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Abstract
Graphs have been widely adopted in various fields, where many graph models are developed. 
Most of previous research focuses on unipartite or homogeneous graph analysis. In this graphs, 
the relationships between the same type of entities are preserved in the graphs. Meanwhile, the 
bipartite graphs that model the complex relationships among different entities with vertices par-
titioned into two disjoint sets, are becoming increasing popular and ubiquitous in many real 
life applications. Though several graph classification methods on unipartite and homogenous 
graphs have been proposed by using kernel method, graph neural network, etc. However, these 
methods are unable to effectively capture the hidden information in bipartite graphs. In this 
paper, we propose the first bipartite graph-based capsule network, namely Bipartite Capsule 
Graph Neural Network (BCGNN), for the bipartite graph classification task. BCGNN exploits 
the capsule network and obtains information between the same type vertices in the bipartite 
graphs by constructing the one-mode projection. Extensive experiments are conducted on real-
world datasets to demonstrate the effectiveness of our proposed method.
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1  Introduction

In recent years, human society has become increasingly informative, and new technologies 
that produce massive data, such as e-commerce platforms and social networks, have influ-
enced every aspect of our daily life. Therefore, graph, an important representation structure 
of big data, has attracted considerable attention. Due to the increasing popularity of graph 
data, numerous research works have been devoted to mining the valuable information in 
graph-structured data. Existing research works mainly focus on the unipartite graph, in 
which the connections can link any pair of entities. However, compared to the unipartite 
graphs, multipartite graphs, such as bipartite graphs, received less attention from the aca-
demic community regardless of their popularity and ubiquity in real-life applications. A 
bipartite graph has two mutually independent vertex classes and edges only exist between 
vertices of different classes. For example, the users-page relationships between users and 
pages of Wiktionary can be represented by a bipartite graph, where edges indicate the edit-
ing action from the users on pages. In such graph, users (resp. pages) can be related to 
multiple pages (resp. users), but there is no user-user or page-page connection. Figure 1 
presents an example of a bipartite graph of the user-page relationships. Bob ( s1 ) and Lisa 
( s3 ) collaborate to edit the page B ( t1 ), while Jack ( s2 ), Lisa ( s3 ) and Sam ( s4 ) collaborate to 
edit the pages A ( t1 ) and C ( t3).

Due to the ubiquitous properties of bipartite graphs, the classification task of bipar-
tite graphs has become a fundamental tool in various fields  [5]. For example, in the 
user-page bipartite graph such as Wiktionary, users and corresponding pages in differ-
ent languages forms different bipartite graphs. Similarly, there can be different bipartite 
graphs of the user-page relationship for the edit relationship under different topics. In 
these cases, the graph classification on the bipartite graphs can be utilized to determine 
the languages and topics preference of the users, and hence improve the user experience. 
Another example of the bipartite graph classification task can be used for money laun-
dry detection. Considering the directed edges between a known cycle for money laun-
dry in e-commerce platforms such as Amazon, we can learn the feature representations 
of these bipartite graphs and further use them to detect other potential money laundry 
cycles. In addition to anti-money laundering, the classification of the bipartite graph 
can also solve many other problems in e-commerce. For example, some unscrupulous 

Fig. 1   Example of Bipartite Graph
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merchants will look for buyers to initiate bogus transactions. The merchants only need 
to mail some empty packages to the buyers and pay small commissions. The users can 
make many positive comments about these businessmen’s goods to increase the expo-
sure of the interests in the e-commerce platform and increase sales. The bipartite graph 
classification algorithm can help e-commerce platforms find these unscrupulous mer-
chants. In recent years, some merchants have used the recommendation mechanism of 
e-commerce platforms to “Ride Item’s Coattail” attacks have also become a matter of 
concern. The bipartite graph classification algorithm can also distinguish these cheat-
ing merchants. In addition, it is feasible to represent the interactions between secondary 
structures of proteins as bipartite graphs. Moreover, bipartite graph classification can be 
used as a basis for finding common substructures in proteins  [26]. Thus, this task can 
also play an important role in protein discovery.

There have been a lot of work investigated in the graph classification problem. The 
graph classification problem is usually more complex than vertex classification prob-
lem, since more and higher-order information should be considered. Though traditional 
kernel methods and GNN methods have received great success in the vertex classifica-
tion task [7, 21], they cannot be directly adapted to the graph classification task.

Based on graph neural networks and capsule networks, some prominent methods [2, 
16, 30, 42] have been proposed for the graph classification task. For example,  [10] not 
only utilizes a powerful neural network, but also separates numerous important features 
while still keeping them independent during training. It allows the model to capture 
hidden factors more clearly, which makes it achieve higher accuracy on the graph clas-
sification task. Further, HCGNN  [39] takes the hierarchical information in the graph 
into account based on the capsule network and continuously synthesizes numerous fine 
information into more concentrated information, so that the final result can retain the 
details of the graph structures better, which has outstanding performance of graph clas-
sification. However, these methods only specialize in the classification of unipartite 
graphs. If they are directly applied to bipartite graph classification, the relationships 
between vertices of the same type cannot be fully retained. This is because there is no 
connection between vertices of the same type in the bipartite graph, and most methods 
perform the propagation along the edges to capture the relationship between vertices.

Compared to the traditional scalar-based neural network, capsule network, a vector-
based neural network, can represent features using mutually independent sets of vec-
tors  [38]. As a result, capsule network can characterize the information of vertex or 
graph better. Therefore, the capsule network is the basis for our model to obtain the 
bipartite graph structure information better. It makes capsule network crucial in the 
work of bipartite graph classification.

Contributions In this paper, we propose a novel method, named Bipartite Capsule 
Graph Neural Network (BCGNN), to achieve classification performance better on bipar-
tite graphs. To preserve the structure, nature and labeling information of the bipartite 
graph, BCGNN creates the connections between vertices of the same type to build it’s 
one-mode projection. Then, it captures the features and performs better by using the 
hierarchical capsule network. Specifically, we first decide whether to establish con-
nections between pairs of vertices in the same type depending on the number of their 
common neighbors. Then, to represent the overall structural information of the bipartite 
graph, the structural information in the one-mode projection is extracted layer by layer 
using hierarchical capsule network. Finally, class capsules at the last layer are used to 
perform the bipartite graph classification task. The main contributions of the paper are 
summarized as follows:
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–	 To the best of our knowledge, we are the first to design graph neural networks on bipar-
tite graphs for graph classification task based on capsule networks.

–	 Our model combines hierarchical capsule network and one-mode projection, which 
allows us to better capture the relationships between vertices of the same type in a 
bipartite graph and preserve the structure information of the bipartite graph.

–	 Extensive experiments on real-world graphs prove that BCGNN outperforms the state-
of-the-art baseline methods, in terms of the bipartite graph classification task.

Organization The rest of the paper is organized as follows. We present the related concepts 
in Section 2. In Section 3, we introduce the model developed. We report the experiment 
results on real-world datasets in Section 4. Finally, we review the related work in Section 5 
and conclude the paper in Section 6.

2 � Preliminaries

In this section, we introduce some key definitions and important notations used in this 
paper. Table 1 summarized the important notations frequently used throughout the paper.

Definition 1  (Bipartite Graph) A bipartite graph can be denoted as G = (VS,VT , E) , 
where VS = {s1, s2, ..., sm},VT = {t1, t2, ..., tn} are the mutually exclusive vertices sets. 
E ⊂ VS × VT is a set of edges that connect vertices between two partitions.

Table 1   Notation table

Notation Description

G Bipartite Graph
V , E , T Vertices, edges and timestamps in Graph
A, D Adjacency matrix and diagonal degree matrix of G.
c, C Weight parameter of votes and corresponding matrix.
I Identity Matrix
K Disentangle Feature Number
L Loss function
T Parameters for Tagging Labels
W Weight Matrix in neural network.
Z, z Hidden Features and its reshaped vectors.
� Capsule unit in the network.
Γ Label Set of Graphs
d Dimension of Capsules
L The Number of Layers.
� Vote
� Nonlinear activation function
� Label of Graph
�, �,m Hyper-parameters for adjusting the importance of loss functions
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It is important to explain that the bipartite graphs of the same type that we use are all 
subgraphs of a certain dynamic bipartite graph. Similarly, a dynamic bipartite graph can 
be defined as Gt = (VS,VT , E, T) , where T  is the timestamp set containing the timestamps 
corresponding to all connection moments. For convenience, we denote total vertex set as 
V = VS ∪ VT and denote total number of vertices in the bipartite graph by |V| = |VS| + |VT |.

Definition 2  (One-Mode Projection) One-mode projection on the bipartite graphs aims 
to construct a projection graph that exist links between the vertices of the same type, i.e., 
to build graphs GS = (VS, ES) , GT = (VT , ET ) where ES ⊂ VS × VS and ET ⊂ VT × VT . And 
their adjacency matrices are AS ∈ ℝ

|VS|×|VS| and AT ∈ ℝ
|VT |×|VT |.

Definition 3  (Bipartite Graph Classification) A bipartite graph classification problem 
can be defined as the following. A learning machine receives a set of N training examples 
(G1, y1), (G2, y2), (G3, y3), ..., (GN , yN) , where each example (Gi, yi) is given as a pair of a 
bipartite graph Gi and the class yi , which is the label of the graph [13]. The bipartite graph 
classification problem is the problem of inferring the class label yi corresponding to the 
graph Gi.

Graph Neural Networks Existing graph neural networks usually adopt an aggregate and 
combine scheme as follows:

where z(k)
u

 is the vertex representation of vertex u at kth layer of the graph neural network, 
AGG is the aggregation that iteratively updates the representation of vertex u by aggregat-
ing the representations of its neighbors, and COM is the combine operation that updates 
the representation of vertex u by the aggregated representations and its own representation 
z(k−1)
u

 from previous layer. The main difference between graph neural networks is the design 
of the aggregate and combine mechanism.

3 � Model

In this section, we introduce the details of BCGNN. Section 3.1 introduces the framework 
of our model; Section 3.2 describes how to create edges between vertices of the same type 
using the one-mode projection; Sections 3.3 and 3.4 introduce the capsule network in detail 
and the following Section 3.5 illustrates the learning objective with auxiliary graph recon-
struction loss.

3.1 � Framework

Different from traditional graph neural networks, capsule networks use activity vectors or 
pose matrices to represent entities. As a result, capsule networks are able to isolate numer-
ous hidden factors and discern relationships among them. Therefore, capsule networks can 
be very advantageous when being applied on the graphs with complex structures. How-
ever, due to the nature of bipartite graphs, vertices that are supposed to share the same 
type property lack connections with each other. Therefore, capsule networks cannot reach 
satisfactory performance if being applied on the bipartite graphs for graph classification 

(1)z
(k)
u

= COM(k)(z(k−1)
u

,AGG(k){z
(k)

u�
;u� ∈ N(u)}),
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task since it cannot perform the message passing properly when there is no edge between 
vertices in the same set. To solve this problem, in this paper, we propose an effective model 
BCGNN to optimize the performance of conventional capsule network on bipartite graph 
classification task. BCGNN first generates edges between vertices in the same type based 
on the number of common neighbors between them. Consequently, BCGNN converts the 
bipartite graph to its one-mode projection, which enables the GNN part of the capsule net-
work to better extract information between vertices of the same type. With the built one-
mode projection, we design the graph capsule network on the bipartite graph to preserve 
the interaction relationship between the vertices within the same set and in two different 
sets Figure 2.

3.2 � One‑mode projection

Since the features of vertices are going to be aggregated along edges in capsule networks, 
the direct use of capsule networks on bipartite graphs usually results in unsatisfactory per-
formance. Therefore, to enable our model to obtain relationships not only between two 

Fig. 2   The Framework of Proposed BCGNN
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different vertex sets but also between vertices in the same type, we first generate the one-
mode projection of the bipartite graph as the input of the capsule network. The basic idea 
of generating one-mode projections for bipartite graphs is to determine the number of com-
mon neighbors of all possible pairs of vertices in the same type. And then it adds con-
nections between pairs of vertices whose number of common neighbors is greater than a 
certain threshold. Figure 3 shows the one-mode projection of the bipartite graph illustrated 
in Figure 1 with threshold value of 2. Since there are two common neighbors of s2 and s3 , 
s2 and s4 , s3 and s4 , and three common neighbors between t1 and t3 , which are equal to or 
greater than the threshold, then connections are established between these pairs of vertices. 
Although there is one common neighbor between s1 and s3 , the number of common neigh-
bor does not reach the threshold, so there is no connection established between them.

The implementation can be done by first finding all possible vertex pairs consisting of 
two vertices in the same type. Then it counts the number of common neighbors of two 
vertices in all vertex pairs. Finally, we establish connections between all pairs of vertices 
whose number of common neighbors is greater than or equal to a threshold value. How-
ever, the time complexity of this method for establishing edges between vertices of the 
same type is O(|V| × |V| × |E|) , which is cost-prohibitive. Therefore, instead of obtain-
ing the one-mode projection in that way, we will use a more efficient method indicated in 
Algorithm 1. The details are presented as follows.

Since the way to generate connections between vertices in the same part ( VS or VT ) is 
the same for both parts of vertices, we introduce how to build connections between s ∈ VS 
and the way to connect between t ∈ VT are the same. First, each vertex si in vertex set VS is 
obtained, and neighboring vertices set of si , denoted by N(si) is obtained by utilizing the 
edge set E , The respective set of neighbor vertices N(t) of all vertices t ∈ N(si) can also be 
obtained. Due to the nature of bipartite graph, there will be no connection between vertices 
of the same type, so after conducting the above operation, the obtained vertices si and 
sj ∈ N(t), sj ≠ si that are 2 hops away from each other must be a pair of vertices of the 
same type that have a set of common neighbors N(t) ⊆ VT . After that, it is easy to count 
the number of neighbors existing between each pair of vertices in a container of size 
|VS| × |VS| to judge whether the number of common neighbors between the pair of vertices 

Fig. 3   One-Mode Projection of Bipartite
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reaches the threshold, i.e., whether a connection needs to be added between the pair of ver-
tices. The time complexity of this algorithm is O(|V| × |N(si)| × |E|) , where |N(s

i
)| ≪ |V| . 

Further analysis shows that Algorithm 1 is essentially performing a depth-first search with 
the depth of 2, so in fact, each vertex only needs to traverse at most |E| edges. The time 
complexity of this algorithm is equivalent to O(|V| × |E|) . The process of building the one-
mode projection adjacency matrix on vertices in VS is summarized in Algorithm 1. Using 
the above approach, it is possible to obtain graphs GS , GT and their adjacency matrices 
AS ∈ ℝ

|VS|×|VS| , AT ∈ ℝ
|VT |×|VT | , which only contain vertices of the same type. Finally, we 

can obtain the one-mode projection of the original bipartite graph, whose adjacency matrix 

can be represented as: A
OM

= A
O
+

[
A
S

0

0 A
T

]
 , where AOM is the adjacency matrix of the 

graph after one-mode projection and AO ∈ ℝ
|V|×|V| is the adjacency matrix of the original 

bipartite graph.

3.3 � Graph capsule framework

The problem of graph classification is based on the classification of structures of individual 
graphs. Conventional GNN model can also extract features from graph structure and attrib-
ute information for downstream learning objectives, such as vertex classification and link 
prediction. However, conventional GNNs cannot handle the heterogeneous information of 
the graphs, and cannot capture the hierarchical structure in the graph either. Consequently, 
conventional GNN lacks the capability to obtain better performance on the graph classifi-
cation problem, especially in the classification tasks on the graphs with complex structure 
and information such as bipartite graphs. Different from conventional GNN, the feature 
vectors in capsule networks are disentangled into multiple vectors to represent different 
classes of features, and parameters of multi-layer perceptrons used for each disentangled 
feature vector are independent with each other during training, i.e., the parameters for each 
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feature are not shared in the neural network. Therefore, capsule networks have significant 
advantages over conventional GNN for graph classification problems.

In order to handle the different feature information embedded in the graph, we pass the 
feature vector of each vertex through multiple sets of mutually independent fully connected 
layers and activation functions to obtain multiple mutually independent features for rep-
resenting different hidden factors. Then we use these factors to obtain the most primitive 
capsules that will be used afterwards. Specifically, given a vertex i in a bipartite graph 
G which have a feature vector xi ∈ ℝ

d . We need to pass each disentangled feature vector 
through a fully connected layer with different parameters and a nonlinear activation func-
tion to obtain the most primitive capsule, which is formulated as:

where Zi,k ∈ ℝ
d

K is the kth hidden feature of vertex i, Wk ∈ ℝ
d×

d

K and bk ∈ ℝ
d

K are kth learn-
able weight matrix and bias, and each vertex has K hidden features. � denotes the activa-
tion function. In (2), the feature vector i can be considered to have been converted into 
a vector set of feature vectors containing K hidden features. As a result, the capsule of 
vertex i is Zi ∈ ℝ

K×
d

K . For simplicity, Zi can be reshaped to the vector format zi ∈ ℝ
d . As 

mentioned in [39], the capsule length of the corresponding disentangled entity represents 
the probability of the existence of the hidden feature it corresponds to, and the longer the 
capsule length, the higher the probability of the existence of the entity. Therefore, we need 
to preserve the vector direction while normalizing the length of the vector, and the squash 
function is implemented as follows:

Thus, we can transform the feature vector of each vertex into the lowest and most pre-
liminary capsule �(1)

i
∈ ℝ

d1 and vertices can be converted into preliminary capsule set 
�

(1) ∈ ℝ
|V|×d1 , where d1 is the overall length of any capsule in the preliminary capsule 

layer. Eventually, with the reducing number of capsules, we can obtain the final graph clas-
sification result while preserving the hierarchical graph structural information.

3.4 � Graph capsule layers

In this section, we introduce the layers in our capsule network in detail. Obviously, 
hierarchical information plays an important role in graph classification. For example, 
accurate inference of some important substructures (functional groups) within a pro-
tein (chemicals) can greatly help us predict the properties of the protein or chemical 
compounds. In this paper, we utilize the capsule network to preserve the hierarchical 
information in the graph, and hence improve the graph classification performance of 
our proposed model. In order to obtain the hierarchical information, we need to map 
the bottom capsule to the top capsule layer by layer, continuously extract and integrate 
the structural information hidden in different levels. Finally, we obtain the last layer of 
capsules, in which the number of capsules is equal to the number of graph types. Based 
on the length of these capsules, the class of the graph can be predicted. We refer to this 
last layer as class capsule layer. More specifically, each capsule in the previous layer 
needs to generate a corresponding vote for each capsule in the later layer to obtain the 
features. To pass the features with attentional tendency, a weighting parameter needs to 

(2)Zi,k = �(WT
k
xi) + bk,

(3)� i = squash(zi) =
|zi|2

1 + |zi|2
×

zi

|zi|
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be acquired for each vote. The next layer of capsules is then obtained by weighting and 
summing these votes. The weighting parameter is computed based on the similarity of 
these votes from the previous layer to the capsule in the next layer. The higher similarity 
indicates, the larger weight it has. So features in lower levels can be informatively and 
hierarchically transmitted to features in higher levels.

First, we need to use GNN to aggregate the Nl capsules of the lth layer for Nl+1 times, to 
obtain the votes from each capsule at the lth layer to all the capsules at the (l + 1)th layer, 
where Nl is the number of capsules in the lth layer. As introduced in Section 2, the different 
GNNs utilizes different aggregate and combine mechanism. Specifically, in this work, we 
choose graph convolutional network  [14] (GCN) as the GNN method to get votes. GCN 
aggregates the neighbor representations by summation over a normalized adjacency matrix 
D̃

−
1

2 ÃD̃
−

1

2 , where Ã is the adjacency matrix A with self-loop as: Ã = A + IN , D̃ is a diago-
nal degree matrix of Ã where Dii =

∑
j Ãij . Consequently, GCN can be formulated with the 

following equations:

where H(l) is the hidden feature vector at lth layer and H(0) is the input representations of 
the vertices, W(l) is a trainable weight matrix for lth layer, and � is the nonlinear activation 
function. With the help of GCN, BCGNN could capture the neighboring information of the 
graphs via message passing along the edges. Eventually, the vector representations for the 
vertices are obtained. In addition, to generate the feature vector of the vertex in the latter 
layer without losing the feature of the vertex in the current layer, it is necessary to add self-
loop to all vertices, so the adjacency matrix used in aggregation is Ã . The degree matrix D̃ 
is also applied on the adjacency matrix for a normalization purpose.

In our capsule network, the capsules in the first layer are directly obtained from verti-
ces in the graph, therefore, there are |V| capsules in total initially, where |V| is the number 
of vertices in the graph G. The GCN is directly used on the graph built by the one-mode 
projection described in Section 3.2 to obtain their votes for the next layer of capsules. It 
is worth noting that the graph applied to the capsule network is a one-mode projection of 
the bipartite graph, and its adjacency matrix is A(1) ∈ ℝ

|V|2 . Practically, we perform one 
layer of aggregation on the input graph, so the GCN used in the BCGNN is formulated as 
follows:

where �(l)

j
 is the vote of the lth layer’s capsules to the (l + 1)th layer’s capsule j, 

Ã
(l)

OM
= A

(l)

OM
+ IN , D̃

(l)

OM
 is a diagonal degree matrix of Ã

(l)

OM
 , and W(l)

j
 is a trainable weight 

matrix for lth layer’s capsules and is used to generate the votes for capsule j in (l + 1)th layer. 
The operation of getting a vote is referred as voting.

Then, it is required to learn weight parameter c for every vote. In order to ensure that 
the weights corresponding to the votes in the same layer are normalized, we need to ensure 
that c sums to 1 for all the votes in the same layer, that means 

∑Nl+1

j=1
ci,j = 1 , where ci,j 

denotes the weight for vote from capsule i in lth layer to capsule j in (l + 1)th layer. For this 
purpose, we need an auxiliary parameter b to learn the appropriate parameter c. Specifi-
cally, after initializing b ← 0 , we iteratively perform the following steps for every capsule 
in the consequent layer:

–	 1. Applying softmax function, transforming b into c as follows: 

(4)H
(l+1) = �(D̃

−
1

2 ÃD̃
−

1

2H
(l)
W

(l)),

(5)�
(l)

j
= �[(D̃

(l)

OM
)
−

1

2 Ã
(l)

OM
(D̃

(l)

OM
)
−

1

2�
(l)
Wj

(l)],
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 where c(l)
i,j

 is the weight parameter of capsule i in the lth layer for the vote of capsule j in 
the (l + 1)th layer, and b(l)

i,j
 corresponds to c(l)

i,j
 . Using (6), we can provide a set of weight 

c(l) for all votes in the lth layer for capsule j in the (l + 1)th layer.
–	 2. All the weighted votes of the lth layer for capsule j in the (l + 1)th layer are summed 

and squashed to obtain the feature vector of capsule j as follows: 

 where �(l)

i,j
 is the vote of capsule i to capsule j.

–	 3. Judging the similarity between the capsule j obtained from (7) and each vote in layer 
l for capsule j, then update the parameter b according to the similarity as follows: 

The act of repeating the above three operations is referred as routing.
After iterating the above three operations for R times, the more desirable capsule j in 

(l + 1)th layer and the set of weight parameters C(l)

j
∈ ℝ

Nl for all the votes corresponding to 
capsule j are obtained. When all the capsules of (l + 1)th layer are obtained, we will also get 
the parameter matrix C(l) ∈ ℝ

Nl×Nl+1 at the same time. Using C(l) , we can get the adjacency 
matrix of the capsule of (l + 1)th layer by the following method:

Please note that since Nl+1 < Nl , the number of capsules involved in the computation 
reduces after each layer. Therefore, BCGNN could learn the representation for the graph 
by preserving its structural and attribute information hierarchically. After that, by repeating 
the above operation with the capsules and the adjacency matrix of (l + 1)th layer, we can 
get the capsules of the next layer, until we obtain the class capsule layer for output, which 
has the same number of capsules as the number of graph classes.

In order to retain and transmit features from the previous layer to the next layer better, 
drawing on the approach of  [23], we add a residual connection at each pair of consecutive 
capsule layers as follows:

where M(⋅) indicates the global average function. �̃
(l+1)

 indicates the capsule layer of the 
l + 1 layer that has not yet weighted the information of the previous capsule layer. �(l+1) is 
the final l + 1 capsule layer.

3.5 � Learning objectives

Once the class capsules in the output layer �L ∈ ℝ
|Γ|×dL are obtained, where Γ is the set of 

labels for the graph class, the probability for a certain class can be judged by the length of 
the capsule’s feature vector [39]. Thus, the classification loss can be measured by the fol-
lowing margin loss function:

(6)c
(l)

i,j
=

exp(b
(l)

i,j
)

∑
k exp(b

(l)

i,k
)
,

(7)�
l+1
j

= squash(
∑

i

c
(l)

i,j
�
(l)

i,j
),

(8)b
(l)

i,j
= b

(l)

i,j
+ �

(l)

i,j
�

l+1
j

(9)A
(l+1) = C

(l)T
A
(l)
C
(l)

(10)�
(l+1)

← �̃
(l+1)

+M(�(l)),
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where m+ and m− are the marginal coefficients which are set to 0.9 and 0.1 respectively in 
this work, T� is the class label indicator which equals to 1 iff �(L)

�
 has label � , otherwise 

T� = 0.
To preserve the original graph structural information during training and to improve 

the stability of the training, we use reconstruction loss to constrain the training. The 
core idea is to decode the adjacency matrix of the class capsule layer to obtain a matrix 
which is close to the adjacency matrix of the initial capsule layer.

Specifically, we take the output class capsule �L of BCGNN as the input, and use a 
fully connected network to map this capsule back to a matrix with the dimension as the 
primary capsules, i.e., ℝ|V|×d1 , with the following equation:

where � is the mask operation, Wr ∈ ℝ
(|Γ|×dL)×d1 is a learnable parameter matrix, br ∈ ℝ

d1 
is learnable bias vector, and Zr ∈ ℝ

|V|×d1 . Then, rely on the results Zr , a matrix with the 
same dimensions as the adjacency matrix of the preliminary capsules can be obtained by 
Ar = ZrZ

T
r
 , which is the preliminary adjacency matrix obtained by re-decoding the class 

capsules. Then, reconstruction loss can be implemented as follows:

It is worth noting that since A(1) is the adjacency matrix of the one-mode projection of the 
original bipartite graph, A ∈ {0, 1}N1×N1 . We clamp the values greater than 1 in Ar to 1.

Finally, the loss function for optimization is shown below:

where � can be used to adjust the importance of the overall loss function L with respect to 
Lr.

4 � Experiment

In this section, we experimentally demonstrate the ability of BCGNN to classify bipar-
tite graphs. We attempt to answer the following two research questions:

–	 Q1. Has the utilization of one-mode projection and hierarchical capsule network 
led to improved classification results?

–	 Q2. How much the proposed method improves the baselines?

To answer the above questions and further validate the superiority of our proposed 
method, experiments are conducted on seven sets of bipartite graphs which are gener-
ated from seven real-world temporal bipartite graphs.

(11)Lm(�
(L)) =

∑

�∈Γ

[T�max(0,m
+ − ||�L

�
||)2 + �(1 − T� )max(0, ||�L

�
|| − m−)2],

(12)Zr = �
(1) + (WT

r
�(�(L)) + br),

(13)Lr(A
(1)
,Ar) = −

1

N2

1

N1∑

a=1

N1∑

b=1

[A
(1)

a,b
log(Ara,b) − (1 − A

(1)

a,b
)log(1 − Ara,b)]

(14)L = Lm(�
(L)) + �Lr(A

(1)
,Ar),

432 World Wide Web (2023) 26:421–440



1 3

4.1 � Datasets and baselines

The dataset used in the experiments is generated from seven temporal bipartite graphs:

–	 edit-nawiki1, edit-dvwiktionary2, edit-ltwikisource3, edit-mswikibooks4, edit-
sswiktionary5, edit-bgwikisource6 and edit-tawikiquote7 contain users and pages 
from the Nauru Wikipedia, the Divehi Wiktionary, the Lithuanian Wikisource, the 
Malay Wikibooks, the Swati Wiktionary, the Bulgarian Wikisource and the the Tamil 
Wikiquote, connected by edit events. Each edge represents an edit. And each dataset 
includes the timestamp of each edit. The statistics of these datasets and the groups of 
graphs generated through each of them are summarized in Table 2.

To examine the effectiveness of our proposed framework, we compare BCGNN with the 
following baseline methods:

–	 AWE [11], WWL [27] are kernel based graph classification methods.
–	 DGCNN [42], HaarPool [33] are state-of-the-art deep neural network methods for 

graph classification.
–	 CapsGNN [38] is the first work to adapt capsule network to graph neural networks 

which achieves significant improvement on graph classification task compare to con-
ventional graph classification models.

–	 HCGNN [39] utilizes the capsule network to preserve the hierarchical information in the 
graphs, and hence has the state-of-the-art performance for graph classification problem.

4.2 � Experiment Settings

We generate new bipartite graphs from vertices and edges that appear in the same time slot 
based on the time-stamped separation of all edges in the temporal bipartite graph. Based on 

Table 2   Statistics of Datasets

Original Data |V
S
| |V

S
| |E| #Graph Avg.#Vertex Avg.#Edge

edit-nawiki 844 4,014 70,695 75 12.48 14.11
edit-dvwiktionary 197 1,017 4,497 183 17.35 21.68
edit-ltwikisource 221 1,755 4,944 171 15.12 16.68
edit-mswikibooks 223 1,852 5,593 131 18.37 26.07
edit-sswiktionary 231 1,287 4,703 154 13.71 14.86
edit-bgwikisource 362 3,424 9,712 216 13.46 15.34
edit-tawikiquote 316 2,771 9,857 150 12.89 16.91

1  http://​konect.​cc/​netwo​rks/​edit-​nawiki
2  http://​konect.​cc/​netwo​rks/​edit-​dvwik​tiona​ry
3  http://​konect.​cc/​netwo​rks/​edit-​ltwik​isour​ce
4  http://​konect.​cc/​netwo​rks/​edit-​mswik​ibooks
5  http://​konect.​cc/​netwo​rks/​edit-​sswik​tiona​ry
6  http://​konect.​cc/​netwo​rks/​edit-​bgwik​isour​ce
7  http://​konect.​cc/​netwo​rks/​edit-​tawik​iquote
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the fact that bipartite graphs generated from the same original bipartite graph have similar 
structures and attributed information, we group them into the same category, i,e., they have 
a same label. The specific steps for graph generation are shown in Algorithm 2. In the algo-
rithm, the line 1 sorts the input temporal bipartite graph according to the timestamps of 
the edges generating the links in ascending order, then get the sequence of ordered edges E 
and the timestamps corresponding to these edges T  . The purpose of the line 2 is to decide 
a time slot length, which will be used to split the time interval for the same subgraph. Line 
9 ensures that there are no duplicate edges in each subgraph. Line 16 controls the range of 
the number of edges in each subgraph, therefore, all generated graphs have similar graph 
size, and line 24 ensure that the generated graphs are connected graphs. If non-connected 
graphs exist, they are divided into multiple connected graphs and the graphs that do not 
have the required number of edges are removed. More specifically, for each graph of ΨL , 
we perform the following operations. We deposit each edge into the preparatory graph. The 
rule for depositing is that if the vertex of the edge appears in one of the preparatory graphs, 
it is added to that preparatory graph, otherwise, a new preparatory graph is created, and the 
edge is added. After this operation is performed on all edges, the preparatory graphs with 
duplicate vertices are merged to obtain the final set of connected graphs.

Consequently, we obtained a graph set with a total of 1080 graphs in seven classes. 
Among them, the largest class has 216 graphs while the smallest class has 75 graphs. In 
addition, we made disentangle feature number K = 4 , routing iteration number R = 3 , 
� = 0.5 , � = 0.1 and L = 2 in our experiments, choose Adam as the optimizer with the 
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learning rate lr = 0.001 and used 10-fold cross-validation to train the model. The capsule 
dimension was set to 128, while the input feature dimensions of the vertices were gener-
ated based on the size of the bipartite graph and the degree of each vertex. In the experi-
ments, the feature vector dimension of each vertex is 106. We take the average of these 10 
predictions as the final accuracy and consider their standard deviation as the floating range 
of accuracy.

4.3 � Bipartite graph classification results

The experimental results are presented in Figure  4. Our proposed BCDNN possesses a 
higher accuracy than all other baselines in completing the bipartite graph classification 
task.

Among them, AWE, WWL and CapsGNN are less accurate on the graph classification 
task because they do not consider the hierarchical information of the bipartite graph. It can 
be seen that the hierarchical information can play an important role in the graph classifica-
tion problem. It is worth noting the WWL model. Inspired by WL, the WWL algorithm 
counts the ground distance between all pairs of vertices in two graphs, and then obtains the 
Wasserstein distance of the two graphs to predict the similarity of the structure between 
them. This full utilization of vertex features makes the model very robust. However, when 
applying this model to bipartite graphs, it does not extract hierarchical structure well, nor 
does it allow information to be exchanged between vertices of the same type well. There-
fore, WWL cannot achieve the accuracy of BCGNN. Although DGCNN and HaarPool also 
consider hierarchical information, HCGNN, with the help of capsule network, is able to 
integrate the information better. As a result, the accuracy of HCGNN is better than that of 
DGCNN and HaarPool. Although CapsGNN also uses the capsule network, the results are 
not satisfactory, which shows that simply using the capsule network when completing the 
bipartite graph classification task does not yield the desired results.

And compared with HCGNN, BCDNN optimizes the method for the characteristics of 
bipartite graphs by establishing the one-mode projection for the original bipartite graph. So 
the preliminary capsules which generated by the same type of vertices can be aggregated 
better and exchange feature information better among themselves. So BCDNN can achieve 
higher accuracy when implementing bipartite graph classification than HCGNN. It can be 

Fig. 4   Experiment Result for 
Bipartite Graph Classification
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seen that using a one-mode projection of the bipartite graph before processing it in the 
GNN related algorithm is an outstanding way to enhance the effect.

4.4 � Parameter Analysis

We conduct the parameter analysis experiments on the following parameters: The disen-
tangle feature number K , the number of routing iterations R , the number of hidden layer 
capsule and learning rate lr. The analysis results are shown in Figure 5.

For BCDNN, the most important parameter is the disentangle feature number K . We 
tested five values {2, 4, 8, 16, 32} as our K . The result of tests can be seen in Figure 5(a). 
We can conclude from the experimental results that K is robust to the accuracy of clas-
sification. The best accuracy value is achieved when K is 4. The performance of BCDNN 
worsens with the increment of K . Therefore, K was set to be 4.

In addition, R , which determines the number of routing iterations, is also an important 
parameter. We tested all values from 2 to 6 as the values of R . The experimental results 
are shown in Figure 5(b). From the experimental results, we can learn that the accuracy 
reaches the highest at R = 3 . If the value is increased further, the accuracy decreases, so we 
choose 3 as the value of R.

In order to test the effect of the number of capsules in the hidden layer on the 
experiment, we tested four cases when the number of capsules in the hidden layer was 
5,  10,  15,  20,  25 and 30. The experimental results are shown in Figure  5(c). From the 
experimental results, After the number of capsules is greater than 10, as the growth in the 

Fig. 5   Parameter Analysis Results in BCDNN
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number of capsules decreases the accuracy of bipartite graph classification, we choose 10 
as the value of the number of capsules in our hidden layer, which has better results.

Finally, we tested { 1 × 10−5, 1 × 10−4, 5 × 10−3, 1 × 10−3, 0.01 } five learning rates. The 
experimental results can be seen in Figure  5(d). The experimental results show that the 
learning rate has a greater impact on the accuracy, so we choose the best result 1 × 10−3 as 
our learning rate.

5 � Related work

In this section, we present the related works from the following four perspectives.
Bipartite graph related neural networks Numerous research works [8, 9, 17, 20, 34, 37, 

41] have been proposed with the focuses on the analysis of bipartite graph neural networks. 
Among them, [17, 20, 37, 41] use neural networks on bipartite graphs to implement an effi-
cient recommendation system, while [8, 34] focus on cancer survival prediction and drug-
disease association prediction. [9] delves into the vertex representation learning problem. 
However, these methods are focused on dealing with microscopic vertex and edge informa-
tion, and cannot be directly used to implement macroscopic graph classification task.

Graph classification Aiming to solve the graph classification problem, a variety of meth-
ods [12, 13, 15, 16, 18, 25, 31, 35, 36, 42] are proposed. These works are well imple-
mented for graph classification utilizing the techniques such as mathematical program-
ming[12, 35], multiview learning[36], reinforcement learning[16], feature selection  [15], 
graph kernels[13, 18], and graph neural network[42]. However, these methods are designed 
for unipartite graphs and cannot be directly generalized to the bipartite graph classification 
problem.

Bipartite graph analytics Nowadays, with the increasing popularity of bipartite graphs, 
there are several methods proposed for bipartite graph analytics, such as [1, 3, 4, 22] which 
are able to find meaningful community structures on bipartite graphs. [26] presents a bipar-
tite graph matching method on protein structure, which is consequently used for protein 
graph classification application.

Capsule network Recently, a method called capsule network [10] is proposed and 
achieved state-of-the-art performance on image classification problem. Due to its excel-
lent performance, many methods [6, 19, 29, 32, 40] achieve excellent results on graph 
related problems by applying capsule network on graphs, and [24, 28, 38] also accomplish 
outstanding results on graph classification task. However, since these methods are mainly 
designed for unipartite graphs, there are still few investigations using capsule network that 
have excellent performance on graph classification problem involving bipartite graphs. In 
this paper, we utilize one-mode projection and hierarchical capsule network to improve the 
performance of GNN-based methods on the bipartite graph classification task, and demon-
strate that it possesses excellent accuracy.

6 � Conclusion

Bipartite graphs are becoming more and more common in practice, but little work has been 
done on them due to the complexity caused by the bipartite setting. In this paper, we pro-
pose the first capsule network on bipartite graphs for graph classification tasks. The pro-
posed BCDNN first applies one-mode projection to bipartite graphs, allowing the capsule 
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network to better capture information between vertices of the same type consequently. 
BCDNN significantly improves the accuracy of bipartite graph classification by integrat-
ing the bipartite graph classification task based on one-mode projection and hierarchical 
capsule networks. Extensive experiments on the real-life bipartite graphs within seven 
classes demonstrate a significant improvement of BCDNN compared to the state-of-the-art 
methods.
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