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Abstract

With the increasing number of graph data, Graph Federated Learning (GFL) has
emerged and been used in medicine, chemistry, social networks and other fields.
Consequently, the efficiency of graph classification has become a crucial issue in
the GFL framework. However, due to the high distortion and redundancy in graph
information, the existing works are troubled by the low accuracy of classification.
In this paper, we propose a novel efficient GFL framework for graph classifica-
tion, namely FedHGCN. FedHGCN has two novel features: 1) collaboratively
train Graph Neural Network (GNN) in a high dimension space to capture the rich
hierarchical feature of graphs. 2) build a strategy of node selection to remove the
redundancy from the graph representation and highlight key nodes. Our extensive
experiments show that FedHGCN outperforms the state-of-the-art approaches up
to 15.6% by accuracy on four publicly available graph datasets. Furthermore,
we prove that FedHGCN can efficiently deal with various poisoning attacks by
experiments.
Keywords: Graph Federated Learning, Graph Classification, Hyperbolic Space,
Node Selection.

1. Introduction

As more advanced techniques are developed for learning with graph data, us-
ing graphs to model and solve real-world problems becomes more popular. One
important scenario of graph learning is graph classification [1, 2, 3], where mod-
els are used to complete molecular property predict for AI medicine [4] and bio-
informatics in medical fields [5]. As the amount of graph data and the demand of
medical institution increasing, graph classification federated learning is proposed
to solve a data leak problem and train more powerful graph learning model which
is needed to conduct effective inference over graph information [6, 7, 8, 9]. In
particular, these methods can often be used in cross-silo scenarios of the medi-
cal field [10], which is shown in Figure 1. Medical institutes, such as hospitals
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or research institutes, usually train healthcare datasets, including drug molecules,
protein molecules and anticancer substances [11, 12]. It is rather difficult to let all
medical institutions share their graph data with others to train the graph classifi-
cation model due to conflicts of interests. GFL methods allow clients to upload
model parameters instead of their graph data. Meanwhile, GFL avoid the privacy
concerns associated with sharing models, which fits the needs of this scenario very
well.
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Figure 1: An example of GFL for graph classification in cross-silo scenes
(motivated scenario): In this example, there are some medical institutions and
an administration center. In the left part of the figure, each medical institutions
has strong computing power and updates a local model parameter by training on
the graph dataset it owns. The right part of the figure indicates our goal that the
framework obtains a globally powerful graph model without data sharing.

However, existing GFL methods are still troubled by poor accuracy of classi-
fication. This is because this novel yet realistic setting brings two challenges:
Challenge 1: How to effectively learn important hierarchical information
from multiple local graph datasets? Existing GFL methods are not suitable
for the graph datasets on clients in cross-silo scenarios. Real-world graphs in
such scenarios often exhibit scale-free or hierarchical structure [13]. Euclidean
embeddings, which are commonly used in existing FL methods for graphs, suffer
from high distortion when embedding graphs. This results in a significant drop in
the accuracy of graph classification.
Solution 1: FedHGCN: Map graph information to hyperbolic space. To ad-
dress the issue of high distortion, we propose a novel and accurate framework for
GFL in hyperbolic space called FedHGCN, which is designed for graph classi-
fication. Hyperbolic geometry enables embedding with much smaller distortion
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when embedding scale-free and hierarchical graphs. Additionally, hyperbolic em-
bedding has been shown to capture the hierarchical structure in the graph [14],
which can highlight important nodes.
Challange 2: How to address over-smoothing problem of GNNs caused by
silver harmful nodes? Over-smoothing issue is a known issue in graph learn-
ing, particularly in graph learning with GCN. This issue arises due to excessive
similarity of node representations [15], which can lead to misclassification.. In
the federated learning framework for graph learning, if too many client models
appear to be over-smoothing, the performance of the entire framework can be
severely compromised.
Solution 2: FedHGCN with node selection: Keep important nodes in the
graph and remove redundancy. To deal with the redundancy, we elaborately
transmit the features of key nodes of FedHGCN. Specifically, we aim to simplify
the graph representation of every client without altering the graph’s structure.

In a nutshell, the main contributions of this paper can be summarized as
follows:

• We propose FedHGCN as a novel federated graph learning framework and
present the procedures of global parameter aggregation at the server and
local parameter training at clients. To the best of our knowledge, this is the
first work extending hyperbolic space to a federated learning architecture.

• On the client side, a lightweight node selection-based aggregating opera-
tion scheme in hyperbolic space is adopted to extract important nodes and
improve graph representations. Meanwhile, some unimportant information
will be ignored to reduce the redundancy of the graph information.

• We conduct extensive experiments to evaluate the performance of FedHGCN.
Results show that the accuracy of FedHGCN significantly outperforms state-
of-the-art studies by up to 15.6% on different real-world graph datasets. In
addition, the evaluation proves that FedHGCN have the ability to prevent
data-poisoning attacks and better scalability.

The rest of this paper is organized as follows. We review some necessary re-
lated work in Section 2. The FedHGCN framework design is presented in Section
4. Section 5 gives experimental settings and results. Finally, Section 6 concludes
this paper.

2. Related Work

This section briefly reviews the related work on GFL framework and graph
neural networks in hyperbolic space.
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2.1. Graph Federated Learning
Recent researchers have made some progress in GFL [7, 6, 8]. He et al. [7]

design an open FL benchmark system that can facilitate research on federated
GNNs. Mei et al. [16] propose a similarity-based graph neural network model to
precisely capture node structure information in node classification tasks. Zhu et
al. [17] propose federated learning to obtain a generalized global model without
access to private molecular data. Meng et al. [18] propose a cross-node feder-
ated graph neural network to encode the underlying graph structure using a GNN-
based architecture under the constraint of cross-node federated learning. Zhang
et al. [10] embed the GraphSAGE model into the FedAvg framework [19] and
makes adaptive adjustments. Wu et al. [6] propose a federated framework for
privacy-preserving GNN-based recommend systems. Han et al. [8] discover com-
mon patterns shared among graphs across datasets through experiments. However,
none of these methods put forward effective information sharing scheme for the
common patterns.

2.2. Hyperbolic Graph Neural Networks
Since the hyperbolic graph neural networks [20] were proposed, hyperbolic

geometry has been applied to neural networks, to solve problems of computer vi-
sion, natural language processing and spatio-temporal forecasting [14, 13, 21, 22].
More recently, hyperbolic neural networks [23] was proposed, where core neural
network operations are in hyperbolic space. Such as the Hyperbolic Graph Neural
Network (HGNN) mainly aims to improve the performance of graph-structured
data by embedding graphs to hyperbolic space [24]. Dmitri et al. [25] show that
typical properties of complex networks, such as heterogeneous degree distribu-
tions and strong clustering, can be explained by assuming an underlying hyper-
bolic geometry and using these insights to develop a geometric graph model for
real-world networks. Chami et al. [20] proposed a hyperbolic graph convolu-
tional neural network to exploit the property of hyperbolic embeddings to embed
tree-like graphs with low distortion. More recently, some of the shortcomings of
hyperbolic embedding have been further optimized [26] and show better results,
but Lorentz linear layer is not suitable for graph classification scenarios. However,
due to the high redundancy in graph information, these methods can only achieve
a low classification accuracy.

3. Preliminaries

This section first describes the basic arithmetic in hyperbolic space. We then
introduce node embedding from Euclidean space to hyperbolic space. Finally, we
introduce the rule of a simple Hyperbolic graph convolution network.

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4540158

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



3.1. Hyperbolic geometry
Hyperbolic geometry offers an exciting alternative as it enables embeddings

with much smaller distortion when embedding scale-free and hierarchical graphs [13].
Among the hyperbolic geometry, Poincaré embedding [27] can learn the hierarchi-
cal representation of symbol data by embedding symbol data into N -dimensional
Poincaré balls. The focus of this work is to effectively model the link structure
of symbolic data, that is, to find low-dimensional embedding by using the hier-
archical structure of hyperbolic space. Presently, hyperbolic geometry has been
applied to neural networks, to solve the problems of computer vision, natural lan-
guage processing and spatio-temporal forecasting [21, 22].

3.2. Computing rules in hyperbolic space and hyperbolic embedding
The Poincaré ball model (Dn, gD) is defined by the manifold Dn = {x ∈ Rn :

∥x∥ < 1} equipped with Riemannian metric as follow:

gDx = λ2
cg

E, (1)

where λc :=
2

1−∥c∥2 and c is the curvature in hyperbolic space. Möbius addition of
x and y is defined as Equation(2):

x⊕c y :=
(1 + 2c ⟨x, y⟩+ c ∥y∥2)x+ (1− c ∥x∥2)y

1 + 2c ⟨x, y⟩+ c ∥x∥2 ∥y∥2
, (2)

when c equals to 0, this function represents the addition in Euclidean space.
Möbius scalar multiplication of r and x is defined as Equation(3):

r⊗c x := tanh
(
r tanh−1 (c∥x∥)

) x

c∥x∥
. (3)

To capture the hierarchical information in the graph through the hyperbolic
space ,it is necessary to embed graph information between Euclidean and hyper-
bolic spaces by exponential mapping and logarithmic mapping. The exponential
mapping is shown as Equation(4) :

xH = expcp(x) = p⊕ (tanh(c
λc,p∥x∥

2
)

x

c∥x∥
), (4)

p is the initial node of the mapping, when p = 0, the exponential map is defined
as:

xH = expc0(x) =
tanh(c ∥x∥)x

c ∥x∥
. (5)

The logarithmic mapping is shown as Equation (6):

x = logcq(x
H) =

2

cλc,q

tanh−1(c∥xH∥) xH

∥xH∥
, (6)

5

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4540158

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



q is the initial node of the mapping, when q = 0, the logarithmic mapping is defined
as:

x = logc0(x
H) =

tanh−1(c∥x∥)x
c∥x∥

, (7)

where x denotes the information in the Euclidean space and xH denotes the infor-
mation in the hyperbolic one. In addition, c is the curvature of the manifold. 0
means mapping from the original point of the coordinate axis.

3.3. Hyperbolic Graph Convolution Network
Given a set of graph data G = {g1, g2, ..., gn} , where the number of nodes

and edges in each graph might be quite different. For an arbitrary graph gi =
(vi, εi, xi), we have ni and ei to denote the number of nodes and edges. Let
Ai ∈ Rni×ni be the adjacent matrix describing its edge connection information
and D is the diagonal degree matrix of A. xE ∈ Rni×f represents the Euclidean
node feature matrix, where f is the dimension of node attributes and xH ∈ Hd,K

represents the hyperbolic node feature matrix, where c is the curvature in hyper-
bolic space. xτ ∈ τxH

d,K represents the (Euclidean) tangent space centered at
point x . A simple HGCN [13] with message passing rule at layer l then consists
of two process. HypLinear is the linear transform in hyperbolic space, which is
defined as:

hH,l = HypLinear(xH,l−1) = W ⊗ xH,l−1 ⊕ bl. (8)

HypAggregate combines the characteristics of the tangent space with the ag-
gregation process in Euclidean space. The aggregation process in the Euclidean
space is defined as:

x = AGG(h) =
∑
j∈n

A · h. (9)

Thus, the HypAggregate process is defined as:

xH,l = HypAggregate(hH,l) = expc0(
∑
j∈n

A · logc0(hH,l)). (10)

Based on this information, we propose a novel GFL framework that can cap-
ture the graph information from hyperbolic space and then highlight key nodes in
the graph in this paper.

4. FedHGCN Framework Design

In this section, we first introduce the notions and the problem of GFL for graph
classification in hyperbolic space. We then provide an overview of the FedHGCN
framework, with details of its design presented at the end of this section.
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4.1. Notations and Problem Formulation
Given a set of graph data G = {g1, g2, ..., gn} , where the number of nodes

and edges in each graph may differ significantly. For an arbitrary graph gi =
(vi, εi, xi), we use ni and ei to denote the number of nodes and edges, respec-
tively. Each client can determine which label each graph xi belongs to via its
graph neural network, and obtain the label Ỹi. Label matrix Y ∈ Rn×c indicates
the associated labels for each graph and we obtain the classified graph labels Ỹ .
The objective function of each client is defined as the cross-entropy of predictions
over the labels. Therefore, it can be simplified as follows:

Jm(w) =
1

n

n∑
i=1

Yilog(Ỹi). (11)

We then calculate the average loss of all clients as our final optimization func-
tion in Equation 12:

minJ =
M∑

m=1

Jm(w). (12)

HypLinear

HypAggregate

NodeSelection

Hyperbolic
Aggregation Layer

HypLinear

HypAggregate

NodeSelection

Hyperbolic
Aggregation Layer

...

Classifier

Softmax

MLP

Graph Data

Hyperbolic
Embedding

Euclidean
Embedding

Output

Figure 2: The workflow of FedHGCN at each client

4.2. Client model in FedHGCN Design
In this subsection, we describe the model used by FedHGCN in each client.

As illustrated in Figure 2, FedHGCN client includes four key layers, namely the
hyperbolic mapping layer, hyperbolic aggregation layer, euclidean mapping layer
and graph classification layer. The hyperbolic aggregation layer is divided into
two parts: node selection process and hypaggregation layer with selection matrix.

4.2.1. Hyperbolic Embedding and HypLinear Layer
At the beginning of the workflow, we first use exponential mapping to map

Euclidean input features xi−1 into the hyperbolic manifold.This yields features
xH
i−1 in hyperbolic space, as given by Equation 5:

xH
i−1 = exp0c(xi−1). (13)
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We then utilize a linear transformation in the hyperbolic space to improve graph
learning to enable learnable convolution. Thus, the hyperbolic linear layer is de-
fined as:

hH
i = HypLinear(xH

i−1) = W ⊗ xH
i−1 ⊕ bl. (14)

4.2.2. Node Selection Proces
To address the over-smoothing problem caused by the redundancy in graph

neural networks, many researchers have focused on improving the methods of
extracting structural features of graphs. In addition, poisoning attacks are also a
very troublesome problem in the field of graph learning. Among them, adversarial
attacks often generate redundant nodes, which has a significant impact on the
structure of the graph [28]. Since this kind of attack changes the structure of the
graph, it seriously affects the accuracy of graph learning. Therefore, adversarial
attacks not only affect the result of node classification, but also lead to the error
of graph classification.

Inspired by [1, 15], we adopt a method of node selection to address these is-
sues. The process of reducing nodes involves identifying a subset of informative
nodes to form a new graph. This method significantly reduces the influence of
unimportant nodes on graph learning and reduces the redundancy of graph infor-
mation. Moreover, this method can remove some noise nodes and further ensure
the stability of the graph structure.

We first map the nodes from hyperbolic space to the tangent space because
aggregating in tangent space can reduce unnecessary resource consumption in the
process of aggregation. More importantly, this mapping process does not affect
graph learning [13]. The mapping process is in Equation 15:

hτ
i−1 = log

hH
i

c (hH
i ). (15)

On this basis, we introduce a criterion named node information score p to
evaluate the information that each node contains given its neighborhood. Here,
we formally define the node information score in Equation 16 as the Manhattan
distance [29] between the node representation itself and the one constructed from
its neighbors, because it represents a common similarity measure that is especially
convenient for high dimensional vectors:

s = ∥(I − (D)−1A)hτ
i ∥1, (16)

where A and D are the adjacent and diagonal degree matrix of A. I is the identity
matrix. Thus we will have a constant set p as the information score of each node
in the graph.
Then we use the topk method to reserve the nodes with higher scores in Equation
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17 and get a baseline rating r to build a selection matrix ω to participate in the
Equation 18:

r = min(topk(s)), (17)

ω = { 1, s > r
0,otherwise

. (18)

4.2.3. HypAggregation Layer with Selection Matrix
Once the selection matrix ω is learned, the model learns the embedding feature

while also being able to cancel part of the node aggregation. Therefore, we gain a
weight matrix α for aggregation by concatenating the aggregated feature matrices
before and after screening matrices in Equation 19:

α = σ(logh
H

c (HypLinear(C))), (19)

where C = exph
H

c (σ(AGG(hτ
i−1))∥σ(AGG(ω ·hτ

i−1))) is the concat sum of hτ
i−1.

At last, we allow the layer to aggregate the embedding information only from
its selected neighbors in Equation 20:

z = AGG(α · ω · hτ
i ), (20)

Therefore, the final aggregate function is as shown in Equation 21:

xτ
i = σ(zi) + σ(hτ

i ), (21)

where zi is the embedding information from selected nodes and hτ
i−1 is the learned

graph feature matrix in the hyperbolic space. At last, we map the most novel graph
feature matrix xτ

i into hyperbolic space via Equation 22:

xH
i = exph

H

c (xτ
i ). (22)

4.2.4. Euclidean Mapping Layer
After the aggregation, we map the graph feature matrix back to Euclidean

space via logarithmic mapping in Equation 23:

xE
i = logoc(x

H
i ). (23)

4.3. The Architecture of FedHGCN Framework
In the client side of the FedHGCN, each client maintains local graph data and

learns the graph representation with the user embeddings from its graph data.
During each epoch of local training, every client first computes Pm ← P −
ηJm(wm,t, Yi), where wm,t contains all the weights and biases in the m-th local
HGCN for epoch t, and η is the learning rate, The central server then collects the
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latest {Pm|m ∈ M} and aggregates the parameters received from the Equation
24:

Pt =
1

M

∑
Pm,t. (24)

To evaluate the effectiveness of the FedHGCN framework, the following sec-
tion will assess its performance. Next, the central server sets Pt as the averaged
value by averaging over {Pm|m ∈ M}. Finally, the central server broadcasts Pt

to data owners and finishes one round of training. Both the weights and biases in
the hyperbolic aggregation layer and the classifier are Euclidean [13].

To verify the effectiveness of FedHGCN , the following section will evaluate
the performance of FedHGCN framework.

5. Evaluation

This section presents the experimental analysis of FedHGCN framework. We
first introduce graph-based benchmark datasets for graph classification and base-
lines in subsection 5.1 and subsection 5.2, respectively. We then evaluate the
graph classification performance of FedHGCN in subsection 5.3. In subsection
5.4, we design scalability experiments to assess the framework’s performance as
the number of clients increases. Finally, through ablation experiments detailed in
subsection 5.5, we explore how FedHGCN enhances accuracy and ensures robust-
ness. In addition, in subsection 5.6 we explore what percentage of node selection
is optimal in different scenarios.

Our experiments are conducted on a CPU/GPU cluster equipped with 14 Tesla
T4 GPUs and 1024GB 3200MHz memory. We utilize Python 3.7, PyTorch 1.11,
and the corresponding torch-geometric 2.0.4 environment to implement FedHGCN.
All the following experiments in this paper use this federated learning architec-
ture.

5.1. Datasets
We evaluate our model using four real-world datasets from Tudataset [30],

which are summarized in Table 1 with the following specifications:

• PROTEINS [31] is a protein graph dataset that has received a lot of attention
in the field of graph classification.

• D&D [31] contains graphs of protein structures. A node represents an amino
acid. A label denotes whether a protein is an enzyme or a non-enzyme.

• NCI1 [32] is a biological dataset used for anticancer activity classification.
In the dataset, each graph represents a chemical compound, with nodes and
edges representing atoms and chemical bonds, respectively.
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• Mutagenicity [33] is a chemical compound dataset of drugs, which can be
categorized into two classes: mutagen and non-mutagen.

To ensure each client can complete the training task, we first assign 10 graphs
from the dataset to each client. Then, we assign the rest of the dataset to each
client using the Dirichlet distribution Dirlet. Within each client, we randomly
split each sub-dataset into three parts: 80% as a training set, 10% as a validation
set, and the remaining 10% as a test set.

Table 1: Statistics of the Datasets.

Datasets Number of Graphs Avg. of Nodes Avg. of Edges Classes

PROTEINS 1,113 39.06 72.82 2

D&D 1,178 284.32 715.66 2

NCI1 4,100 29.87 32.30 2

Mutagenicity 4,337 30.32 30.77 2

5.2. Baselines and Experiment settings
We compare the performance of FedHGCN with several methods that have

proven excellent graph learning abilities based on decentralized storage of user
data and several privacy-preserving ones based on federated learning. These meth-
ods include:

• FedAvg[19]: FedAvg is a classical FL framework. It is typically used to
run some image classification tasks. Therefore, due to better learning of the
graph information, we set GCN[34] as the model in the framework.

• FedGraphNN[7]: FedGraphNN is an open FL benchmark system that facil-
itates research on federated GNNs.

• FedSAGE[10]: FedSAGE is a FL framework that trains several GraphSage[35]
models based on FedAvg to integrate graph tasks on multiple local sub-
graphs.

To complete the graph classification task, we set the client model of each
framework into three parts: three layers of graph neural network with the hid-
den size of 64, a global-add-pool layer and a softmax classifier with two fully
connected layers with the hidden size of 64 for every framework. We use a batch
size of 64, and an Adam [36] optimizer with a learning rate of 0.001, dropout of
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0.01 and weight decay 5e−4. Moreover, in FedHGCN, we set the node selection
ratio to 0.8. When this parameter is set to 1.0, all nodes are preserved. We adopt
500 iterations in each training session and take the result of 50 iterations after
finding the iteration with the lowest loss value in each training session epoch.

To measure the performance of FedHGCN and the baselines, we design three
different experiments, which are accuracy experiments, scalability experiments
and ablation experiments.

5.3. Performance of Accuracy Experiment
In this subsection, we deploy FedHGCN on 10 computing clients in two differ-

ent experimental settings. First, We distribute the dataset equally for 10 computing
clients and test the accuracy trends in an Independent and Identically Distribution
(IID) dataset distribution scenario. We then find that the distribution of data in
real life is mostly Non-IID. Thus, we use the Dirichlet distribution [37] to create
disjointed Non-IID client training data. We consider two data distribution hetero-
geneous settings, which respectively follow Dirichlet distribution Dirlet, where
Dirlet is set to 1 and 0.1. If the parameter of Dirichlet distribution is close to 0,
the distribution of the dataset in different clients is close to Non-IID.

Table 2: The accuracy results of graph classification on four datasets in IID and
Non-IID scenarios.

PROTEINS D&D NCI1 Mutagenicity

FedAvg [19] (IID) 72.48% 75.25% 70.42% 76.27%

FedGraphNN [7] (IID) 75.51% 77.49% 74.11% 81.21%

FedSAGE [10] (IID) 74.11% 76.66% 74.75% 77.26

FedHGCN (IID) 76.94% (↑6.2%) 77.72% (↑3.2%) 75.86% (↑7.7%) 80.23% (↑5.2%)

FedAvg [19] (Dirlet=1) 72.32% 73.39% 73.02% 76.78%

FedGraphNN [7] (Dirlet=1) 75.35% 74.54% 77.02% 81.80%

FedSAGE [10] (Dirlet=1) 76.13% 73.99% 74.79% 79.62

FedHGCN (Dirlet=1) 79.06% (↑9.3%) 75.36% (↑2.7%) 77.91% (6.6%↑) 82.60% (↑7.5%)

FedAvg [19] (Dirlet=0.1) 71.52% 75.09% 73.60% 76.08%

FedGraphNN [7] (Dirlet=0.1) 74.00% 79.41% 75.21% 78.85%

FedSAGE [10] (Dirlet=0.1) 76.14% 74.24% 73.47% 78.30

FedHGCN (Dirlet=0.1) 83.02% (↑15.6%) 81.93% (↑9.1%) 76.88% (↑4.5%) 79.66% (↑4.7%)

As seen in Table 2, FedHGCN has better performance in different experimen-
tal settings. The most important observation emerging from the results is that the
accuracy of FedHGCN reach 76.94%, 79.06% and 83.02% in three different data
distribution settings in the PROTEINS experiment, which are 6.2%, 9.3% and
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(a) PROTEINS

(b) DD

(c) NCI1

(d) Mutagenicity

Figure 3: Accuracy trends of different data sets and different data distributions:
The left figure is the accuracy trends in IID scenario, the middle figure is the
Non-IID scenario with Dirlet=1, and the Dirlet in the right figure is set to 0.1.

15.6% better than that of FedAvg. The accuracy of FedHGCN reaches 77.72%,
75.36% and 81.93% in three different data distribution settings in the D&D ex-
periment. These performances are also the best in all the framework experiments.
Moreover, as shown in Figure 3a and Figure 3b, the accuracy of FedHGCN and
that of other architectures reach a high level at 50 to 100 iterations. This phe-
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nomenon illustrates that FedHGCN maintains high classification accuracy with-
out significantly compromising the convergence rate. Taking the above two points
into consideration, FedHGCN has better performances than that of other frame-
works for distributed graph classification when using protein-type datasets.

In the experiment of training molecular-type data set, such as NCI1, the ac-
curacy of FedHGCN reached 75.86%, 77.91% and 76.88% in three different data
distribution settings, which respectively have 7.7% 6.6% and 4.5% improvements
compared to FedAvg. This improvement is less pronounced than that in the PRO-
TEINS experiments. Moreover, as shown in Figure 3d, FedHGCN compromises
the convergence rate compared to FedGraphNN and FedSAGE, especially in IID
scenarios. But these compromises are not obvious in the non-IID scenarios. This
is because the node densities of these datasets are usually small, so the node selec-
tion we used may affect the learning of graph structure, resulting in a decrease in
the accuracy of graph classification. Therefore, the degree of node selection and
when to use it is open for discussion.

Table 3: Scalability experiments on PROTEINS datasets.

10 clients 30 clients 50 clients

FedAvg (IID) 72.48% 71.68% 71.62%

FedGraphNN (IID) 75.51% 74.36% 72.92%

FedSAGE (IID) 74.11% 67.39% 67.39%

FedHGCN (IID) 76.94% (↑6.2%) 76.17% (↑6.2%) 73.86% (↑3.1%)

FedAvg (Dirlet=1) 72.32% 70.29% 72.24%

FedGraphNN (Dirlet=1) 75.35% 75.08% 74.30%

FedSAGE (Dirlet=1) 76.13% 67.95% 67.95%

FedHGCN (Dirlet=1) 79.06% (↑9.3%) 78.46% (↑11.6%) 75.62% (↑4.6%)

FedAvg (Dirlet=0.1) 71.79% 71.58% 70.26%

FedGraphNN (Dirlet=0.1) 74.00% 74.47% 71.12%

FedSAGE (Dirlet=0.1) 76.14% 75.52% 68.12%

FedHGCN (Dirlet=0.1) 83.02% (↑15.6%) 79.93% (↑11.6%) 72.63% (↑3.4%)

5.4. Results of Scalability Experiments
Considering the increasingly large amount of data and a growing number of

participants, the scalability of FedHGCN also needs to be evaluated. Thus, we
conduct scalability experiments on PROTEINS and NCI1 by changing the num-
ber of clients from 10 to 30 and 50. As shown in Table 3 and Table 4, the most
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Table 4: Scalability experiments on NCI1 datasets..

10 clients 30 clients 50 clients

FedAvg (IID) 70.42% 68.52% 68.67%

FedGraphNN (IID) 74.11% 71.69% 71.93%

FedSAGE (IID) 74.75% 69.98% 69.46%

FedHGCN (IID) 75.86% (↑7.7%) 70.15% (↑2.3%) 69.86% (↑1.7%)

FedAvg (Dirlet=1) 73.02% 71.04% 68.76%

FedGraphNN (Dirlet=1) 77.02% 72.96% 71.81%

FedSAGE (Dirlet=1) 74.79% 71.09% 70.58%

FedHGCN (Dirlet=1) 77.91% (↑6.6%) 72.73% (↑6.6%) 71.71% (↑6.6%)

FedAvg (Dirlet) 73.60% 66.91% 68.76%

FedGraphNN (Dirlet=0.1) 75.21% 70.43% 71.81%

FedSAGE (Dirlet=0.1) 73.47% 70.34% 70.58%

FedHGCN (Dirlet=0.1) 76.88% (↑4.5%) 73.17% (↑9.3%) 72.93% (↑6.1%)

important observation emerging from the results is that, for FedHGCN, the accu-
racy of PROTEINS and NCI1 respectively dropped to 79.93% and 73.17%, which
is still 11.6% and 9.3% higher than the performance for FedAvg, when the Dirich-
let distribution parameter Dirlet is set to 0.1. Meanwhile, when the number of
clients sets to 50 on the PROTEINS dataset, the performance of FedHGCN suf-
fers a significant decline, especially when Dirlet is set to 0.1. The accuracy of
FedHGCN drops to 72.63%, which is 3.4% higher than that of FedAvg. We be-
lieve that there are two reasons for this result. First, in order to ensure that all 50
clients can complete the training task, we extract 500 graphs and evenly divided
them among the 50 clients. This results in our experiment being more similar to
the IID scenario. Second, the datasets obtained by all clients decreased signifi-
cantly, resulting in inadequate training. In the experiment of NCI1, although the
performance of FedHGCN in the IID scenario is slightly worse than that of Fed-
GraphNN, the performance of FedHGCN in the non-IID scenario is more stable
and more than 6% higher than that of FadAvg. This proves that FedHGCN has
a better ability to handle more clients participating in training when part of the
client’s data set is sufficient.

5.5. Results of Ablation Experiments and Data-poisoning Attack Experiments
In this subsection, we analyze the performance of FedHGCN with and with-

out node selection to prove the effectiveness of node selection. To demonstrate
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the robustness, of FedHGCN we then conduct experiments on the PROTEINS
and Mutagenicity datasets to simulate data-poisoning attacks The attackers can
inject noisy or original data into training sets of a subset of clients. To simulate
data-poisoning attacks in real-world scenarios, We deploy FedHGCN on 10 com-
puting clients and poison the data of those clients. We introduce two parameters:
the percentage of poison size and the percentage of poison rounds. Specifically,
the percentage of poison clients indicates the number of clients controlled to par-
ticipate in data-poisoning attacks, which is set as 25% 50% and 70%. The per-
centage of poison sizes represents the amount of noise injected into each graph
data compared to the original graph data, which is set to 25%.

As shown in Figure 4, the accuracy of FedHGCN without node selection only
reaches 76.25%, 72.64% and 76.16% in three different data splitting scenarios
when using PROTEINS. Meanwhile, the performance of FedHGCN with node
selection reaches 79.94%, 79.06% and 83.02%, which increases by 0.9%, 8.8%
and 9.0% in the same scenarios. In experiments using the Mutagenicity dataset,
the highest improvement reaches 9.2%. This phenomenon proves that node selec-
tion can enhance the graph learning ability by removing the redundancy of graph
information without affecting the graph structure.

As shown in Figure 5, when the poison clients account for 25% of the dataset,
the accuracy of FedHGCN reaches 77.93%, which is the highest among all base-
lines in the NCI1 dataset. The accuracy drops to 69.87% from 77.93% as the
percentage of poison clients increases. For the Mutagencity dataset, the accu-
racy of FedHGCN reaches 71.87% when the poison clients account for 25% of
the dataset. The accuracy drops to 70.2% from 71.87% as the percentage of
poison clients increases. The decrease of 1.67% is the smallest among all base-
lines. These results demonstrate that FedHGCN has the ability to withstand data-
poisoning attacks as the percentage of poison clients increases.

To sum up, node selection plays a key role in FedHGCN. Meanwhile, this
method can prevent some bad information from poisoning graph data, which let
FedHGCN has the ability to withstand data-poisoning at- tacks as the percentage
of poison clients increases.

5.6. Hyperparameter Study and Visualization
In this subsection, we discuss the influence of node selection rate on the accu-

racy of FedHGCN for graph classification under different experimental settings.
We set up two scenarios: (1) 10 clients training the PROTEINS dataset. (2) 50
clients training NCI1 dataset. The data distributions in both scenarios are non-IID
with( the Dirichlet parameter Dirlet set to 0.1). We respectively set the ratio of
node selection to 0.5, 0.8, and 1.0. When this ratio is set to 1.0, all nodes in the
graph are preserved.

As shown in Figure 6, in the experiments of PROTEINS, the best accuracy
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Figure 4: Ablation experiments using PROTEINS and Mutagenicity.

Figure 5: Ablation experiment of data-poisoning attack

Figure 6: Hyperparameter experiment: The left figure shows the results of the
experiment with PROTEINS. The right figure shows the results of the experiment
with NCI1.

performance reaches 83.02%, when the node selection ratio is set to 0.5. In the
experiments of NCI1, the best performance of accuracy reaches 77.79%, when the
node selection ratio is set to 0.8. This suggests that datasets of protein types are
more worthy of selecting important nodes. However, in the NCI1 experiments, a
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high ratio of node selection does not work well, possibly because the node density
of this type of dataset is small and more nodes are affecting the structure of the
graph.

6. Conclusion

In this paper, we propose FedHGCN as a novel federated graph classifica-
tion framework. Through the FedHGCN, each client can more effectively learn
about deep hierarchical structure information, increasing the accuracy of graph
classification. We employ the node selection and the hyperbolic aggregation tech-
niques to address the problem of decreasing accuracy due to redundancy in graph
data. The extensive experimental results show that FedHGCN is more advanta-
geous on both IID and Non-IID experiments. In particular, the accuracy of Fed-
HGCN improved by 15.6% compared to FedAvg when using PROTEINS as the
dataset. Moreover, we have also experimented with more clients, and proved
that FedHGCN has a certain competitiveness in scalability experiments. Finally,
We demonstrate through the ablation experiments that node selection makes Fed-
HGCN more robust.
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