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The equilibrium climate sensitivity (ECS) stands as a pivotal parameter in climate
science and other disciplines. This study estimates ECS as a common equilibrium
parameter across energy balance models (EBMs). Fitting EBMs to the counter-
factual data simulated from 31 climate models under a quadrupled CO2 experiment,
we introduce a Bayesian composite likelihood approach to simultaneously integrate
and estimate all the constituent EBMs. In contrast to inferential methods based
on storylines and emergent constraints commonly employed by climate scientists,
our econometric alternative provides a data-driven ECS estimator with an intuitive
probabilistic interpretation. We find an ECS estimate of 3.3K, characterized by
a unimodal posterior distribution that facilitates uncertainty quantification. Our
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notably tighter than, the likely range of ECS previously reported.
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1 Introduction

Equilibrium climate sensitivity (ECS), the mean surface air temperature change with a sus-

tained doubling of the atmospheric concentration of CO2, is a key metric in anthropogenic

climate change (Geoffroy et al., 2013b; Meehl et al., 2020). Determining its value and narrow-

ing the range have been challenging tasks, with atmosphere-ocean general circulation models

(AOGCMs) showing ECS variations from 1.8K to 6K (Stevens et al., 2016; Scafetta, 2022).

The discrepancies are attributed to differing understandings of feedback mechanisms from wa-

ter vapor, cloudiness, and aerosols (Knutti et al., 2017; Lewis and Curry, 2018). Efforts to

constrain ECS values led to the Intergovernmental Panel on Climate Change (2021) recom-

mending “likely” range of (2.5K, 4K) and “very likely” range of (2K, 5K) in its latest assess-

ment report, based on AOGCMs’ deviations from understood feedback mechanisms. Beyond

climate science, accurate ECS estimation is crucial for Integrated Assessment Models (IAMs) in

climate-economy studies, as different models yield drastically varying policy recommendations

due to their sensitivity to ECS (Stern, 2007; Watkiss and Hope, 2011; Hahn and Ritz, 2015).

IAMs’ uncertainty in estimating economic costs hampers policymakers’ ability to inform domes-

tic and international climate policies (Clarke and Coauthors, 2014). Despite efforts to constrain

the value of ECS, AOGCM-implied ECS uncertainty is sometimes deemed “irreducible” due

to different physical processes under consideration and model resolutions (Lehner et al., 2020;

Geoffroy et al., 2013a), emphasizing the need for an ECS estimate with sound inferential and

risk properties consistent with physics.

This paper aims to integrate econometrics and climate science through a novel composite like-

lihood approach for estimating and constraining ECS (Varin et al., 2011; Canova and Matthes,

2021). Utilizing energy balance models (EBMs) as climate emulators for AOGCMs, which in-

evitably misspecify Earth’s climate system, we employ EBMs to model the group temperature

response to CO2 radiative forcing. While EBMs have limitations compared to AOGCMs, their

rising popularity among climate scientists and economists is attributed to their low compu-

tational cost and analytical tractability (Aldrin et al., 2012; Geoffroy et al., 2013b; Cummins
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et al., 2020; Pretis, 2020; Bennedsen et al., 2023). Jackson et al. (2022) demonstrated satisfac-

tory performance of EBMs for temperature projections under various forcing experiments. In

essence, we treat EBMs as physically consistent time series models and fit them to AOGCM

simulated data. Our key innovation lies in pooling information across AOGCMs via composite

likelihood, recognizing that ECS is a well-defined physical quantity common across models with

some uncertainty. Allowing other parameters in EBMs to differ, reflecting specificities in differ-

ent AOGCMs, this approach offers a data-driven alternative for combining ECS estimates with

statistical quantification of uncertainty. Additionally, it facilitates straightforward constraint

adjustments using observational data or adding more models to the composite, letting data

determine the value added by additional components.

Our contribution spans two key areas of literature. Firstly, within econometrics, where model

selection and averaging methodologies, including Bayesian model averaging, model confidence

set, and finite mixture models, typically involve considering different models fitted to the same

dataset Raftery et al. (1997); Hansen et al. (2011); McLachlan et al. (2019). Our innovation

lies in addressing an averaging problem with diverse datasets simulated by AOGCMs featur-

ing distinct complexities and feedback mechanisms. Likelihood- and information criteria-based

methods are inadequate due to the meaningless comparison of (marginal) likelihood with dif-

ferent datasets and the failure to distinguish the common estimate of interest from nuisance

parameters. In our framework, allowing for differing nuisance parameters is essential, given

the dissimilarity of AOGCMs. Additionally, we estimate model weights alongside other pa-

rameters, eliminating concerns about pre- or post-estimation weighting common in multimodel

studies (Canova and Matthes, 2021). Our composite likelihood approach conceptually aligns

with methods estimating a common quantity of interest from different sources (Durbin and

Koopman, 2012, Chapter 3; Bennedsen et al., 2023). However, rooted in factor modeling, such

methods do not discount different information sources. In comparison, our approach determines

model weights in a data-driven way by concentrating explanatory power towards the common

ECS. This ensures that even if an EBM fits an AOGCM simulation well, it receives a low weight

if inconsistent with the composite ECS.
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Figure 1: Simulated surface temperature Ts and TOA heat influx N by 31 AOGCMs under a
quadrupled CO2 experiment. CMIP5 and CMIP6 datasets are indicated by blue and red lines,

respectively. Averaged data series are shown in black, with the solid, the dotted and the dashed

line indicating CMIP5 average, CMIP6 average, and the average of the combination of CMIP5 and

CMIP6 datasets, respectively.

Secondly, this study introduces a novel statistical toolkit to the literature on ECS and its

admissible range. Stemming from the classical “Hasselmann model” (Hasselmann, 1976), the

simple “Geoffroy regression” (Geoffroy et al., 2013b) relates global mean surface temperature

Ts to radiative forcing F through Cs
dTs

dt
= F −λTs = N , where Cs is the surface heat capacity,

N is the net radiative flux at top of the atmosphere (TOA), and λ is the feedback parameter. In

equilibrium, for doubled ambient CO2 forcing (F = F2×CO2), ECS sets dTs = N = 0, yielding

ECS = F2×CO2/λ. This establishes a regression that one can use to infer AOGCMs’ ECSs via

model runs, utilizing simulated data of F , N , and Ts. Our study uses simulated Ts and N from

31 AOGCMs of Coupled Model Intercomparison Project (CMIP) phase 5 (as in (Geoffroy et al.,

2013a)) and phase 6 ((Cummins et al., 2022)) under a quadrupled CO2 experiment. Figure 1

illustrates our datasets, while Table 1 provides model names and expansions.

Several researchers, including Lewis and Curry (2018); Geoffroy et al. (2013a); Cummins

et al. (2020); Jackson et al. (2022), have highlighted the limitations of the Geoffroy regression

in capturing deep ocean heat uptake and Earth’s thermal inertia, leading to inaccuracies in

reflecting temperature changes over extended timescales. Addressing these concerns, we adopt
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the approach proposed by Cummins et al. (2020) to formulate optimal EBMs. In contrast to

earlier works that simply list estimated model-specific ECSs, such as Cummins et al. (2020)

and Scafetta (2022), our study uses the composite ECS to effectively combine and weight

information from different AOGCMs, providing a statistical reconciliation amid the ongoing

debate on ”low” vs. ”medium” vs. ”high” ECSs (Stevens et al., 2016; Meehl et al., 2020;

Lehner et al., 2020; Scafetta, 2022). While not explicitly demonstrated here, our proposed

composite method readily accommodates observational data from diverse sources (Aldrin et al.,

2012; Pretis, 2020; Bennedsen et al., 2023) by treating them as additional model components

or emergent constraints (Cox et al., 2018).

The remainder of this paper is structured as follows. Section 2 introduces the composite

likelihood approach and Bayesian inference within this framework. In Section 3, we delve into

the specifics of the EBM that is fitted to AOGCM simulated data, highlighting the parallels

between the EBM (AOGCM) and a reduced-form (structural) model in economics. Section 4

presents the results of our estimations. We conclude with final remarks in Section 5.

2 Composite likelihood and quasi-Bayesian inference

This section presents the principles of composite likelihood (CL) based on the work of Varin

et al. (2011) and, notably, Canova and Matthes (2021). Emphasizing the latter, who initially

explored common parameter estimation and identification in macroeconomic models through

quasi-Bayesian inference, we elucidate our model setup and interpretation of estimation results

in a statistically robust manner that aligns with the perspective of climate scientists.

2.1 Composite likelihood for hypothetical climate models

The composite likelihood (CL) approach, initially designed to untangle model likelihoods in

situations with latent variables or near-singular covariance matrices, offers an alternative objec-

tive function—an easily manageable weighted average of marginal or conditional distributions

of submodels (Varin et al., 2011). Extending this framework, Canova and Matthes (2021) en-
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Table 1: Model expansions (Geoffroy et al., 2013a; Cummins et al., 2022)

Model Expansion

CMIP5 models
BCC-CSM1.1 Beijing Climate Center, Climate System Model, version 1.1
BNU-ESM Beijing Normal University-Earth System Model
CanESM2 Canadian Earth System Model, version 2
CCSM4 Community Climate System Model, version 4
CNRM-CM5 Centre National de Recherches Météorologiques Coupled Global Cli-

mate Model, version 5
CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organization Mark,

version 3.6.0
FGOALS-s2 Flexible Global Ocean-Atmosphere- Land System Model gridpoint,

second spectral version
GFDL-ESM2M Geophysical Fluid Dynamics Laboratory Earth Science Model 2M
GISS-E2-R Goddard Institute for Space Studies Model E, coupled with Russell

ocean model
HadGEM2-ES Hadley Centre Global Environmental Model 2, Earth System
INM-CM4 Institute of Numerical Mathematics Coupled Model, version 4.0
IPSL-CM5A-LR L’Institut Pierre-Simon Laplace Coupled Model, version 5, coupled

with NEMO, low resolution
MIROC5 Model for Interdisciplinary Research on Climate, version 5
MPI-ESM-LR Max Planck Institute Earth System Model, low resolution
MRI-CGCM3 Meteorological Research Institute Coupled General Circulation

Model, version 3
NorESM1-M Norwegian Earth System Model, intermediate resolution
CMIP6 models
ACCESS-ESM1.5 Australian Community Climate and Earth System Simulator, Earth

System Model, version 1.5
BCC-CSM2-MR Beijing Climate Center, Climate System Model, version 2, medium

resolution
CanESM5 Canadian Earth System Model, version 5
CESM2 Community Earth System Model, version 2
CMCC-ESM2 Euro-Mediterranean Center on Climate Change, Earth System Model,

version 2
CNRM-ESM2.1 Centre National de Recherches Météorologiques, Earth System Model,

version 2.1
EC-Earth3-CC European Community Earth System Model, version 3, carbon cycle
GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, Earth System Model, ver-

sion 4
GISS-E2.1-G Goddard Institute for Space Studies, ModelE/GISS Ocean

2×2.5×L40
IPSL-CM6A-LR L’Institut Pierre-Simon Laplace Coupled Model, version 5, coupled

with NEMO, low resolution
MIROC-ES2L Model for Interdisciplinary Research on Climate, Earth System ver-

sion 2 for Long-term simulations
MPI-ESM1.2-LR Max Planck Institute, Earth System Model, version 1.2, low resolution
MRI-ESM2.0 Meteorological Research Institute, Earth System Model, version 2.0
NorESM2-LM Norwegian Earth System Model, version 2, low-resolution low-

resolution atmosphere-land and medium-resolution ocean-sea ice
UKESM1.0-LL United Kingdom Earth System Model, version 1.0, low resolution
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hances the CL approach by allowing the estimation of parameters across models that are not or

weakly identifiable individually. It further facilitates pooling information from diverse sources

and enables data-driven determination of model weights. This setup aligns with our goal of

constraining ECS across multiple EBMs using simulated datasets from various AOGCMs.

We extend the insights of Canova and Matthes (2021)’s work on dynamic models in eco-

nomics to climate science. Akin to the perspective presented by Hasselmann (1976), Earth’s

climate system, subject to various forcings, behaves as a stochastic dynamic system. In the ab-

sence of forcings, the system maintains equilibrium with internal variability. External forcings

induce deviations from equilibrium, stochastically amplifying or distorting climatic variations.

This implies that with a complete understanding of Earth’s climate system, there is a known

data generating process (DGP) that induces a probability measure Ω and a density function

F ({yt}Tt=1,φ) for an n × 1 vector of climate variables yt observed over T periods. The k × 1

parameter vector φ splits into φ = (α,β′)′, where α signifies the ECS, not explicitly defined

by Earth’s climate system, and β includes physical quantities governing system dynamics and

reflecting our understanding and measurement of the system.

Hypothetically, consider yt is observed heterogeneously at various locations using different

technologies, denoted as events. Let {Ai, i = {1, ..., K}} be the set of marginal or conditional

events of yt. Each event defines a submodel with subdensities f({yit}Ti
t=1 ∈ Ai, α,βi) that

induces a probability measure σi with σi ⊂ Ω. yit is the vector of climate variables observed for

Ti periods at a location using a technology specified in Ai and characterized by βi. As such, α is

the climate sensitivity that applies to all events in equilibrium, while βi’s are submodel-specific

nuisance parameters. Given a vector of weights 0 < ωi < 1,
∑K

i ωi = 1, the CL is given by

FCL({{yit}Ti
t=1}Ki=1, α, {βi}Ki=1) ∝

K∏
i=1

f({yit}Ti
t=1 ∈ Ai, α,βi)

ωi . (1)

Same as in Varin et al. (2011), Chan et al. (2020), and Canova and Matthes (2021), the

above CL objective function ignores potential dependence across Ai’s. However, as we argue

in section 2.2, since we consider simulated counter-factual observations from AOGCMs, yit’s
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are independent across i other than the fact that they all respect physical laws. Ideally, if each

AOGCM captures all feedback mechanisms correctly and has infinitely high spatial resolution,

all submodels with T1 = ... = TK = T are correctly specified model for Earth’s climate system,

rendering {yit}Ki=1 independent realizations from F ({yt}Tt=1,φ). Then it is trivial to show that

under fixed weights, the maximum CL estimator α̂ satisfying

(α̂, β̂
′
1, ..., β̂

′
K) = arg max

α,βi,i=1,...,K

K∑
i=1

ωi log f({yit}Tt=1 ∈ Ai, α,βi) (2)

is consistent, or α̂
p.−→ α, under large T or K asymptotics. Consistency is established as

the first-order condition given by each correctly specified likelihood component in (2) is an

unbiased estimating function, and so is any linear combination of them. In econometrics,

this amounts to a linear combination of valid finite-sample moment conditions. Asymptotic

normality immediately follows from the fact that under standard continuity and differentiability

conditions, the likelihood functions of all submodels admit a Laplace approximation around the

same mode, i.e, the maximum CL estimator α̂. Specifically,

√
KT (α̂− α)

a.∼ N(0,J (α)H(α)−2), (3)

where H(α) and J (α) are the asymptotic variability and sensitivity term, respectively (Varin

et al., 2011). In finite samples, frequentist inference is straightforward with a consistent variance

estimator V̂ar(α̂) = J(α̂)H(α̂)−2 satisfying 1
KT

H(α̂)
p.−→ H(α) and 1

KT
J(α̂)

p.−→ J (α); for

example H(α̂) is the hessian, and J(α̂) is the outer product of the gradient.

Benefiting from independent AOGCM simulations, our setting is simpler than cases where

events overlap, as considered by Engle and Kelly (2012), Varin et al. (2011), and Chan et al.

(2020) with Ai ∩ Aj ̸= ∅. In these applications, some finite-sample correction is needed. Ad-

ditionally, as (1) is not a likelihood function, its maximizer cannot achieve the Cram‘er-Rao

lower bound, as evident from the inefficient variance in (3). Model weights can be chosen based

on maximizing efficiency. Canova and Matthes (2021) also explored data-driven weights with
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ωi ∝ exp(µi), where µi is a function of statistics derived from past data in Ai.

2.2 Composite likelihood for EBMs

In practice, our approach deviates from the ideal setting in two aspects. Firstly, our understand-

ing of F ({yt}Tt=1,φ) for Earth’s climate system is limited due to current scientific constraints.

Computational limitations prevent arbitrary refinement of AOGCMs, rendering them inher-

ently under- and misspecified. Chan et al. (2020) and Canova and Matthes (2021) discuss

a quasi-Bayesian CL approach to address misspecification in economic models. Secondly, we

cannot econometrically estimate AOGCMs since they are not statistical models. Instead, we

estimate EBMs as stochastic climate emulators approximating the global temperature response

under a counter-factual quadrupled CO2 experiment. As AOGCM-simulated data must adhere

to energy balance principles, we follow Cummins et al. (2020) and Jackson et al. (2022) and fit

EBMs to such data. Therefore, in this study we define the event Ai in CL as “fitting an EBM

to climate data simulated by the i-th misspecified AOGCM”, different but not incompatible

with the broader interpretation where Ai represents different locations or technologies. An

advantage of our approach is its flexibility to expand (1) with additional submodels.

Due to the approximating nature of EBMs and misspecifications in AOGCMs, the sub-

densities f({yit ∈ Ai, α,βi}) are also misspecified in the sense that under all (α′,β′
i)
′ the

Kullback-Leibler (KL) divergence of f({yit ∈ Ai, α,βi}) from F ({yt}Tt=1,φ) is strictly positive.

Consequently, the CL (1) as a weighted geometric mean of subdensities has a strictly positive

KL divergence. As the maximum likelihood first-order condition of each submodel is a biased

estimating function, the associated maximum CL estimator α̂ is inconsistent. However, follow-

ing Varin et al. (2011), it is possible to show that α̂ still converges in probability to a pseudo

ECS α0 that minimizes the KL divergence.

To see this, suppress the dependence on βi and Ai, but denote each subdensity as fi(.) for

exposition. Let Y be a random vector of climate variables of interest that is Ω-measurable.

The KL divergence between FCL(Y , α) and F (Y , α) as a function of the composite or group
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ECS α is given by

KL(α) = E [logFCL (Y , α)− logF (Y , α)] =

∫
log

∏K
i=1 fi(Y , α)ωi

F (Y , α)
F (Y , α)dΩ(Y ),

where the expectation is taken under the true density F (Y , α). It follows

α0 = argmin
α

KL(α) = argmax
α

E [logFCL (Y , α)] . (4)

Let s(α) = ∂
∂α

logFCL(Y , α} denote the score function. Under standard regularity conditions

in White (1982), (4) gives us the asymptotic identifiability condition

E[s(α)] ̸= 0, ∀α ̸= α0. (5)

In finite samples, we have

logFCL({{yit}Tt=1}Ki=1, α) =
K∑
i=1

ωi log fi({yit}Tt=1, α)

=
T∑
t=1

K∑
i=1

ωi log fi(yit|σi({yis}t−1
s=1), α),

where σi({yis}t−1
s=1), i = 1, ..., K, is the natural filtration generated by past data and σi(yi0) =

∅. Given the maximum CL estimator α̂ = supα logFCL({{yit}Tt=1}Ki=1, α), under finite-sample

identifiability we have

1

KT

K∑
i=1

T∑
t=1

sit(α) ̸= 0, ∀α ̸= α̂. (6)

where sit(α) = Kωi
∂
∂α

log fi(yit|σi({yis}t−1
s=1), α), t = 1, ..., T , is the score of log likelihood

contribution from the i-th subdensity. Given fixed weights and based on a uniform law of large

numbers, 1
KT

∑K
i=1

∑T
t=1 sit(α)

p.−→ E[s(α)] whenever α is an interior point of a compact set

around α̂. Combining (5) and (6), we have α̂i
p.−→ α0.

Taking a first-order Taylor expansion of
√
KT

∑K
i=1

∑T
t=1 sit(α̂) = 0 around the pseudo
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ECSα0. It gives

√
KT (α̂− α0) = −

(
1

KT
H(α̂)

)−1
1√
KT

s(α0) + op(1).

It follows that 1
KT

H(α̂)
p.−→ H(α0) due to consistency with respect to the pseudo ECS, and

1√
KT

s(α0)
a.∼ N(0,J (α0)) due to the Lindeberg-Feller theorem (White, 1982). We thus have

√
KT (α̂− α0)

a.∼ N(0,J (α0)H(α0)
−2),

identical to (3) but with the asymptotic variability and sensitivity terms evaluated at the KL-

divergence minimizer α0 instead of the true α. This also implies that the finite-sample variance

estimator in the previous section is still consistent but with respect to α0.

2.3 Quasi-Bayesian inference with composite likelihood

Results from Sections 2.1 and 2.2 rely on fixed model weights, critical not only for inference on

the composite ECS, but also for the numerical maximization of CL given in (1). As ωi goes to

zero, the i-th submodel becomes unidentified in the population, making the CL flat along βi.

Besides convergence problems, zero model weights mean that we cannot compute some climatic

quantities that are usually functions of α and βi, such as the transient climate response and

characteristic time scales (Geoffroy et al., 2013b,a; Cummins et al., 2020; Jackson et al., 2022).

2.3.1 Composite posterior distribution

We consider quasi-Bayesian inference by estimating weights together with all other model pa-

rameters. Specifically, we use a Markov chain Monte Carlo (MCMC) sampler to approximate

the CL posterior distribution

p(α, {βi}Ki=1,ω|{{yit}Tt=1}Ki=1) ∝ pCL({{yit}Tt=1}Ki=1|α, {βi}Ki=1,ω)π(α, {βi}Ki=1,ω), (7)
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where ω is the vector of weights and π(α, {βi}Ki=1,ω) is the prior distribution. In the above,

pCL({{yit}Tt=1}Ki=1|α, {βi}Ki=1,ω) is numerically the same as the CL in (1) but viewed as the

density function of data that is evaluated at given vectors of parameters and weights. Its details

are given in section 3.2. Because the CL is not a likelihood function, the CL posterior bears

the standard quasi-Bayesian interpretation: under a flat prior, the constructed CL posterior

has the same asymptotic coverage as a maximum CL estimator in total variation of moments

norm (Chernozhukov and Hong, 2003; Tian et al., 2007).

2.3.2 Prior distribution

We specify the prior as

π(α, {βi}Ki=1,ω) = π(ω)π(α)π
(
{βi}Ki=1|α

)
.

A flat prior for ECS, or π(α) ∝ 1, is employed to encapsulate our ignorance about the climate

response. Section 4.1 considers alternative priors. The prior for other parameters is

π
(
{βi}Ki=1|α

)
=

K∏
i=1

π({βi}|α), π({βi}|α) ∝ |Σi|−
1
2 exp

(
−1

2
(βi − µi)

′Σ−1
i (βi − µi)

)
.

So conditional on α, βi is N(µi,Σi)-distributed, i = 1, ..., K. Specifically,

µi = argmax
βi

log p({yit}Tt=1|α,βi), Σi = −
[
∂2

∂β2
i

log p({yit}Tt=1|α,βi)
∣∣∣
βi=µi

]−1

,

where log p({yit}Tt=1|α,βi) is the log likelihood of the i-th EBM, equivalent to log f({yit}Tt=1 ∈

Ai, α,βi) in (2). The conditional prior N(µi,Σi) is a Laplace approximation of the model-

specific log likelihood, given α. Seemingly ad hoc, this setup follows an empirical Bayes approach

to imbue the prior with data information (Canova and Matthes, 2021). A notable benefit is

evident when ωi approaches zero, as the nuisance parameters are drawn from the asymptotic

distribution of the conditional maximum likelihood estimator. Therefore, the empirical prior

permits the identification of nuisance parameters from their EBM in case of zero model weights.
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Also, the prior is not tight, because it is conditional on α which has a flat prior.

Lastly, the prior for weights π(ω) is a K-dimensional Dirichlet distribution with a common

concentration parameter a, or π(ω) ∝
∏K

i=1 ω
a−1
i . We choose a = 0.5, so a priori, ωi equals

1/K in expectation with a standard deviation about 3/K, which is non-informative.

2.3.3 MCMC algorithm

The MCMC algorithm iterates over three blocks: p({βi}Ki=1|{{yit}Tt=1}Ki=1, α,ω), p(α|{{yit}Tt=1}Ki=1, {βi}Ki=1,ω),

and p(ω|{{yit}Tt=1}Ki=1, α, {βi}Ki=1). The full CL posterior sample consists of every 5-th draw

from 15,000 MCMC runs with the first 5,000 burn-in draws discard.

Sampling {βi}Ki=1|{{yit}Tt=1}Ki=1, α,ω

The model-specific parameters βi, i = 1, ..., K, are sampled in a Metropolis-Hastings step in

parallel on a multi-core worker. The conditional CL posterior satisfies

p({βi}Ki=1|{{yit}Tt=1}Ki=1, α,ω) ∝ pCL({{yit}Tt=1}Ki=1|α, {βi}Ki=1,ω)π({βi}Ki=1|α)

∝
K∏
i=1

p({yit}Tt=1|α,βi)
ωiπ(βi|α). (8)

We sample a candidate βi from a multivariate Student’s t distribution mSt(µ∗
i ,Σ

∗
i , v) with

mean vector µ∗
i , covariance matrix Σ∗

i , and a chosen degrees of freedom v. In our application,

µ∗
i is the vector of the model-specific maximum likelihood estimates for βi; Σ

∗
i is the βi-subblock

of the negative inverse hessian of the log likelihood evaluated at µ∗
i . We choose v = 10 to have

large swings around the center of the proposal density. Notice, the proposal density is different

from π(βi|α), as the former does not depend on α and is fixed throughout the MCMC runs. Let

β•
i be the previous draw in the Markov chain. The candidate draw is accepted with probability

min

[
1,

p({yit}Tt=1|α,βi)
ωiπ(βi|α)mSt(β•

i ;µ
∗
i ,Σ

∗
i , v)

p({yit}Tt=1|α,β•
i )

ωiπ(β•
i |α)mSt(βi;µ

∗
i ,Σ

∗
i , v)

]
.

Sampling α|{{yit}Tt=1}Ki=1, {βi}Ki=1,ω

The composite ECS α is sampled in a Metropolis-Hastings step. A candidate α is drawn

13



from mSt(α̂, V̂ar(α̂), v), where α̂ and V̂ar(α̂) are the conditional maximum CL estimator of the

CL log likelihood and the associated variance, respectively; see Section (2.1). Alternatively,

a random walk proposal can be used (Canova and Matthes, 2021). The candidate draw is

accepted with probability

min

[
1,

pCL({{yit}Tt=1}Ki=1|α, {βi}Ki=1,ω)mSt(α•; α̂, V̂ar(α̂), v)

pCL({{yit}Tt=1}Ki=1|α•, {βi}Ki=1,ω)mSt(α; α̂, V̂ar(α̂), v)

]
.

Sampling ω|{{yit}Tt=1}Ki=1, α, {βi}Ki=1

The weights are sampled via an importance sampling procedure. We draw M = 100, 000

vectors of candidate ω(m), m = 1, ...,M , from the Dirichlet prior π(ω) in parallel. One draw

from the conditional CL posterior p(ω|{{yit}Tt=1}Ki=1, α, {βi}Ki=1) can be obtained by resampling

once from the M candidates, with probability proportional to

exp

(
K∑
i=1

ω
(m)
i log p({yit}Tt=1|α,βi)− (a− 1)

K∑
i=1

logω
(m)
i

)
.

With a large M , the importance sampling procedure directly draws from the conditional pos-

terior. Due to parallelization, it is also computationally efficient.

2.4 Relation to physical storylines

Stevens et al. (2016) among others have highlighted that the significance of quantifying ECS

and its bounds in climate science is the alignment with diverse lines of scientific evidence.

The current approach involves developing and scrutinizing physical storylines or hypotheses

to refine these bounds. For example, various ranges of ECS reported by IPCC result from

a thorough assessment of global scientific collaboration, evaluating physical and observational

evidence (Intergovernmental Panel on Climate Change, 2021).

From climate simulations with observational constraints, Aldrin et al. (2012) and Otto et al.

(2013) found a modest cooling effect of anthropogenic aerosols and the potential for negative

cloud feedbacks, supporting a low ECS (<1.5K). Conversely, Boucher et al. (2013) and Stevens
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(2015) argued against a low ECS, favoring a medium effect. This study, using a Bayesian

approach, allows researchers to incorporate diverse beliefs into the prior distribution of model

weights. By assigning different concentration parameters, say αi > αj, one can express π(ω) ∝∏K
i=1 ω

ai−1
i , reflecting the greater consistency of the i-th AOGCM with a specific storyline

compared to the j-th climate model.

Stevens et al. (2016) proposed Bayesian averaging with storyline-driven priors, yet this

method requires a common piece of “evidence”, such as observational records, to assess marginal

likelihood. This limitation makes it unsuitable for our scenario where the “evidence” consists

of AOGCM-simulated datasets. Canova and Matthes (2021) demonstrated that when a com-

mon dataset is fitted by models with varying complexities, The CL posterior estimates of model

weights closely align with those in Bayesian model averaging. Additionally, if one of the models

accurately represents the DGP, the CL approach yields model weights converging to the true

model.

The CL approach not only consolidates models from different datasets but also enables

inference on model weights, a feature absent in Bayesian model averaging or the storyline

approach. In the latter, weights are fixed ex ante, offering no ex post adjustments even when

the “evidence” strongly supports or opposes a particular weighting scheme. In contrast, the CL

approach estimates weights concurrently with other model parameters, allowing for dynamic

updates based on the evidence strength reflected in the CL posterior density. The readily

attainable credible bands of model weights can measure the uncertainty in pooling storylines,

which is largely overlooked by the literature.

2.5 Relation to emergent constraints

In climate science, emergent constraints offer another common approach to constrain the value

of ECS. These constraints arise from shared physical laws in various AOGCMs, implying con-

sistent relationships in internal variability across models. Researchers can apply emergent

constraints to simple models as in Caldwell et al. (2018) who impose a common relationship

between ECS and temperature variability.
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Although not explicitly imposing emergent constraints, our CL approach effectively con-

strains model-specific ECSs among candidate models. If AOGCMs share emergent constraints,

the composite ECS must align with them. Additionally, the CL approach is adaptable in cases

where constraining models is less straightforward. This includes scenarios where some models

share emergent constraints, while others do not, or when certain AOGCMs prioritize specific

feedbacks or resolutions.

Through the introduced sampling iteration in Section 2.3.3, we observe that ωi tends to

increase when βi better fits the simulated dataset of the i-th AOGCM, indicating a more

realistic feedback mechanism in terms of aggregate energy balance. Conversely, ωi decreases

when the model only partially aligns with the composite ECS, revealing instances where the

AOGCM lacks consensus in climate response compared to other models. Thus, the weights in

the CL approach represent models’ proximity to the composite ECS, considering how well each

EBM fits its corresponding AOGCM-simulated dataset.

3 Energy balance models as climate emulators

While AOGCMs explicitly describe the fluid dynamics of atmosphere and oceans, EBMs provide

a simplified view on how changes in global mean surface temperature can be explained by

radiative forcings that alter Earth’s energy budget. This simplification makes an EBM a climate

emulator that offers analytical tractability (Geoffroy et al., 2013b; Cummins et al., 2020; Jackson

et al., 2022). This section introduces the setup of a 3-box EBM that we view as a physically

consistent time series model.
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Figure 2: Vertical heat diffusion diagram in the 3-box energy balance model. The thickness of a

box indicates the heat capacity of an ocean layer with associated thermal budget indicated on the

left. The top of the atmosphere is represented by a dashed line as it has no heat capacity.

3.1 Model specification in continuous time

Following Cummins et al. (2020), the 3-box EBM considered in this study is characterized by

the system of 3 linear differential equations:

CsdTs(t) = [F(t)− λTs(t)]dt− κm[Ts(t)− Tm(t)]dt+ σsdWs(t), (9)

CmdTm(t) = κm[Ts(t)− Tm(t)]dt− κd[Tm(t)− Td(t)]dt, (10)

CddTd(t) = κd[Tm(t)− Td(t)]dt, . (11)

We divide the ocean into three vertical boxes—surface, middle, and deep, denoted by subscript

s, m, and d, respectively. For i ∈ {s,m, d}, Ti(t) denotes the instantaneous temperature of box

i, with heat capacity Ci. κi’s are heat transfer coefficients, capturing the exchange of energy

between the atmosphere and the ocean surface and further down to the deep ocean. Ws(t) in (9)

is a Brownian motion scaled by σs, partly capturing the climatic internal variability modeled

by an AOGCM. Also, F(t) is the CO2 radiative forcing that heats up the surface box.

We present the exchange of energy in the EBM in Figure 2. The natural heat influx is
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the TOA radiative forcing denoted by N(t). It is straightforward to reduce or increase the

number of ocean layers or boxes. The simplest 1-box model has been studied by Sellers (1969)

and Hasselmann (1976). Geoffroy et al. (2013b) has derived analytical solutions for the 2-box

EBM. When k → ∞, a k-box EBM can approximate continuous vertical heat diffusion (see

e.g., Aldrin et al., 2012 and Bruns et al., 2020). We follow Cummins et al. (2020) who carried

out extensive model comparisons via information criterion and concluded that with the CMIP5

model run that contains 150 years of climatic response after a quadrupled CO2 forcing, the

3-box EBM is the best in terms of model fit and parsimony.

It is worth noting that Figure 2 suggests that the deep ocean receives 1− ϵ and ϵ proportion

of heat influx from the atmosphere and middle layer, respectively. This breaks up (11) into

two parts, in line with Geoffroy et al. (2013b,a) and Cummins et al. (2020) who showed that

an EBM can better capture the deep ocean heat uptake by incorporating the efficacy factor ϵ.

Cummins et al. (2020) and Jackson et al. (2022) also proposed to use a colored noise process for

the CO2 forcing so as to reproduce the persistence of residual forcing generated by AOGCMs.

We thus allow Ft to follow an Ornstein-Uhlenbeck process:

dF(t) = θ(F4×CO2 −F(t))dt+ σFdWF (t), (12)

where the innovation driving F(t) is a Brownian motion WF (t) (scaled by σF ) that is indepen-

dent of Ws(t). We introduce two shocks, following Cummins et al. (2020) who showed that one

shock alone cannot adequately capture internal variability generated by AOGCMs. The drift

term F4×CO2 elicits the fourfold step-jump of ambient CO2. Lastly, the energy budget of the

atmosphere in the EBM as presented in Figure 2 is subject to the TOA heat influx N(t), CO2

radiative forcing −F(t), deep ocean sink −(1 − ϵ)κd[Tm(t) − Td(t)], and the surface radiation

λTs(t). Putting together, we get

N(t) = F(t)− λTs(t) + (1− ϵ)κd[Tm(t)− Td(t)]. (13)

Equation (13) plays an important role in determining ECS. In equilibrium Ts(t) = Tm(t) =
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Ts(t) = T (t), this equation reduces to the “Geoffroy regression” N(t) = F(t) − λT (t). It is

clear that data on N(t) is instrumental in identifying the feedback parameter λ and thus ECS.

Cummins et al. (2020) also pointed out that only relying on temperature data likely leads to

meaningless estimates, considering the relaxation time of Earth’s climate system is hundreds

or even thousands of years. While satellite observational records of TOA heat influx have

become increasingly accessible, they still suffer from the lack of quality control and short time

span (Pretis, 2020; Jackson et al., 2022; Bennedsen et al., 2023). Therefore, we use AOGCM-

simulated N(t) series as counter-factual observations, following the climate science literature.

As ECS is common across AOGCM-fitted EBMs, the specificities of AOGCMs are captured

by other EBM-specific parameters. For instance, heterogeneity in F4×CO2 reflects how AOGCMs

maps the quadrupled CO2 concentration to forcings. As in section 2, let α denote the ECS.

From the energy budget of (9) or (13), we see that

α =
F4×CO2/2

λ
.

F4×CO2/2 in the numerator is from the definition of ECS as the equilibrium response to the

doubling, not the quadrupling of atmospheric CO2 concentration. This replaces the feedback

parameter λ in (9) and (13) with F4×CO2/(2α). Thus, parameters in the i-th EBM include the

common ECS α and model-specific βi that consists of the CO2 forcing F4×CO2 , heat transfer

coefficients κm and κd, heat capacities Cs, Cm, and Cd, the efficacy coefficient ϵ, the continuous-

time autoregressive coefficient θ, and two scaling parameters σs and σF . For the physical

definitions and units of the model parameters, readers can refer to Cummins et al. (2020).

Equation (9)-(12) allows us to write the 3-box EBM as a continuous-time state space model.

Its state transition forms a system of stochastic differential equations:

dx(t) = Ax(t)dt+ θF4×CO2e1dt+RdW (t), (14)

where x(t) = (F(t), Ts(t), Tm(t), Td(t))
′, dW (t) = (dWs(t), dWF (t), 0, 0)

′, and e1 = (1, 0, 0, 0)′.
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System matrices are given by

A =



−θ 0 0 0

1
Cs

−F4×CO2
/(2α)+κm

Cs

κm

Cs
0

0 κm

Cm
−κm+ϵκd

Cm

ϵκd

Cm

0 0 κd

Cd
− κd

Cd


, R =



σs 0

0 σF

Cs

0 0

0 0


. (15)

Let y(t) = (Ts(t), N(t))′ denote the AOGCM-simulated counter-factual observations. Using

(13), we have the measurement equation

y(t) = Zx(t), Z =

0 1 0 0

1 −F4×CO2/(2α) (1− ϵ)κd −(1− ϵ)κd

 . (16)

3.2 State space representation in discrete time

Due to the uniformly sampled TOA heat influx and surface temperature from the CMIP5 model

runs for 150 years, the stochastic differential equation (14) can be discretized exactly and lead

to a linear and Gaussian state space model that enables parameter estimation (Durbin and

Koopman, 2012, Chapter 4).

As the discretization scheme is standard, we omit it for brevity. For t = 1, ..., T and T = 150,

the discrete-time state space model is given by

yt = Zxt, (17)

xt = d+ Txt−1 +W t, W t ∼ N(0,Q), (18)

x0 = (F4×CO2 , 0, 0, 0)
′. (19)

The subscript t in the above denotes the state and the observation processes sampled annually.
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System matrices in (18) are given by

T = exp(A),

d = θF4×CO2A
−1(exp(A)− I4)e1,

Q =

∫ 1

s=0

exp(A)RR′ exp(A′)ds,

where In denotes an n-dimensional identity matrix. The integral in the last equation above can

be analytically computed using the matrix exponential formula in Van Loan (1978). Because

the AOGCM simulations are recorded right after the quadrupling of CO2 concentration when

the climate system was in equilibrium, we use deterministic initialization (19).

The Kalman filter can be used to evaluate the likelihood of the state space model given by

(17)-(19) (Durbin and Koopman, 2012; Cummins et al., 2020; Jackson et al., 2022). However,

we can directly integrate out xt and carry out more efficient computation, which is key to

the parallel computation of p({yit}Tt=1|α,βi) in (8). Suppress the dependence on i. The state

transition (18) can be stacked and written as

ΦX = D +W , W ∼ N(0, IT ⊗Q),

where X = (x′
1, ...,x

′
T )

′, W = (W ′
1, ...,W

′
T )

′, and

Φ =



I4 0 0 . . . 0

−T I4 0 . . . 0

0 −T I4 . . . 0

...
...

. . . . . .
...

0 0 . . . −T I4


, D =



d+ Tx0

d

...

d


.

Importantly, Φ is a sparse and band matrix whose inverse can be efficiently computed using the

band matrix routine of linear complexity developed in Chan and Jeliazkov (2009). Similarly,

we can also stack observations Y = (y′
1, ...,y

′
T )

′ in (17) such that Y = (IT ⊗ Z)X. Using
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X = ϕ−1D + ϕ−1W , we have Y |α,β ∼ N(U ,Σ) with U = (IT ⊗Z)ϕ−1D and Σ satisfying

vec(Σ) = (IT ⊗Z)⊗ (IT ⊗Z)(Φ⊗ Φ)−1vec(IT ⊗Q).

Φ ⊗ Φ is also a sparse and band matrix such that (Φ ⊗ Φ)−1vec(IT ⊗ Q) can be computed

with linear cost. Σ is a Toeplitz matrix, for which there exist various efficient inversion and

Cholesky decomposition algorithms of quadratic complexity; see e.g. Martinsson et al. (2005).

We can compute the conditional likelihood of the EBM via

p({yt}Tt=1|α,βi) =
1√

(2π)2T |Σ|
exp

(
(Y −U )′Σ−1(Y −U )

)
, (20)

which speeds up the parallelization step in our MCMC algorithm introduced in Section (2.3.3).

3.3 Physical quantities versus mathematical abstractions

The quasi-Bayesian inference demonstrated by Canova and Matthes (2021), combining multiple

models through the CL, aligns with an adaptive learning perspective, relevant to our study.

While it’s reasonable for all EBMs to share a common ECS when constraining its range, other

parameters in EBMs, serving as mathematical abstractions for consistency with AOGCMs,

should not assume common values. Distinguishing parameters such as λ (feedback parameter),

F4×CO2 (forcing), or Cs (surface heat capacity) allows the CL approach to leverage the unique

characteristics of each AOGCM, a key strength setting it apart from Bayesian averaging and

finite mixture models.

While acknowledging some nuances, we propose viewing an AOGCM as a structural model

and an EBM as a reduced-form model, concepts often used in economics. In this analogy, the

ECS serves as a structural parameter, while other parameters represent reduced-form abstrac-

tions. Consider the standard consumption-saving model in economics as an example, where

economists formulate a utility maximization problem for a consumer with quadratic preference.

The resulting supermartingale consumption path mirrors an AOGCM, with differences across
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models akin to subtleties in how economists specify income processes driving consumption.

Empirically, economists fit reduced-form models to consumption data, with our CL approach

advocating for a common autoregressive coefficient across models, acknowledging the super-

martingale nature while allowing other parameters to be model-specific to capture diverse

income processes.

While the structural vs. reduced-form model distinction aids economists in linking AOGCM

and EBM models, differences persist. Structural economic models rely on simplifying assump-

tions for analytical ease, while AOGCMs are rooted in physics. In contrast, reduced-form mod-

els reparameterize without necessarily misspecifying the underlying structure, whereas EBMs

misrepresent AOGCMs. For example, introducing shocks in (9) and (12) aims to match climatic

internal variability, which are deterministic signals, not random noise, in an AOGCM. Forging

a common language and collaboration in modeling between economists and climate scientists

is essential. This study aims to be an early step in this joint endeavor.

4 Estimation results

4.1 The composite equilibrium climate sensitivity

The use of CL to pool information across multiple EBMs is expected to constrain the ECS.

Figure 3 illustrates the hump-shaped posterior distributions of the composite ECS from 16

CMIP5 AOGCM-simulated datasets, 15 CMIP6 datasets, and 31 combined datasets. These

distributions, tighter than the IPCC’s “likely” range, provide a clear risk interpretation. The

flat prior for ECS ensures the posterior distributions, indicative of the composite ECS, reflect

the rich information contained in the data. Furthermore, the presence of a composite ECS also

supports potential emergent constraints shared by AOGCMs.

Jonko et al. (2018) estimated a bivariate vector autoregressive model of (Ts,t, Nt)
′ using

Bayesian method. They considered a hierarchical prior for ECS, shrinking model-specific ECS

posteriors towards a common one. As Cummins et al. (2020) pointed out, such a statistical

approach lacks a sound physical foundation and involve many hard-to-interpret reduced-form
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Figure 3: The composite posterior distributions of ECS. The posterior distribution of the ECS obtained

from CMIP5 models is shown in the left panel, followed by that obtained from CMIP6 models

(middle) and all models from CMIP5 and CMIP6 (right). Red vertical bars indicate the posterior

medians. The ECS has a flat prior for all datasets.
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Figure 4: The composite posterior distributions of ECS under alternative priors. The posterior

distribution of the ECS obtained from CMIP5 models is shown in the left panel, followed by that

obtained from CMIP6 models (middle) and all models from CMIP5 and CMIP6 (right). The solid

and the dashed line indicate the posterior obtained under informative priors N(6, 0.1) and N(1, 0.1),

respectively.

parameters. We also notice that their hierarchical prior may impose strong restrictions on

ECS: all datasets contribute equally to the posterior. Instead, CL downweights an AOGCM-

simulated dataset if it is incompatible with the composite ECS; e.g., due to disagreements with

emergent constraints shared by other AOGCMs.

To further gauge prior sensitivity, we consider very informative priors π(α) = N(6, 0.1) and

π(α) = N(1, 0.1). From the results shown in Figure 4, we see that the posterior distributions, in

terms of the range and the shape of the density function, change little. Reassuringly, this implies

that the AOGCM datasets contain dominating information over the strong priors. Although
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Table 2: Composite posterior statistics of the ECS

Posterior statistics mean median sta.dev. 95% CI KS test

Flat prior: π(α) ∝ 1

CMIP5 3.117 3.115 0.069 (2.988, 3.237) −
CMIP6 3.360 3.340 0.095 (3.207, 3.579) 0.021
Combined 3.312 3.312 0.066 (3.176, 3.442) 0.083

Informative prior: π(α) = N(1, 0.1)

CMIP5 3.094 3.095 0.067 (2.969, 3.241) −
CMIP6 3.406 3.392 0.093 (3.267, 3.604) 0.006
Combined 3.314 3.313 0.061 (3.188, 3.425) 0.032

Informative prior: π(α) = N(6, 0.1)

CMIP5 3.132 3.130 0.067 (3.011, 3.264) −
CMIP6 3.433 3.419 0.094 (3.300, 3.627) 0.027
Combined 3.348 3.349 0.066 (3.212, 3.480) 0.160

Reported are the posterior mean, median, standard deviation (sta.dev.), 95% credible interval (CI), and p-

value of the Kolmogorov-Smirnov (KS) test for equivalent distributions. The null hypothesis of the KS test

is that the posterior under CMIP6 or the combined datasets is the same as the one under CMIP5.

we only use 150 years of data, the presence of the TOA heat influx greatly removes the burden

of the limited effective sample size of the surface temperature, considering the equilibration

time of the oceans can be thousands of years (Cummins et al., 2020; Jackson et al., 2022).

Table 2 reports some posterior statistics of ECS. The posterior medians of ECS obtained from

CMIP6 datasets are typically larger than those from CMIP5 by 0.5K. While the combined

dataset leads to a 0.3K increase from CMIP5. This finding suggests that CMIP6 models

consider a warmer future climate. Interestingly, it is also in line with the update from the

“very likely” range of 1.5K-4.5K in older IPCC assessments to 2.0K-5.0K in the most recent

report (Intergovernmental Panel on Climate Change, 2021). In the last column, we test if the

posterior distribution of ECS under CMIP6 or the combined datasets is the same as that under

CMIP5, or H0 : p(α|CMPI6) = p(α|CMPI5) and H0 : p(α|Combined) = p(α|CMPI5), via the

Kolmogorov-Smirnov (KS) test. The KS test shows that under all prior settings, the data

clearly distinguishes the CMPI6 ECS from the CMIP5 one, implying that there is a general

improvement of AOGCMs, in terms of their agreement on a higher ECS.

Beyond the level shift, posterior standard deviations under CMIP6 exceed those under
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Figure 5: Individual and joint posterior distributions of ECS using CMIP5 and CMIP6
AOGCM-simulated datasets. The posterior distributions of the ECS obtained from individual

models are shown by the red line. Their densities are divided by 4 to allow for easy comparison with

the joint distribution indicated by the black line. The joint distribution is a mixture distribution of

16 (15) components under CMIP5 (CMIP6).

CMIP5, with both 95% credible intervals (CIs) notably tighter than the IPCC’s “likely” range.

The broader 95% CI of ECS under CMIP6 aligns with the wider range of model-specific ECSs

reported in Figure 5. As discussed by Meehl et al. (2020) and Dietz et al. (2021), an improved

understanding of physical processes suggest a higher likelihood of ECS at the upper end of

the “likely” range. This is supported by our results which also show an increased uncertainty.

Combining CMIP5 and CMIP6 models, ECS centers around 3.31K, bridging the medians of

CMIP5 and CMIP6 values but leaning closer to the latter. This highlights that the CL ap-

proach does not fully disregard CMIP5 information, a valuable feature given the consistency of

AOGCM models with emergent constraints that help narrow down the range of ECS. As the

IPCC heavily relies on the latest CMIP models, our CL approach offers a scalable method to

enhance inferential strength by incorporating older AOGCMs.

4.2 The individual equilibrium climate sensitivity

Estimated individually, the EBM fitted to 16 CMIP5 datasets leads to a bimodal joint poste-

rior distribution of ECS, as shown in the left panel of Figure 5. Modalities are clearly due to

the clustering of model-specific ECS posteriors—one centered around 3K and another centered

26



around 4K. Such clustering is less visible in the CMIP6 case, where we have a larger disagree-

ment among models, expanding the uncertainty range of ECS especially towards the upper end

of the multi-modal joint posterior. In either case, quantifying the plausible range of ECS seems

to be a challenging task without deep understanding of physical storylines or evidences that

can back up or rule out a certain AOGCM-implied ECS (Stevens et al., 2016; Knutti et al.,

2017; Scafetta, 2022). In contrast, the CL approach targets the common ECS of interest while

leaving other parameters model-specific to capture the specificities of the underlying AOGCMs.

By striking a balance between model fit and the deviation to the composite ECS, our approach

delivers hump-shaped posteriors and tight credible intervals. From a risk assessment viewpoint,

a unimodal distribution of ECS can be instrumental to quantifying the risks associated with

climate change and policies (Stern, 2007; Dietz et al., 2021).

Figure 6 displays boxplots illustrating posterior distributions of model weights for CMIP5

models, CMIP6 models, and their combination. The leftmost panel indicates that the dataset

simulated from HadGEM2-ES receives zero weight, guided by the Dirichlet prior that, while

not mechanically shrinking towards zero, allows for exclusion a posteriori. This prior design

facilitates the exclusion of models when inferring a common parameter value. It is noteworthy

that fitting an EBM to the HadGEM2-ES dataset doesn’t imply poor model fit; rather, it is the

individual estimate of ECS, shown in Table 3, deviating significantly from the composite ECS

that incurs the weight penalty. Similar patterns are observed with the low weight of CESM2

which exhibits a climatic response running too hot. In general, the relative importance of

models from CMIP5 and CMIP6 is largely maintained in the combined exercise. Models from

the Beijing Climate Center, particularly BCC-CSM1.1 and its new version BCC-CSM2-MR

which carry significant information in identifying the composite ECS in both CMIPs, emerge

as winning models in the combined exercise. Interestingly, a clear bifurcation is evident between

models with small and large weights in both CMIP5 and CMIP6 results. Understanding the

different climatic feedback mechanisms modeled by these AOGCM groups and their impact

on clustering (Boucher et al., 2013; Stevens, 2015) could enhance our understanding of how

physical processes influence ECS. We reserve this topic for future research.
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Figure 6: Posterior distributions of model weights using only CMIP5 models, only CMIP6 mod-
els, and all models. Each posterior distribution is indicated by the median, the interquartile range

(bar), and the 95% credible interval (whisker). The red dashed lines indicate the prior mean of equal

weights. Posterior distributions are sorted based on the 3-rd posterior quartile.

28



4.3 Comparison with näıve weightings

It is worth noticing that the unimodality of the posterior distribution of ECS is not an imposed

result. The prior of ECS is a flat uniform distribution, leaving no restriction on the posterior

shape. In fact, the posterior distribution under CMIP6, as shown in Figure 3 and 4, is less

regular than the composite posterior under the CMIP5 and the combined datasets.

This raises the question that how the posterior distribution will look like if we consider

different näıve weighting or pooling schemes. First, we consider the CL approach with fixed

weights. We either consider equal weights or weights proportional to 1/σ̂2(αi)—the inverse of

the posterior variance of the ECS from the i-th model. The latter is motivated by the literature

on forecast combination where the mean-squared-error-optimal combination of a set of unbiased

forecast is the precision- or variance inverse-weighted forecast (Varin et al., 2011; Canova and

Matthes, 2021). Second, we conduct Bayesian model averaging (BMA) where we weight the

model-specific posteriors based on the posterior model probability, or

p(α|{{yit}Tt=1}Ki=1) =
K∑
i=1

ωip(α|{yit}Tt=1) ∝
K∑
i=1

ωip({yit}Tt=1) (21)

Two cases are considered: (1) we equally treat each model a priori, which leads to a posterior

probability that is equal to the data likelihood (21); (2) we impose deterministic prior ωi ∝

1/σ̂2(αi). When computing the data likelihood in (21), we evaluate the conditional likelihood

(20) using Monte Carlo integration to average out the prior effect. Note that the joint posteriors

shown in Figure 5 are BMA posteriors with a deterministic prior of equal weight. Lastly, we

follow Cummins et al. (2020) and Jackson et al. (2022) who consider estimating ECS from the

average of AOGCM-simulated datasets. This data averaging approach gives us a single dataset

to which we fit an EBM.

Figure 7 presents posteriors under different weighting schemes. Fixed weights in both CL

approaches tend to yield larger ECS than the composite ECS with estimated weights, resulting

in an overestimation due to insufficient discounting of models that run too hot. Addition-

ally, they produce less regular distributions with fatter tails compared to composite posteriors.
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Figure 7: Posterior distribution of ECS under some näıve weighting schemes. Weighting and

pooling schemes are with respect to CMIP5 models, CMIP6 models, and the combined models.

Weighting CL model components by precision 1/σ̂2(αi) (see Table 3) offers no new insight, dis-

playing a significantly wider range than other CL approaches. In terms of BMA, Stevens et al.

(2016) proposed to use BMA where the prior of model probability reflects physical storylines.

However, comparing data likelihood of different datasets carries no probabilistic interpretation

Canova and Matthes (2021), rendering BMA meaningless. We see that under ωi ∝ p({yit}Tt=1)

(see Table 3), the CMIP5 and the combined models are dominated by GISS-E2-R, whereas

the CMIP6 models are dominated by CMCC-ESM2 due to their near-unity weights after nor-

malization. Additionally, BMA with weights inversely related to the posterior variance of ECS

provides the least informative ECS range, lacking identifiable modes and exhibiting high pos-

terior uncertainty, making ECS constraining less evident in all three weighted posteriors.

The data averaging approach yields a unimodal and tight posterior distribution under each

model set. However, it’s crucial to approach this result with caution, as the tight range is

a mechanical consequence of averaging out climatic internal variability in AOGCM-simulated

data series, as illustrated in Figure 1. Critics such as Lehner et al. (2020) and Scafetta (2022)

argue against treating internal variability as random noise, emphasizing that climatic signals

contain dynamic information and should not be smoothed out. Each of these simple weighting
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or pooling schemes exhibits major drawbacks, making the proposed CL approach an appealing

addition to the literature for narrowing down the ECS range. Further discussion on model

averaging in the context of ECS estimation is provided in the next section.

4.4 Other posterior analysis

Combining model outputs in climate modeling is a contentious issue, distinct from assumption-

based economic models. AOGCMs adhere to physical laws, making the average of their outputs

inconsistent across all models due to the involvement of non-linear differential equations in

their physical processes (Caldwell et al., 2018; Meehl et al., 2020). Consequently, the reported

values of ECS, such as those by Intergovernmental Panel on Climate Change (2021), represent

a range of “opportunities” or model outputs. Meaningful model combination methods must

respect AOGCM specificities and should avoid blind pooling (Jonko et al., 2018). Therefore,

BMA methods, demonstrated in the previous section, should not be used to constrain ECS, as

weighting by p({yit}Tt=1) or 1/σ̂
2(αi) lacks both physical and probabilistic interpretation. The

magnitude of these quantities, as seen in Table 3, exhibits little relevance to the physics of

AOGCMs. At best, they inform whether or not an EBM can be fitted to AOGCM simulations.

Although not reported, differences exist between the CL estimates of model parameters and

model-specific estimates, indicating possible inconsistency between the composite model and

individual AOGCMs. It’s crucial to recognize that an EBM misspecifies an AOGCM. The

CL approach constrains ECS by incorporating information from various AOGCM datasets

while accommodating AOGCM specificities. Given the composite ECS, an estimated EBM

remains optimal in terms of Kullback-Leibler minimization under maximum CL estimation.

Essentially, an EBM with different parameterizations, nested in the CL, is not necessarily

“more misspecified” than one fitted to an individual AOGCM dataset. Table 3 provides some

statistics from model-specific estimates, including the transient climate response (TCR) and

characteristic time scale τ(j), where j = 1, 2, 3.

TCR measures the annual surface temperature response to atmospheric CO2 concentration

increasing at a rate of 1% per year (doubling requires 70 years). Geoffroy et al. (2013a) and
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Table 3: Posterior results of key parameters and data likelihood

Model ECS–αi 103 × σ̂2(αi) TCRi τi(1) τi(2) τi(3) log p({yit}Tt=1)

CMIP5 models
BCC-CSM1.1 2.9 1.0 1.86 1.7 8.1 165 236
BNU-ESM 3.9 5.2 2.44 1.4 8.9 275 71
CanESM2 3.9 3.1 2.31 1.4 7.5 219 149
CNRM-CM5.1 3.2 1.0 2.14 0.9 8.7 262 230
CSIRO-Mk3.6.0 5.2 74.3 1.88 1.0 6.8 318 54
GFDL-ESM2M 2.6 3.0 1.54 0.9 5.6 265 119
GISS-E2-R 2.3 0.7 1.38 1.3 3.7 236 295
FGOALS-s2 4.6 26.8 2.30 1.1 5.6 396 35
INM-CM4 1.9 2.1 1.36 0.8 5.9 559 272
IPSL-CM5A-LR 4.4 25.5 2.18 0.8 13.2 401 133
MIROC5 2.8 3.1 1.78 1.3 7.7 330 54
HadGEM2-ES 5.9 80.2 2.40 1.0 8.2 531 196
MPI-ESM-LR 4.0 6.2 2.29 1.3 7.4 232 66
MRI-CGCM3 2.7 1.7 1.72 1.2 9.5 193 184
CCSM4 3.1 2.3 1.85 1.1 6.2 202 166
NorESM1-M 3.2 7.9 1.60 1.1 5.9 303 184

CMIP6 models
ACCESS-ESM1.5 4.5 28.3 1.97 0.5 6.0 316 100
BCC-CSM2-MR 2.8 1.2 1.78 1.2 6.7 133 188
CanESM5 6.0 12.3 2.94 1.1 11.3 318 140
CESM2 7.2 64.3 2.47 0.5 5.1 391 135
CMCC-ESM2 6.3 20.8 2.41 1.0 7.2 477 214
CNRM-ESM2.1 5.2 28.5 2.42 0.7 8.7 537 101
EC-Earth3-CC 5.0 9.6 2.62 1.3 11.1 253 119
GFDL-ESM4 2.7 4.4 1.78 1.1 7.1 334 85
GISS-E2.1-G 2.8 2.5 1.75 0.9 5.4 378 110
IPSL-CM6A-LR 5.5 37.3 2.74 1.2 12.9 419 52
MIROC-ES2L 2.2 1.8 1.80 0.9 12.1 1939 14
MPI-ESM1.2-LR 3.4 2.4 2.00 1.2 5.3 298 140
MRI-ESM2.0 3.9 13.8 1.78 0.8 5.2 345 70
NorESM2-LM 4.5 16.8 2.24 1.0 5.0 293 79
UKESM1.0-LL 5.7 6.7 2.86 0.7 10.4 298 169

In the two left columns, the table reports the posterior median and variance (scaled by 103) of model-specific

ECS. The posterior medians of model-specific TCR and three characteristic time scales are also reported.

The last column give the marginal data likelihood of each model in logarithmic terms.

32



Knutti et al. (2017) among others argued that TCR can be a more policy-relevant measure of

climate risk than ECS itself, as it summarizes the changes we are about to see in this century

before the deep ocean fully equilibrates. The model-specific TCR is given by

TCRi = e′
2

log 1.01

log 2
ECSi

(
70−A−1

i (exp(70Ai)− I4)14

)
, i = 1, ..., K,

where e2 = (0, 1, 0, 0)′ selects the second element (Ts) from the state vector xt and 14 is a 4×1

vectors of ones; see e.g., Geoffroy et al. (2013a) and Cummins et al. (2020) for details. With

the CL approach, ECSi in the above is replaced with the composite ECS. −1/τ(j) is the j-th

eigenvalue of A in (15), so that τ(j) is the j-th characteristic time scale of the linear system

that describes the time it takes for the response to a disturbance of each ocean layer to decay

to 1/e (about 37%) of its initial value, a concept of relaxation time similar to half life.

In Figure 8 and 9, we compare the model-specific posterior estimates of TCR and τ(3) with

those obtained under the CL approach applied to all 31 AOGCMs (UKESM1.0-LL is omitted in

the figures for clarity). It is interesting to see that the posterior distributions of those physical

quantities as functions of EBM parameters are very similar. While parameter estimates differ,

the dynamics of state transition implied by the TCR and the characteristic time scales under

the CL approach closely mimics each individual EBM, especially in the case of τ(3), or the

relaxation time of the slowest mode that differs greatly among AOGCMs. This result shows

that with enough room for AOGCM specificities, CL estimates are consistent with the vertical

heat diffusion in the ocean as modeled by each AOGCM. It is this specificity-preserving property

of the CL approach that makes it very suitable for constraining ECS.

Finally, Canova and Matthes (2021) demonstrated the possibility of weighting posteriors from

the CL approach similarly to BMA, with CL weights replacing the posterior model probability.

For instance, if the interest lies in a composite TCR, one can weigh the CL posteriors of TCRi,

where i = 1, ..., K, using estimated ωi. However, this approach is somewhat ad hoc and lacks

clear interpretability. While it is more natural to constrain an equilibrium quantity such as the

ECS, if the goal is to constrain TCR, it is recommended to conduct the CL exercise treating
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Figure 8: Posterior distributions of model-specific TCRs in comparison to posteriors obtained
from the CL approach. The blue (red) line indicates the model-specific (CL) posterior. Dashed

lines are posterior medians
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Figure 9: Posterior distributions of model-specific τ(3)’s in comparison to posteriors obtained
from the CL approach. The blue (red) line indicates the model-specific (CL) posterior. Dashed

lines are posterior medians
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TCR as a common parameter across EBMs while allowing ECS to vary across models. Imposing

many common parameters contradicts the specificity-preserving property, so it is advisable to

impose commonality only for the parameter of interest in practical applications.

5 Conclusion

Climate scientists and economists recognize the crucial need to narrow down the equilibrium

climate sensitivity (ECS) range for effective policy decision-making, as demonstrated by the

latest assessment report from Intergovernmental Panel on Climate Change (2021). Despite their

efforts, the current range of (2K, 5K) remains too broad for informed policymaking, leading

to substantial social costs under policy uncertainty (Stern, 2007; Dietz et al., 2021). In this

study, we propose a composite likelihood estimator for ECS using Bayesian inference applied to

a 3-box energy balance model. Our approach acknowledges the misspecification of the model

when fitted to data of a quadrupled CO2 experiment from 31 climate models, maintaining

specificity for each model. By concentrating the distribution of ECS using information from all

models, we provide a composite estimate with intuitive probabilistic interpretation. Through

Bayesian methods, we estimate model weights balancing fit and distance to the constrained

climate sensitivity, ensuring compatibility with potential emergent constraints among climate

models, linking our econometric method to the climate science literature. Our findings suggest

an ECS of 3.3K with a 95% credible interval of (3.18K, 3.44K), much tighter than the reported

“likely range” by IPCC. The integration of econometric techniques and climate science positions

the composite likelihood framework as a promising avenue for future research in data-driven

methodologies for constraining parameters and projections in climate analytics.
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