
Citation: El-Ashmawi, W.H.; Salah,

A.; Bekhit, M.; Xiao, G.; Al Ruqeishi,

K.; Fathalla, A. An Adaptive Jellyfish

Search Algorithm for Packing Items

with Conflict. Mathematics 2023, 11,

3219. https://doi.org/10.3390/

math11143219

Academic Editor: Gyorgy Dosa

Received: 30 May 2023

Revised: 6 July 2023

Accepted: 8 July 2023

Published: 22 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Adaptive Jellyfish Search Algorithm for Packing Items
with Conflict
Walaa H. El-Ashmawi 1,2,† , Ahmad Salah 3,4,*,† , Mahmoud Bekhit 5,6,7,†, Guoqing Xiao 8,9 ,
Khalil Al Ruqeishi 10 and Ahmed Fathalla 11,*

1 Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt;
w.hashmawi@ci.suez.edu.eg

2 Faculty of Computer Science, Misr International University, Cairo 44971, Egypt
3 Faculty of Computers and Informatics, Zagazig University, Sharkia 44519, Egypt
4 College of Computing and Information Sciences, University of Technology and Applied Sciences,

Ibri P.O. Box 466, Oman
5 University of Technology Sydney (UTS), Sydney, NSW 2007, Australia; mahmoud.bekhit@uts.edu.au or

mabekhit@acu.edu.au or mahmoud.bekhit@kbs.edu.au
6 Australian Catholic University, Sydney, NSW 2059, Australia
7 Kaplan Business School, Sydney, NSW 2000, Australia
8 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China;

xiaoguoqing@hnu.edu.cn
9 The National Supercomputing Center in Changsha, Changsha 410082, China
10 Mathematical and Physical Sciences Department, College of Arts and Sciences, University of Nizwa,

Nizwa P.O. Box 33, Oman; khalil_bader@unizwa.edu.om
11 Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
* Correspondence: ahmad@zu.edu.eg or ahmad.salah@utas.edu.om (A.S.);

fathalla_sci@science.suez.edu.eg (A.F.)
† These authors contributed equally to this work.

Abstract: The bin packing problem (BPP) is a classic combinatorial optimization problem with several
variations. The BPP with conflicts (BPPCs) is not a well-investigated variation. In the BPPC, there are
conditions that prevent packing some items together in the same bin. There are very limited efforts
utilizing metaheuristic methods to address the BPPC. The current methods only pack the conflict
items only and then start a new normal BPP for the non-conflict items; thus, there are two stages
to address the BPPC. In this work, an adaption of the jellyfish metaheuristic has been proposed to
solve the BPPC in one stage (i.e., packing the conflict and non-conflict items together) by defining
the jellyfish operations in the context of the BPPC by proposing two solution representations. These
representations frame the BPPC problem on two different levels: item-wise and bin-wise. In the
item-wise solution representation, the adapted jellyfish metaheuristic updates the solutions through
a set of item swaps without any preference for the bins. In the bin-wise solution representation, the
metaheuristic method selects a set of bins, and then it performs the item swaps from these selected
bins only. The proposed method was thoroughly benchmarked on a standard dataset and compared
against the well-known PSO, Jaya, and heuristics. The obtained results revealed that the proposed
methods outperformed the other comparison methods in terms of the number of bins and the average
bin utilization. In addition, the proposed method achieved the lowest deviation rate from the lowest
bound of the standard dataset relative to the other methods of comparison.

Keywords: metaheuristic algorithms; artificial jellyfish optimizer; bin packing problem; any-fit
algorithm

MSC: 97R40

Mathematics 2023, 11, 3219. https://doi.org/10.3390/math11143219 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143219
https://doi.org/10.3390/math11143219
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0142-0632
https://orcid.org/0000-0003-3433-7640
https://orcid.org/0000-0001-5008-4829
https://orcid.org/0000-0002-5962-303X
https://orcid.org/0000-0001-5432-5407
https://doi.org/10.3390/math11143219
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143219?type=check_update&version=1

Mathematics 2023, 11, 3219 2 of 28

1. Introduction

The BPP is one of the main combinatorial optimization problems that has received
much attention in the literature [1]. It is used in multiprocessor scheduling, phone call
dispatching over transmission circuits, printed circuit board design, assembly line balance,
and capacitated vehicle routing. The objective of the BPP is to pack a set of objects with
particular sizes into a minimum number of fixed bins’ capacities. This is done in such a
way that the total items’ size in a bin does not exceed the bin’s capacity. Other packing
procedures involve perishable items such as medicine, food, and hazardous chemicals,
some of which cannot be stored together due to their biological, chemical, or physical
differences [2]. The BPP has many variations such as the 2D and 3D BPP [3–5].

Along with the standard form of the BPP, various variations have been investigated
in the literature, including item fragmentation and specific sets of incompatible items that
cannot be put together into the same bin. Item fragmentation (i.e., breaking an item into two
or more parts and putting each component into a separate container) is prohibited under the
basic BPP. However, in other cases, this assumption is extremly limiting. These applications
include message transmission in community television networks [6], very large-scale
integrated circuit design [7], file system operation [8], vehicle routing with split delivery [9],
fully optical network planning [10], and the allocation of available memory to processors
in parallel processing [11]. This variation of the BPP is known as the bin packing problem
with item fragmentation (BPPIF). The BPPIF is a simple problem if the fragmentation
is unrestricted. Several nontrivial versions of the BPPIF have been investigated by [12],
including variants with various objective functions and item fragmentation constraints.

Packing a specific set of items into the same bin is not permitted in several BPP
applications. This variation of the BPP is referred to as the BPP with conflicts (BPPCs). It
has many applications in scheduling evaluation [13], delivery planning for any explosive,
flammable, or toxic substances that cannot be packed together in the same vehicle [14],
load balancing challenges in parallel computing, process assignments to processors when
some processes cannot be executed on the same processor [15], and the warehouse storage
of incompatible goods (such as explosive and flammable items) [16]. When developing a
viable solution, it is necessary to consider conflict elimination [17] and dense packing [18]
concurrently in order to achieve global optimization.

Consequently, the authors of [15] first utilized the graph theory method to characterize
the conflict connection and then developed a steady approximation algorithm by periodi-
cally finding the largest induced subgraph. In [19], the authors studied the BPPCs issue
using a set cover-based approach and presented an exact branch-and-bound technique
based on approximate estimates of the bottom limits. The authors of [20] defined and devel-
oped an integer programming paradigm, as well as discussed the problem’s bottom limits.
Elhedhli et al. [21] solved the BPPC by considering conflict constraints issues by establishing
branch criteria and by applying the dynamic programming method. Khanafer [22] created
a generic framework for solving the BPPCs based on the tree decomposition technique.
Apart from the preceding, the BPPCs model was used to solve scheduling problems and
resource assignment issues [23,24].

Standard mathematical programming or exact algorithms are severely constrained in
terms of computing capability and efficiency when handling the BPPCs, which is a severely
NP-hard issue from the standpoint of solving it [25]. These limited research works, which
addressed the BPPCs using metaheuristic-based methods, have motivated the current work
to investigate the BPPCs using the metaheuristic-based approach. The main contribution
of this work is as follows:

1. To our knowledge, the BPPCs problem has not been addressed in the literature as
one problem. The existing methods pack the conflict items first and then the non-
conflict items as a separate problem. This investigation of packing all the conflict and
non-conflict items at one stage is the first of its kind.

2. To address the BPPCs, we proposed to utilize the first adapted jellyfish algorithm.
The proposed work is provided as an open source code on a GitHub repository (https:

https://github.com/Ahmed-Fathalla/An-Adaptive-Jellyfish-Search-Algorithm-for-Packing-Items-with-Conflict
https://github.com/Ahmed-Fathalla/An-Adaptive-Jellyfish-Search-Algorithm-for-Packing-Items-with-Conflict

Mathematics 2023, 11, 3219 3 of 28

//github.com/Ahmed-Fathalla/An-Adaptive-Jellyfish-Search-Algorithm-for-Packing-
Items-with-Conflict, accessed on 1 June 2023).

3. Two solution representation methods have been provided at different levels. Subse-
quently, a comparison was drawn to answer the question as to whether it is better to
represent the BPPCs solution at the item level or bin level.

4. The proposed methods were evaluated on a standard dataset with different levels of
problem difficulties.

The structure of this paper is organized as follows. The recent related works for the
BPPCs are reviewed in Section 2. Defining the BPPCs in formal terms and proposing
the main objective, as well as different constraints to solve it, are discussed in Section 3.
The standard jellyfish algorithm and the proposed adaptive jellyfish algorithm for solving
the BPPCs are detailed in Section 4. In Section 5. The proposed method is evaluated using
two popular metaheuristics, and the utilized heuristics’ performance results are assessed
on a real dataset. Section 6 concludes the main points in the paper.

2. Literature Review

This section summarizes the published research on the BPP and its variants that is
relevant to our research. The scientific literature is replete with references to the BPP [26,27].
The BPP problem limitations can be classified into two types: (1) capacity constraint and
(2) conflict constraint. Each constraint class generates an NP-hard subproblem on its own
(i.e., bin packing or vertex coloring). Additionally, it is noteworthy that the majority of
the research on the BPPCs has focused on approximation methods and mathematical
programming approaches [28]. Mathematical programming has proven to be effective re-
garding the BPPCs, because decomposition techniques such as branch-and-price [16,19,21]
are extremely efficient in the case of problems with few elements per bin. These studies
explain the price problem using various branching rules, sub-procedures of the problem,
and beginning columns. If the conflicts create an interval graph, the pricing issue may
be effectively addressed using dynamic programming [16], although branch-and-bound
approaches can be utilized in more general scenarios. These identical approaches can solve
a large number of benchmark instances, up to 1000, in certain circumstances. Unfortunately,
these exact methods are insufficient for several BPPCs applications, including those where
the computing cost varies significantly between the instances and large-scale task allocation
issues [24], including tens or hundreds of thousands of items. In other words, the larger
the number of items and constraints of the BPP, the more the complexity there is for the
problem, which also entails more required computing time.

Along with well-known performance-guaranteed approximation techniques, includ-
ing First-Fit Decreasing (FFD), Worst-Fit Decreasing (WFD), and Best-Fit Decreasing
(BFD) [14,29,30], many authors have proposed a basic (i.e., exact) method using differ-
ent formulations to address the BPP and BPPCs problems (i.e., BPPCs are the main subject
of this paper). For instance, the authors in [31] constructed a branch-and-bound algorithm
based on an FFD branching approach by utilizing a polynomial formulation and reduction
techniques. Similarly, Scholl et al. [32] constructed an exact method by combining multiple
limits, reduction techniques, and a branch-and-bound procedure with a novel branching
strategy. Delorme et al. [27] published a review of mathematical models and exact meth-
ods that have been created for the BPP. The authors in [33] extended this formulation to
address a variety of cutting and packing challenges. The authors of [34] proposed and
implemented a pseudopolynomial arc-flow formulation in a branch-and-price method.
Moreover, researchers have focused their efforts on establishing a strict lower bound, as
presented in [35].

Furthermore, several authors have implemented classical heuristic algorithms [36–38].
To this point, metaheuristics algorithms have received less attention than mathematical
programming techniques for solving the BPPCs. Fernandes Muritiba et al. [19] developed
an enhanced population-based metaheuristic for generating appropriate upper limits and
starting columns. The approach is a sophisticated mix of a genetic algorithm utilizing the

https://github.com/Ahmed-Fathalla/An-Adaptive-Jellyfish-Search-Algorithm-for-Packing-Items-with-Conflict
https://github.com/Ahmed-Fathalla/An-Adaptive-Jellyfish-Search-Algorithm-for-Packing-Items-with-Conflict
https://github.com/Ahmed-Fathalla/An-Adaptive-Jellyfish-Search-Algorithm-for-Packing-Items-with-Conflict

Mathematics 2023, 11, 3219 4 of 28

crossover operator proposed in [39] and a tabu search based on impasse class neighbor-
hoods in [40]. Sadykov and Vanderbeck [16] presented a heuristic technique built on a
supervised partial exploration of the branch-and-price search tree. It was a reasonable
compromise between the exact solution and heuristics techniques. It merged the advan-
tages of mathematical programming with a lower CPU time in the case of a few items
per bin. In general, the metaheuristics for the BPPCs need more examination. Among the
best-suggested metaheuristics for addressing the bin packing issue are the grouping genetic
algorithms created by Falkenauer’s [41], which utilize a version of the perturbation of mini-
mum bin slack (MBS) approach by Fleszar and Charalambous’s [42], as well as a grouping
genetic algorithm with regulated gene transmission [43].

Although these algorithms considered different solutions for the BPP or BPPCs as an
approximate method with lower bounds, none of them have addressed the problem of
conflict items, along with the free items, as a whole. Table 1 lists a comparison between
different conducted research works. The table shows that most of the work that utilized the
metaheuristic approaches addressed different variations of the BPP, with less focus on the
BPPCs. Therefore, this paper presents an adaptive optimization algorithm for achieving a
solution to the BPPCs.

Table 1. A comparison of research works addressing the BPP-based problems.

Paper BPPC Method Methodology Objectives and Results

[36] Weight Annealing Methodology
Using the WA concept, develops a
straightforward procedure for the one-
dimensional BPP.

Covered the majority of relevant
Hadoop constraints and achieved com-
parable performance with FIFO and
Fair Schedulers.

[37]
Multi-Capacity Bin Packing Problems
(MCBPP) and Machine Reassignment
Problems (MRP)

Multi-Start Iterated Local Search (MS-
ILS-PPs)

Maximized machine utilization and
cost-efficient task reassignment, im-
proved upper bounds and achieved
near-optimal solutions.

[38] The Island-Parallel Grouping Genetic
Algorithm (IPGGA)

Creates a parallelized version of an
evolutionary algorithm for the 1DBPP.
Evaluates different model parameters.

Achieved optimal solutions for 23 of 28
instances of the Hard28 dataset, thus
outperforming earlier models. Results
showed that, for widely distributed
computing, dynamic communication
topologies are more suitable.

[43] One-Dimensional Bin Packing Prob-
lem (BPP)

Grouping Genetic Algorithm with Con-
trolled Gene Transmission (GGA-CGT)

The GGA-CGT was created to pro-
mote the transmission of the best genes
of the chromosomes and to explore
the search space while balancing se-
lective pressure and population di-
versity to prevent premature conver-
gence. With respect to the Hard28 set,
the method outperformed state-of-the-
art algorithms.

3. Problem Formulation

In this section, we identify the BPPCs as an optimization problem with a set of
constraints. In addition, the problem is presented through modeling in graph theory
language. To that end, after a brief introduction to the BPPCs, the mathematical model of
the BPPCs problem is formulated.

3.1. Description of the Problem

In order to solve the BPPCs model, two phases should be considered: conflict exclusion
and bin packing. In the conflict exclusion phase, we may utilize two graph representation
approaches to express the conflict connections among the items. First, a compatible graph
is designed to represent the consistent relations between the items, where the edge set

Mathematics 2023, 11, 3219 5 of 28

describes the compatible relationships between the vertices, and the vertex set defines the
item collection. Second, a conflict graph is formulated to determine the conflict connections
between the items, where the edge set describes the conflict associations between the
vertices, and the vertex set defines the item collection.

In the conflict graph, the BPPC items are represented by the graph’s vertices, while
the graph’s edges represent the conflicts between them. Hence, the conflict elimination
procedure may be readily translated into the grouping operations of the conflict graph’s
nodes. Each group can then utilize the standard bin packing techniques. The constraints
with packing process capacity are the most common problems that are encountered.

3.2. Mathematical Description of BPPCs

The BPPCs conflict graph structure represents the conflict connection between the
items. It can be defined as an undirected graph structure G = (V , E), where V = {1, 2, ..., n}
is a set of vertices and corresponds to the items, and E is a set of edges such that (i, j) ∈ E
when i and j conflict and correspond to the conflicted relationship among the items. The
following are the primary variables to consider while putting the packing process into
action: Let I = {1, 2, ..., n} identify the set of items and B = {1, 2, ..., m} identify the set of
bins. Also, let C define the maximum bin’s capacity and wi define the weight of each item i,
where i ∈ I.

The challenge is packing a set of items into the fewest possible bins without violating
the main constraints that the total items’ weight must not exceed the bin’s capacity C, and
no conflict items may be packed into the same bin. Two binary variables can be used
directly as follows:

yb =

{
1 If bin b is chosen for packing; b ∈ B
0 otherwise

(1)

xib =

{
1 If the item i packed into the bin b; i ∈ I
0 otherwise.

(2)

Using the information provided, the BPPCs 0–1 integer programming paradigm can
be identified as follows. First, the objective can be formulated as in Equation (3).

Min
m

∑
b=1

yb. (3)

Second, different constraints have been proposed in this model to ensure that packing
items into bins is feasible and applied.

m

∑
b=1

xib = 1; i ∈ I (4)

n

∑
i=1

wi · xib ≤ Cyb; b ∈ B (5)

xib + xjb ≤ yb; (i, j) ∈ E , b ∈ B (6)

yb ∈ {0, 1}, b ∈ B (7)

xib ∈ {0, 1}, i ∈ I, b ∈ B. (8)

The min objective solution in Equation (3) identifies the smallest number of storage
bins required to hold the items. The first constraint is represented in Equation (4); it explains
that every item has a specific bin allocated to it. The second constraint, in Equation (5),

Mathematics 2023, 11, 3219 6 of 28

states that the total weight of the packed items in each bin must not exceed the maximum
capacity. The third constraint in Equation (6) explains the conflicts between the two items
that make up the restrictions. The 0–1 integer variables are defined by the constraints
in Equations (7) and (8). Therefore, the BPPCs is considered to be one of the NP-hard
problems. An optimization algorithm is required to solve such a problem.

4. The Proposed Adaptive Jellyfish Search Algorithm

This section provides an overview of the standard jellyfish search optimizer algorithm
and illustrates its main stages. Moreover, the proposed adaptive jellyfish search (AJS)
algorithm for solving the BPPCs problem is described in more detail based on both of the
levels of solution representation (i.e., item-wise and bin-wise).

In order to address the BPPCs using the adapted JSA, several steps need to be adopted
to attain an optimal number of bins. Initially, we must initialize the jellyfish’s parameters by
encompassing the upper and lower limits on the number of items, the bin capacity, and the
maximum number of iterations. Subsequently, the second step involves generating the
initial population, which represents two solution representations: one based on individual
items and the other based on individual bins. Each solution within the population consists
of a collection of packed items that are organized into bins while adhering to all the imposed
constraints. Next, we evaluate each jellyfish solution by applying an objective function,
which specifically includes the count of bins utilized in each solution. Moving on to the
jellyfish update, we employ three operators to generate a new solution by combining two
existing solutions. Finally, we iterate steps 3 and 4 until the maximum number of iterations
is reached, thus aiming to identify the most favorable packing solution. The proposed
method’s steps are depicted in Figure 1.

Benchmark Datasets

(Bin Packing Problem with Conflict)

An AJS Algorithm

Initialize

parameters (the

upper and lower

number of items,

bin capacity and

maximum number

of iterations)

Step 1:

Parameter

initialization

Two solution

representations (i.e.,

item-wise and bin-

wise).

Generate initial

population (each

jellyfish in the

population consists

of set of packed items

into bins without

violating any

constraints)

Step 2:

jellyfish

representations &

initial population

Evaluation of

each jellyfish

according to an

objective

function

Step 3:

jellyfish

Evaluation

Step 4:

jellyfish

update

Update each jellyfish’s

position that follow the
ocean current or move

toward the swarm using

and different operators s.

as ⊞, ⊡ , and ⊟

Step 5:

Termination

criteria

The maximum

number of

iterations are

reached

Best packing

No

Yes

BPPC solution

Figure 1. A flowchart of the proposed method.

Mathematics 2023, 11, 3219 7 of 28

4.1. The Artificial Jellyfish Search (JS) Optimizer Algorithm

Jellyfish search is one of the recently proposed metaheuristic algorithms that emulates
the behavior of jellyfish in the ocean [44]. Jellyfish contain characteristics that allow them
to move freely, to drive themselves ahead, and their bottoms shut like an umbrella. Despite
this, they typically float in the ocean with the tides [45]. Jellyfish may swarm when
conditions are good, and a large number of jellyfish is referred to as a bloom [46,47].
Jellyfish, in particular, are slow swimmers; therefore, orienting themselves toward currents
is critical to keeping blooms alive and preventing stranding [46].

Ocean currents are critical because they may aggregate jellyfish into swarms [46,48,49].
This phenomenon with the individual jellyfish’s motions within the swarm and their
propensity to generate jellyfish blooms in response to ocean currents has enabled these
species to emerge practically anywhere in the ocean. The amount of food available at
jellyfish-visited locations varies; hence, the optimal spot is discovered when food propor-
tions are examined. As a result, a novel algorithm has been devised that was motivated by
jellyfish’s search behavior and mobility in the water.

The proposed optimization approach is composed of three idealized principles:

1. In order to travel within the swarm, jellyfish can only travel in one of two direc-
tions: with or against the ocean current. A time control system is responsible for the
switching between both modes of movement.

2. Jellyfish are continuously on the move in search of food; they are often more attracted
to regions where food is readily available.

3. The objective function and location indicate the food quantities discovered.

4.1.1. Moving in the Ocean Current

Due to the high concentration of nutrients in the ocean current, jellyfish are attracted
to it.

The ocean current (i.e., trend) direction is determined by taking the average of all of
the position vectors from each jellyfish in the ocean to the current optimal jellyfish (i.e.,
the one in the most advantageous position in the water column).

Equation (9) models the flow of the ocean:

−−−→
trend =

1
npop

∑
−−−→
trendi =

1
npop

∑(X∗ − ecXi) = X∗ − ec
∑ Xi
npop

= X∗ − ecµ (9)

set d f = ecµ . (10)

As a result, the
−−−→
trend is determined by the following:

−−−→
trend = X∗ − d f , (11)

where npop is the total number of jellyfish in the swarm; X∗ denotes the current jellyfish
at the most-suited locations inside the swarm; ec denotes the attraction element; and µ is
the mean position of all the jellyfish. The difference between the jellyfishs’ most acceptable
position and the jellyfishs’ mean location is d f .

By assuming the normal distribution of jellyfish in all dimensions, the d f can be
computed as follows:

d f = β× rand(0, 1)× µ, (12)

where ec = β× rand(0, 1).
Then, each jellyfish’s new position is specified by the following:

Xi(t+1) = Xi(t) + rand(0, 1)×
−−−→
trend. (13)

Mathematics 2023, 11, 3219 8 of 28

Equation (13) can be expressed as follows:

Xi(t+1) = Xi(t) + rand(0, 1)× X∗ − β× rand(0, 1)× µ, (14)

where β > 0 is a distribution coefficient that is proportional to the trend’s duration. Using
the findings of the vulnerability analysis performed on numerical experiments of [44], we
obtain β = 3.

4.1.2. Moving inside the Swarm

Jellyfish have two types of movements in a swarm: passive (type A) and active (type
B) [47,50]. When the swarm first forms, the majority of jellyfish display type A motion.
They gradually demonstrate more type B movements.

Type A motion refers to jellyfish moving about in their own places, and each jellyfish’s
updated location is provided by Equation (15).

Xi(t + 1) = Xi(t) + γ× rand(0, 1)× (Ub−Lb), (15)

where Ub and Lb denote the upper and lower bounds of the search space, respectively.
In addition, a motion coefficient with a value γ > 0 indicates how far the jellyfish move
around their locations. γ = 0.1 has been acquired from the perceptiveness study results
proposed in [44]. A randomly chosen jellyfish (j) imitates type B motion, and the direction
of movement is defined by a vector drawn from the jellyfish of concern (i) to the randomly
selected jellyfish (j). When the amount of food available to the selected jellyfish (j) exceeds
the amount of food available to the jellyfish (i) of interest, the latter moves directly toward
the former; when the amount of food available to the selected jellyfish (j) is less than the
amount of food available to the jellyfish (i) of interest, the latter moves directly away from
the former.

As a result, each jellyfish in a swarm goes in the direction that will lead to the best
food. Equations (18) and (19) model the direction of travel for a jellyfish and update its
position, respectively. According to some observers [51], this movement is regarded as
successfully exploiting the local search space.

−−→step = Xi(t+1)− Xi(t), (16)

where −−→step = rand(0, 1)×−−−−−→Direction (17)

−−−−−→
Direction =

{
Xj(t)− Xi(t) if f (Xi) ≥ f (Xj)

Xi(t)− Xj(t) if f (Xi) < f (Xj),
(18)

where f denotes an objective function associated with the place X.
Hence,

Xi(t+1) = Xi(t) +
−−→step. (19)

A time control mechanism, c(t), is used to decide the motion that will occur throughout
time. In addition to controlling the type A and B movements in a swarm, c(t) is a randomly
generated value that varies between 0 and 1 over time. It also regulates the movements of
the jellyfish in the direction of an ocean current; it can be computed as follows:

c(t) = |(1− t
Maxiter

)× (2× (rand(0, 1)− 1))|, (20)

where t is the current time, which is represented as the iteration number, and Maxiter is an
initialized parameter specifying the maximum number of iterations.

Mathematics 2023, 11, 3219 9 of 28

4.2. The Proposed AJS Item-Wise Level (AJS_I)

As the standard jellyfish search optimizer algorithm is designed to solve a continuous
optimization problem, it cannot be used directly to solve a discrete problem. Due to the
fact that the BPPCs is a discrete optimization problem, we proposed an adaptive version of
the standard JS algorithm in order to achieve a solution to the BPPCs by replacing the main
operators in the standard algorithm with new operators. The overall steps of the proposed
AJS are illustrated below:

1. Parameters initialization: Population size ps, the iteration counter t, the maximum
number of iterations tmax, upper Ub and lower Lb number of items, respectively,
and bin capacity C.

2. A jellyfish representation: Each individual in the population (i.e., JS) represents a
solution of the BPPCs, as shown in Figure 2 as an example. This representation can
be described by an n-dimensional vector of integer numbers (i.e., Ub = n), where the
items and bins are identified using indices and values, respectively.

Figure 2. A jellyfish representation.

Figure 2 represents the packing of five items into two bins. Item 1, 3, and 4 are
packed into bin 1, while items 2 and 5 are packed into bin 2 according to the capacity
constraint of the bins and the conflict constraint among items.

3. Initial population: Each individual Xi(i = 1, . . . , ps) is generated randomly based
on a specific heuristic for achieving a feasible initial solution. Figure 3 illustrates
an example of the initial population of three individuals. The example consists of
10 items (Ub = 10), the corresponding weight of each item, the bin capacity (C = 20),
and a conflict set of items.

Figure 3. A random initial population.

Each population solution Xi, i = 1, ..., 3 is generated by packing a collection of items
into a collection of bins without violating any constraint. According to X1, items 3, 4,
5, 1, 10, and 7 are packed into bin 1 with a total weight of 20 and have no conflicts.
Items 8, 2, and 9 are packed into bin 2, with a total weight of 14, and item 6 is packed
into bin 3, with a total of 6. The initial random-based-heuristic approach guarantees
feasible initial solutions to the BPPCs.

4. Individual evaluation: Each jellyfish Xi is evaluated according to the fitness function
f at each iteration t, and the one with the smallest fitness value is allocated to the best
jellyfish X∗ (i.e., in the case of minimization of the objective function). In contrast,
the one with the maximum fitness value is assigned to X∗ (i.e., in the case of the
maximization of the objective function). Although minimizing the number of used
bins is a primary goal of the BPP, more than one solution with different packing
representations and the same total number of bins may exist. Therefore, there should

Mathematics 2023, 11, 3219 10 of 28

be other criteria to evaluate the solution in terms of bin utility, as in Equations (21)
and (22) for minimization and maximization, respectively.

Minimize f (X) = 1− (
B

∑
b=1

(Ub/C)k)/B (21)

Maximize f (X) =
B

∑
b=1

(Ub/C)k/B, (22)

where Ub = ∑bl
l=1 wl , wl is the weight of item l, bl is the number of items packed into

bin b, k is an exponential factor that equals two, and and B is the number of used bins
in the solution.

5. Individual update: The location of a JF is updated based on the time control mecha-
nism c(t) to switch the movement between the ocean current and jellyfish swarm.

(a) In the case where a jellyfish follows the ocean current, Equations (13) and (14) can
be rewritten to solve the discrete BPPCs problem as follows:

Xi(t + 1) = Xi � rand(0, 1)� trend (23)

trend = X∗ � Xrandom, (24)

where rand(0, 1) is a randomly generated number, and Xrandom is a randomly
generated jellyfish. X∗ , Xi, and Xi(t + 1) represent the best jellyfish, the current
one, and the updated location of Xi at (t + 1), respectively.
The new operators �, �, and � can be used instead of the standard operators in
the JS algorithm. The operator � represents the difference between two jellyfish
in the current population as a set of swaps S. Each swap s can be defined as a
raw vector of three elements (p, q, r), where p represents the itemid, q represents
the current assigned binid, and r represents the new assigned binid. For example,
s = (7, 2, 1) means item 7 can be packed into bin 1 instead of bin 2. Figure 4
illustrates an example as a difference between two individuals (e.g., X1 and X2).

Figure 4. An example of operator �.

The � operator represents the probability of the chosen random number of swaps
from the swap set S. Figure 5 illustrates an illustrative example of the results
of applying the � operator. According to the example, if S has five swaps,
the generated random integer number is 0.6; then, the result of � is a randomly
selected set of three swaps from the set S.

Mathematics 2023, 11, 3219 11 of 28

Figure 5. An example of operator �.

The � operator takes a leading role in updating the location of a jellyfish. There-
fore, it can be viewed as applying the set of swaps sequentially to the current
jellyfish position in the swarm in order to obtain a new position. An illustrative
example of the � operator is shown in Figure 6.

Figure 6. An example of operator �.

From the example in Figure 5, item 5 is currently packed into bin number one
and can be swapped and packed into a new bin number three. This reassignment
can be done with one condition, which is that the new packing does not violate
both the capacity and conflict constraints. As for swap (5, 1, 3), the weight of
item 5 should be less than or equal to the remaining capacity of bin 3, and item
5 must have no conflict with all the items in bin 3. For the second swap (6,
3, 2), the reassignment satisfies the capacity constraint but violates the conflict
constraint, in which item 6 has a conflict with the items’ list in bin two according
to Figure 3. In this case, to guarantee a better exploration of a new solution, we
apply an Any-Fit (AF) heuristic [26]. The main idea of an AF heuristic is that,
for sequential current nonempty bins (i.e., b1, b2, . . . , bj), the current item will
not be assigned to bin bj+1 unless it does not fit (i.e., it violates the capacity and
conflict constraint) any of the bins in the sequence b1, b2, . . . , bj. Therefore, item 6
tries to be packed into bin 1 and then tries to be packed into bin 2 (i.e., both bins
satisfy the capacity constraint and violate the conflict constraint); then, it remains
in bin 3. Item 9 can be reassigned to bin 1 instead of 2, thus satisfying both the
capacity and conflict constraint. The remaining capacity and item list for both the
current and new bins is updated for any reassignment that is applied.

Mathematics 2023, 11, 3219 12 of 28

(b) In the case of a jellyfish moving inside a swarm, the individual can move according
to type A (i.e., passive) or type B (i.e., active) movement based on a random
number that is generated and compared to c(t):

i. Type A update: The updating location of a jellyfish (JF) in a passive way can be
achieved by rewriting Equation (15) as follows to solve the discrete problem:

Xi(t + 1) = Xi � rand(0, 1)� γ(Ub− Lb), (25)

where γ(Ub− Lb) is a randomly generated integer number between Lb and
Ub in the form of swaps in a set of S. Therefore, |S| = γ(Ub− Lb), where
|S| is the cardinality of a set S. For example, if the Ub = 10 and Lb = 1 (i.e.,
the maximum and minimum number of items) and γ(Ub − Lb) = 3, then
|S| = 3. There are three randomly generated swaps in S. This modification in
the operators guarantees multiple solutions through randomization. The �
and � operators can be applied with the same concept as before.

ii. Type B update: This involves updating the current location of an actively based
JF on a randomly selected jellyfish Xj from the current population. In order to
cope with the discrete representation of the BPPCs, Equations (17)–(19) can be
reformulated as follows:

Xi(t + 1) = Xi � rand(0, 1)� direction (26)

direction =

{
Xj � Xi if f (Xi) >= f (Xj)

Xi � Xj if f (Xi) < f (Xj).
(27)

The results of operators �, �, and � have been described previously according
to Figure 4–6. The updating of all the jellyfish generates a new population.

6. Stopping criteria: Steps 4 and 5 are repeated for the new population and update the
current best jellyfish X∗ until a maximum number of iterations tmax is reached or an
optimal assignment of items to the BPPCs has been reached.

7. Report the best jellyfish, X∗, as the best result so far.

4.3. The Proposed Bin-Wise Level (AJS_B)

The intrinsic idea of the second proposed solution representation is to update the
solution based on the evaluation of the bins. Thus, each bin’s utilization is computed
before updating the solution, and bins satisfying certain criteria are selected as the sources
of items to be swapped. Thus, the main difference between the two proposed solution
representations is only the individual update step. In the following, we detail this step,
while the other steps of the JS algorithm have been discussed in the previous subsection.

Xi(t + 1) = Xi(t)� rand(0, B− 1)� (σ(Xi(t))). (28)

In Equation (28), the BPPCs solution, i.e., the JF, will be updated using three terms. First,
Xi(t) represents the current solution for the bin packing problem. Second, rand(0, B− 1)
represents a random generator that selects one bin rather than the bin with the lowest
utilization score, where B represents the number of bins in the solution. Third, the σ
function selects the bin with the lowest utilization score. The � operator moves the
elements from the bin returned from σ(Xi(t)) to the randomly selected bin in the second
term of Equation (28). Equation (28) is repeated several times until the bin returned from
σ(Xi(t)) becomes empty. Thus, the BPPCs solution, i.e., the JF, is updated by removing the
bin with the lowest utilization to another randomly selected bin(s).

Xi(t + 1) = X(t)i � direction (29)

Mathematics 2023, 11, 3219 13 of 28

direction =

{
Xj(N � 1)Xi if f (Xi) >= f (Xi)

Xi(N � 1)Xj if f (Xi) < f (Xi).
(30)

In the second type of JS solution update, two JFs are used to update one of them.
In the bin-wise representation, type B updating is accomplished. using Equation (30).
In Equation (30), the (N � 1) symbol represents the update process, where the new updated
solution is produced by merging the two solutions Xi and Xj as follows. Each solution
sorts its bins by the utilization of the score. The average bin utilization of each solution
is computed. Then, each solution contributes to the new solution by its share, where the
solution with the better utilization contributes by N bins, and the other solution contributes
by one bin. When the number of bins in a solution is greater than (N + 1), then Equation (30)
is repeated until all the problem elements are packed in the bins.

In the following motivational example, the idea of bin-wise solution representation is
explained. In Figure 7, a BPPCs solution is depicted for three bins B1, B2, and B3, with their
assigned items and the utilization score and type A solution update of a single solution.
As B3 has the lowest utilization score, the items of B3 are moved to the other two bins.
Thus, this operation can help in reducing the number of bins and increase the utilization of
the other bins.

𝑥 (𝑡)
Bin B1 B2 B3

Items {1,3,8,9} {2,4,6} {5,7}
Utilization 0.9 0.8 0.4

𝑥 (𝑡 + 1)
Bin B1 B2 B3

Items {1,3,5,8,9} {2,4,6,7} {}
Utilization 0.95 0.9 Empty

Figure 7. An example of type A solution update for the bin-wise representation.

In Figure 8, a JS-type B update operation for two BPPCs solutions is depicted for three
bins, B1, B2, and B3 with their assigned items and the utilization score of the two solutions.
In Figure 8, the given value is N = 2. The new solution is created through two iterations.
In each iteration, one bin is taken from the solution with the higher average utilization
and one bin is taken from the other solution, where the duplicated items are discarded.
In Figure 8, the xi(t) has a higher average utilization score. In iteration 1 of Figure 8, B1 and
B2 are copied from xi(t), and B1 is copied from xj(t), where items 1, 2, and 8 are removed,
as they appear in B1 and B2 from xi(t). In the second iteration, B3 is copied from xi(t),
and its items are assigned to the existing bins without duplication. Thus, item 5 is added to
the last bin, as it is the only bin with empty space.

Mathematics 2023, 11, 3219 14 of 28

N=2
 𝑥 (𝑡)

Bin B1 B2 B3
Items {1,3,8,9} {2,4,6} {5,7}

Utilization 0.9 0.8 0.4 Avg =0.70

 𝑥 (𝑡)
Bin B1 B2 B3

Items {1,2,8,7} {3,4,9} {5,6}
Utilization 0.95 0.7 0.4 Avg =0.68

Iteration 1: Copy N bins 𝑥 and 1 from 𝑥 solutions
The new solution:

 𝑥 (𝑡 + 1)
Bin B1 (𝑥) B2 (𝑥) B1 (𝑥)

Items {1,3,8,9} {2,4,6} {7}
Utilization 0.9 0.8 0.4

Iteration 2: Copy N bins 𝑥 and 1 from 𝑥 solutions
The new solution:

 𝑥 (𝑡 + 1)
Bin B1 (𝑥) B2 (𝑥) B1 (𝑥)

Items {1,3,8,9} {2,4,6} {7}
Utilization 0.9 0.8 0.4

+
B3 (𝑥)

{5,7}
0.4

=
 𝑥 (𝑡 + 1)

Bin B1 (𝑥) B2 (𝑥) B1 (𝑥)
Items {1,3,8,9} {2,4,5,6} {5,7}

Utilization 0.9 0.85 0.43

Figure 8. An example of type B solution update for the bin-wise representation.

The overall steps of the proposed adaptive jellyfish search algorithm are listed in
Algorithm 1 and can be summarized as follows. In lines 1 and 2, the initial parameters of
the proposed algorithm are initialized, such as the number of jellyfishes in the population
ps, the number of items to be packed into bins Ub, the bin capacity C, the optimal number
of bins m∗, the number of bins in the reached solution mbest, the total number of iterations,
and the initialization of the first iteration to 1 (t = 1). Line 3 generates randomly valid
initial packing solutions (i.e., the population) to the BPPCs instance, which guarantees
the capacity constraint and the conflict constraint. Thus, the items are placed in random
bins. Each solution in the population is evaluated according to the predefined objective
function and assigned the best one to the global best individual X∗ according to lines 4
and 5, respectively. The motion of the jellyfish depends on the value of control parameter

Mathematics 2023, 11, 3219 15 of 28

c(t) at each iteration, as listed in line 6. Based on that value (i.e., line 7), each jellyfish
updates its position by following the ocean current at line 8 or by moving inside the swarm.
Movement inside the swarm depends on a generated random value rand(0, 1) compared
to the c(t) (line 9) to be either passive or active. In line 10, the jellyfish moves to a new
position according to type A (i.e., passive) based on its representation (i.e., either item-wise
or bin-wise) while moving according to type B (i.e., active) in each representation at line 11.
Once all the individuals in the population are updated (i.e., the new population), the fitness
value of each jellyfish in the new population can be computed and updated to the global
best one as in lines 12 and 13. In line 14, if the total number of used bins has reached
the optimal number of bins; then, the algorithm stops searching and reports the optimal
solution. Otherwise, the iteration number is incremented, and while it does not reach
the predefined maximum number of iterations tmax, steps 6 to 16 are repeated. In case of
reaching the maximum number of iterations or the optimal number of bins, the global best
solution is returned that represents the best packing of the items, as in line 17.

Algorithm 1: The proposed AJS algorithm.

1 Initialize the population size ps, total number of items Ub, maximum number of
iterations tmax, bin capacity C. Optimal number of bins m∗ and number of bins in
best solution mbest

2 Initialize the iteration number t = 1.
3 Generate the initial feasible solutions (i.e., individuals) to the BPPC problem

Xi = (i = 1, . . . , ps) randomly.
4 Compute the fitness value of each individual f (Xi) according to Equation (21) or

Equation (22).
5 Assign the best fitness individual to X∗.

do
6 Compute the value of c(t) according to Equation (20)
7 if c(t) >= 0.5 then
8 Update the individual according to Equations (23) and (24) ;

else
9 if rand(0, 1) > c(t) then

10 Update the individual according to Equation (25) in case of item-wise
level and Equation (28) in case of bin-wise level;

else
11 Update the individual according to Equations (26) and (27) in case of

item-wise level and Equations (29) and (30) in case of bin-wise level;
end

end
12 Compute the fitness value of each individual f (Xi) according to Equation (21)

or Equation (22).
13 Update the location of a jellyfish (Xi) and the overall best solution (X∗).
14 if mbest == m∗ then
15 Stop and goto step 17 ;

else
16 t = t + 1

end
while t <= tmax;

17 return X∗

5. Results and Discussion
5.1. Dataset

To evaluate the proposed methods, the benchmark dataset proposed in [20] was
utilized. It is a publicly available dataset (http://or.dei.unibo.it/library/bin-packing-

http://or.dei.unibo.it/library/bin-packing-problem-conflicts
http://or.dei.unibo.it/library/bin-packing-problem-conflicts

Mathematics 2023, 11, 3219 16 of 28

problem-conflicts, accessed on 1 June 2023). The dataset consists of 10 classes; the difference
between the classes is the number of items. The higher the number of the class is, the more
the number of items to be packed and the harder the problem is. Within a single class, there
are 100 instances with a varied number of conflict items. The level of difficulty in each
class has ten levels as well. The dataset has been used to evaluate several algorithms, such
as [19,33].

They do not actually group these instances by edge densities δ but based on a threshold
value d. The relation between δ and d is presented in [19] and described below in Table 2.

Table 2. Relationship between δ and d.

d 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

δ 0 0.2 0.8 0.18 0.32 0.5 0.68 0.82 0.92 0.98

The values of d correspond to those derived using the formula of the edge density
δ (i.e., δ = 2|E|/n(n− 1)) of the graph G based on d [20]. Specifically, according to the
following equation, n represents the number of nodes in G.

δ = f (d) =

2(nd)2−nd

n(n−1) for d ≤ 0.5
n(n−1)−2n2(1−d)2−n(1−d)

n(n−1) for d ≥ 0.5.
(31)

Due to the computational complexity, only the first three classes of the dataset were
utilized, where all ten levels of difficulty in each class were examined. In other words,
the dataset in this work includes 27 different instances.

5.2. Setup

All experiments were implemented using Python 3.8. The simulation experiments
were performed on a computer running a 64-bit Linux OS with two 2.3 GHz Intel 8-core
processors and 250 GB RAM.

In order to validate the proposed AJS algorithm for solving the BPPCs, a set of
experiments were conducted over various instances from different classes of bin packing
with the conflict dataset [52]. Tables 3–5 list the characteristics of some instances for three
different classes, respectively. The number of items is N ∈ {120, 250, 500}, the bin capacity
is C = 150, the maximum degree for each instance is D, and the optimal number of bins
is m∗. The proposed algorithm aims to minimize the number of used bins and obtain bin
utilization. The results of the proposed algorithm were compared against the most popular
heuristics—First-Fit (FF) and Best-Fit (BF) [53]–and metaheuristics such as Particle Swarm
Optimization (PSO) [54,55] and Jaya algorithm [56]. Table 6 lists all the algorithms’ setting
parameters. Additionally, in order to achieve a fair comparison among the compared
algorithms, all experiments were initiated with the same population size of 25 individuals
(i.e., randomly packing solutions), and the maximum number of iterations ranged from 800
to 2000 iterations (i.e.,tmax = 800 for class 1, tmax = 1500 for class 2, and tmax = 2000 for
class 3) as a stopping criteria, as well the optimal number of bins for each instance.

In the following subsections, the numerical results of each experiment and the perfor-
mance analysis are discussed.

http://or.dei.unibo.it/library/bin-packing-problem-conflicts
http://or.dei.unibo.it/library/bin-packing-problem-conflicts

Mathematics 2023, 11, 3219 17 of 28

Table 3. Class 1 (N = 120 and C = 150).

Instance No. Maximum Degree (D) Optimal No. of Bins (m∗)

BPPC_1_1_1 18 48
BPPC_1_2_5 41 50
BPPC_1_3_3 73 46
BPPC_1_4_2 96 53
BPPC_1_5_5 119 57
BPPC_1_6_3 119 75
BPPC_1_7_2 119 91
BPPC_1_8_6 119 99
BPPC_1_9_4 119 110

Table 4. Class 2 (N = 250 and C = 150).

Instance No. Maximum Degree (D) Optimal No. of Bins (m∗)

BPPC_2_1_3 40 102
BPPC_2_2_2 99 100
BPPC_2_3_5 149 101
BPPC_2_4_6 199 109
BPPC_2_5_7 249 126
BPPC_2_6_7 249 147
BPPC_2_7_5 249 181
BPPC_2_8_5 249 205
BPPC_2_9_2 249 225

Table 5. Class 3 (N = 500 and C = 150).

Instance No. Maximum Degree (D) Optimal No. of Bins (m∗)

BPPC_3_1_3 105 202
BPPC_3_2_1 207 198
BPPC_3_3_9 296 196
BPPC_3_4_5 393 206
BPPC_3_5_8 499 241
BPPC_3_6_4 499 307
BPPC_3_7_5 499 343
BPPC_3_8_5 499 400
BPPC_3_9_2 499 444

Table 6. Algorithms’ parameters.

Algorithm Parameters Definition Value

PSO c1 and c2 The acceleration coefficients 2

Jaya r1 and r2 Learning parameters [0, 1]

AJS c(t) Switching parameter [0, 1]
γ A motion coefficient [Ub, Lb]

5.3. Evaluation Metrics

Each instance of the three classes was tested and evaluated to measure the quality of
the proposed solution to the BPPCs. The minimum (min.), maximum (max.), average (avg.),
and standard deviation (Std.) of the fitness values were computed over five independent
runs. Moreover, the efficiency of the AJS against other compared algorithms on two metrics,
namely, E f f and the improvement during iterations IP, can be computed by Equations (32)
and (33), respectively.

E f f (%) = (fAlgo − fAJS)/ fAlgo, (32)

Mathematics 2023, 11, 3219 18 of 28

where Algo = {FF, BF, PSO, Jaya}, fAlgo is the bins’ utilization of the compared algorithms,
and fAJS is the bins’ utilization of the proposed adaptive jellyfish search algorithm.

IP = (fi − f j)/ fi, (33)

where fi and f j are the bins’ utilization of ith and jth run, respectively, and j is any consecu-
tive run (i.e., j > i).

According to the number of bins, the deviation Dev from the optimal number of each
instance can be computed according to Equation (34) to measure the gap between the
optimal solution and the global best solution.

Dev(%) = (mbest−m∗)/mbest, (34)

where mbest is the total number of used bins in the best solution, and m∗ is the optimal
number of bins for each instance.

5.4. Results

The proposed adaptive jellyfish search algorithm AJS (i.e., both item-wise AJS_I and
bin-wise AJS_B) and the heuristics (i.e., FF and BF) results from class 1 are shown in Tables 7
and 8 in terms of the fitness values f v and number of bins, respectively.

Table 7. Class 1 fitness value (FF, BF, AJS_I and AJS_B).

Instance No.
FF BF AJS_I AJS_B

f v f v Min. Max. Avg. ± Std. Min. Max. Avg. ± Std.

BPPC_1_1_1 0.132 0.107 0.068 0.071 0.070 ± 0.001 0.033 0.033 0.033 ± 0.000
BPPC_1_2_5 0.109 0.109 0.066 0.072 0.069 ± 0.003 0.037 0.038 0.038 ± 0.000
BPPC_1_3_3 0.223 0.198 0.094 0.097 0.095 ± 0.001 0.056 0.104 0.080 ± 0.017
BPPC_1_4_2 0.266 0.267 0.191 0.207 0.197 ± 0.006 0.195 0.220 0.210 ± 0.009
BPPC_1_5_5 0.297 0.268 0.225 0.250 0.239 ± 0.011 0.229 0.250 0.236 ± 0.008
BPPC_1_6_3 0.586 0.583 0.561 0.572 0.568 ± 0.004 0.550 0.589 0.567 ± 0.015
BPPC_1_7_2 0.677 0.665 0.655 0.664 0.661 ± 0.004 0.647 0.650 0.649 ± 0.001
BPPC_1_8_6 0.734 0.730 0.714 0.718 0.716 ± 0.002 0.716 0.722 0.719 ± 0.002
BPPC_1_9_4 0.775 0.776 0.770 0.772 0.771 ± 0.001 0.766 0.770 0.769 ± 0.002

Average 0.422 0.411 0.372 0.359

Table 8. Class 1 no. of bins (FF, BF, AJS_I and AJS_B).

Instance No.
Optimal FF BF AJS_I AJS_B

m∗ mbest Dev mbest Dev mbest Dev mbest Dev

BPPC_1_1_1 48 51 0.059 50 0.040 49 0.020 48 0.000
BPPC_1_2_5 50 52 0.038 52 0.038 51 0.020 50 0.000
BPPC_1_3_3 46 53 0.132 52 0.115 48 0.042 47 0.021
BPPC_1_4_2 53 58 0.086 59 0.102 55 0.036 56 0.054
BPPC_1_5_5 57 60 0.050 60 0.050 58 0.017 59 0.034
BPPC_1_6_3 75 79 0.051 80 0.063 77 0.026 77 0.026
BPPC_1_7_2 91 93 0.022 93 0.022 91 0.000 91 0.000
BPPC_1_8_6 99 102 0.029 102 0.029 99 0.000 100 0.010
BPPC_1_9_4 110 111 0.009 111 0.009 110 0.000 110 0.000

Average 0.053 0.052 0.018 0.016

Based on the fitness values from Table 7, the proposed algorithm, in the case of item-
wise AJS_I and bin-wise AJS_B, achieved the smallest average minimum fitness values of
0.372 and 0.359, respectively, when compared with the FF value of 0.422 and the BF value
of 0.411. For instance, using BPPC_1_3_3, as an example, the AJS_B and AJS_I obtained
average fitness values of 0.080 and 0.095, respectively, while the f v of the FF heuristic

Mathematics 2023, 11, 3219 19 of 28

equaled 0.223, and the BF heuristic equaled 0.198. Additionally, the efficiency of the AJS_I
improved and reached up to 58% when compared with the FF algorithm, and it reached up
to 53% when compared with the BF algorithm over various instances. In the case of the
AJS_B , the eff reached up to 75% and 72% when compared with FF and BF, respectively,
over various instances.

Table 8 lists all the instances’ packing solutions in terms of the number of used bins
mbest relevant to the optimal number m∗. Although the FF and BF are standard heuristics
for solving a classical BPP, they failed to reach an optimal number of bins in the BPPCs for all
test instances. However, both the proposed solutions (i.e., item-wise and bin-wise) reached
a lower number of bins when compared with the heuristics. In addition, they reached
the optimal number of test instances for some test instances (i.e., four test instances using
AJS_B and 3 test instances using AJS_I.) For example, the AJS_I for solving BPPC_1_2_5
achieved the optimal packing of items (i.e., m∗ = mbest = 50), and both the AJS_I and
AJS_B achieved the optimal packing for instance BPPC_1_9_4 (i.e., m∗ = mbest = 110). It is
well noticed from the results that the first three instances achieved the best deviations in
the case of the AJS_B when compared with the AJS_I, while, for the rest of the instances,
the AJS_I had the smallest deviations from the optimal solution. Generally, the AJS_I and
AJS_B achieved better average deviations of 0.018% and 0.016%, respectively, compared
with the FF (0.053%) and BF (0.052%).

The proposed adaptive jellyfish search algorithm, AJS, has proven its efficiency in
solving the BPPCs, not only when compared with the standard heuristics, but also when
compared with other popular metaheuristics such as the PSO and Jaya, as shown in
Tables 9 and 10 in terms of the fitness function and the optimal number of bins, respectively.

Table 9. Class 1 fitness value (AJS, Jaya and PSO).

instance_id AJS Jaya PSO

BPPC_1_1_1
Min. 0.033 0.062 0.432
Max. 0.033 0.071 0.469
Avg. ± Std. 0.033 ± 0.000 0.066 ± 0.001 0.455 ± 0.014

BPPC_1_2_5
Min. 0.037 0.065 0.474
Max. 0.038 0.068 0.485
Avg. ± Std. 0.038 ± 0.000 0.066 ± 0.017 0.480 ± 0.005

BPPC_1_3_3
Min. 0.056 0.098 0.522
Max. 0.104 0.144 0.555
Avg. ± Std. 0.080 ± 0.017 0.121 ± 0.011 0.543 ± 0.014

BPPC_1_4_2
Min. 0.191 0.210 0.578
Max. 0.207 0.240 0.595
Avg. ± Std. 0.197 ± 0.006 0.229 ± 0.014 0.589 ± 0.007

BPPC_1_5_5
Min. 0.225 0.247 0.583
Max. 0.250 0.281 0.628
Avg. ± Std. 0.239 ± 0.004 0.270 ± 0.003 0.610 ± 0.019

BPPC_1_6_3
Min. 0.561 0.566 0.726
Max. 0.572 0.572 0.739
Avg. ± Std. 0.568 ± 0.004 0.569 ± 0.000 0.734 ± 0.006

BPPC_1_7_2
Min. 0.655 0.661 0.749
Max. 0.664 0.661 0.757
Avg. ± Std. 0.661 ± 0.004 0.661 ± 0.002 0.753 ± 0.004

BPPC_1_8_6
Min. 0.714 0.716 0.785
Max. 0.718 0.721 0.791
Avg. ± Std. 0.716 ± 0.002 0.719 ± 0.001 0.787 ± 0.003

BPPC_1_9_4
Min. 0.770 0.770 0.795
Max. 0.772 0.772 0.798
Avg. ± Std. 0.771 ± 0.001 0.771 ± 0.004 0.797 ± 0.001

Average Min. 0.360 0.377 0.627

Mathematics 2023, 11, 3219 20 of 28

Table 10. Class 1 no. of bins (AJS, Jaya, and PSO).

Instance No.
Optimal AJS Jaya PSO

m∗ mbest Dev mbest Dev mbest Dev

BPPC_1_1_1 48 48 0.000 49 0.020 65 0.262
BPPC_1_2_5 50 50 0.000 51 0.020 71 0.296
BPPC_1_3_3 46 48 0.042 48 0.042 70 0.343
BPPC_1_4_2 53 55 0.036 56 0.054 79 0.329
BPPC_1_5_5 57 58 0.017 59 0.034 82 0.305
BPPC_1_6_3 75 77 0.026 78 0.038 96 0.219
BPPC_1_7_2 91 91 0.000 91 0.000 104 0.125
BPPC_1_8_2 99 99 0.000 100 0.010 112 0.116
BPPC_1_9_4 110 110 0.000 110 0.000 115 0.043

Average 0.013 0.024 0.226

From the results of Table 9, the proposed algorithm achieved the lowest average fitness
value for all instances when compared with the Jaya and PSO. For example, the average of
the AJS was equal to 0.197, while the averages of the Jaya and PSO were 0.229 and 0.589,
respectively, for instance BPPC_1_4_2. Moreover, the AJS achieved the lowest average
minimum fitness value, with instances equal to 0.360. The efficiency of the proposed
algorithm improved and reached up to 84% when compared with the Jaya and ranged
from 3% to 92% when compared with the PSO.

Table 10 lists the mbest and Dev for the compared metaheuristics algorithms for all
test instances. Although the Jaya algorithm reached the optimal number of bins in two
instances (BPPC_1_7_2 and BPPC_1_9_4), the proposed AJS had a superior number of
optimal bins for solving the BPPCs for five instances, with the smallest average deviation
equaling 0.013% over all instances. In contrast, the PSO had the poorest results, with larger
average deviations of 0.226% than the Jaya and AJS.

The main objective of the proposed work was to pack the conflict items into a minimum
number of bins and achieve efficient bin utilization. For example, for solving instance
BPPC_1_7_2, the AJS_I, AJS_B, and Jaya reached the optimal number of bins, but with
different bins’ utilization. Figures 9 and 10 show the convergence curve in terms of fitness
value and the number of bins for solving that instance, respectively.

Figure 9. Convergence curve of instance BPPC_1_7_2.

Mathematics 2023, 11, 3219 21 of 28

Figure 10. Number of bins of instance BPPC_1_7_2.

From Figure 9, the AJS_B achieved the smallest convergence curve during iterations,
with an f v = 0.647, and the IP reached up to 14%. The PSO had the worst values for
the iterations. Although the efficiency of the Jaya was better than the AJS_I within a
range of 1% ∼ 3%, with more iterations, the AJS_I achieved a better efficiency with an
f v = 0.655. In addition, the AJS_B had a superiority in reaching the optimal number of bins
(mbest = m∗ = 91) at a lower number of iterations (t = 52) when compared with the others,
as shown in Figure 10.

For more illustration in solving the BPP_1_2_5 instance, the proposed AJS was optimal
in reaching both the minimum f v, as shown in Figure 11, and the m∗, as shown in Figure 12.

At the beginning of the iterations (e.g., up to t = 50) at Figure 11, the proposed
algorithm had a fast convergence in minimizing the fitness value when compared with
the Jaya and PSO, with its e f f = 48% better than the Jaya and its e f f = 79% better than
the PSO. With more iterations, the efficiency of AJS was up to 72% better than the Jaya
and up to 92% better than the PSO. The performance of the AJS improved with increasing
iterations (IP) within a range of 23∼42%.

In Figure 12, both the Jaya and PSO packed the items into 71 bins, while the AJS
achieved a lower packing of items equaling 70 bins. Although the Jaya improved during
iterations to minimize the number of used bins, it did not reach as optimal a number of
bins by the end of iterations as the PSO. However, the AJS gained the optimality in the
lowest number of iterations (mbest = m∗ = 50 at t = 126).

Figure 11. Convergence curve of instance BPPC_1_2_5.

Mathematics 2023, 11, 3219 22 of 28

Figure 12. Number of bins of instance BPPC_1_2_5.

For solving a BPPCs with a large number of items (N = 250, 500), as in Tables 4 and 5),
the proposed adaptive algorithm has proven its superiority in terms of achieving the lowest
objective values compared with other heuristic and metaheuristic algorithms. Table 11
summarizes the average fitness values’ results for the class 2 and 3 instances.

Table 11. Classes 2 and 3 fitness values (FF, BF, AJS, Jaya, and PSO).

Algorithm Average
Class No.

Class 2 Class 3

FF f v 0.402 0.371
BF f v 0.403 0.370

AJS
Min. 0.343 0.326
Max. 0.350 0.331
Avg. ± Std. 0.346 ± 0.003 0.329 ± 0.002

Jaya
Min. 0.365 0.355
Max. 0.374 0.360
Avg. ± Std. 0.371 ± 0.003 0.358 ± 0.002

PSO
Min. 0.636 0.641
Max. 0.651 0.653
Avg. ± Std. 0.644 ± 0.006 0.647 ± 0.005

For class 2, the AJS algorithm attained an average minimum f v over test instances
equaling 0.343, which was better than the average f v of the FF and BF by 15%. Furthermore,
when compared with the Jaya, the proposed algorithm had admirable results in average
min., max., and average, where it reached up to 7% and 46% when compared with the PSO,
respectively. Likewise, the average f v of the AJS algorithm equaled 0.326, while the FF, BF,
Jaya, and PSO equaled 0.371, 0.370, 0.355, and 0.641, respectively, over the test instances
of class 3. Regarding the average results, the AJS achieved improvement in minimizing
the average fitness value by 8% when compared with the Jaya and 49% when compared
with the PSO.

Regarding minimizing the number of used bins to the optimal packing for solving
the class 2 and 3 instances, Table 12 lists the mbest and Dev results for all the algorithms.
Although the proposed solution to the bin packing problem with conflicts did not reach the
optimal number of bins for all instances (i.e., except for two test instances from class 2), it
packed items into the smallest number of bins mbest compared with the standard heuris-
tics and metaheuristics. For example, the AJS achieved the optimal packing of items
m∗ = mbest = 102 for instance BPPC_2_2_3. However, the other compared algorithms

Mathematics 2023, 11, 3219 23 of 28

reached a variant number of bins equal to 109, 110, 104, and 144 for the FF, BF, Jaya,
and PSO, respectively.

From Table 12, the proposed adaptive jellyfish algorithm had an admirable lowest
average deviation of overall test instances, which equaled 0.014. Its efficiency reached up
to 70% in comparison with the FF and 75% when compared with the BF. Moreover, in
comparison with the other metaheuristics, the AJS was better than the Jaya by 60% and
better than the PSO by 95%.

Table 12. Classes 2 and 3 no. of bins (FF, BF, AJS, Jaya, and PSO).

Instance No.
FF BF AJS Jaya PSO

mbest Dev mbest Dev mbest Dev mbest Dev mbest Dev

BPPC_2_1_3 109 0.064 110 0.073 102 0.000 104 0.019 144 0.292
BPPC_2_2_2 108 0.074 108 0.074 100 0.000 102 0.020 144 0.306
BPPC_2_3_5 110 0.082 109 0.073 102 0.010 105 0.038 152 0.336
BPPC_2_4_6 117 0.068 118 0.076 111 0.018 116 0.060 170 0.359
BPPC_2_5_7 132 0.045 136 0.074 129 0.023 132 0.045 181 0.304
BPPC_2_6_7 156 0.058 158 0.070 152 0.033 155 0.052 200 0.265
BPPC_2_7_5 186 0.027 188 0.037 182 0.005 185 0.022 219 0.174
BPPC_2_8_5 209 0.019 210 0.024 207 0.010 208 0.014 234 0.124
BPPC_2_9_2 228 0.013 229 0.017 226 0.004 226 0.004 242 0.070
BPPC_3_1_3 212 0.047 211 0.043 203 0.005 209 0.033 296 0.318
BPPC_3_2_1 211 0.062 210 0.057 199 0.005 205 0.034 298 0.336
BPPC_3_3_9 209 0.062 209 0.062 197 0.005 205 0.044 307 0.362
BPPC_3_4_5 226 0.088 231 0.108 216 0.046 223 0.076 336 0.387
BPPC_3_5_8 253 0.047 260 0.073 251 0.040 259 0.069 364 0.338
BPPC_3_6_4 312 0.016 318 0.035 310 0.010 316 0.028 405 0.242
BPPC_3_7_5 360 0.047 364 0.058 351 0.023 355 0.034 436 0.213
BPPC_3_8_3 410 0.024 412 0.029 405 0.012 410 0.024 468 0.145
BPPC_3_9_5 448 0.009 451 0.016 446 0.004 449 0.011 484 0.083

Average 0.047 0.055 0.014 0.035 0.258

For more details about the convergence curve of instance BPPC_2_2_2 as an example
from class 2, Figures 13 and 14 show the efficiency of the proposed solution for packing the
items in terms of the objective function and number of bins during iterations.

Figure 13. Convergence Curve of instance BPPC_2_2_2.

Based on the two-fold aim of packing the items into a minimum number of bins with
the best bins’ utilization, the AJS algorithm achieved a promising result. From Figure 13,
the AJS had the smallest minimum f v of 0.019, while the PSO and Jaya had an f v equal to

Mathematics 2023, 11, 3219 24 of 28

0.480 and 0.057, respectively. The e f f of the proposed algorithm reached up to 96% when
compared with the PSO, while it improved within a range of 20% ∼ 78% when compared
with the Jaya algorithm. During iterations, the solution was improved and reached the
optimal number of bins mbest = m∗ = 100 at t = 841, as shown in Figure 14. In contrast,
these items were packed into 102 and 144 bins through the Jaya and PSO, respectively, at
the end of the iterations.

Figure 14. Number of bins of instance BPPC_2_2_2.

Figure 15 shows the convergence curve of instance BPPC_3_3_9. The f v of the pro-
posed algorithm decreased rapidly during the first iterations, with an IP reaching up to
88%. Although the Jaya algorithm had a better minimization of the f v than the PSO until
the end of the iterations, the AJS algorithm outperformed the compared algorithms with
the smallest minimum of an f v = 0.013. The Jaya algorithm reached an f v = 0.083, and
the PSO reached an f v = 0.541. The e f f of the AJS ranged from 25% to 98% and from 18%
to 84% in comparison with the PSO and Jaya, respectively.

Although all the compared algorithms did not reach the optimal number of bins for
this instance (i.e., m∗ = 196), the AJS packed these items into the smallest number of bins
(i.e., mbest = 197) compared with the others, as shown in Figure 16.

The proposed adaptive jellyfish search algorithm showed the best performance com-
pared with other representative baseline algorithms according to the above results. It
achieved the lowest average fitness value and the lowest number of used bins for solving
BPPCs instances. To the best of our knowledge, this work is the first one that uses the
jellyfish algorithm to solve the bin packing problem, especially when dealing with conflict
items from the initial solution.

Mathematics 2023, 11, 3219 25 of 28

Figure 15. Convergence curve of instance BPPC_3_3_9.

Figure 16. Number of bins of instance BPPC_3_3_9.

6. Conclusions

In this work, the bin packing problem with conflicts was addressed due to its impact
on several applications. In addition, according to our knowledge, the literature includes
very limited efforts in utilizing metaheuristic methods to address the BPPCs. In this vein,
adapting the jellyfish algorithm to address the BBPCs using two solution representations
was proposed. These two representations frame the BPPCs problem at two different levels:
item-wise and bin-wise. The BPPCs solution representation can be framed as a sequence of
item swaps, where the items to be swapped can be from any bin without any restrictions;
this approach is called item-wise. On the other hand, some bins with certain conditions
can be selected, and then the item swaps occur for this group of bins only; this approach
is called bin-wise. Then, we proposed a set of operations that fit the BPPCs to be used as
the jellyfish algorithm operations. These operations were used to update the solutions.
Finally, the performance of the proposed methods was evaluated using a standard dataset
with a known optimal number of bins. The evaluation included a set of methods of
comparison, namely, the PSO, Jaya, and several heuristics. The comparison was performed
to find solutions to two objectives: the number of bins and the average bin utilization.
The obtained results showed that the proposed method’s performance was better than
the other methods for the two objectives, and it yielded the smallest deviation rate from
the optimal number of bins. The obtained results showed an improvement on the other
methods of comparison by a range of least 2 to 18 times. However, the bin packing problem
remains a big challenge, especially with conflicting items. As a result, some future research

Mathematics 2023, 11, 3219 26 of 28

directions will be considered, such as a hybrid method to acquire more benefits, a test of the
AJS against real-world scenarios, and and assessment of packing items in multidimensions
or other multiobjective criteria.

Author Contributions: Conceptualization, W.H.E.-A., A.S. and A.F.; methodology, W.H.E.-A., M.B.,
G.X. and A.F.; software, W.H.E.-A., M.B., G.X. and A.F.; validation, W.H.E.-A. and M.B.; formal
analysis, G.X. and K.A.R.; investigation, W.H.E.-A., A.S. and M.B.; resources, A.S. and G.X.; data
curation, W.H.E.-A. and M.B.; writing—original draft preparation, W.H.E.-A. and M.B.; supervision,
A.S., G.X., K.A.R. and A.F.; project administration, A.S. and A.F.; funding acquisition, K.A.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The utilized dataset of this work is publicly available: http://or.dei.
unibo.it/library/bin-packing-problem-conflicts, accessed on 1 June 2023.

Conflicts of Interest: The authors have no relevant financial or nonfinancial interest to disclose.

References
1. Tudosoiu, M.F.; Pop, F. Bin Packing Scheduling Algorithm with Energy Constraints in Cloud Computing. In Proceedings of the

2021 IEEE 17th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania,
28–30 October 2021; pp. 77–84.

2. Lin, Y.H.; Lin, C.; Lin, B. On conflict and cooperation in a two-echelon inventory model for deteriorating items. Comput. Ind. Eng.
2010, 59, 703–711. [CrossRef]

3. Nguyen, T.H.; Nguyen, X.T. Space Splitting and Merging Technique for Online 3-D Bin Packing. Mathematics 2023, 11, 1912.
[CrossRef]

4. Moura, A.; Pinto, T.; Alves, C.; Valério de Carvalho, J. A Matheuristic Approach to the Integration of Three-Dimensional Bin
Packing Problem and Vehicle Routing Problem with Simultaneous Delivery and Pickup. Mathematics 2023, 11, 713. [CrossRef]

5. Labrada-Nueva, Y.; Cruz-Rosales, M.H.; Rendón-Mancha, J.M.; Rivera-López, R.; Eraña-Díaz, M.L.; Cruz-Chávez, M.A. Overlap
detection in 2D amorphous shapes for paper optimization in digital printing presses. Mathematics 2021, 9, 1033. [CrossRef]

6. Mandal, C.A.; Chakrabarti, P.P.; Ghose, S. Complexity of fragmentable object bin packing and an application. Comput. Math.
Appl. 1998, 35, 91–97. [CrossRef]

7. Shachnai, H.; Tamir, T.; Yehezkely, O. Approximation schemes for packing with item fragmentation. Theory Comput. Syst. 2008,
43, 81–98. [CrossRef]

8. Byholm, B.; Porres, I. Fast algorithms for fragmentable items bin packing. J. Heuristics 2018, 24, 697–723. [CrossRef]
9. Archetti, C.; Bianchessi, N.; Speranza, M.G. Branch-and-cut algorithms for the split delivery vehicle routing problem. Eur. J. Oper.

Res. 2014, 238, 685–698. [CrossRef]
10. Casazza, M.; Ceselli, A. Mathematical programming algorithms for bin packing problems with item fragmentation. Comput.

Oper. Res. 2014, 46, 1–11. [CrossRef]
11. Epstein, L.; Levin, A.; Van Stee, R. Approximation schemes for packing splittable items with cardinality constraints. Algorithmica

2012, 62, 102–129. [CrossRef]
12. Casazza, M.; Ceselli, A. Exactly solving packing problems with fragmentation. Comput. Oper. Res. 2016, 75, 202–213. [CrossRef]
13. Laporte, G.; Desroches, S. Examination timetabling by computer. Comput. Oper. Res. 1984, 11, 351–360. [CrossRef]
14. Mingozzi, A. Loading Problems. In Combinatorial Optimization; 1979; p. 339. Available online: https://pubsonline.informs.org/

doi/abs/10.1287/inte.11.5.113 (accessed on 29 May 2023).
15. Jansen, K. An approximation scheme for bin packing with conflicts. J. Comb. Optim. 1999, 3, 363–377. [CrossRef]
16. Sadykov, R.; Vanderbeck, F. Bin packing with conflicts: A generic branch-and-price algorithm. INFORMS J. Comput. 2013,

25, 244–255. [CrossRef]
17. Minton, S.; Johnston, M.D.; Philips, A.B.; Laird, P. Minimizing conflicts: A heuristic repair method for constraint satisfaction and

scheduling problems. Artif. Intell. 1992, 58, 161–205. [CrossRef]
18. Balogh, J.; Békési, J.; Galambos, G. New lower bounds for certain classes of bin packing algorithms. Theor. Comput. Sci. 2012,

440, 1–13. [CrossRef]
19. Muritiba, A.E.F.; Iori, M.; Malaguti, E.; Toth, P. Algorithms for the bin packing problem with conflicts. INFORMS J. Comput. 2010,

22, 401–415. [CrossRef]
20. Gendreau, M.; Laporte, G.; Semet, F. Heuristics and lower bounds for the bin packing problem with conflicts. Comput. Oper. Res.

2004, 31, 347–358. [CrossRef]
21. Elhedhli, S.; Li, L.; Gzara, M.; Naoum-Sawaya, J. A branch-and-price algorithm for the bin packing problem with conflicts.

INFORMS J. Comput. 2011, 23, 404–415. [CrossRef]
22. Khanafer, A.; Clautiaux, F.; Talbi, E.G. New lower bounds for bin packing problems with conflicts. Eur. J. Oper. Res. 2010,

206, 281–288. [CrossRef]

http://or.dei.unibo.it/library/bin-packing-problem-conflicts
http://or.dei.unibo.it/library/bin-packing-problem-conflicts
http://doi.org/10.1016/j.cie.2010.07.024
http://dx.doi.org/10.3390/math11081912
http://dx.doi.org/10.3390/math11030713
http://dx.doi.org/10.3390/math9091033
http://dx.doi.org/10.1016/S0898-1221(98)00087-X
http://dx.doi.org/10.1007/s00224-007-9082-x
http://dx.doi.org/10.1007/s10732-018-9375-z
http://dx.doi.org/10.1016/j.ejor.2014.04.026
http://dx.doi.org/10.1016/j.cor.2013.12.008
http://dx.doi.org/10.1007/s00453-010-9445-6
http://dx.doi.org/10.1016/j.cor.2016.06.007
http://dx.doi.org/10.1016/0305-0548(84)90036-4
https://pubsonline.informs.org/doi/abs/10.1287/inte.11.5.113
https://pubsonline.informs.org/doi/abs/10.1287/inte.11.5.113
http://dx.doi.org/10.1023/A:1009871302966
http://dx.doi.org/10.1287/ijoc.1120.0499
http://dx.doi.org/10.1016/0004-3702(92)90007-K
http://dx.doi.org/10.1016/j.tcs.2012.04.017
http://dx.doi.org/10.1287/ijoc.1090.0355
http://dx.doi.org/10.1016/S0305-0548(02)00195-8
http://dx.doi.org/10.1287/ijoc.1100.0406
http://dx.doi.org/10.1016/j.ejor.2010.01.037

Mathematics 2023, 11, 3219 27 of 28

23. Gogos, C.; Alefragis, P.; Housos, E. An improved multi-staged algorithmic process for the solution of the examination timetabling
problem. Ann. Oper. Res. 2012, 194, 203–221. [CrossRef]

24. Antal, M.; Pop, C.; Cioara, T.; Anghel, I.; Salomie, I.; Pop, F. A system of systems approach for data centers optimization and
integration into smart energy grids. Future Gener. Comput. Syst. 2020, 105, 948–963. [CrossRef]

25. Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman: San Francisco, CA, USA, 1979; Volume 174.
26. Coffman, E.G., Jr.; Csirik, J.; Galambos, G.; Martello, S.; Vigo, D. Bin Packing Approximation Algorithms: Survey and Classification;

Springer: New York, NY, USA, 2013; pp. 455–531.
27. Delorme, M.; Iori, M.; Martello, S. Bin packing and cutting stock problems: Mathematical models and exact algorithms. Eur. J.

Oper. Res. 2016, 255, 1–20. [CrossRef]
28. Epstein, L.; Levin, A. On bin packing with conflicts. SIAM J. Optim. 2008, 19, 1270–1298. [CrossRef]
29. Dósa, G.; Sgall, J. First Fit bin packing: A tight analysis. In Proceedings of the 30th International Symposium on Theoretical

Aspects of Computer Science (STACS 2013), Kiel, Germany, 27 February–2 March 2013.
30. Fathalla, A.; Li, K.; Salah, A. Best-KFF: A multi-objective preemptive resource allocation policy for cloud computing systems.

Clust. Comput. 2022, 25, 321–336. [CrossRef]
31. Martello, S.; Toth, P. Lower bounds and reduction procedures for the bin packing problem. Discret. Appl. Math. 1990, 28, 59–70.

[CrossRef]
32. Scholl, A.; Klein, R.; Jürgens, C. Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem.

Comput. Oper. Res. 1997, 24, 627–645. [CrossRef]
33. Brandao, F.; Pedroso, J.P. Bin packing and related problems: General arc-flow formulation with graph compression. Comput.

Oper. Res. 2016, 69, 56–67. [CrossRef]
34. De Carvalho, J.V. Exact solution of bin-packing problems using column generation and branch-and-bound. Ann. Oper. Res. 1999,

86, 629–659. [CrossRef]
35. Bourjolly, J.M.; Rebetez, V. An analysis of lower bound procedures for the bin packing problem. Comput. Oper. Res. 2005,

32, 395–405. [CrossRef]
36. Stawowy, A. Evolutionary based heuristic for bin packing problem. Comput. Ind. Eng. 2008, 55, 465–474. [CrossRef]
37. Loh, K.H.; Golden, B.; Wasil, E. Solving the one-dimensional bin packing problem with a weight annealing heuristic. Comput.

Oper. Res. 2008, 35, 2283–2291. [CrossRef]
38. Kucukyilmaz, T.; Kiziloz, H.E. Cooperative parallel grouping genetic algorithm for the one-dimensional bin packing problem.

Comput. Ind. Eng. 2018, 125, 157–170. [CrossRef]
39. Galinier, P.; Hao, J.K. Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 1999, 3, 379–397. [CrossRef]
40. Morgenstern, C. Distributed coloration neighborhood search. Discret. Math. Theor. Comput. Sci. 1996, 26, 335–358.
41. Falkenauer, E. A hybrid grouping genetic algorithm for bin packing. J. Heuristics 1996, 2, 5–30. [CrossRef]
42. Fleszar, K.; Charalambous, C. Average-weight-controlled bin-oriented heuristics for the one-dimensional bin-packing problem.

Eur. J. Oper. Res. 2011, 210, 176–184. [CrossRef]
43. Quiroz-Castellanos, M.; Cruz-Reyes, L.; Torres-Jimenez, J.; Gómez, C.; Huacuja, H.J.F.; Alvim, A.C. A grouping genetic algorithm

with controlled gene transmission for the bin packing problem. Comput. Oper. Res. 2015, 55, 52–64. [CrossRef]
44. Chou, J.S.; Truong, D.N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021,

389, 125535. [CrossRef]
45. Fossette, S.; Putman, N.F.; Lohmann, K.J.; Marsh, R.; Hays, G.C. A biologist’s guide to assessing ocean currents: A review. Mar.

Ecol. Prog. Ser. 2012, 457, 285–301. [CrossRef]
46. Fossette, S.; Gleiss, A.C.; Chalumeau, J.; Bastian, T.; Armstrong, C.D.; Vandenabeele, S.; Karpytchev, M.; Hays, G.C. Current-

oriented swimming by jellyfish and its role in bloom maintenance. Curr. Biol. 2015, 25, 342–347. [CrossRef]
47. Mariottini, G.L.; Pane, L. Mediterranean jellyfish venoms: A review on scyphomedusae. Mar. Drugs 2010, 8, 1122–1152.

[CrossRef] [PubMed]
48. Brotz, L.; Cheung, W.W.; Kleisner, K.; Pakhomov, E.; Pauly, D. Increasing jellyfish populations: Trends in large marine ecosystems.

In Jellyfish Blooms IV; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–20.
49. Dong, Z.; Liu, D.; Keesing, J.K. Jellyfish blooms in China: Dominant species, causes and consequences. Mar. Pollut. Bull. 2010,

60, 954–963. [CrossRef] [PubMed]
50. Zavodnik, D. Spatial aggregations of the swarming jellyfish Pelagia noctiluca (Scyphozoa). Mar. Biol. 1987, 94, 265–269. [CrossRef]
51. Kiran, M.S.; Hakli, H.; Gunduz, M.; Uguz, H. Artificial bee colony algorithm with variable search strategy for continuous

optimization. Inf. Sci. 2015, 300, 140–157. [CrossRef]
52. BPPC Dataset. Available online: http://or.dei.unibo.it/library/bin-packing-problem-conflicts (accessed on 5 September 2021).
53. Johnson, D.S.; Demers, A.J.; Ullman, J.D.; Garey, M.R.; Graham, R.L. Worst-Case Performance Bounds for Simple One-Dimensional

Packing Algorithms. SIAM J. Comput. 1974, 3, 299–325. [CrossRef]
54. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

http://dx.doi.org/10.1007/s10479-010-0712-3
http://dx.doi.org/10.1016/j.future.2017.05.021
http://dx.doi.org/10.1016/j.ejor.2016.04.030
http://dx.doi.org/10.1137/060666329
http://dx.doi.org/10.1007/s10586-021-03407-z
http://dx.doi.org/10.1016/0166-218X(90)90094-S
http://dx.doi.org/10.1016/S0305-0548(96)00082-2
http://dx.doi.org/10.1016/j.cor.2015.11.009
http://dx.doi.org/10.1023/A:1018952112615
http://dx.doi.org/10.1016/S0305-0548(03)00244-2
http://dx.doi.org/10.1016/j.cie.2008.01.007
http://dx.doi.org/10.1016/j.cor.2006.10.021
http://dx.doi.org/10.1016/j.cie.2018.08.021
http://dx.doi.org/10.1023/A:1009823419804
http://dx.doi.org/10.1007/BF00226291
http://dx.doi.org/10.1016/j.ejor.2010.11.004
http://dx.doi.org/10.1016/j.cor.2014.10.010
http://dx.doi.org/10.1016/j.amc.2020.125535
http://dx.doi.org/10.3354/meps09581
http://dx.doi.org/10.1016/j.cub.2014.11.050
http://dx.doi.org/10.3390/md8041122
http://www.ncbi.nlm.nih.gov/pubmed/20479971
http://dx.doi.org/10.1016/j.marpolbul.2010.04.022
http://www.ncbi.nlm.nih.gov/pubmed/20553695
http://dx.doi.org/10.1007/BF00392939
http://dx.doi.org/10.1016/j.ins.2014.12.043
http://or.dei.unibo.it/library/bin-packing-problem-conflicts
http://dx.doi.org/10.1137/0203025
http://dx.doi.org/10.1109/ICNN.1995.488968

Mathematics 2023, 11, 3219 28 of 28

55. Yan, J.; He, W.; Jiang, X.; Zhang, Z. A novel phase performance evaluation method for particle swarm optimization algorithms
using velocity-based state estimation. Appl. Soft Comput. 2017, 57, 517–525. [CrossRef]

56. Venkata Rao, R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization
problems. Int. J. Ind. Eng. Comput. 2016, 7, 19–34. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2017.04.035
http://dx.doi.org/10.5267/j.ijiec.2015.8.004

	Introduction
	Literature Review
	Problem Formulation
	Description of the Problem
	Mathematical Description of BPPCs

	The Proposed Adaptive Jellyfish Search Algorithm
	The Artificial Jellyfish Search (JS) Optimizer Algorithm
	Moving in the Ocean Current
	Moving inside the Swarm

	The Proposed AJS Item-Wise Level (AJS_I)
	The Proposed Bin-Wise Level (AJS_B)

	Results and Discussion
	Dataset
	Setup
	Evaluation Metrics
	Results

	Conclusions
	References

