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Abstract. The Vapnik-Chervonenkis (VC) dimension plays an important role in statistical learning the-
ory. In this paper, we propose the discretized VC dimension obtained by discretizing the range of a real
function class. Then, we point out that Sauer’s Lemma is valid for the discretized VC dimension. We group
the real function classes having the infinite VC dimension into four categories by using the discretized VC
dimension. As a byproduct, we present the equidistantly discretized VC dimension by introducing an
equidistant partition to segmenting the range of a real function class. Finally, we obtain the error bounds
for real function classes based on the discretized VC dimensions in the PAC-learning framework.
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1 Introduction

Define Z = (X ,Y) ⊆ RI×J , wherein X ⊆ RI is an input space and Y ⊆ RJ is its corresponding output space.
It is expected to find a function T : X → Y that, given an x ∈ X , can accurately predict the output y ∈ Y. In
particular, given a loss function ` : Y2 → R, the target function T minimizes the expected risk

E(`(T (x),y)) =
∫

`(T (x),y)dP, (1)

where P signifies the distribution of z = (x,y) ∈ Z. Since the distribution P is unknown, the target function
T usually cannot be directly obtained by minimizing (1). Therefore, given a function class G and a sample set
SN = {zn}N

n=1 ⊂ Z with zn = (xn,yn), the estimate of T is achieved by minimizing the empirical risk

EN (`(g(x),y)) =
1
N

N∑
n=1

`(g(xn),yn), g ∈ G, (2)

which is an approximation to the expected risk (1). The loss function class is defined by

F := {z 7→ `(g(x),y) : g ∈ G}.
and F is termed as the function class in the rest of the paper. Moreover, we denote, for any f ∈ F ,

Ef =
∫

f(z)dP and ENf =
1
N

N∑
n=1

f(zn).

It is essential to select specific kinds of function classes to deal with different learning problems. As men-
tioned in [1], indicator function classes (F ⊂ {0, 1}Z) and real function classes (F ⊂ [A,B]Z) correspond to
classification and regression problems, respectively. This paper follows this scenario as well.

One of the major concerns in statistical learning theory is the upper bound of

sup
f∈F

Ef − ENf,

which is called the error bound and measures the probability that a function produced by an algorithm has
a sufficiently small error. The error bound can be obtained by incorporating a certain complexity measure of
the function class F . For example, Vapnik [1] gave asymptotic error bounds by introducing the annealed VC
entropy, the growth function and the VC dimension. Vaart and Wellner [2] exhibited some error bounds based on
the Rademacher complexity and the covering number. Bartlett [3] introduced the local Rademacher complexity
and presented a sharp error bound for a particular function class {f ∈ F|Ef2 < αEf, α > 0}.

The VC dimension of a real function class can be defined as follows ([1]).
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Definition 1. Let F ⊆ [A,B]Z be a real function class3. Given a sample set SN = {zn}N
n=1 drawn from Z, for

any β ∈ (A,B), define
f β

SN :=
(
f(z1)− β, f(z2)− β, · · · , f(zN )− β

)
, (3)

and
I

(
f β

SN

)
:=

(
σ(f(z1)− β), σ(f(z2)− β), · · · , σ(f(zN )− β)

)
, (4)

where σ is a step function
σ(x) =

{
0, x < 0;
1, x ≥ 0. (5)

Thus, we obtain a set F|SN :=
{

I
(
f β

SN

)
: f ∈ F , β ∈ (A,B)

}
. (6)

Then, the VC dimension of F is defined by

V C(F) := max
{

N > 0 : max
SN∈ZN

{∣∣F|SN

∣∣} = 2N

}
. (7)

In Definition 1, β traverses the interval (A,B), and thus many real function classes having infinite VC
dimensions, e.g., the function class {sin(αx)|α ∈ R} shown in [1]. Therefore, the VC dimension is unsuitable to
measure the complexities of these real function classes and it is necessary to further investigate them. Ben-David
and Gurvits [4] studied the function classes having the infinite VC dimension by using the σ-ideal and built a
relation with the VC dimension and the Lebesgue measure.

In this paper, we propose the discretized VC dimension to measure complexities of real function classes.
The discretized VC dimension only requires β to be evaluated from a specific partition of (A,B). We then
discuss some properties of the discretized VC dimension and show that Sauer’s Lemma [5] is valid for the
discretized VC dimension. Afterwards, we classify the real function classes having the infinite VC dimension
into four categories by using the discretized VC dimension. As a byproduct, we present a special discretized
VC dimension - the equidistantly discretized VC dimension, which is generated from a equidistant partition of
[A,B], and its properties are discussed as well. Finally, we obtain error bounds for real function classes based
on the discretized VC dimensions in the PAC-leaning framework [6].

The rest of this paper is organized as follows. In Section 2, we introduce the discretized VC dimension,
discuss its properties and group the real function classes having the infinite VC dimension. Section 3 presents
error bounds for real function classes based on the discretized VC dimension in the PAC-learning framework.
The proofs of main results are arranged in Section 4 and the last section concludes the paper.

2 Discretized Vapnik-Chervonenkis Dimensions

According to Definition 1, the VC dimension of a real function class requires β to traverse along the interval
(A,B) and this traversal makes the VC dimensions of many real function classes infinite, e.g., the function class
{sin(αx)|α ∈ R}. Therefore, it is valuable to study the real function classes having the infinite VC dimension.
For this purpose, we develop a new complexity measure for real function classes based on the partition of the
interval (A,B).

Let ΛM = {β1, · · · , βM} be a finite partition of the interval (A,B). By using (3) and (4), define a set
FΛM

|SN :=
{

I
(
f β

SN

)
: f ∈ F , β ∈ ΛM

}
. (8)

Then, the discretized VC dimension is defined as follows.

Definition 2. Assume that F ⊆ [A,B]Z is a real function class. Let ΛM = {β1, · · · , βM} be a finite partition
of the interval (A,B). Then, the discretized VC dimension of F is defined by

DisV C(F ,M) := max





N > 0 : max
SN∈ZN

ΛM⊂(A,B)

|FΛM

|SN | = 2N





. (9)

In the above definition, the discretized VC dimension only requires β to be evaluated at the partition ΛM and
Sauer’s Lemma [5] is valid for the discretized VC dimension.

Lemma 1. Assume that F ⊆ [A,B]Z is a function class, wherein A,B ∈ R. Let ΛM = {β1, β2, · · · , βM} be
a partition of the interval (A,B) and SN = {zn}N

n=1 ⊂ Z be an i.i.d. sample set. According to (8), if the
discretized VC dimension DisV C(F ,M) = D, then we have for any N ≥ D,

E
(∣∣∣FΛM

|SN

∣∣∣
)
≤

(
eN
D

)D

. (10)

Lemma 1 is a direct result of Sauer’s Lemma [5]. Moreover, according to Definition 2, the discretized VC
dimension has the following properties.

Theorem 1. Assume that F ⊆ [A,B]Z is a real function class having the VC dimension V C(F). Let ΛM =
{β1, · · · , βM} be a finite partition of the interval (A,B). Then,
3 Actually, A and B can be −∞ and +∞, respectively (cf. [1]). However, this paper only considers the case that
−∞ < A < B < +∞.
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(i) for any M ∈ N, we have DisV C(F ,M) ≤ V C(F);
(ii) for any M ∈ N, we have DisV C(F ,M) ≤ V C(F);

According to Theorem 1, since the discretized VC dimension is smaller than the traditional VC dimension
and increases with the increase of the cardinality of the partition, we can classify the real function class having
the infinite VC dimension into four categories by using the discretized VC dimension.

Definition 3. Let F be a real function classes having the infinite VC dimension.

(i) If there exists an M0 ∈ N such that DisV C(F ,M0) < ∞ and DisV C(F ,M) = ∞ holds for any M0 < M ∈
N, then F is said to be of TYPE I.

(ii) If DisV C(F ,M) = ∞ holds for any M ∈ N, then the F is said to be of TYPE II.
(iii) If there exists an increasing sequence {Mk} ⊆ N such that DisV C(F ,Mk) approaches to the infinity as

k →∞, then F is said to be of TYPE III.
(iv) The others are said to be of TYPE IV.

In the above definition, we group the real function classes having the infinite VC dimension into four
categories. For example, the function class {sin(αx) |α ∈ R} is of TYPE II.

Moreover, there is a special version of the discretized VC dimension, which is defined based on the equidistant
partition of the interval [A,B].

Definition 4. Assume that F ⊆ [A,B]Z is a real function class and let A = β0 < β1 < · · · < βM < βM+1 = B
be an equidistant partition of the interval [A,B], i.e., there exists a constant δ > 0 such that δ = (βm − βm−1)
holds for any 1 ≤ m ≤ M + 1. Denote Λδ = {β1, · · · , βM} and

FΛδ

|SN :=
{

I
(
f β

SN

)
: f ∈ F , β ∈ Λδ

}
. (11)

Then, the equidistantly discretized VC dimension of F is defined by

DisV C(F , δ) := max
{

N > 0 : max
SN∈ZN

∣∣FΛδ

|SN

∣∣ = 2N

}
. (12)

In Definition 4, the equidistantly discretized VC dimension DisV C(F , δ) is completely determined by the
partition Λδ of (A,B). In contrast, the discretized VC dimension DisV C(F ,M) needs to select a specific
partition to achieve the maximum in (9). Similarly, Sauer’s Lemma is valid for the equidistantly discretized VC
dimension.

Lemma 2. Assume that F ⊆ [A,B]Z is a real function class and let A = β0 < β1 < · · · < βM < βM+1 = B
be an equidistant partition of the interval [A,B], i.e., there exists a constant δ > 0 such that δ = (βm − βm−1)
holds for any 1 ≤ m ≤ M + 1. Denote Λδ = {β1, · · · , βM}. If the equidistantly discretized VC dimension
DisV C(F , δ) = D, then we have for any N ≥ D,

E
(∣∣∣FΛδ

|SN

∣∣∣
)
≤

(
eN
D

)D

. (13)

The equidistantly discretized VC dimension DisV C(F , δ) has the following properties.

Theorem 2. Assume that F ⊆ [A,B]Z is a real function class and let A = β0 < β1 < · · · < βM < βM+1 = B
be an equidistant partition of the interval [A,B], i.e., there exists a constant δ > 0 such that δ = (βm − βm−1)
holds for any 1 ≤ m ≤ M + 1. Denote Λδ = {β1, · · · , βM}. Then,

(i) for any δ > 0, we have DisV C(F , δ) ≤ V C(F);
(ii) for any δ > 0, we have DisV C(F , δ) ≤ DisV C (F ,M), wherein DisV C (F ,M) is the discretized VC

dimension.

It is worth emphasizing that for some 0 < δ1 < δ2, it could be invalid that DisV C(F , δ1) ≥ DisV C(F , δ2),
i.e., a finer equidistant partition could not provide a larger equidistantly discretized VC dimension, which is
different from the case of the discretized VC dimension DisV C(F ,M) shown in Theorem 1.

In the next section, we will give the error bounds based on the discretized VC dimension and the equidistantly
discretized VC dimension, respectively.
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3 Risk Bounds Based on Discretized VC Dimensions

Vapnik [1] obtained error bounds of real function classes for the empirical processes of i.i.d. samples by intro-
ducing the VC dimension. In this section, we present the risk bounds based on the discretized VC dimension in
the PAC-learning framework.

Theorem 3. Assume that F ⊆ [A,B]Z is a real function class. Let ΛM = {β1, β2, · · · , βM} be a partition of
the interval (A,B), and A = β0 < β1 < β2 < · · · < βM < βM+1 = B, (14)
with ∆βm = βm − βm−1 (m = 1, 2, · · · ,M + 1). Then, for an i.i.d. sample set S2N = {zn}2N

n=1 drawn from Z,
we have with the probability at least 1− ξ −∑M+1

m=1 ηm,

∀ f ∈ F , Ef ≤ ENf + ∆β∗




1
N

+

√√√√ ln E
(∣∣FΛM

|S2N

∣∣
)
− ln(ξ/4)

N


 , (15)

where
ηm = 2e−2N(εm)2 , 1 ≤ m ≤ M, (16)

and ∆β∗ = max1≤m≤M+1{∆βm}. Moreover, if DisV C(F ,M) = D, then for any N ≥ D/2, we have with the
probability at least 1− ξ −∑M+1

m=1 ηm,

∀ f ∈ F , Ef ≤ ENf + ∆β∗
(

1
N

+

√
D(ln(2eN)− lnD)− ln(ξ/4)

N

)
. (17)

Similar to Theorem 3, by using Lemma 2, we obtain error bounds of real function classes based on the
equidistantly discretized VC dimension as follows.

Theorem 4. Assume that F ⊆ [A,B]Z is a real function class having the VC dimension V C(F) and let
A = β0 < β1 < · · · < βM < βM+1 = B be an equidistant partition of the interval [A,B], i.e., there exists
a constant δ > 0 such that δ = (βm − βm−1) holds for any 1 ≤ m ≤ M + 1. Then, for an i.i.d. sample set
S2N = {zn}2N

n=1 drawn from Z, we have with the probability at least 1− ξ −∑M+1
m=1 ηm,

∀ f ∈ F , Ef ≤ ENf + δ




1
N

+

√√√√ ln E
(∣∣FΛδ

|S2N

∣∣
)
− ln(ξ/4)

N


 ,

where ηm (1 ≤ m ≤ M) is defined in (16). Moreover, if DisV C(F , δ) = D, then for any N ≥ D/2, we have
with the probability at least 1− ξ −∑M+1

m=1 ηm,

∀ f ∈ F , Ef ≤ ENf + δ

(
1
N

+

√
D(ln(2eN)− lnD)− ln(ξ/4)

N

)
.

4 Proofs of Main Results

In this section, we only prove Theorem 3. Theorem 4 can be directly obtained by combining Theorem 3 and
Lemma 2.

Proof of Theorem 3. Given a real number X and a function f , let E(X) stand for the event

E(X) = {z : f(z) > X} . (18)

According to the definition of Lebesgue-Stieltjes integrals and based on the partition ΛM , for any measurable
function f ∈ F , we can rewrite the expected risk as

E(f) =
∫ B

A

f(z)dF (z) =
M+1∑
m=1

∫ βm

βm−1

f(zn)dF (z)

=
M+1∑
m=1

(
lim

K→∞

K∑

k=1

∆βm

K
P

{
f(z) > βm−1 +

k∆βm

K

})
, (19)

where P
{

f(z) > βm−1 + k∆βm

K

}
is the probability of event E

(
βm−1 + k∆βm

K

)
.

Similarly, given a sample set {zn}N
n=1 and a function f ∈ F , the corresponding empirical risk can be rewritten

as
ENf =

1
N

N∑
n=1

f(zn) = lim
K→∞

K∑

k=1

∆βm

K
ψ

{
f(z) > βm−1 +

k∆βm

K

}
, (20)

where ψ
{

f(z) > βm−1 + k∆βm

K

}
is the frequency of even E(βm−1 + k∆βm

K ) with respect to the sample set

{zn}N
n=1.
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Then, according to (19) and (20), for any f ∈ F , letting ∆β∗ = max1≤m≤M+1{∆βm}, we have

Ef − ENf

=
M+1∑
m=1

lim
K→∞

K∑

k=1

∆βm

K

(
P

{
f(z) > βm−1 +

k∆βm

K

}
− ψ

{
f(z) > βm−1 +

k∆βm

K

})

≤
M+1∑
m=1

(
lim

K→∞

K∑

k=1

∆βm

K
sup

tm∈[βm−1,βm)

(P {f(z) > tm} − ψ {f(z) > tm})
)

=
M+1∑
m=1

∆βm sup
tm∈[βm−1,βm)

(P {f(z) > tm} − ψ {f(z) > tm})

≤∆β∗
M+1∑
m=1

sup
tm∈[βm−1,βm)

(∫
σ{f(z)− tm}dF (z)− 1

N

N∑
n=1

σ{f(z)− tm}
)

. (21)

For any m ∈ {1, 2, · · · ,M + 1}, let

εm =
∣∣∣
∫

σ{f(z)− βm−1}dF (z)− 1
N

N∑
n=1

σ{f(z)− βm−1}
∣∣∣. (22)

According to (21), (22) and Hoeffding’s inequality (cf. [7]), for any tm ∈ [βm−1, βm), we then have

P

{∣∣∣
∫

σ{f(z)− tm}dF (z)− 1
N

N∑
n=1

σ{f(z)− tm}
∣∣∣ > εm

}
< 2e−2N(εm)2 , (23)

which implies that with probability at least 1− 2e−2N(εm)2 ,
∣∣∣
∫

σ{f(z)− tm}dF (z)− 1
N

N∑
n=1

σ{f(z)− tm}
∣∣∣ ≤ εm. (24)

According to (21) and (24), we have with the probability at least 1−∑M+1
m=1 ηm,

∫ B

A

f(zn)dF (z)− 1
N

N∑
n=1

f(zn)

≤
M+1∑
m=1

∣∣
∫

σ{f(z)− βm−1}dF (z)− 1
N

N∑
n=1

σ{f(z)− βm−1}
∣∣, (25)

where ηm = 2e−2N(εm)2 .
Therefore, by combining (21), (25) and Theorem 4.1 in [1], we have with the probability at least 1−∑M+1

m=1 ηm,

P

{
sup
f∈F

(∫
f(z)dF (z)− 1

N

N∑
n=1

f(zn)

)
> ε

}

≤P

{
M+1∑
m=1

sup
tm∈[βm−1,βm)

sup
f∈F

(∫
σ{f(z)− tm}dF (z)− 1

N

N∑
n=1

σ{f(z)− tm}
)

>
ε

∆β∗

}

≤
M+1∑
m=1

P

{
sup

tm∈[βm−1,βm)

sup
f∈F

(∫
σ{f(z)− tm}dF (z)− 1

N

N∑
n=1

σ{f(z)− βm}
)

>
ε

∆β∗

}

≤
M+1∑
m=1

P

{
sup
f∈F

(∫
σ{f(z)− βm−1}dF (z)− 1

N

N∑
n=1

σ{f(z)− βm−1}
)

>
ε

∆β∗

}

<4
M+1∑
m=1

E
(
Fβm

|S2N

)
exp

{
−

(
ε

∆β∗
− 1

N

)2

N

}
= 4E

(
FΛM

|S2N

)
exp

{
−

(
ε

∆β∗
− 1

N

)2

N

}

=4 exp






 ln E

(
FΛM

|S2N

)

N
−

(
ε

∆β∗
− 1

N

)2

 N



 . (26)

Moreover, (17) can be directly resulted from (15) and Lemma 1. This completes the proof. ¤
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5 Conclusion

In this paper, we propose the discretized VC dimension for real function classes. The discretized VC dimension
is defined based on a specific partition to segment the range of function classes. Then, we discuss the relation
between the traditional VC dimension and the discretized VC dimension and show that Sauer’s Lemma is valid
for the discretized VC dimension as well. By using the discretized VC dimension, we group the real function
classes having the infinite VC dimension into four categories. As a byproduct, we give a special version of the
discretized VC dimension - the equidistantly discretized VC dimension. Finally, we obtain error bounds for
real function classes based on the discretized VC dimension and the equidistantly discretized VC dimension,
respectively.
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