
Vol.:(0123456789)

https://doi.org/10.1007/s11280-022-01009-2

1 3

Bipartite graph capsule network

Xianhang Zhang1 · Hanchen Wang2  · Jianke Yu2 · Chen Chen2 · Xiaoyang Wang2 ·
Wenjie Zhang1

Received: 18 October 2021 / Revised: 26 December 2021 / Accepted: 10 January 2022

© The Author(s) 2022

Abstract
Graphs have been widely adopted in various fields, where many graph models are developed.
Most of previous research focuses on unipartite or homogeneous graph analysis. In this graphs,
the relationships between the same type of entities are preserved in the graphs. Meanwhile, the
bipartite graphs that model the complex relationships among different entities with vertices par-
titioned into two disjoint sets, are becoming increasing popular and ubiquitous in many real
life applications. Though several graph classification methods on unipartite and homogenous
graphs have been proposed by using kernel method, graph neural network, etc. However, these
methods are unable to effectively capture the hidden information in bipartite graphs. In this
paper, we propose the first bipartite graph-based capsule network, namely Bipartite Capsule
Graph Neural Network (BCGNN), for the bipartite graph classification task. BCGNN exploits
the capsule network and obtains information between the same type vertices in the bipartite
graphs by constructing the one-mode projection. Extensive experiments are conducted on real-
world datasets to demonstrate the effectiveness of our proposed method.

Keywords  Capsule network · Graph neural network · Bipartite graph · Graph classification

This article belongs to the Topical Collection: Special Issue on Decision Making in Heterogeneous
Network Data Scenarios and Applications
Guest Editors: Jianxin Li, Chengfei Liu, Ziyu Guan, and Yinghui Wu

 *	 Hanchen Wang
	 hanchenw.au@gmail.com

 *	 Chen Chen
	 chenc@zjgsu.edu.cn

	 Xianhang Zhang
	 xianhang.zhang@unsw.edu.au

	 Jianke Yu
	 jiankey.zjgsu@gmail.com

	 Xiaoyang Wang
	 xiaoyangw@zjgsu.edu.cn

	 Wenjie Zhang
	 zhangw@cse.unsw.edu.au

1	 University of New South Wales, Kensington, Australia
2	 Zhejiang Gongshang University, Hangzhou, China

Published online: 14 February 2022

World Wide Web (2023) 26:421–440

/

http://orcid.org/0000-0003-3158-9586
http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01009-2&domain=pdf

1 3

1  Introduction

In recent years, human society has become increasingly informative, and new technologies
that produce massive data, such as e-commerce platforms and social networks, have influ-
enced every aspect of our daily life. Therefore, graph, an important representation structure
of big data, has attracted considerable attention. Due to the increasing popularity of graph
data, numerous research works have been devoted to mining the valuable information in
graph-structured data. Existing research works mainly focus on the unipartite graph, in
which the connections can link any pair of entities. However, compared to the unipartite
graphs, multipartite graphs, such as bipartite graphs, received less attention from the aca-
demic community regardless of their popularity and ubiquity in real-life applications. A
bipartite graph has two mutually independent vertex classes and edges only exist between
vertices of different classes. For example, the users-page relationships between users and
pages of Wiktionary can be represented by a bipartite graph, where edges indicate the edit-
ing action from the users on pages. In such graph, users (resp. pages) can be related to
multiple pages (resp. users), but there is no user-user or page-page connection. Figure 1
presents an example of a bipartite graph of the user-page relationships. Bob ( s1 ) and Lisa
( s3 ) collaborate to edit the page B ( t1 ), while Jack ( s2 ), Lisa ( s3 ) and Sam ( s4 ) collaborate to
edit the pages A ( t1 ) and C ( t3).

Due to the ubiquitous properties of bipartite graphs, the classification task of bipar-
tite graphs has become a fundamental tool in various fields [5]. For example, in the
user-page bipartite graph such as Wiktionary, users and corresponding pages in differ-
ent languages forms different bipartite graphs. Similarly, there can be different bipartite
graphs of the user-page relationship for the edit relationship under different topics. In
these cases, the graph classification on the bipartite graphs can be utilized to determine
the languages and topics preference of the users, and hence improve the user experience.
Another example of the bipartite graph classification task can be used for money laun-
dry detection. Considering the directed edges between a known cycle for money laun-
dry in e-commerce platforms such as Amazon, we can learn the feature representations
of these bipartite graphs and further use them to detect other potential money laundry
cycles. In addition to anti-money laundering, the classification of the bipartite graph
can also solve many other problems in e-commerce. For example, some unscrupulous

Fig. 1   Example of Bipartite Graph

422 World Wide Web (2023) 26:421–440

1 3

merchants will look for buyers to initiate bogus transactions. The merchants only need
to mail some empty packages to the buyers and pay small commissions. The users can
make many positive comments about these businessmen’s goods to increase the expo-
sure of the interests in the e-commerce platform and increase sales. The bipartite graph
classification algorithm can help e-commerce platforms find these unscrupulous mer-
chants. In recent years, some merchants have used the recommendation mechanism of
e-commerce platforms to “Ride Item’s Coattail” attacks have also become a matter of
concern. The bipartite graph classification algorithm can also distinguish these cheat-
ing merchants. In addition, it is feasible to represent the interactions between secondary
structures of proteins as bipartite graphs. Moreover, bipartite graph classification can be
used as a basis for finding common substructures in proteins [26]. Thus, this task can
also play an important role in protein discovery.

There have been a lot of work investigated in the graph classification problem. The
graph classification problem is usually more complex than vertex classification prob-
lem, since more and higher-order information should be considered. Though traditional
kernel methods and GNN methods have received great success in the vertex classifica-
tion task [7, 21], they cannot be directly adapted to the graph classification task.

Based on graph neural networks and capsule networks, some prominent methods [2,
16, 30, 42] have been proposed for the graph classification task. For example, [10] not
only utilizes a powerful neural network, but also separates numerous important features
while still keeping them independent during training. It allows the model to capture
hidden factors more clearly, which makes it achieve higher accuracy on the graph clas-
sification task. Further, HCGNN [39] takes the hierarchical information in the graph
into account based on the capsule network and continuously synthesizes numerous fine
information into more concentrated information, so that the final result can retain the
details of the graph structures better, which has outstanding performance of graph clas-
sification. However, these methods only specialize in the classification of unipartite
graphs. If they are directly applied to bipartite graph classification, the relationships
between vertices of the same type cannot be fully retained. This is because there is no
connection between vertices of the same type in the bipartite graph, and most methods
perform the propagation along the edges to capture the relationship between vertices.

Compared to the traditional scalar-based neural network, capsule network, a vector-
based neural network, can represent features using mutually independent sets of vec-
tors [38]. As a result, capsule network can characterize the information of vertex or
graph better. Therefore, the capsule network is the basis for our model to obtain the
bipartite graph structure information better. It makes capsule network crucial in the
work of bipartite graph classification.

Contributions In this paper, we propose a novel method, named Bipartite Capsule
Graph Neural Network (BCGNN), to achieve classification performance better on bipar-
tite graphs. To preserve the structure, nature and labeling information of the bipartite
graph, BCGNN creates the connections between vertices of the same type to build it’s
one-mode projection. Then, it captures the features and performs better by using the
hierarchical capsule network. Specifically, we first decide whether to establish con-
nections between pairs of vertices in the same type depending on the number of their
common neighbors. Then, to represent the overall structural information of the bipartite
graph, the structural information in the one-mode projection is extracted layer by layer
using hierarchical capsule network. Finally, class capsules at the last layer are used to
perform the bipartite graph classification task. The main contributions of the paper are
summarized as follows:

423World Wide Web (2023) 26:421–440

1 3

–	 To the best of our knowledge, we are the first to design graph neural networks on bipar-
tite graphs for graph classification task based on capsule networks.

–	 Our model combines hierarchical capsule network and one-mode projection, which
allows us to better capture the relationships between vertices of the same type in a
bipartite graph and preserve the structure information of the bipartite graph.

–	 Extensive experiments on real-world graphs prove that BCGNN outperforms the state-
of-the-art baseline methods, in terms of the bipartite graph classification task.

Organization The rest of the paper is organized as follows. We present the related concepts
in Section 2. In Section 3, we introduce the model developed. We report the experiment
results on real-world datasets in Section 4. Finally, we review the related work in Section 5
and conclude the paper in Section 6.

2 � Preliminaries

In this section, we introduce some key definitions and important notations used in this
paper. Table 1 summarized the important notations frequently used throughout the paper.

Definition 1  (Bipartite Graph) A bipartite graph can be denoted as G = (VS,VT , E) ,
where VS = {s1, s2, ..., sm},VT = {t1, t2, ..., tn} are the mutually exclusive vertices sets.
E ⊂ VS × VT is a set of edges that connect vertices between two partitions.

Table 1   Notation table

Notation Description

G Bipartite Graph
V , E , T Vertices, edges and timestamps in Graph
A, D Adjacency matrix and diagonal degree matrix of G.
c, C Weight parameter of votes and corresponding matrix.
I Identity Matrix
K Disentangle Feature Number
L Loss function
T Parameters for Tagging Labels
W Weight Matrix in neural network.
Z, z Hidden Features and its reshaped vectors.
� Capsule unit in the network.
Γ Label Set of Graphs
d Dimension of Capsules
L The Number of Layers.
� Vote
� Nonlinear activation function
� Label of Graph
�, �,m Hyper-parameters for adjusting the importance of loss functions

424 World Wide Web (2023) 26:421–440

1 3

It is important to explain that the bipartite graphs of the same type that we use are all
subgraphs of a certain dynamic bipartite graph. Similarly, a dynamic bipartite graph can
be defined as Gt = (VS,VT , E, T) , where T is the timestamp set containing the timestamps
corresponding to all connection moments. For convenience, we denote total vertex set as
V = VS ∪ VT and denote total number of vertices in the bipartite graph by |V| = |VS| + |VT |.

Definition 2  (One-Mode Projection) One-mode projection on the bipartite graphs aims
to construct a projection graph that exist links between the vertices of the same type, i.e.,
to build graphs GS = (VS, ES) , GT = (VT , ET) where ES ⊂ VS × VS and ET ⊂ VT × VT . And
their adjacency matrices are AS ∈ ℝ

|VS|×|VS| and AT ∈ ℝ
|VT |×|VT |.

Definition 3  (Bipartite Graph Classification) A bipartite graph classification problem
can be defined as the following. A learning machine receives a set of N training examples
(G1, y1), (G2, y2), (G3, y3), ..., (GN , yN) , where each example (Gi, yi) is given as a pair of a
bipartite graph Gi and the class yi , which is the label of the graph [13]. The bipartite graph
classification problem is the problem of inferring the class label yi corresponding to the
graph Gi.

Graph Neural Networks Existing graph neural networks usually adopt an aggregate and
combine scheme as follows:

where z(k)
u

 is the vertex representation of vertex u at kth layer of the graph neural network,
AGG is the aggregation that iteratively updates the representation of vertex u by aggregat-
ing the representations of its neighbors, and COM is the combine operation that updates
the representation of vertex u by the aggregated representations and its own representation
z(k−1)
u

 from previous layer. The main difference between graph neural networks is the design
of the aggregate and combine mechanism.

3 � Model

In this section, we introduce the details of BCGNN. Section 3.1 introduces the framework
of our model; Section 3.2 describes how to create edges between vertices of the same type
using the one-mode projection; Sections 3.3 and 3.4 introduce the capsule network in detail
and the following Section 3.5 illustrates the learning objective with auxiliary graph recon-
struction loss.

3.1 � Framework

Different from traditional graph neural networks, capsule networks use activity vectors or
pose matrices to represent entities. As a result, capsule networks are able to isolate numer-
ous hidden factors and discern relationships among them. Therefore, capsule networks can
be very advantageous when being applied on the graphs with complex structures. How-
ever, due to the nature of bipartite graphs, vertices that are supposed to share the same
type property lack connections with each other. Therefore, capsule networks cannot reach
satisfactory performance if being applied on the bipartite graphs for graph classification

(1)z
(k)
u

= COM(k)(z(k−1)
u

,AGG(k){z
(k)

u�
;u� ∈ N(u)}),

425World Wide Web (2023) 26:421–440

1 3

task since it cannot perform the message passing properly when there is no edge between
vertices in the same set. To solve this problem, in this paper, we propose an effective model
BCGNN to optimize the performance of conventional capsule network on bipartite graph
classification task. BCGNN first generates edges between vertices in the same type based
on the number of common neighbors between them. Consequently, BCGNN converts the
bipartite graph to its one-mode projection, which enables the GNN part of the capsule net-
work to better extract information between vertices of the same type. With the built one-
mode projection, we design the graph capsule network on the bipartite graph to preserve
the interaction relationship between the vertices within the same set and in two different
sets Figure 2.

3.2 � One‑mode projection

Since the features of vertices are going to be aggregated along edges in capsule networks,
the direct use of capsule networks on bipartite graphs usually results in unsatisfactory per-
formance. Therefore, to enable our model to obtain relationships not only between two

Fig. 2   The Framework of Proposed BCGNN

426 World Wide Web (2023) 26:421–440

1 3

different vertex sets but also between vertices in the same type, we first generate the one-
mode projection of the bipartite graph as the input of the capsule network. The basic idea
of generating one-mode projections for bipartite graphs is to determine the number of com-
mon neighbors of all possible pairs of vertices in the same type. And then it adds con-
nections between pairs of vertices whose number of common neighbors is greater than a
certain threshold. Figure 3 shows the one-mode projection of the bipartite graph illustrated
in Figure 1 with threshold value of 2. Since there are two common neighbors of s2 and s3 ,
s2 and s4 , s3 and s4 , and three common neighbors between t1 and t3 , which are equal to or
greater than the threshold, then connections are established between these pairs of vertices.
Although there is one common neighbor between s1 and s3 , the number of common neigh-
bor does not reach the threshold, so there is no connection established between them.

The implementation can be done by first finding all possible vertex pairs consisting of
two vertices in the same type. Then it counts the number of common neighbors of two
vertices in all vertex pairs. Finally, we establish connections between all pairs of vertices
whose number of common neighbors is greater than or equal to a threshold value. How-
ever, the time complexity of this method for establishing edges between vertices of the
same type is O(|V| × |V| × |E|) , which is cost-prohibitive. Therefore, instead of obtain-
ing the one-mode projection in that way, we will use a more efficient method indicated in
Algorithm 1. The details are presented as follows.

Since the way to generate connections between vertices in the same part ( VS or VT ) is
the same for both parts of vertices, we introduce how to build connections between s ∈ VS
and the way to connect between t ∈ VT are the same. First, each vertex si in vertex set VS is
obtained, and neighboring vertices set of si , denoted by N(si) is obtained by utilizing the
edge set E , The respective set of neighbor vertices N(t) of all vertices t ∈ N(si) can also be
obtained. Due to the nature of bipartite graph, there will be no connection between vertices
of the same type, so after conducting the above operation, the obtained vertices si and
sj ∈ N(t), sj ≠ si that are 2 hops away from each other must be a pair of vertices of the
same type that have a set of common neighbors N(t) ⊆ VT . After that, it is easy to count
the number of neighbors existing between each pair of vertices in a container of size
|VS| × |VS| to judge whether the number of common neighbors between the pair of vertices

Fig. 3   One-Mode Projection of Bipartite

427World Wide Web (2023) 26:421–440

1 3

reaches the threshold, i.e., whether a connection needs to be added between the pair of ver-
tices. The time complexity of this algorithm is O(|V| × |N(si)| × |E|) , where |N(s

i
)| ≪ |V| .

Further analysis shows that Algorithm 1 is essentially performing a depth-first search with
the depth of 2, so in fact, each vertex only needs to traverse at most |E| edges. The time
complexity of this algorithm is equivalent to O(|V| × |E|) . The process of building the one-
mode projection adjacency matrix on vertices in VS is summarized in Algorithm 1. Using
the above approach, it is possible to obtain graphs GS , GT and their adjacency matrices
AS ∈ ℝ

|VS|×|VS| , AT ∈ ℝ
|VT |×|VT | , which only contain vertices of the same type. Finally, we

can obtain the one-mode projection of the original bipartite graph, whose adjacency matrix

can be represented as: A
OM

= A
O
+

[
A
S

0

0 A
T

]
 , where AOM is the adjacency matrix of the

graph after one-mode projection and AO ∈ ℝ
|V|×|V| is the adjacency matrix of the original

bipartite graph.

3.3 � Graph capsule framework

The problem of graph classification is based on the classification of structures of individual
graphs. Conventional GNN model can also extract features from graph structure and attrib-
ute information for downstream learning objectives, such as vertex classification and link
prediction. However, conventional GNNs cannot handle the heterogeneous information of
the graphs, and cannot capture the hierarchical structure in the graph either. Consequently,
conventional GNN lacks the capability to obtain better performance on the graph classifi-
cation problem, especially in the classification tasks on the graphs with complex structure
and information such as bipartite graphs. Different from conventional GNN, the feature
vectors in capsule networks are disentangled into multiple vectors to represent different
classes of features, and parameters of multi-layer perceptrons used for each disentangled
feature vector are independent with each other during training, i.e., the parameters for each

428 World Wide Web (2023) 26:421–440

1 3

feature are not shared in the neural network. Therefore, capsule networks have significant
advantages over conventional GNN for graph classification problems.

In order to handle the different feature information embedded in the graph, we pass the
feature vector of each vertex through multiple sets of mutually independent fully connected
layers and activation functions to obtain multiple mutually independent features for rep-
resenting different hidden factors. Then we use these factors to obtain the most primitive
capsules that will be used afterwards. Specifically, given a vertex i in a bipartite graph
G which have a feature vector xi ∈ ℝ

d . We need to pass each disentangled feature vector
through a fully connected layer with different parameters and a nonlinear activation func-
tion to obtain the most primitive capsule, which is formulated as:

where Zi,k ∈ ℝ
d

K is the kth hidden feature of vertex i, Wk ∈ ℝ
d×

d

K and bk ∈ ℝ
d

K are kth learn-
able weight matrix and bias, and each vertex has K hidden features. � denotes the activa-
tion function. In (2), the feature vector i can be considered to have been converted into
a vector set of feature vectors containing K hidden features. As a result, the capsule of
vertex i is Zi ∈ ℝ

K×
d

K . For simplicity, Zi can be reshaped to the vector format zi ∈ ℝ
d . As

mentioned in [39], the capsule length of the corresponding disentangled entity represents
the probability of the existence of the hidden feature it corresponds to, and the longer the
capsule length, the higher the probability of the existence of the entity. Therefore, we need
to preserve the vector direction while normalizing the length of the vector, and the squash
function is implemented as follows:

Thus, we can transform the feature vector of each vertex into the lowest and most pre-
liminary capsule �(1)

i
∈ ℝ

d1 and vertices can be converted into preliminary capsule set
�

(1) ∈ ℝ
|V|×d1 , where d1 is the overall length of any capsule in the preliminary capsule

layer. Eventually, with the reducing number of capsules, we can obtain the final graph clas-
sification result while preserving the hierarchical graph structural information.

3.4 � Graph capsule layers

In this section, we introduce the layers in our capsule network in detail. Obviously,
hierarchical information plays an important role in graph classification. For example,
accurate inference of some important substructures (functional groups) within a pro-
tein (chemicals) can greatly help us predict the properties of the protein or chemical
compounds. In this paper, we utilize the capsule network to preserve the hierarchical
information in the graph, and hence improve the graph classification performance of
our proposed model. In order to obtain the hierarchical information, we need to map
the bottom capsule to the top capsule layer by layer, continuously extract and integrate
the structural information hidden in different levels. Finally, we obtain the last layer of
capsules, in which the number of capsules is equal to the number of graph types. Based
on the length of these capsules, the class of the graph can be predicted. We refer to this
last layer as class capsule layer. More specifically, each capsule in the previous layer
needs to generate a corresponding vote for each capsule in the later layer to obtain the
features. To pass the features with attentional tendency, a weighting parameter needs to

(2)Zi,k = �(WT
k
xi) + bk,

(3)� i = squash(zi) =
|zi|2

1 + |zi|2
×

zi

|zi|

429World Wide Web (2023) 26:421–440

1 3

be acquired for each vote. The next layer of capsules is then obtained by weighting and
summing these votes. The weighting parameter is computed based on the similarity of
these votes from the previous layer to the capsule in the next layer. The higher similarity
indicates, the larger weight it has. So features in lower levels can be informatively and
hierarchically transmitted to features in higher levels.

First, we need to use GNN to aggregate the Nl capsules of the lth layer for Nl+1 times, to
obtain the votes from each capsule at the lth layer to all the capsules at the (l + 1)th layer,
where Nl is the number of capsules in the lth layer. As introduced in Section 2, the different
GNNs utilizes different aggregate and combine mechanism. Specifically, in this work, we
choose graph convolutional network [14] (GCN) as the GNN method to get votes. GCN
aggregates the neighbor representations by summation over a normalized adjacency matrix
D̃

−
1

2 ÃD̃
−

1

2 , where Ã is the adjacency matrix A with self-loop as: Ã = A + IN , D̃ is a diago-
nal degree matrix of Ã where Dii =

∑
j Ãij . Consequently, GCN can be formulated with the

following equations:

where H(l) is the hidden feature vector at lth layer and H(0) is the input representations of
the vertices, W(l) is a trainable weight matrix for lth layer, and � is the nonlinear activation
function. With the help of GCN, BCGNN could capture the neighboring information of the
graphs via message passing along the edges. Eventually, the vector representations for the
vertices are obtained. In addition, to generate the feature vector of the vertex in the latter
layer without losing the feature of the vertex in the current layer, it is necessary to add self-
loop to all vertices, so the adjacency matrix used in aggregation is Ã . The degree matrix D̃
is also applied on the adjacency matrix for a normalization purpose.

In our capsule network, the capsules in the first layer are directly obtained from verti-
ces in the graph, therefore, there are |V| capsules in total initially, where |V| is the number
of vertices in the graph G. The GCN is directly used on the graph built by the one-mode
projection described in Section 3.2 to obtain their votes for the next layer of capsules. It
is worth noting that the graph applied to the capsule network is a one-mode projection of
the bipartite graph, and its adjacency matrix is A(1) ∈ ℝ

|V|2 . Practically, we perform one
layer of aggregation on the input graph, so the GCN used in the BCGNN is formulated as
follows:

where �(l)

j
 is the vote of the lth layer’s capsules to the (l + 1)th layer’s capsule j,

Ã
(l)

OM
= A

(l)

OM
+ IN , D̃

(l)

OM
 is a diagonal degree matrix of Ã

(l)

OM
 , and W(l)

j
 is a trainable weight

matrix for lth layer’s capsules and is used to generate the votes for capsule j in (l + 1)th layer.
The operation of getting a vote is referred as voting.

Then, it is required to learn weight parameter c for every vote. In order to ensure that
the weights corresponding to the votes in the same layer are normalized, we need to ensure
that c sums to 1 for all the votes in the same layer, that means

∑Nl+1

j=1
ci,j = 1 , where ci,j

denotes the weight for vote from capsule i in lth layer to capsule j in (l + 1)th layer. For this
purpose, we need an auxiliary parameter b to learn the appropriate parameter c. Specifi-
cally, after initializing b ← 0 , we iteratively perform the following steps for every capsule
in the consequent layer:

–	 1. Applying softmax function, transforming b into c as follows:

(4)H
(l+1) = �(D̃

−
1

2 ÃD̃
−

1

2H
(l)
W

(l)),

(5)�
(l)

j
= �[(D̃

(l)

OM
)
−

1

2 Ã
(l)

OM
(D̃

(l)

OM
)
−

1

2�
(l)
Wj

(l)],

430 World Wide Web (2023) 26:421–440

1 3

 where c(l)
i,j

 is the weight parameter of capsule i in the lth layer for the vote of capsule j in
the (l + 1)th layer, and b(l)

i,j
 corresponds to c(l)

i,j
 . Using (6), we can provide a set of weight

c(l) for all votes in the lth layer for capsule j in the (l + 1)th layer.
–	 2. All the weighted votes of the lth layer for capsule j in the (l + 1)th layer are summed

and squashed to obtain the feature vector of capsule j as follows:

 where �(l)

i,j
 is the vote of capsule i to capsule j.

–	 3. Judging the similarity between the capsule j obtained from (7) and each vote in layer
l for capsule j, then update the parameter b according to the similarity as follows:

The act of repeating the above three operations is referred as routing.
After iterating the above three operations for R times, the more desirable capsule j in

(l + 1)th layer and the set of weight parameters C(l)

j
∈ ℝ

Nl for all the votes corresponding to
capsule j are obtained. When all the capsules of (l + 1)th layer are obtained, we will also get
the parameter matrix C(l) ∈ ℝ

Nl×Nl+1 at the same time. Using C(l) , we can get the adjacency
matrix of the capsule of (l + 1)th layer by the following method:

Please note that since Nl+1 < Nl , the number of capsules involved in the computation
reduces after each layer. Therefore, BCGNN could learn the representation for the graph
by preserving its structural and attribute information hierarchically. After that, by repeating
the above operation with the capsules and the adjacency matrix of (l + 1)th layer, we can
get the capsules of the next layer, until we obtain the class capsule layer for output, which
has the same number of capsules as the number of graph classes.

In order to retain and transmit features from the previous layer to the next layer better,
drawing on the approach of [23], we add a residual connection at each pair of consecutive
capsule layers as follows:

where M(⋅) indicates the global average function. �̃
(l+1)

 indicates the capsule layer of the
l + 1 layer that has not yet weighted the information of the previous capsule layer. �(l+1) is
the final l + 1 capsule layer.

3.5 � Learning objectives

Once the class capsules in the output layer �L ∈ ℝ
|Γ|×dL are obtained, where Γ is the set of

labels for the graph class, the probability for a certain class can be judged by the length of
the capsule’s feature vector [39]. Thus, the classification loss can be measured by the fol-
lowing margin loss function:

(6)c
(l)

i,j
=

exp(b
(l)

i,j
)

∑
k exp(b

(l)

i,k
)
,

(7)�
l+1
j

= squash(
∑

i

c
(l)

i,j
�
(l)

i,j
),

(8)b
(l)

i,j
= b

(l)

i,j
+ �

(l)

i,j
�

l+1
j

(9)A
(l+1) = C

(l)T
A
(l)
C
(l)

(10)�
(l+1)

← �̃
(l+1)

+M(�(l)),

431World Wide Web (2023) 26:421–440

1 3

where m+ and m− are the marginal coefficients which are set to 0.9 and 0.1 respectively in
this work, T� is the class label indicator which equals to 1 iff �(L)

�
 has label � , otherwise

T� = 0.
To preserve the original graph structural information during training and to improve

the stability of the training, we use reconstruction loss to constrain the training. The
core idea is to decode the adjacency matrix of the class capsule layer to obtain a matrix
which is close to the adjacency matrix of the initial capsule layer.

Specifically, we take the output class capsule �L of BCGNN as the input, and use a
fully connected network to map this capsule back to a matrix with the dimension as the
primary capsules, i.e., ℝ|V|×d1 , with the following equation:

where � is the mask operation, Wr ∈ ℝ
(|Γ|×dL)×d1 is a learnable parameter matrix, br ∈ ℝ

d1
is learnable bias vector, and Zr ∈ ℝ

|V|×d1 . Then, rely on the results Zr , a matrix with the
same dimensions as the adjacency matrix of the preliminary capsules can be obtained by
Ar = ZrZ

T
r
 , which is the preliminary adjacency matrix obtained by re-decoding the class

capsules. Then, reconstruction loss can be implemented as follows:

It is worth noting that since A(1) is the adjacency matrix of the one-mode projection of the
original bipartite graph, A ∈ {0, 1}N1×N1 . We clamp the values greater than 1 in Ar to 1.

Finally, the loss function for optimization is shown below:

where � can be used to adjust the importance of the overall loss function L with respect to
Lr.

4 � Experiment

In this section, we experimentally demonstrate the ability of BCGNN to classify bipar-
tite graphs. We attempt to answer the following two research questions:

–	 Q1. Has the utilization of one-mode projection and hierarchical capsule network
led to improved classification results?

–	 Q2. How much the proposed method improves the baselines?

To answer the above questions and further validate the superiority of our proposed
method, experiments are conducted on seven sets of bipartite graphs which are gener-
ated from seven real-world temporal bipartite graphs.

(11)Lm(�
(L)) =

∑

�∈Γ

[T�max(0,m
+ − ||�L

�
||)2 + �(1 − T�)max(0, ||�L

�
|| − m−)2],

(12)Zr = �
(1) + (WT

r
�(�(L)) + br),

(13)Lr(A
(1)
,Ar) = −

1

N2

1

N1∑

a=1

N1∑

b=1

[A
(1)

a,b
log(Ara,b) − (1 − A

(1)

a,b
)log(1 − Ara,b)]

(14)L = Lm(�
(L)) + �Lr(A

(1)
,Ar),

432 World Wide Web (2023) 26:421–440

1 3

4.1 � Datasets and baselines

The dataset used in the experiments is generated from seven temporal bipartite graphs:

–	 edit-nawiki1, edit-dvwiktionary2, edit-ltwikisource3, edit-mswikibooks4, edit-
sswiktionary5, edit-bgwikisource6 and edit-tawikiquote7 contain users and pages
from the Nauru Wikipedia, the Divehi Wiktionary, the Lithuanian Wikisource, the
Malay Wikibooks, the Swati Wiktionary, the Bulgarian Wikisource and the the Tamil
Wikiquote, connected by edit events. Each edge represents an edit. And each dataset
includes the timestamp of each edit. The statistics of these datasets and the groups of
graphs generated through each of them are summarized in Table 2.

To examine the effectiveness of our proposed framework, we compare BCGNN with the
following baseline methods:

–	 AWE [11], WWL [27] are kernel based graph classification methods.
–	 DGCNN [42], HaarPool [33] are state-of-the-art deep neural network methods for

graph classification.
–	 CapsGNN [38] is the first work to adapt capsule network to graph neural networks

which achieves significant improvement on graph classification task compare to con-
ventional graph classification models.

–	 HCGNN [39] utilizes the capsule network to preserve the hierarchical information in the
graphs, and hence has the state-of-the-art performance for graph classification problem.

4.2 � Experiment Settings

We generate new bipartite graphs from vertices and edges that appear in the same time slot
based on the time-stamped separation of all edges in the temporal bipartite graph. Based on

Table 2   Statistics of Datasets

Original Data |V
S
| |V

S
| |E| #Graph Avg.#Vertex Avg.#Edge

edit-nawiki 844 4,014 70,695 75 12.48 14.11
edit-dvwiktionary 197 1,017 4,497 183 17.35 21.68
edit-ltwikisource 221 1,755 4,944 171 15.12 16.68
edit-mswikibooks 223 1,852 5,593 131 18.37 26.07
edit-sswiktionary 231 1,287 4,703 154 13.71 14.86
edit-bgwikisource 362 3,424 9,712 216 13.46 15.34
edit-tawikiquote 316 2,771 9,857 150 12.89 16.91

1  http://​konect.​cc/​netwo​rks/​edit-​nawiki
2  http://​konect.​cc/​netwo​rks/​edit-​dvwik​tiona​ry
3  http://​konect.​cc/​netwo​rks/​edit-​ltwik​isour​ce
4  http://​konect.​cc/​netwo​rks/​edit-​mswik​ibooks
5  http://​konect.​cc/​netwo​rks/​edit-​sswik​tiona​ry
6  http://​konect.​cc/​netwo​rks/​edit-​bgwik​isour​ce
7  http://​konect.​cc/​netwo​rks/​edit-​tawik​iquote

433World Wide Web (2023) 26:421–440

http://konect.cc/networks/edit-nawiki
http://konect.cc/networks/edit-dvwiktionary
http://konect.cc/networks/edit-ltwikisource
http://konect.cc/networks/edit-mswikibooks
http://konect.cc/networks/edit-sswiktionary
http://konect.cc/networks/edit-bgwikisource
http://konect.cc/networks/edit-tawikiquote

1 3

the fact that bipartite graphs generated from the same original bipartite graph have similar
structures and attributed information, we group them into the same category, i,e., they have
a same label. The specific steps for graph generation are shown in Algorithm 2. In the algo-
rithm, the line 1 sorts the input temporal bipartite graph according to the timestamps of
the edges generating the links in ascending order, then get the sequence of ordered edges E
and the timestamps corresponding to these edges T  . The purpose of the line 2 is to decide
a time slot length, which will be used to split the time interval for the same subgraph. Line
9 ensures that there are no duplicate edges in each subgraph. Line 16 controls the range of
the number of edges in each subgraph, therefore, all generated graphs have similar graph
size, and line 24 ensure that the generated graphs are connected graphs. If non-connected
graphs exist, they are divided into multiple connected graphs and the graphs that do not
have the required number of edges are removed. More specifically, for each graph of ΨL ,
we perform the following operations. We deposit each edge into the preparatory graph. The
rule for depositing is that if the vertex of the edge appears in one of the preparatory graphs,
it is added to that preparatory graph, otherwise, a new preparatory graph is created, and the
edge is added. After this operation is performed on all edges, the preparatory graphs with
duplicate vertices are merged to obtain the final set of connected graphs.

Consequently, we obtained a graph set with a total of 1080 graphs in seven classes.
Among them, the largest class has 216 graphs while the smallest class has 75 graphs. In
addition, we made disentangle feature number K = 4 , routing iteration number R = 3 ,
� = 0.5 , � = 0.1 and L = 2 in our experiments, choose Adam as the optimizer with the

434 World Wide Web (2023) 26:421–440

1 3

learning rate lr = 0.001 and used 10-fold cross-validation to train the model. The capsule
dimension was set to 128, while the input feature dimensions of the vertices were gener-
ated based on the size of the bipartite graph and the degree of each vertex. In the experi-
ments, the feature vector dimension of each vertex is 106. We take the average of these 10
predictions as the final accuracy and consider their standard deviation as the floating range
of accuracy.

4.3 � Bipartite graph classification results

The experimental results are presented in Figure 4. Our proposed BCDNN possesses a
higher accuracy than all other baselines in completing the bipartite graph classification
task.

Among them, AWE, WWL and CapsGNN are less accurate on the graph classification
task because they do not consider the hierarchical information of the bipartite graph. It can
be seen that the hierarchical information can play an important role in the graph classifica-
tion problem. It is worth noting the WWL model. Inspired by WL, the WWL algorithm
counts the ground distance between all pairs of vertices in two graphs, and then obtains the
Wasserstein distance of the two graphs to predict the similarity of the structure between
them. This full utilization of vertex features makes the model very robust. However, when
applying this model to bipartite graphs, it does not extract hierarchical structure well, nor
does it allow information to be exchanged between vertices of the same type well. There-
fore, WWL cannot achieve the accuracy of BCGNN. Although DGCNN and HaarPool also
consider hierarchical information, HCGNN, with the help of capsule network, is able to
integrate the information better. As a result, the accuracy of HCGNN is better than that of
DGCNN and HaarPool. Although CapsGNN also uses the capsule network, the results are
not satisfactory, which shows that simply using the capsule network when completing the
bipartite graph classification task does not yield the desired results.

And compared with HCGNN, BCDNN optimizes the method for the characteristics of
bipartite graphs by establishing the one-mode projection for the original bipartite graph. So
the preliminary capsules which generated by the same type of vertices can be aggregated
better and exchange feature information better among themselves. So BCDNN can achieve
higher accuracy when implementing bipartite graph classification than HCGNN. It can be

Fig. 4   Experiment Result for
Bipartite Graph Classification

435World Wide Web (2023) 26:421–440

1 3

seen that using a one-mode projection of the bipartite graph before processing it in the
GNN related algorithm is an outstanding way to enhance the effect.

4.4 � Parameter Analysis

We conduct the parameter analysis experiments on the following parameters: The disen-
tangle feature number K , the number of routing iterations R , the number of hidden layer
capsule and learning rate lr. The analysis results are shown in Figure 5.

For BCDNN, the most important parameter is the disentangle feature number K . We
tested five values {2, 4, 8, 16, 32} as our K . The result of tests can be seen in Figure 5(a).
We can conclude from the experimental results that K is robust to the accuracy of clas-
sification. The best accuracy value is achieved when K is 4. The performance of BCDNN
worsens with the increment of K . Therefore, K was set to be 4.

In addition, R , which determines the number of routing iterations, is also an important
parameter. We tested all values from 2 to 6 as the values of R . The experimental results
are shown in Figure 5(b). From the experimental results, we can learn that the accuracy
reaches the highest at R = 3 . If the value is increased further, the accuracy decreases, so we
choose 3 as the value of R.

In order to test the effect of the number of capsules in the hidden layer on the
experiment, we tested four cases when the number of capsules in the hidden layer was
5, 10, 15, 20, 25 and 30. The experimental results are shown in Figure 5(c). From the
experimental results, After the number of capsules is greater than 10, as the growth in the

Fig. 5   Parameter Analysis Results in BCDNN

436 World Wide Web (2023) 26:421–440

1 3

number of capsules decreases the accuracy of bipartite graph classification, we choose 10
as the value of the number of capsules in our hidden layer, which has better results.

Finally, we tested { 1 × 10−5, 1 × 10−4, 5 × 10−3, 1 × 10−3, 0.01 } five learning rates. The
experimental results can be seen in Figure 5(d). The experimental results show that the
learning rate has a greater impact on the accuracy, so we choose the best result 1 × 10−3 as
our learning rate.

5 � Related work

In this section, we present the related works from the following four perspectives.
Bipartite graph related neural networks Numerous research works [8, 9, 17, 20, 34, 37,

41] have been proposed with the focuses on the analysis of bipartite graph neural networks.
Among them, [17, 20, 37, 41] use neural networks on bipartite graphs to implement an effi-
cient recommendation system, while [8, 34] focus on cancer survival prediction and drug-
disease association prediction. [9] delves into the vertex representation learning problem.
However, these methods are focused on dealing with microscopic vertex and edge informa-
tion, and cannot be directly used to implement macroscopic graph classification task.

Graph classification Aiming to solve the graph classification problem, a variety of meth-
ods [12, 13, 15, 16, 18, 25, 31, 35, 36, 42] are proposed. These works are well imple-
mented for graph classification utilizing the techniques such as mathematical program-
ming[12, 35], multiview learning[36], reinforcement learning[16], feature selection [15],
graph kernels[13, 18], and graph neural network[42]. However, these methods are designed
for unipartite graphs and cannot be directly generalized to the bipartite graph classification
problem.

Bipartite graph analytics Nowadays, with the increasing popularity of bipartite graphs,
there are several methods proposed for bipartite graph analytics, such as [1, 3, 4, 22] which
are able to find meaningful community structures on bipartite graphs. [26] presents a bipar-
tite graph matching method on protein structure, which is consequently used for protein
graph classification application.

Capsule network Recently, a method called capsule network [10] is proposed and
achieved state-of-the-art performance on image classification problem. Due to its excel-
lent performance, many methods [6, 19, 29, 32, 40] achieve excellent results on graph
related problems by applying capsule network on graphs, and [24, 28, 38] also accomplish
outstanding results on graph classification task. However, since these methods are mainly
designed for unipartite graphs, there are still few investigations using capsule network that
have excellent performance on graph classification problem involving bipartite graphs. In
this paper, we utilize one-mode projection and hierarchical capsule network to improve the
performance of GNN-based methods on the bipartite graph classification task, and demon-
strate that it possesses excellent accuracy.

6 � Conclusion

Bipartite graphs are becoming more and more common in practice, but little work has been
done on them due to the complexity caused by the bipartite setting. In this paper, we pro-
pose the first capsule network on bipartite graphs for graph classification tasks. The pro-
posed BCDNN first applies one-mode projection to bipartite graphs, allowing the capsule

437World Wide Web (2023) 26:421–440

1 3

network to better capture information between vertices of the same type consequently.
BCDNN significantly improves the accuracy of bipartite graph classification by integrat-
ing the bipartite graph classification task based on one-mode projection and hierarchical
capsule networks. Extensive experiments on the real-life bipartite graphs within seven
classes demonstrate a significant improvement of BCDNN compared to the state-of-the-art
methods.

Acknowledgements  This work is supported by NSFC 61802345, ZJNSF LQ20F020007 and ZJNSF
LY21F020012.

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions.

Compliance with ethical standards 

Conflicts of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Alzahrani, T., Horadam, K.J.: Community detection in bipartite networks: Algorithms and case stud-
ies. In: Complex Systems and Networks, pp. 25–50. Springer (2016)

	 2.	 Bai, L., Cui, L., Jiao, Y., Rossi, L., Hancock, E.: Learning backtrackless aligned-spatial graph convo-
lutional networks for graph classification. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 44(2), 783–798 (2020)

	 3.	 Barber, M.J.: Modularity and community detection in bipartite networks. Physical Review E 76(6),
066102 (2007)

	 4.	 Beckett, S.J.: Improved community detection in weighted bipartite networks. Royal Society Open Sci-
ence 3(1), 140536 (2016)

	 5.	 Cai, T., Li, J., Mian, A.S., Sellis, T., Yu, J.X., et al.: Target-aware holistic influence maximization in
spatial social networks. IEEE Transactions on Knowledge and Data Engineering (2020)

	 6.	 Chen, H., Wang, W., Li, G., Shi, Y.: A quaternion-embedded capsule network model for knowledge
graph completion. IEEE Access 8, 100890–100904 (2020)

	 7.	 Chen, J., Zhong, M., Li, J., Wang, D., Qian, T., Tu, H.: Effective deep attributed network representa-
tion learning with topology adapted smoothing. IEEE Transactions on Cybernetics, pp. 1–12 (2021)

	 8.	 Gao, J., Lyu, T., Xiong, F., Wang, J., Ke, W., Li, Z.: Mgnn: A multimodal graph neural network for
predicting the survival of cancer patients. In: Proceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 1697–1700 (2020)

	 9.	 He, C., Xie, T., Rong, Y., Huang, W., Li, Y., Huang, J., Ren, X., Shahabi, C.: Bipartite graph neural
networks for efficient node representation learning. arXiv:​1906.​11994 (2019)

	10.	 Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with em routing. In: International Conference on
Learning Representations (2018)

	11.	 Ivanov, S., Burnaev, E.: Anonymous walk embeddings. In: Dy, J., Krause, A. (eds.) Proceedings of the
35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol.
80, pp. 2191–2200. PMLR, Stockholmsmässan, Stockholm Sweden (2018). http://​proce​edings.​mlr.​
press/​v80/​ivano​v18a.​html

	12.	 Jin, N., Young, C., Wang, W.: Graph classification based on pattern co-occurrence. In: Proceedings of
the 18th ACM conference on Information and Knowledge Management, pp. 573–582 (2009)

438 World Wide Web (2023) 26:421–440

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1906.11994
http://proceedings.mlr.press/v80/ivanov18a.html
http://proceedings.mlr.press/v80/ivanov18a.html

1 3

	13.	 Kashima, H., Inokuchi, A.: Kernels for graph classification. In: ICDM Workshop on Active Mining,
vol. 2002, pp. 36–41 (2002)

	14.	 Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv:​
1609.​02907 (2016)

	15.	 Kong, X., Yu, P.S.: Semi-supervised feature selection for graph classification. In: Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 793–
802 (2010)

	16.	 Lee, J.B., Rossi, R., Kong, X.: Graph classification using structural attention. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1666–
1674 (2018)

	17.	 Li, C., Jia, K., Shen, D., Shi, C.J.R., Yang, H.: Hierarchical representation learning for bipartite graphs.
In: IJCAI, pp. 2873–2879 (2019)

	18.	 Li, G., Semerci, M., Yener, B., Zaki, M.J.: Effective graph classification based on topological and
label attributes. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(4), 265–283
(2012)

	19.	 Li, J., Li, S., Zhao, W.X., He, G., Wei, Z., Yuan, N.J., Wen, J.R.: Knowledge-enhanced personalized
review generation with capsule graph neural network. In: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pp. 735–744 (2020)

	20.	 Li, Z., Shen, X., Jiao, Y., Pan, X., Zou, P., Meng, X., Yao, C., Bu, J.: Hierarchical bipartite graph neu-
ral networks: Towards large-scale e-commerce applications. In: 2020 IEEE 36th International Confer-
ence on Data Engineering (ICDE), pp. 1677–1688. IEEE (2020)

	21.	 Li, Z., Wang, X., Li, J., Zhang, Q.: Deep attributed network representation learning of complex cou-
pling and interaction. Knowledge-Based Systems 212, 106618 (2021)

	22.	 Liu, X., Murata, T.: Community detection in large-scale bipartite networks. Transactions of the Japa-
nese Society for Artificial Intelligence 25(1), 16–24 (2010)

	23.	 Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440 (2015)

	24.	 Mallea, M.D.G., Meltzer, P., Bentley, P.J.: Capsule neural networks for graph classification using
explicit tensorial graph representations. arXiv:​1902.​08399 (2019)

	25.	 Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.: gboost: a mathematical programming
approach to graph classification and regression. Machine Learning 75(1), 69–89 (2009)

	26.	 Taylor, W.R.: Protein structure comparison using bipartite graph matching and its application to pro-
tein structure classification. Molecular & Cellular Proteomics 1(4), 334–339 (2002)

	27.	 Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., Borgwardt, K.: Wasserstein weisfeiler–lehman
graph kernels. In: Wallach, H. , Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett
R. (eds.) Advances in Neural Information Processing Systems 32 (NeurIPS), pp. 6436–6446. Curran
Associates, Inc. (2019)

	28.	 Verma, S., Zhang, Z.L.: Graph capsule convolutional neural networks. arXiv:​1805.​08090 (2018)
	29.	 Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D., et al.: A capsule network-based embedding model

for knowledge graph completion and search personalization. In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 2180–2189 (2019)

	30.	 Wang, H., Lian, D., Liu, W., Wen, D., Chen, C., Wang, X.: Powerful graph of graphs neural network
for structured entity analysis. In: World Wide Web pp. 1–21 (2021)

	31.	 Wang, H., Lian, D., Zhang, Y., Qin, L., Lin, X.: Gognn: Graph of graphs neural network for predicting
structured entity interactions. arXiv:​2005.​05537 (2020)

	32.	 Wang, Y., Xiao, W., Tan, Z., Zhao, X.: Caps-owkg: a capsule network model for open-world knowl-
edge graph. Int. J. Mach. Learn. Cybern. 12(6), 1–11 (2021)

	33.	 Wang, Y.G., Li, M., Ma, Z., Montúfar, G., Zhuang, X., Fan, Y.: Haar graph pooling. In: ICML, pp.
9952–9962 (2020)

	34.	 Wang, Z., Zhou, M., Arnold, C.: Toward heterogeneous information fusion: bipartite graph convolu-
tional networks for in silico drug repurposing. Bioinformatics 36(Supplement_1), i525–i533 (2020)

	35.	 Wu, J., Pan, S., Zhu, X., Cai, Z.: Boosting for multi-graph classification. IEEE Transactions on Cyber-
netics 45(3), 416–429 (2014)

	36.	 Wu, J., Pan, S., Zhu, X., Zhang, C., Philip, S.Y.: Multiple structure-view learning for graph classifica-
tion. IEEE Transactions on Neural Networks and Learning Systems 29(7), 3236–3251 (2017)

	37.	 Wu, Z., Song, C., Chen, Y., Li, L.: A review of recommendation system research based on bipartite
graph. In: MATEC Web of Conferences, vol. 336, p. 05010 (2021)

	38.	 Xinyi, Z., Chen, L.: Capsule graph neural network. In: International conference on learning representa-
tions (2018)

439World Wide Web (2023) 26:421–440

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1902.08399
http://arxiv.org/abs/1805.08090
http://arxiv.org/abs/2005.05537

1 3

	39.	 Yang, J., Zhao, P., Rong, Y., Yan, C., Li, C., Ma, H., Huang, J.: Hierarchical graph capsule network.
arXiv:​2012.​08734 (2020)

	40.	 Yang, R., Dai, W., Li, C., Zou, J., Xiong, H.: Ncgnn: Node-level capsule graph neural network. arXiv:​
2012.​03476 (2020)

	41.	 Yin, R., Li, K., Zhang, G., Lu, J.: A deeper graph neural network for recommender systems. Knowl-
edge-Based Systems 185, 105020 (2019)

	42.	 Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph clas-
sification. In: AAAI, pp. 4438–4445 (2018)

440 World Wide Web (2023) 26:421–440

http://arxiv.org/abs/2012.08734
http://arxiv.org/abs/2012.03476
http://arxiv.org/abs/2012.03476

	Bipartite graph capsule network
	Abstract
	1 Introduction
	2 Preliminaries
	3 Model
	3.1 Framework
	3.2 One-mode projection
	3.3 Graph capsule framework
	3.4 Graph capsule layers
	3.5 Learning objectives

	4 Experiment
	4.1 Datasets and baselines
	4.2 Experiment Settings
	4.3 Bipartite graph classification results
	4.4 Parameter Analysis

	5 Related work
	6 Conclusion
	Acknowledgements
	References

