝑅𝑁 𝑅𝑁+1 =1

𝐼𝑁

𝑅𝑛 𝑅𝑛+1

𝐼𝑛

𝑅3

𝐼2

𝒢(1) 𝒢(2) 𝒢(𝑛) 𝒢(𝑁)

𝐼1

⋯ ⋯
=

Figure 4: Tensor train decomposition.

In this work, we will use several fourth-order tensors instead of the original

third-order TT factors, as shown in Figure 5. We will represent higher-order

tensors using a network composed of fourth-order tensor factors and their con-

traction operations. Compared with other matrix decomposition techniques,

the tensor train format does not require tensors to have specific structures or

attributes, and tensor train decomposition can significantly reduce storage and

computational requirements, but it still maintains relatively high approximation

accuracy.

The formula for this representation is as follows:
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𝐼1

𝐼2

𝐼𝑁

𝐼𝑛

⋯

⋯

𝑅1 = 1 𝑅2 𝑅𝑁 𝑅𝑁+1 =1

𝐼𝑁

𝑅𝑛 𝑅𝑛+1

𝐼𝑛

𝑅3

𝐼2

𝒢(1) 𝒢(2) 𝒢(𝑛) 𝒢(𝑁)

𝐼1

⋯ ⋯
=

𝐽𝑁𝐽𝑛𝐽2𝐽1

Figure 5: Tensor train network.

X =

R1∑
r1=1

· · ·
RN+1∑

rN+1=1

G(1)(r1, :, : r2) ◦ G(2)(r2, :, : r3) ◦ · · · ◦ G(N)(rN , :, : rN+1) (3)

where G(n) ∈ RRn×In×Jn×Rn+1 , n = 1, . . . , N are fourth-order tensor factors.

{Rn}N+1
n=1 represent the ranks of tensor train network factors, with R1 = RN+1 =

1.

4. Proposed model

This section provides a detailed overview of the proposed model. First, we

articulate the framework and underlying motivation for the design of the model.

Subsequently, we describe each part of the model. Finally, a theoretical analysis

of the complexity of the model is presented.

4.1. Framework and motivation

Figure 6 illustrates the original Transformer, weight matrix tensoriza-

tion, and Tensor Train Transformer. Primarily, to circumvent model over-

parameterization and achieve compression, it is essential to analyze the pa-

rameter configurations and complexity of the original model. Upon analyzing

the model and observing the parameter positions, it becomes apparent that the

MHA and PWFF components entail a significant number of parameters. When

the model’s channel number is d, the parameters of these two components are

approximately 12d2, mainly consisting of linear mapping weight matrices, as

shown in the left panel of Figure 6.

Upon completing the analysis of model parameters, our objective is to reduce

the parameter count while preserving the recommendation efficacy of the model.
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The tensor train network introduces an effective parametrization paradigm that

encapsulates the model’s weight matrix within tensor train factors. Inspired by

this, we propose the Tensor Train Transformer, as illustrated in the right panel

of Figure 6. This framework decomposes the original large parameter matrix

into a series of smaller tensors, significantly reducing the model’s parameters

while maintaining its inherent expressive power.

𝐖

𝒢( ) …

𝒳

𝐱

ℬ

𝐛

𝒢( )
…

𝒢( )

…
𝒢( )

(a) Original Transformer (b) Tensorization of weights (c) Tensor Train Transformer

Add & Norm

Add & Norm

Dropout

Dropout

𝐱

PWFF

𝐖𝟏

𝐖𝟐

K* V*Q

𝐬𝐨𝐟𝐭𝐦𝐚𝐱

MHA

𝐖𝐐 𝐖𝐊 𝐖𝐕

𝐖𝐎
K* V*Q

𝐬𝐨𝐟𝐭𝐦𝐚𝐱 TT-MHA

⋯
𝒢
( )

𝒳
𝒲𝐕

⋯
𝒢
( )

𝒳
𝒲𝐕

⋯
𝒢
( )

𝒳

𝒲𝐕

⋯
𝒢
( )

𝒲𝐎

Add & Norm

Add & Norm

Dropout

TT-PWFF

⋯
𝒢
( )

𝒲𝟐⋯

𝒢
( )

𝒲𝟏

Dropout

Figure 6: Schematic diagram of Tensor Train Transformer model. The left panel depicts the

original Transformer model, the middle panel illustrates the weight tensorization process, and

the right panel showcases the Tensor Train Transformer.

Specifically, we use the tensor train network to approximate the weight ma-

trices and reduce the model’s space complexity. Firstly, in order to apply ten-

sor train layers, we tensorize the high-dimensional interaction sequence into a

higher-order tensor, then use tensor train layers to extract local and inter-factor

features while retaining self-attention mechanisms to capture global sequence

patterns. Furthermore, the factor weights of the tensor train layer’s input and

output are shared, enabling the model to learn implicit knowledge from the

input while improving performance on compressed models.

The Tensor Train Transformer effectively circumvents the inherent over-

parameterization dilemma present in traditional models. Our experimental

findings corroborate that, even with a substantial reduction in parameters, this
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model consistently matches or surpasses conventional models across various per-

formance metrics.

4.2. Tensor train layer

In this section, we introduce the tensor train layer (TTL), which represents

weight matrices as a contraction of multiple fourth-order tensors, thereby reduc-

ing the number of model parameters. Unlike the traditional TT decomposition,

our approach utilizes multiple fourth-order tensors for weight matrix fitting,

as detailed in Section 3.2. When compressing Transformer-based SRSs, the

fourth-order tensor is more conducive to maintaining the performance of the

compressed model.

First, the input vector x ∈ RI of the linear layer is tensorized into a higher-

order tensor X ∈ RI1×···×IN using a pre-defined tensor train network. The

weight matrix W ∈ RI×J is also tensorized into a higher-order tensor W ∈

RI1×···×IN×J1×···×JN , where
∏N

n=1 In = I and
∏N

n=1 Jn = J . Then, multiple

fourth-order tensor factors are contracted to approximate the weight matrix

tensorized as a higher-order tensor W, which can be expressed as:

Wi1,...,iN ,j1,...,jN = G(1)(:, i1, j1, :) · · · G(N)(:, iN , jN , :) (4)

where G(n) ∈ RRn×In×Jn×Rn+1 , n ∈ 1, . . . , N , and N is the number of tensor

factors. {Rn}N+1
n=1 represent the ranks of tensor train factors, with R1 = RN+1 =

1.

TTL operations can be expressed as:

Y(j1, . . . , jN ) =
∑

i1,...,iN

X (i1, . . . , iN )W(i1, . . . , iN , j1, . . . , jN ) + B(j1, . . . , jN ) (5)

where Y ∈ RJ1×···×JN . represents the output tensor of the TTL, whose order is

consistent with the higher-order tensor obtained from the input.

Finally, to facilitate data transfer with other modules in the network, we

vectorize the output tensor Y into a high-dimensional vector y ∈ RJ and rep-

resent the tensor train layer as y = TTL(G(n),x,B). The structure of a TTL
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is illustrated in Figure 7. The parameter comparison between the original fully

connected layer and the TTL can be expressed as I×J+J∑N
n=1 RnInJnRn+1+J

.

𝐼1

𝐼2

𝐼4

𝐼3

𝐼5

𝐽1

𝐽2

𝐽5

𝐽3

𝐽4

=

=

𝐼1

𝐼2

𝐼4

𝐽1

𝐽3

𝐽4

𝓐 𝓑 𝓒

𝓧

⋯

𝓖(𝑛)

𝓨

𝐱 𝐲

tensorization vectorization

𝐽1

𝐽2

𝐽𝑁

𝐽𝑁−1
⋯

𝓑
+

Figure 7: Schematic diagram of TTL.

4.3. Tensor Train Transformer

In the original Transformer layer, the main components include the MHA

layer and the PWFF layer. In this section, TTL is used to replace the linear

layer in the two parts, as described below.

4.3.1. TTL for MHA Layer

In Transformer, MHA is composed of multiple scaled dot product attention.

The input includes matrices Q,K,V, representing queries, keys, and values,

respectively. Attention calculation can be expressed as Eq. 6.

Attention(Q,K,V) = softmax(
QK⊤
√
dk

)V (6)

where dk is the scaling factor. In Vaswani et al. (2017), the calculation of MHA

is expressed as:

MHA(Q′,K′,V′) = Concat(head1, . . . , headh)WO (7)

where headi = Attention(Q′WQ
i ,K

′WK
i , V ′WV

i ) and WQ
i ∈ Rd×dk , WK

i ∈

Rd×dk , WV
i ∈ Rd×dv , WO ∈ Rhdh×d. In practice, dv = dk = dh = d/h.

Multiple sets of weights, (WQ
i ,W

K
i ,WV

i ,W
O), lead to weight redundancy and

large spatial resource consumption issues for MHA.
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By replacing the linear layer in the original MHA with TTL, we obtain

TT-MHA. Compared to the original MHA, TT-MHA can learn more compact

representations and reduce the number of internal parameters. In the case of h

attention heads, the representation of TT-MHA is as follows:

TTMHA(Q,K,V) = TTL(G∗
O, (head1, . . . , headh),BO) (8)

where headi = Attention(Qi,Ki,Vi). Qi, Ki and Vi denote the representation

of each head obtained by TTL. The attention calculation function is represented

by Eq. 9. 

Attention(Q,K,V) = softmax(QK⊤
√
dk

)V

Q = TTL(G∗
Q,X,BQ)

K = TTL(G∗
K ,X,BK)

V = TTL(G∗
V ,X,BV )

(9)

where G∗
Q,G∗

K ,G∗
V ,G∗

O represent the learnable tensor train factorization set, G∗

denotes
{
G(1), . . . ,G(N)

}
. Let hdh = I1 × . . .× IN and d = J1 × . . .× JN , then

the space consumption is reduced from hdh × d + d to
∑N

n=1 InJnRnRn+1.

4.3.2. TTL for PWFF layer

The PWFF layer is designed to capture non-linear characteristics and inter-

actions between different dimensions. It consists of two fully connected layers

and an activation function, with the input being the output of the MHA OMHA.

Its calculation can be expressed as Eq. 10.

OFF2 = σ(OMHAWf1 + bf1)Wf2 + bf2 (10)

where Wf1 and bf1 are the weights and biases of the first forward layer, andWf2

and bf2 are the weights and biases of the second forward layer, with σ represent-

ing the activation function. Typically, Wf1 ∈ Rd×4d and Wf2 ∈ R4d×d have

large parameter sizes. By replacing the fully connected layers in the PWFF

network with TTL, the calculation becomes:
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OFF1 = TTL(G∗
f1 ,O

MHA,Bf1) (11)

OFF2 = TTL(G∗
f2 , σ(TTL(G∗

f1 ,O
MHA,Bf1)),Bf2) (12)

where OFF1 is the output of the first forward layer, and OFF2 is the output of

the second forward layer. G∗
f1

and G∗
f1

represent the tensor train factors in the

forward network.

4.4. Tensor Train Transformer for BERT4Rec

Next, the application of the proposed Tensor Train Transformer will be

demonstrated based on the sequence recommendation model BERT4Rec. The

model framework is shown in Figure 8, where the feature extraction layer con-

sists of L Tensor Train Transformer layers (denoted as T3Layer). Figure 8 (b)

shows the specific structure of T3Layer. Compared to the original BERT4Rec

model, this model uses Tensor Train Transformer and employs tensor train layers

in the classification layer, which significantly reduces the number of parameters.

Following Sun et al. (2019), let U = {u1, u2, . . . , u|U |} represent the set of

users, V = {v1, v2, . . . , v|V |} represent the set of items, and list Su = {v(u)1 , . . .,

v
(u)
t , . . . , v

(u)
nu } represent the interaction sequence of user u ∈ U in chronological

order, where v
(u)
t ∈ V is the item that user u interacts with at time step t, and

nu is the length of user u’s interaction sequence. Given the interaction history

Su, sequence recommendation aims to predict the item that user u will interact

with at time step nu + 1.

The model takes user interaction history as input, including fixed-length

item embeddings and learnable position embeddings. For an item vi, its input

representation is obtained by adding its item embedding vector vi ∈ Rde and

position embedding vector pi ∈ Rde . Through multiple layers of stacked T3Layer

and the final TT-Clf classifier, the model predicts items.

In the T3Layer section, a proposed Tensor Train Transformer is used to

improve the MHA and PWFF networks of the Transformer, as shown in Figure 8

16



𝐩1

𝐯1

T3Layer

T3Layer

+

𝒗1

𝐩𝑡−1

𝐯𝒕−𝟏

T3Layer

T3Layer

+

𝒗𝑡−1

𝐩𝑡

𝐯[mask]

T3Layer

T3Layer

+

[mask]

TT − Clf

𝐡1
𝐿

𝐡𝑡−1
𝐿

𝐡𝑡
𝐿

𝐯𝑡

𝐿 ×

TT-MHA

Dropout

Add & Norm

TT-PWFF

Dropout

Add & Norm

input

(a) T3-BERT4Rec (b) Tensor Train Transformer Layer

T3Layer

(a) T3-BERT4Rec

𝐩1

𝐯1

T3Layer

T3Layer

+

𝒗1

𝐩𝑡−1

𝐯𝒕−𝟏

T3Layer

T3Layer

+

𝒗𝑡−1

𝐩𝑡

𝐯[mask]

T3Layer

T3Layer

+

[mask]

TT − Clf

𝐡1
𝐿

𝐡𝑡−1
𝐿

𝐡𝑡
𝐿

𝐯𝑡

𝐿 ×

TT-MHA

Dropout

Add & Norm

TT-PWFF

Dropout

Add & Norm

input

(a) T3-BERT4Rec (b) Tensor Train Transformer Layer

T3Layer

(b) Tensor Train Transformer

layer

Figure 8: Architecture diagram of BERT4Rec model based on Tensor Train Transformer.

(b). Multiple T3Layer process the input and obtain hidden representations

hl
i ∈ Rd for each layer l, where h0

i = vi + pi. Due to the computation of

attention functions for all positions simultaneously in practice, hl
i is stacked

into a matrix Hl ∈ Rt×d.

TTMHA(Hl) = TTL(G∗
a , (head1, . . . , headh),Ba)

headi = Attention(Qi,Ki,Vi)
(13)



Attention(Q,K,V) = softmax(QK⊤
√
dk

)V

Q = TTL(G∗
Q,H

l,BQ)

K = TTL(G∗
K ,Hl,BK)

V = TTL(G∗
V ,H

l,BV )

(14)

To obtain nonlinear characteristics and interactions across different dimen-

sions, the output matrix Hl from the attention sublayer is further fed into the

TT-PWFF network, where a Gaussian Error Linear Unit (GELU) activation
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function is employed. The calculation formula is as follows:

TTPWFF (Hl) = TTL(G∗
f2 , GELU(TTL(Gf1)∗,Hl,Bf1),Bf2)

GELU(x) = xΦ(x)
(15)

The overall computation of the T3Layer layer is as follows:

Hl = T3Layer(Hl−1), l ∈ [1, . . . , L] (16)

T3Layer(Hl−1) = LN(Al−1 + Dropout(TTPWFF (Al−1)) (17)

Al−1 = LN(Hl−1 + Dropout(TTMHA(Hl−1))) (18)

After passing through L layers that can interact hierarchically, we obtain

the final output Hl for all items in the input sequence. Then, the linear layer

in the prediction layer that outputs the distribution of items is replaced with a

tensor train layer, which results in the final output layer.

P (v) = softmax(GELU(TTL(G∗
P ,h

L
t ,BP ))E⊤ + bO) (19)

where G∗
P represents a learnable mapping tensor factor, while BP and bO denote

biases. Additionally, E ∈ R|V |×d is the embedding matrix for the item set V ,

which is shared between the input and output layers to alleviate overfitting.

It is essential to predefine the structure of tensor train layers before the

model is trained. We determine an appropriate number of tensor train factors

and predefine the tensor train layers. Subsequently, model parameter training is

conducted using the training dataset, in accordance with the procedure outlined

in Algorithm 1. This algorithm provides an end-to-end model training process,

with the parameters of the tensor train layers being randomly initialized and

the loss function being chosen from the original model.

4.5. Space and computational complexity analysis

For a single linear layer y = Wx + b, where W ∈ RI×J and b ∈ RJ , the

storage requirement is I × J + J and the computational complexity is O(IJ).
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Algorithm 1 Overall training process of T3-BERT4Rec.

Input:

Embedding matrix E of item set V;

The number of attention heads h;

The number of Transformer layers L;

The number of tensor train factors N ;

The ranks of tensor train factors {Rn}N+1
n=1 ;

Initialized parameter G∗;

Output:

The final embedding matrix E;

1: According to quantity N and ranks {Rn}N+1
n=1 predefined tensor train layers;

2: for l = 1 . . . L do

3: Calculate TTMHA layer;

/∗ As shown in Eq. 13 and Eq. 14 ∗/

4: Calculate TTPWFF layer;

/∗ As shown in Eq. 15 ∗/

5: Calculate T3-Layer;

/∗ As shown in Eq. 16, 17 and 18 ∗/

6: Calculate Output layer;

/∗ As shown in Eq. 19 ∗/

7: end for

8: Minimize the loss function of the original model;

9: Back propagation and update parameters E, G∗;

10: return E;

For a TTL, the storage requirement is
∑N

n=1 RnInJnRn+1 +J , and the compu-

tational complexity is O(NĨR̃2J̃N ) = O(NĨR̃2J), where Ĩ = maxn∈[1,...,N ] In,

J̃ = maxn∈[1,...,N ] Jn, and R̃ = maxn∈[1,...,N ] Rn.

In Transformer, when dff = 4d, it will occupy 12L(d2 + d) and its compu-

tational complexity is O(Ld2). Tensor Train Transformer, on the other hand,

will occupy 12L(
∑N

n=1 R
′
nJnJnR

′
n+1+d), which is significantly smaller than the

19



original. Its computation complexity is O(NJ̃R̃′2J̃N ) = O(NJ̃R̃′2d), where R̃′

represents maxn∈[1,...,N ] R
′
n.

At the output layer, where de represents the embedding dimension of the

items, the space required is dde + de, resulting in a computational complexity

equivalent to that of a single fully connected layer, i.e., O(dde). The space and

computational complexities of each component are shown in Table 2. Since

d > de ≫ In, Jn, Rn, R
′
n, the Tensor Train Transformer can effectively compress

sequence recommendation models and exhibit excellent reusability, as detailed

in the experimental section.

Table 2: Comparison of spatial and computational complexity between BERT4Rec and T3-

BERT4Rec

Modules
Space Computational

BERT4Rec T3-BERT4Rec BERT4Rec T3-BERT4Rec

MHA 4L(d2 + d) 4L(
N∑

n=1
R′

nJnJnR
′
n+1 + d) O(Ld2) O(LNJ̃R̃′2d)

PWFF 8L(d2 + d) 8L(
N∑

n=1
R′

nJnJnR
′
n+1 + d) O(Ld2) O(LNJ̃R̃′2d)

Output Layer dde + de
N∑

n=1
RnInJnRn+1 + de O(dde) O(NJ̃R̃2de)

5. Experiments

In this section, we first describe the experimental setup, including the dataset,

baseline models, implementation details, and evaluation metrics. In order to

clearly reflect the research objectives, we design the experiment by answering

the following research questions. Then, we present the experimental results and

answer the research questions raised by analyzing and discussing the results.

• RQ1: Is there an effective reduction in the size of typical sequence recom-

mendation models, such as SASRec and BERT4Rec? If so, does Tensor

Train Transformer have an advantage in terms of accuracy?

• RQ2: What is the impact of different modules on the efficiency and ac-

curacy of T3SRS?
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• RQ3: Does Tensor Train Transformer have a certain degree of reusabil-

ity? Can it be applied in other sequence recommendation models, such as

TiSASRec, SSE-PT, LightSANs, and CORE models?

• RQ4: What is the effect of the ranks of the tensor train factor on the

model?

• RQ5: Is our proposed model competitive compared to other popular

model compression approaches?

5.1. Experimental setup

Datasets. The proposed model is evaluated on three real-world recommendation

datasets: Steam2, MovieLens-1M3, and MovieLens-20M4. The Steam dataset is

collected from the large online video game architecture. MovieLens-1M (ML-

1M) and MovieLens-20M (ML-20M) are two widely used baseline datasets. The

data preprocessing follows the procedure in Seol et al. (2022), which removes

items with interaction counts less than or equal to 5. Table 3 presents the

statistical information of the preprocessed datasets. For each user, we use the

last item as the test set, the second most frequent item as the validation set,

and the remaining items as the training set.

Table 3: Statistics of datasets after data preprocessing.

Datasets #users #items #actions Density

Steam 6,330 4,331 49,163 0.18%

ML-1M 1,196 3,327 158,498 3.98%

ML-20M 23,404 12,239 1,981,866 0.69%

Baseline models. To evaluate the effectiveness of our proposed model, we se-

lected multiple SRSs with a Transformer structure and replaced them with the

2https://cseweb.ucsd.edu/∼jmcauley/datasets.html#steam data
3https://grouplens.org/datasets/movielens/1m/
4https://grouplens.org/datasets/movielens/20m/
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Tensor Train Transformer. We then compared the recommendation performance

and model size between the replaced model and the original one.

• GRU4Rec (Hidasi et al., 2016a): It uses an RNN-based approach by mod-

eling the whole session for session-based recommendations.

• NextItNet (Yuan et al., 2019): A simple and effective generation model,

with a network structure consisting of multiple convolutional layers stacked

together, can effectively increase receptive fields without relying on pool-

ing operations.

• SASRec (Kang & McAuley, 2018): It uses a Transformer model to capture

user sequence behavior. The model includes an item embedding layer,

a position encoding layer, multiple head attention layers, feed-forward

layers, and an output layer.

• BERT4Rec (Sun et al., 2019): It also uses a Transformer structure to

model user behavior sequences, similar to the SASRec model. To obtain

bidirectional contextual information, the model is trained using a Cloze

task and achieves excellent performance in sequence recommendation.

Implementation details. We implemented the Tensor Train Transformer using

PyTorch and replaced the Transformer structure of existing SRSs with it. All

parameters were initialized randomly, and the tensor train factors were initial-

ized using normal distribution N (0, 0.1). The model was trained using the Adam

optimizer (learning rate 1e-3, β1 = 0.9, β2 = 0.999) on an RTX A5000 GPU,

and the loss function used was the same as the original model’s loss function.

All hyper-parameters refer to the parameters of the original papers and then

use grid search to record the best results. The hyper-parameters for the data

are shown in Table 4, and the embedding size for all datasets was set to 512.

Due to the need for the tensor train layers to be predefined based on the number

of factors, we uniformly set the number of factors to 3. Due to the TT ranks

being a more sensitive hyper-parameter, we carefully selected the appropriate
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ranks and conducted experiments on their sensitivity. The experimental results

can be found in Section 5.5.

All source code, including model implementation, dataset preprocessing,

compression, and recommendation experiments is released to the public in

https://github.com/jlzhaoteam/T3SRS.

Table 4: Hyper-parameters of the dataset.

Hyper-parameters
Datasets

Steam ML-1M ML-20M

Maximum sequence length 15 200 100

Hidden dim 256 256 256

Mask probability 0.4 0.2 0.2

Number of attention head 2 2 4

Dropout rate 0.2 0.2 0.2

Batch size 256 64 64

Evaluation metrics. Recall@10 and NDCG@10 are commonly employed as eval-

uation metrics for recommendation systems, while the size of the model is ex-

pressed in terms of trainable parameters. In terms of sampling, 100 items with

no prior user interactions are randomly selected as negative samples for each

user. Following Seol et al. (2022), random sampling introduces bias, therefore,

negative sampling based on item popularity is implemented.

5.2. Overall performance comparison (RQ1)

To answer research question RQ1 and obtain objective and comprehen-

sive experimental results, we selected GRU4Rec, NextItNet, SASRec, and

BERT4Rec as models to evaluate recommendation performance. To gain

a deeper understanding of the impact of the Tensor Train Transformer on

model space occupation, we documented the parameter counts of SASRec and

BERT4Rec and replaced their original Transformer layers with the Tensor Train
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Transformer. We conducted negative sampling based on item popularity, com-

pared the Recall@10 and NDCG@10 metrics. The experimental results are

presented in Table 5.

Table 5: Overall performance comparison of SASRec and BERT4Rec. Bolded text indicates a

relatively better result. Improvements over baselines are statistically significant with p < 0.05.

Dataset Model R@10 Pop. N@10 Pop. Para. all Para. w/o embed.
Ratio of

compressible Para.

Compression

ratio
Ranks

Steam

MostPop 0.1053 0.1112 \ \ \ \ \

GRU4Rec 0.3589 0.2845 1.1M 0.1M \ \ \

NextItNet 0.4266 0.3772 4.9M 3.9M \ \ \

SASRec 0.5523 0.5007 5.3M 4.2M \ \ \

BERT4Rec 0.5600 0.5196 5.3M 4.2M \ \ \

T3-SASRec 0.5541 0.5049 2.1M 1.0M 79.2% 76.2% 35

T3-BERT4Rec 0.5670 0.5251 1.9M 0.8M 79.2% 80.9% 35

ML-1M

MostPop 0.0710 0.1268 \ \ \ \ \

GRU4Rec 0.2493 0.1467 1.0M 0.1M \ \ \

NextItNet 0.3614 0.2521 4.8M 3.9M \ \ \

SASRec 0.4189 0.2674 4.9M 4.0M \ \ \

BERT4Rec 0.4983 0.3209 4.9M 4.0M \ \ \

T3-SASRec 0.4233 0.2783 1.7M 0.8M 81.6% 80.0% 35

T3-BERT4Rec 0.5702 0.3758 1.5M 0.6M 81.6% 85.0% 30

ML-20M

MostPop 0.0828 0.1477 \ \ \ \ \

GRU4Rec 0.1903 0.1746 3.2M 0.1M \ \ \

NextItNet 0.3559 0.2310 7.0M 3.9M \ \ \

SASRec 0.4370 0.2839 9.4M 6.3M \ \ \

BERT4Rec 0.4548 0.2909 9.4M 6.3M \ \ \

T3-SASRec 0.4517 0.2944 4.4M 1.2M 67.0% 80.9% 35

T3-BERT4Rec 0.4678 0.3004 4.3M 1.1M 67.0% 82.5% 40

Table 5 presents a comprehensive comparison of the overall performance

and parameter reduction of two Transformer-based sequence recommendation

models, SASRec and BERT4Rec, and their counterparts with the Tensor Train

Transformer layer, T3-model, on three datasets (Steam, ML-1M, ML-20M).

Upon observing Table 5, sequence recommendation models based on the Trans-

former architecture significantly outperform GRU4Rec and NextItNet in terms

of performance. However, these models also have a comparatively larger number

of parameters. Consequently, our objective is to enhance the space efficiency of

these models without compromising their performance.

The results indicate that T3-model outperforms the original models on all

datasets, improving Recall@10 and NDCG@10. For example, on the ML-1M
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dataset, T3-BERT4Rec model showed a 14.4% improvement in Recall@10 and a

17.1% improvement in NDCG@10 compared to the BERT4Rec model. The pro-

posed model achieves better recommendation performance is not an uncommon

phenomenon (Pan et al., 2019; Yang et al., 2017; Ye et al., 2020). Our analysis

attributes this advantage to the tensor train network being adeptly crafted to

concisely encapsulate the weight matrices within the Transformer layers. Lever-

aging this, the model can reduce the number of parameters without significant

information loss. In addition, as the number of parameters decreases, the model

is less prone to overfitting and avoids the impact of over-parameterization, es-

pecially on sparse sequence recommendation datasets. This demonstrates that

Tensor Train Transformer can effectively compress and reduce the parameters

of the original sequential recommender system while maintaining or even im-

proving the performance.

Furthermore, T3-model significantly reduces the number of parameters, with

compression rates ranging from 76.2% to 85.0%, and a high proportion of com-

pressible parameters (67.0% to 81.6%). For instance, on the Steam dataset, T3-

SASRec model reduced the total number of parameters by 60.4%, the number of

parameters excluding the embedding layer by 76.2%, and compressible parame-

ters accounted for 79.2% of the total parameter count. Variations in the dataset

can influence the changes in the compression rate. This is attributable to the ne-

cessity of fine-tuning hyper-parameters, such as maximum sequence length and

hidden dimensions, to achieve optimal recommendation performance, which, in

turn, influences the model’s parameter count. Notably, the ranks are pivotal

in tensor train network-based models, substantially impacting the compression

rate. Properly calibrating the ranks for each dataset is imperative to guar-

antee the peak performance of the tensor train networks, which subsequently

affects the overall parameter reduction ratio. This presents that Tensor Train

Transformer can significantly reduce the model’s space usage, saving storage

resources.

Additionally, the ranks used vary across different datasets, typically ranging

from 30 to 40. For example, the T3-BERT4Rec model used ranks of 40 on the
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ML-20M dataset and ranks of 30 on the ML-1M dataset. A diminutive rank

denotes fewer parameters and, consequently, a diminished reservoir of retained

information. This indicates that Tensor Train Transformer can adjust the ranks

used in the tensor train network based on the characteristics of different datasets

and tasks to balance the model compression and performance.

In light of the detailed results presented above, it becomes evident that

the integration of the Tensor Train Transformer layer into Transformer-based

sequence recommendation models has substantial benefits. Our T3-model, as

showcased, consistently surpasses the likes of SASRec and BERT4Rec in terms

of performance across the Steam, ML-1M, and ML-20M datasets. Beyond per-

formance, the parameter reduction attributes of the T3-model are noteworthy,

achieving impressive compression rates between 76.2% and 85.0%. Moreover,

the variable tensor train ranks employed in different datasets underscore the

model’s ability to effectively adapt and balance between model compression

and performance.

5.3. Alation study (RQ2)

To answer research question QR2, we conducted ablation tests on three

aspects: (1) multi-head attention layer, (2) position-wise feed-forward network,

and (3) output layer. Table 6 displays the experimental results of different

settings. The baseline is the original BERT4Rec model, while model (a) T3-

BERT4Rec uses the Tensor Train Transformer in the BERT4Rec model. Model

(b) T3-BERT4Rec-MHA uses the original multi-head attention layer in the T3-

BERT4Rec, model (c) T3-BERT4Rec-FF uses the original position-wise feed-

forward network in the T3-BERT4Rec model, and model (d) T3-BERT4Rec-O

uses the original output layer in the T3-BERT4Rec model.

The table indicates that, on all datasets, whether using random or

popularity-based sampling, models that use the Tensor Train Transformer out-

perform the baseline model in terms of Recall@10 and NDCG@10 metrics, while

also reducing the number of parameters to some extent. This suggests that the

Tensor Train Transformer has advantages in improving sequence recommenda-
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Table 6: Results of ablation experiment. Bolded text indicates the best result, and underlined

text indicates the second-best result.

Dataset Model R@10 Ran. N@10 Ran. R@10 Pop. N@10 Pop. Para. w/o embed.

Steam

Baseline 0.7887 0.6815 0.56 0.5196 4.2M

(a) 0.7898 0.6864 0.567 0.5251 0.8M

(b) 0.799 0.6948 0.5756 0.5264 1.5M

(c) 0.7943 0.6893 0.581 0.5382 2.7M

(d) 0.7898 0.6864 0.56 0.5251 1.7M

ML-1M

Baseline 0.7299 0.5031 0.4983 0.3209 4.0M

(a) 0.7391 0.5268 0.5489 0.3527 0.6M

(b) 0.7357 0.5093 0.5259 0.3485 1.5M

(c) 0.7257 0.5067 0.5075 0.3487 2.7M

(d) 0.7441 0.5382 0.5568 0.3659 1.4M

ML-20M

Baseline 0.8972 0.6931 0.4548 0.2909 6.3M

(a) 0.9054 0.6933 0.4678 0.3004 1.1M

(b) 0.9042 0.6947 0.4721 0.3098 1.8M

(c) 0.9032 0.6941 0.4683 0.3043 3.1M

(d) 0.9059 0.6956 0.4598 0.2967 3.9M

tion performance and reducing parameter count. Additionally, the table reveals

that, among all variant models, model (a) has the least number of parameters.

On datasets with longer user interaction sequences, such as ML-20M, the output

layer will have a large number of parameters, whereas on datasets with shorter

sequences, such as ML-1M and Steam, the position-wise feed-forward network

has the most parameters of all components.

5.4. Adaptive experiments (RQ3)

To answer research question RQ3, we evaluated the reusability of the Ten-

sor Train Transformer model by selecting TiSASRec, LightSANs, SSE-PT, and

CORE models, which have more complex structures, as baseline models, and

conducted experiments on the RecBole (Zhao et al., 2021) framework. The

experimental results are shown in Table 7.

• SSE-PT (Wu et al., 2020): It proposes a personalized Transformer model

for recommendations, as the SASRec model cannot provide personalized
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recommendations. The model uses stochastic shared embedding to regu-

larize randomly replaced user and item embeddings.

• TiSASRec (Li et al., 2020): It considers the time interval between se-

quences and proposes a time interval-aware attention model based on

Transformer.

• LightSANs (Fan et al., 2021): It introduces two linear mappings to scale

user historical sequences proportionally in the multi-head attention layer,

using latent interests as feature representation. In addition, the position

encoding is decoupled to obtain more accurate item order relationships.

• CORE (Hou et al., 2022): It addresses the problem that session embed-

dings and item embeddings are not in the same representation space by

designing a representation-consistent encoder, where the Transformer is

used as the encoder and the linear combination of input item embeddings

is used as the session embedding.

Observing Table 7, it can be seen that the Tensor Train Transformer can be

applied in multiple complex SRSs and achieve similar recommendation results

to the original models. In terms of parameter count, it can still be effective in

reducing the parameters of the Transformer structure, achieving compression

rates of 69.91%-73.91%. Therefore, the Tensor Train Transformer has good

applicability.

5.5. Experiments on tensor train ranks (RQ4)

To answer RQ4, we conducted a series of experiments to explore the re-

lationship between sequence recommendation results and model parameters.

Specifically, we conducted experiments with different TT ranks, ranging from 5

to 50 in step of 5, to gain a deeper understanding of the effect of TT ranks on

sequence recommendation and to find the optimal TT ranks parameter value

for better recommendation performance. The experimental results are shown

in Figure 9.
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Table 7: Results of more complex SRSs on Steam and ML-1M.

Dataset Model R@10 Ran. N@10 Ran. Para. all Para. w/o embed.
Compression

ratio

Steam

TiSASRec 0.2470 0.1962 1.12 M 100.10 K /

T3-TiSASRec 0.2491 0.1984 1.05 M 26.11 K 73.91%

LightSANs 0.2554 0.2012 1.11 M 118.27 K /

T3-LightSANs 0.2572 0.2037 1.03 M 35.58 K 69.91%

SSE-PT 0.2472 0.2057 329.90 M 265.22 K /

T3-SSE-PT 0.2516 0.2095 329.71 M 72.19 K 72.78%

CORE 0.2337 0.1796 1.09 M 100.16 K /

T3-CORE 0.2335 0.1812 1.01 M 26.18 K 73.87%

ML-1M

TiSASRec 0.2205 0.1126 0.37 M 100.10 K /

T3-TiSASRec 0.2234 0.1142 0.30 M 26.11 K 73.91%

LightSANs 0.2682 0.1476 0.35 M 118.27 K /

T3-LightSANs 0.2719 0.1493 0.27 M 35.58 K 69.91%

SSE-PT 0.2657 0.1432 1.28 M 265.22 K /

T3-SSE-PT 0.2442 0.1219 1.08 M 72.19 K 72.78%

CORE 0.1512 0.0681 0.34 M 100.16 K /

T3-CORE 0.1537 0.0711 0.30 M 26.18 K 73.87%

From Figure 9, it can be observed that the model’s recommendation per-

formance improves significantly when the tensor ranks increase from 5 to 20.

However, when the ranks continues to increase to 35, the model’s performance

begins to decline. Therefore, larger tensor ranks can usually improve the model’s

performance, but they can also make the model more complex, leading to in-

creased space consumption.
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Figure 9: Effect of TT ranks on sequence recommendation.
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5.6. Comparison with other compression approaches (RQ5)

In order to comprehensively analyze the advantages and disadvantages of

the model, we chose other popular model compression approaches in the rec-

ommendation field for comparison. Since there is no compression method for

the Transformer-based SRS, we selected several compression approaches for the

Transformer to analyze their compression performance.

• TT-Rec (Yin et al., 2021): A deep learning recommendation model using

Tensor Train Decomposition.

• CpRec (Sun et al., 2020): A deep convolution model using block-wise

adaptive decomposition and parameter sharing for sequence recommen-

dation tasks.

• BTD-Transformer (Ma et al., 2019): A novel self-attention model with

Block-Term Tensor Decomposition for natural language processing tasks.

• TT-ViT (Pham Minh et al., 2022): A tensor train decomposition-based

Vision Transformer for image classification tasks.

• Hypoformer (Li et al., 2022): A Transformer model using Hybrid Tensor

Train Decomposition for neural machine translation tasks.

• Tucker-Transformer (Wang et al., 2022a): A Pre-trained language model

using Tucker decomposition, matrix factorization, and TT decomposition.

These selected models should be tested according to the hyper-parameters

set in the original papers as much as possible. Because BTD transformer, Hy-

poformer, and Tucker-Transformer are methods in the field of natural language

processing, sequence recommendation task experiments are not carried out.

Compared with the compression method of the Transformer model, T3SRS

compresses the network MHA, PWFF, and output layers, showing a larger com-

pression range and smaller spatial complexity. From the perspective of com-

pressibility, the BTD-Transformer is the smallest and can only compress MHA
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Table 8: Comparison of compression methods with Transformer model. Note for clarity only

the space complexity in the Transformer layer is shown in the Space Complexity Column.

Model Compressed module Space complexity

T3SRS MHA, PWFF, Output layer 12L(Nd
2
N R2)

BTD-Transformer MHA 8Ld2 + 8LdR

TT-ViT MHA 8Ld2 + 4LNd
2
N R2

Hypoformer Embedding layer, MHA, PWFF 12L(αd2 + N(1 − α)
1
N d

2
N R2)

Tucker-Transformer MHA, PWFF lR2 + 12Ll + 2dR

modules, followed by TT-ViT, Tucker-Transformer, and the compressibility of

Hypoformer and TSRs models is the largest. Let the space complexity of the

original Transformer layer be 12ld2, l is the number of layers, D is the parameter

dimension, and R is the rank of tensor decomposition. The space complexity

of Hypoformer is notably higher than that of T3SRS, primarily attributed to

the fact that Hypoformer retains a portion of parameters, specifically α ∗ 100%

5, uncompressed to ensure accuracy. Regarding space complexity, the Tucker-

Transformer model has the lowest space complexity, followed by the T3SRS

model, while the BTD-transformer model has the highest space complexity.

Tucker-Transformer combines parameters of the Transformer layer into tensors,

then decomposes them using Tucker decomposition, matrix factorization, TT

decomposition, or even discards some parameters. Therefore, the compression

ratio is the highest among these models. However, the model will suffer a huge

loss of accuracy 6, forcing the need for other methods to maintain accuracy.

Comparing with TT-Rec and CpRec in the recommendation domain, it can

be found that the T3SRS model presents higher recommendation performance

and high compression rate. TT-Rec acts on the Embedding layer, which ac-

counts for about 20% of all parameters. In Yin et al. (2021), the targeted model

of TT-Rec had an embedding layer with a dimension of 16 and showed good

5Parameter α is a tunable hyper-parameter within the range of 0 to 1.
6On SST-2, the accuracy rate drops from 93.1 % to 49.9%.
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Table 9: comparison with model compression techniques within the domain of recommenda-

tion. Bolded text indicates a relatively better result.

Dataset Model R@10 Pop. N@10 Pop. Para. all

Steam

BERT4Rec 0.5600 0.5196 5.3M

T3-BERT4Rec 0.5670 0.5251 1.9M

TT-Rec 0.5331 0.5074 4.5M

CpRec 0.4835 0.4584 4.1M

ML-1M

BERT4Rec 0.4983 0.3209 4.9M

T3-BERT4Rec 0.5702 0.3758 1.5M

TT-Rec 0.4814 0.3168 4.2M

CpRec 0.4727 0.2979 3.9M

performance. However, the dimension of the embedding layer in the current case

has been increased to 512, and TT-Rec faces the challenge of setting the tensor

rank to find the appropriate TT rank. In contrast, TSRS does not compress the

embedding layer and does not have this concern. Therefore, T3RSR shows more

advantages and outperforms TT-Rec in recommendation performance and data

compression capability. Although the CpRec model compresses both the Em-

bedding layer and the intermediate layer, since the target model of the CpRec

model is NextItNet (Yuan et al., 2019), the intermediate layer is a multilayer

convolutional layer superposition, the number of parameters is higher than that

of T3-BERT4Rec. In summary, the T3SRS model compresses the Transformer

layers and output layer, and retains the embedding layer, resulting in less infor-

mation loss and better recommendation performance.

5.7. Model properties analysis

5.7.1. Convergence

In order to study the convergence of the algorithm 1, we tested and verified

the convergence to the compressed model through numerical experiments. In

Figure. 10, we display the curve of Algorithm 1 with respect to iteration on the

Steam dataset. We can observe the numerical convergence of the algorithm.
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Figure 10: Training loss of T3-BERT4Rec on Steam.

5.7.2. Generalizability

In Section 5.4, we tested the applicability of the T3SRS model to be able

to be applied to different sequence recommendation models, however, the gen-

eralization ability in the face of different datasets is still questionable. We

validate it on TikTok 7 dataset and Beauty 8 dataset using T3-BERT4Rec. The

hyper-parameters are strictly following Sun et al. (2019) and Sun et al. (2020).

Table 10 shows that the recommendation performance and compression ratio

of BERT4Rec and T3-BERT4Rec. We can observe that the T3SRS model can

still be effective on different datasets, proving its good generalization.

Table 10: Experimental results on TikTok dataset and Beauty dataset.

Dataset Model R@10 Pop. N@10 Pop. Para. all Ranks

TikTok
BERT4Rec 0.4285 0.2764 46.1M \

T3-BERT4Rec 0.4293 0.2853 42.6M 40

Beauty
BERT4Rec 0.2197 0.1727 5.2M \

T3-BERT4Rec 0.2214 0.1933 3.5M 35

7https://www.tiktok.com/en/
8http://jmcauley.ucsd.edu/data/amazon/
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6. Conclusion

This paper aims to address the issues of over-parametrization and over-

fitting in Transformer-based SRSs by proposing a Tensor Train-based Trans-

former model. The model introduces the tensor train network and proposes a

tensor train layer to fit weight matrices with lower space complexity. Based

on this, a TTL-based MHA module and TTL-based PWFF network are de-

signed and implemented, and parameter compression for multiple modules is

achieved by compressing the output layer. Experimental results show that the

proposed model can effectively compress parameters of the sequential recom-

mender system with a compression rate of 76.2%-85.0% while ensuring recom-

mendation performance. Furthermore, substitution experiments on multiple

models demonstrate the model’s good applicability, providing new ideas and

methods for compressing SRSs.

Though the model exhibits commendable compression rates and recommen-

dation efficacy, the design of the tensor train network profoundly impacts the

outcomes. Both the number of factors, N , and the TT ranks, Rn, play pivotal

roles as parameters. In future work, we intend to delve into heuristic optimiza-

tion techniques(Gao et al., 2022), identifying promising hyper-parameter config-

urations that can be consistently applied and fine-tuned across varied datasets

or scenarios, thereby potentially mitigating experimentation’s computational

strain and temporal demands.

Additionally, while the T3SRS model performs exceptionally well in the

domain of Transformer-based SRSs, its specific design and optimization make

it challenging to apply directly to other neural network architectures. The

primary reason is that our approach fully leverages the multi-head attention

and position-wise feed-forward network intrinsic to the Transformer structure,

making it suited for Transformer-based SRSs. In future work, we will explore

ways to modify or adapt this method to enhance its universality.
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List of abbreviations

The abbreviations covered in the article and their full names are shown in

Table 11.

Table 11: List of abbreviations and their full names.

Abbreviation Full name

SRS sequential recommender system

TT tensor train

TTL tensor train layer

RS recommender system

RNN recurrent neural network

CNN convolutional neural network

MHA multi-head attention

PWFF position-wise feed-forward

TT-MHA multi-head attention with tensor train layers

TT-PWFF position-wise feed-forward with tensor train layers

Acknowledgements

This paper is supported by Natural Science Foundation of Shandong Province

(No.ZR2021MF104, No.ZR2021MF113), National Natural Science Foundation

(No. 62072288), Key R&D Projects of Qingdao Science and Technology Plan

(No.21-1-2-19-xx), Qingdao West Coast New District Science and Technology

Plan (No.2020-1-6).

References

Aggarwal, V., Wang, W., Eriksson, B., Sun, Y., & Wang, W. (2018). Wide

Compression: Tensor Ring Nets. In 2018 IEEE/CVF Conference on Com-

35



puter Vision and Pattern Recognition (pp. 9329–9338). doi:10.1109/CVPR.

2018.00972 27.

Bartol, T. M., Bromer, C., Kinney, J. P., Chirillo, M., Bourne, J. N., Harris,

K. M., & Sejnowski, T. J. (2015). Hippocampal spine head sizes are highly

precise. bioRxiv , . 21.

Chen, X., Xu, H., Zhang, Y., Tang, J., Cao, Y., Qin, Z., & Zha, H. (2018).

Sequential Recommendation with User Memory Networks. In Proceedings

of the Eleventh ACM International Conference on Web Search and Data

Mining (pp. 108–116). Marina Del Rey CA USA: ACM. doi:10.1145/

3159652.3159668 3.

Child, R., Gray, S., Radford, A., & Sutskever, I. (2019). Generating long se-

quences with sparse transformers. ArXiv , abs/1904.10509 . 29.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., & Kaiser, L. (2019). Univer-

sal transformers. In International Conference on Learning Representations.

23.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training

of deep bidirectional transformers for language understanding. ArXiv ,

abs/1810.04805 . 16.

Du, Y., Peng, Z., Niu, J., & Yan, J. (2022). A unified hierarchical attention

framework for sequential recommendation by fusing long and short-term

preferences. Expert Systems with Applications, 201 , 117102. doi:10.1016/

j.eswa.2022.117102. 13.

Fan, X., Liu, Z., Lian, J., Zhao, W. X., Xie, X., & Wen, J.-R. (2021). Lighter

and Better: Low-Rank Decomposed Self-Attention Networks for Next-Item

Recommendation. In Proceedings of the 44th International ACM SIGIR

Conference on Research and Development in Information Retrieval SIGIR

’21 (pp. 1733–1737). New York, NY, USA: Association for Computing

Machinery. doi:10.1145/3404835.3462978 20.

36

http://dx.doi.org/10.1109/CVPR.2018.00972
http://dx.doi.org/10.1109/CVPR.2018.00972
http://dx.doi.org/10.1145/3159652.3159668
http://dx.doi.org/10.1145/3159652.3159668
http://dx.doi.org/10.1016/j.eswa.2022.117102
http://dx.doi.org/10.1016/j.eswa.2022.117102
http://dx.doi.org/10.1145/3404835.3462978


Gao, H., Li, Z., Yu, X., & Qiu, J. (2022). Hierarchical Multiobjective Heuris-

tic for PCB Assembly Optimization in a Beam-Head Surface Mounter.

IEEE Transactions on Cybernetics, 52 , 6911–6924. doi:10.1109/TCYB.

2020.3040788.

Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2016a). Session-based

Recommendations with Recurrent Neural Networks. arXiv:1511.06939.

Hidasi, B., Quadrana, M., Karatzoglou, A., & Tikk, D. (2016b). Parallel

Recurrent Neural Network Architectures for Feature-rich Session-based

Recommendations. In Proceedings of the 10th ACM Conference on Rec-

ommender Systems (pp. 241–248). Boston Massachusetts USA: ACM.

doi:10.1145/2959100.2959167 12.

Hou, Y., Hu, B., Zhang, Z., & Zhao, W. X. (2022). CORE: Simple and Effective

Session-based Recommendation within Consistent Representation Space. In

Proceedings of the 45th International ACM SIGIR Conference on Research

and Development in Information Retrieval (pp. 1796–1801). Madrid Spain:

ACM. doi:10.1145/3477495.3531955 35.

Hrinchuk, O., Khrulkov, V., Mirvakhabova, L., Orlova, E., & Oseledets, I.

(2020). Tensorized Embedding Layers for Efficient Model Compression.

arxiv , abs/1901.10787 . doi:10.48550/arXiv.1901.10787.

Jannach, D., & Ludewig, M. (2017). When Recurrent Neural Networks meet

the Neighborhood for Session-Based Recommendation. In Proceedings of

the Eleventh ACM Conference on Recommender Systems (pp. 306–310).

Como Italy: ACM. doi:10.1145/3109859.3109872 1.

Kang, W.-C., & McAuley, J. (2018). Self-attentive sequential recommendation.

In 2018 IEEE International Conference on Data Mining (ICDM) (pp. 197–

206). IEEE. 4.

Kolda, T. G., & Bader, B. W. (2009). Tensor Decompositions and Applications.

SIAM Review , 51 , 455–500. doi:10.1137/07070111X. 34.

37

http://dx.doi.org/10.1109/TCYB.2020.3040788
http://dx.doi.org/10.1109/TCYB.2020.3040788
http://arxiv.org/abs/1511.06939
http://dx.doi.org/10.1145/2959100.2959167
http://dx.doi.org/10.1145/3477495.3531955
http://dx.doi.org/10.48550/arXiv.1901.10787
http://dx.doi.org/10.1145/3109859.3109872
http://dx.doi.org/10.1137/07070111X


Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019).

Albert: A lite bert for self-supervised learning of language representations.

ArXiv , abs/1909.11942 . 22.

Li, J., Wang, Y., & McAuley, J. (2020). Time Interval Aware Self-Attention

for Sequential Recommendation. In Proceedings of the 13th International

Conference on Web Search and Data Mining WSDM ’20 (pp. 322–330).

New York, NY, USA: Association for Computing Machinery. doi:10.1145/

3336191.3371786 18.

Li, S., Zhang, P., Gan, G., Lv, X., Wang, B., Wei, J., & Jiang, X. (2022).

Hypoformer: Hybrid Decomposition Transformer for Edge-friendly Neural

Machine Translation. In Proceedings of the 2022 Conference on Empirical

Methods in Natural Language Processing (pp. 7056–7068). Abu Dhabi,

United Arab Emirates: Association for Computational Linguistics. doi:10.

18653/v1/2022.emnlp-main.475.

Lin, M., Zhang, Y., Li, Y., Chen, B., Chao, F., Wang, M., Li, S., Tian, Y., & Ji,

R. (2022). 1xN Pattern for Pruning Convolutional Neural Networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence, (pp. 1–11).

doi:10.1109/TPAMI.2022.3195774. 9.

Liu, H., Dai, Z., So, D., & Le, Q. V. (2021). Pay Attention to MLPs. In Ad-

vances in Neural Information Processing Systems (pp. 9204–9215). Curran

Associates, Inc. volume 34. 19.

Liu, Q., Zeng, Y., Mokhosi, R., & Zhang, H. (2018). STAMP: Short-Term

Attention/Memory Priority Model for Session-based Recommendation. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining (pp. 1831–1839). London United Kingdom:

ACM. doi:10.1145/3219819.3219950 14.

Liu, X., Su, J., & Huang, F. (2022). Tuformer: Data-driven Design of Trans-

formers for Improved Generalization or Efficiency. In International Con-

ference on Learning Representations. 30.

38

http://dx.doi.org/10.1145/3336191.3371786
http://dx.doi.org/10.1145/3336191.3371786
http://dx.doi.org/10.18653/v1/2022.emnlp-main.475
http://dx.doi.org/10.18653/v1/2022.emnlp-main.475
http://dx.doi.org/10.1109/TPAMI.2022.3195774
http://dx.doi.org/10.1145/3219819.3219950


Ma, X., Zhang, P., Zhang, S., Duan, N., Hou, Y., Zhou, M., & Song, D. (2019). A

tensorized transformer for language modeling. In H. Wallach, H. Larochelle,
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