
Received: 19 November 2023 - Accepted: 11 December 2023

DOI: 10.1002/ccs3.12014

AR T I C L E

Proteome‐wide assessment of human interactome as a
source of capturing domain–motif and domain‐domain
interactions

Sobia Idrees1,2 | Keshav Raj Paudel2

1School of Biotechnology and Biomolecular

Sciences, University of New South Wales,

Sydney, New South Wales, Australia

2Centre for Inflammation, Centenary Institute

and the University of Technology Sydney,

School of Life Sciences, Faculty of Science,

Sydney, New South Wales, Australia

Correspondence

Sobia Idrees

Email: sobia.idrees@uts.edu.au

Funding information

University of New South Wales

Abstract

Protein–protein interactions (PPIs) play a crucial role in various biological processes by

establishing domain–motif (DMI) and domain–domain interactions (DDIs). While the

existence of real DMIs/DDIs is generally assumed, it is rarely tested; therefore, this

study extensively compared high‐throughput methods and public PPI repositories as

sources for DMI and DDI prediction based on the assumption that the human inter-

actome provides sufficient data for the reliable identification of DMIs and DDIs.

Different datasets from leading high‐throughput methods (Yeast two‐hybrid [Y2H],

Affinity Purification coupled Mass Spectrometry [AP‐MS], and Co‐fractionation‐
coupled Mass Spectrometry) were assessed for their ability to capture DMIs and DDIs

using known DMI/DDI information. High‐throughput methods were not notably worse

than PPI databases and, in some cases, appeared better. In conclusion, all PPI datasets

demonstrated significant enrichment in DMIs and DDIs (p‐value <0.001), establishing

Y2H and AP‐MS as reliable methods for predicting these interactions. This study

provides valuable insights for biologists in selecting appropriate methods for predicting

DMIs, ultimately aiding in SLiM discovery.
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1 | INTRODUCTION

Protein–protein interactions (PPIs) are indispensable for sustaining

essential molecular functions in living cells. They serve various

functions, such as catalyzing metabolic reactions, transporting mol-

ecules, modifying enzymatic kinetics, and adjusting protein speci-

ficity.1–3 Over the last decade, numerous studies have uncovered

PPIs in diverse organisms.4,5 The insights gained from these in-

vestigations are widely applied to understand the cellular organiza-

tion of organisms and address diseases, including bacterial/viral

infections and cancer, through disruption of signaling events by

targeting PPIs.6,7 Despite these advancements, the human PPI

interactome remains incomplete compared to transcriptome and

genome reference sequences.8

Predominantly, known PPIs are mediated by two types of mod-

ules: domains and short linear motifs (SLiMs). Domains exhibit

globular structures formed by long peptides, while SLiMs are linear,

recurring functional peptides with 2–15 contiguous residues.9–14

SLiMs participate in various cellular processes,15,16 such as sub‐
cellular localization, post‐translational modification (PTM), regulato-

ry functions, protein trafficking, cell cycle control, signal transduction,

and stabilization of scaffolding processes.17,18 SLiMs are often found
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in intrinsically disordered protein regions (IDRs)19–22 and interact

with domains of other proteins to establish transient and low‐affinity

domain–motif interactions (DMIs) in the 1–150 μM range.22–24

Despite the critical role of DMIs in mediating essential cellular

functions, only a fraction has been identified and cataloged in re-

sources such as Eukaryotic Linear Motif (ELM)23 and 3DID,25 raising

concerns that numerous DMIs are yet to be discovered.2,7,10,12

Various experimental techniques have emerged in recent years

for detecting PPIs, each with advantages and drawbacks. Small‐scale

experiments are good at uncovering a limited number of high‐quality

PPIs. In contrast, high‐throughput methods can identify numerous

PPIs, but the quality of these interactions tends to be lower.4,5 Yeast

two‐hybrid (Y2H), Affinity Purification coupled Mass Spectrometry

(AP‐MS) and Co‐fractionation‐coupled Mass Spectrometry (CoFrac‐
MS) are three widely recognized methods that have detected a

significant proportion of PPIs.7 The data generated by these PPI

detection methods are instrumental in studying, protein complexes,

biological pathways, and identifying potential drug targets. However,

ensuring the biological significance of the knowledge gained from

studying PPIs requires focusing on the quality of the detected

interactions.8,26 High‐throughput methods may inadvertently cap-

ture false positive interactions, necessitating experimental and

computational validation approaches.8,26 Detecting PPIs also faces

challenges related to the physiological settings during experiments, as

specific conditions influence certain PPIs. Factors such as the PTMs,

transient nature of interactions, IDRs and protein abundance can

impact PPI detection. Consequently, uncovering a proteome‐wide

interactome proves to be a formidable task. To assess the reliability

of PPIs, two common approaches are employed: designing new

experimental methods for validation or developing computational

methods to evaluate reliability by filtering out potential false positives.

This involves determining the probability of the observed PPIs.8,27

The significance of data generated by current high‐throughput

screens in uncovering novel SLiMs and DMIs is acknowledged. How-

ever, applying high stringency filtering poses a risk of losing low‐
affinity DMIs.8,26 Only 1% of DMIs have been identified from high‐
throughput data, raising concerns about the potential depletion of

DMIs through current methods. It becomes crucial to employ suitable

PPI detection techniques when exploring SLiMs or DMIs.28 Despite

the growing importance, there hasn’t been a dedicated study to vali-

date the effectiveness of current methods in terms of capturing DMIs

and DDIs.3,7 Therefore, we conducted a comprehensive interactome‐
wide comparative study to assess various high‐throughput methods

and databases as a source of capturing DMIs and DDIs, which will

eventually assist system biologists in selecting appropriate methods

for discovering SLiMs or DMIs.

2 | METHODS

2.1 | Data collection and pre‐processing

The data on SLiMs was obtained from the ELM database,23 renowned

for its experimentally validated and manually curated SLiM

information. This makes a reliable source for known SLiM mediated

interactions. A total of 327 ELM classes (distinct SLiMs), encom-

passing experimentally validated motif instances (2278 specific pro-

tein occurrences), associated interacting domain data (200 ELM

interacting domains), and known human DMIs (1236 human DMIs)

were retrieved from [http://www.elm.eu.org/] on 2023‐06‐23. Five

high‐throughput interaction datasets—HI‐II‐14,29 CoFrac‐12,30

CoFrac‐15,31 BioPlex2.0,32 and QUBIC‐1533 were retrieved. Addi-

tionally, five prominent PPI databases were assessed: BioGrid

v4.42,34 IntAct,35 the High‐quality INTeractome (HINT) database,36

the Human Integrated Protein–Protein Interaction rEference (HIP-

PIE)38 and the Human Protein Reference Database (HPRD).37 Bio-

Grid and IntAct were narrowed down to human interactions, with

datasets mapped onto Uniprot IDs, restricted to pairs of reviewed

Uniprot proteins, and treated as nonredundant symmetrical in-

teractions. PPI subsets by experiment type (AP‐MS, Y2H, and Co‐
fractionation) were created for BioGrid, IntAct, and HIPPIE. Key-

words such as “Two‐hybrid,” “Co‐fractionation,” and “Affinity Cap-

ture‐MS” were employed for pulling interactions from the BioGrid

database. Only high‐throughput two‐hybrid interactions were

selected. For the IntAct database, molecular interaction ontologies

(MI:0676, MI:0400, MI:0004, and MI:0018) were utilized to extract

specific subsets. The HIPPIE database interactions were obtained

using keywords “Affinity‐Capture,” “Two‐hybrid,” and “Co‐fraction-

ation.” All PPI datasets were constrained to reviewed Uniprot protein

pairs, made symmetrical, and redundant entries were eliminated. The

analysis focused on directed networks featuring specific motif and

domain proteins, necessitating the inclusion of both A–B and B–A

interactions. The percentage (%) of explained PPIs was calculated

using nonredundant symmetrical PPI pairs (i.e., A‐B and B‐A). Addi-

tionally, a False Discovery Rate (FDR) for individual DMIs was esti-

mated as the proportion of predicted DMIs explained, on average, by

random associations, using the mean random DMI count.

2.2 | DMI enrichment

To assess enrichment differences in various high‐throughput methods,

we utilized known DMI and SLiM information from the ELM database.

The analysis was conducted using our previously developed tool,

SLiMEnrich v1.5.1,39 with iso‐filter, to evaluate enrichment in

different PPI datasets. Enrichment estimation employed a permuta-

tion test, where proteins were randomly selected to create new

interaction pairs without replacement from the original PPI data,

ensuring an identical degree for each protein due to permutation

without replacement. The datasets underwent 1000 permutations to

obtain a robust estimation of random DMIs. Enrichment was quanti-

fied as an empirical p‐value, corresponding to the probability of

observing at least as many DMIs in random PPI data. The DMI

enrichment (E‐score) was calculated as the ratio of predicted DMI to

the mean (μ) random DMI as follows.

Escore¼
DMIpred

μDMIrand
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The total proportion of potential DMIs found in PPIs was

determined, representing the proportion of theoretically identifiable

DMIs given the proteins in the PPI datasets. The distribution of the

real DMI count over 1000 randomizations was estimated as follows:

DMIreal ¼Oobs − Rrand

DMIreal represents the estimated real number of DMIs in the PPI

dataset.

Oobs is the number of observed DMIs in the real PPI dataset.

Rrand is the distribution of observed DMIs in the random PPI

datasets.

Normalization was performed by dividing the number (n) of real

DMIs by the mean (μ) random DMIs, which is expressed as:

DMInorm ¼
nDMIreal

μDMIrand

For this analysis, the ELMi‐Protein strategy of SLiMEnrich was

applied to assess enrichment in various publicly available datasets.

The ELMi‐Protein strategy maps PPI protein pairs directly onto

known DMI data in ELM. Additionally, the impact of each ELM type

on enrichment was examined to identify whether specific ELM types

influenced DMI enrichment differently in various high‐throughput

methods. Significance in the capturing of different interactions

among datasets was evaluated using Pearson's pairwise chi‐square

test. This involved pairwise comparisons of all possible combina-

tions of datasets, with p‐values calculated to determine statistical

significance.

2.3 | Assessing DMI prediction quality

To assess the accuracy of DMI predictions, we adopted various

strategies. Initially, we utilized the ELMc‐Protein strategy, which

gauges enrichment based on known ELM instances provided by the

ELM database. To introduce a more realistic noise factor into the

DMI network, we incorporated domain information into the equation.

This was achieved through the ELMc‐Domain strategy, wherein

known ELM instances were aligned with their corresponding Pfam

domain partners. The evaluation of DMI enrichment encompassed

calculations by SLiMEnrich v1.5.1 and an assessment of the actual

DMIs captured from all PPI datasets.

2.4 | DDI enrichment

We also assessed DDI enrichment by incorporating experimentally

validated DDI data from the 3DID database25 (https://3did.irbbar-

celona.org/download.php). 3DID stands out as a reliable resource for

known interactions due to its compilation of high‐resolution 3D

structures of established PPIs.25 We retrieved PDB Ids of 3D DDI

complexes and their interacting chain information from the

3DID database, totaling 15,717 DDIs [retrieved: 2023‐02‐10].

Subsequently, we mapped the interacting PDB chains to their cor-

responding Uniprot proteins, utilizing the PDBSWS tool.40 The

resulting DDI protein pairs, comprising 5589 DDIs, were rendered

nonredundant and restricted to reviewed Uniprot proteins. This

dataset was then employed as a known DDI reference to assess

enrichment across different datasets using SLiMEnrich v1.5.1,

applying the same methodology as previously defined for DMIs.39

2.5 | Evaluating the impact of PPI prediction quality
on DMI enrichment

To gauge the impact of PPI quality, we employed an enrichment‐
based evaluation approach. The HIPPIE PPI dataset was stratified

into 10 distinct subsets based on their confidence scores, ranging

from 0.1 to 1. Each subset was defined as follows: Subset 0.1

encompassed PPIs with confidence scores ranging from 0.11 to 0.19,

while subset 0.2 included PPIs with confidence scores ranging from

0.20 to 0.29. Similarly, subset 0.3 consisted of PPIs with confidence

scores ranging from 0.31 to 0.39, and so forth. The pattern continued

with each subsequent subset. The last subset, subset 1, comprised

PPIs exclusively with a confidence score of 1. Then the relationship

between PPI confidence score and DMI enrichment was observed for

generated groups. Intriguingly, this analysis helped to assess the

relationship between these two factors and uncovered whether the

quality of PPIs can influence DMI enrichment.

3 | RESULTS

3.1 | High‐throughput screens and public PPI
resources capture DMIs and DDIs

This research involves a comparison of five distinct proteome‐wide

human interactomes and five publicly accessible databases. The aim

is to assess their effectiveness in capturing DMIs and DDIs. PPIs

were made nonredundant (NR) and symmetrical, and analysis was

restricted to reviewed UniProt protein pairs of the human inter-

actome. The NR PPI pairs were used to determine domain motif

enrichment using SLiMEnrich v1.5.1.39 Each dataset demonstrated

notable enrichment (p‐value <0.05), indicating their proficiency in

capturing DMIs. The BioPlex2.0 AP‐MS dataset consisted of 53,710

symmetrical and nonredundant PPIs, with merely 29 belonging to

the known DMIs in the ELM database. Despite initial impressions,

permutation testing uncovered an enrichment of around 106 times

the anticipated number of known DMIs that would result from

random association of the 53,710 PPIs (p < 0.001). Conversely, the

second AP‐MS dataset, QUBIC‐15, captured 40 known DMIs in

50,573 PPIs, exhibiting comparatively lower enrichment compared

to BioPlex2.0. HI‐II‐14, where PPIs were predicted using the Y2H

method, had only 17 known DMIs. Enrichment for HI‐II‐14 was

also high (81�) showing that the Y2H screen also captures DMIs.

Co‐fractionation methods, however, captured only a few known
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DMIs (CoFrac‐12 = 3 DMIs, CoFrac‐15 = 10 DMIs) (Table 1,

Figure 1A). BioPlex2.0 and QUBIC‐15 shared a 10% overlap be-

tween identified DMIs, while the rest of the methods only shared a

small fraction of 1%–3% in identified DMIs (Figure 1B). To further

evaluate the effectiveness of PPI data in capturing DMIs, we

expanded our analysis to include various comprehensive PPI data-

bases featuring information from high‐throughput studies. Specif-

ically, we selected five prominent databases—IntAct, BioGrid,

HPRD, HINT, and HIPPIE—to predict DMIs within the human

interactome. BioGrid ranked highest in terms of enrichment, fol-

lowed by HPRD and HINT. While HIPPIE captured more DMIs than

other databases, it exhibited the lowest level of enrichment.

Moreover, the enrichment scores of all other datasets were lower

than those observed in HI‐II‐14 and BioPlex2.0 (Table 1,

Figure 1A). The overlap between the known DMIs between all

databases was quite low (1%–4%) (Figure 1C).

We also assessed the effectiveness of these datasets in

capturing DDIs. To achieve this, we utilized established DDI data

from the 3DID database25 and examined the enrichment across

different datasets. Among high‐throughput screens, BioPlex2.0

demonstrated the highest enrichment, with HI‐II‐14 and QUBIC‐15

following suit. The CoFrac datasets also exhibited noteworthy

enrichment in terms of DDIs (Figure 1D). However, only a minor

fraction of DDIs was shared among all methods (Figure 1E). Among

databases, HPRD emerged as the most enriched dataset for

capturing DDIs, trailed by BioGrid, HIPPIE, IntAct, and HINT

(Table 1, Figure 1B). Interestingly, all databases had 7% of known

DDIs in common across them (Figure 1F).

TAB L E 1 Assessment of different PPI resources in terms of capturing DMIs and DDIs.

Dataset PPIsa Method potDMIsb DMIsc
DMI enrichmentd

(4 s.f) potDDIse DDIsf
DDI enrichmentg

(4 s.f.)

HI‐II‐1429 25,956 Y2H 119 17 81.34** 1272 271 47.65**

[retrieved: 2023‐06‐01]

BioPlex2.032 53,710 AP‐MS 226 29 106.2** 2295 324 47.75**

[retrieved: 2023‐06‐01]

QUBIC‐1533 50,573 AP‐MS 292 40 21.27* 2149 653 34.63**

[retrieved: 2023‐06‐01]

CoFrac‐1230 27,643 CoFrac‐MS 104 3 13.39** 1544 362 13.64**

[retrieved: 2023‐06‐01]

CoFrac‐1531 32,452 CoFrac‐MS 144 10 23.64** 1810 395 13.65**

[retrieved: 2023‐06‐01]

HPRD37 71,811 All 773 324 23.27** 4234 1893 57.94**

[retrieved: 2023‐06‐01]

HINT36 203,733 All 765 94 18.43** 4227 753 27.57**

[retrieved: 2023‐06‐01]

IntAct35 159,377 All 880 244 14** 4643 1311 28.24**

[retrieved: 2023‐04‐23]

BioGrid v4.4.234 235,458 All 842 385 28.07** 4633 2075 32.54**

[retrieved: 2023‐06‐01]

HIPPIE v2.138 689,858 All 890 305 16.06** 5000 2667 32.39**

[retrieved: 2023‐06‐01]

Abbreviations: CoFrac‐MS, Co‐Fraction‐coupled Mass Spectrometry; DDI, domain–domain interaction; DMI, Domain Motif Interactions; HINT,

High‐quality Interactome; HPRD, Human Protein Reference Database; PPI, Protein–protein interaction; SLiM, Short Linear Motifs.
aCount of symmetrical and nonredundant PPIs involving Uniprot‐reviewed protein pairs.
bTotal count of all possible DMIs based on the proteins present in each dataset.
cKnown interactions between SLiMs and proteins sourced from the ELM database, presented as a percentage captured from potential DMIs.
dActual enrichment of known DMIs captured from PPIs.
eTotal count of all possible DDIs based on the proteins in each dataset.
fKnown interactions between domain–domain pairs from the 3DID database, expressed as a percentage captured from potential DDIs.
gActual enrichment of known DDIs captured from PPIs.

*p‐value <0.05, **p‐value <0.001.
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The overall proportion of DMIs captured from known DMIs

revealed that BioGrid achieved the highest percentage (31%) of DMIs

from the known human DMIs dataset (1236 known human DMIs).

Following closely, HPRD captured 26% of the DMIs. In comparison,

all other datasets captured a lower proportion of DMIs than these

two (Figure 1G). Similarly, the overall proportion of DDIs captured

from the total known DDIs demonstrated that HIPPIE secured the

highest percentage (~48%) of DDIs from the total known DDIs

dataset (5589 DDIs). BioGrid followed with 45% of DDIs captured,

HPRD with 37% DDIs, and IntAct with 23% DDIs. Like the DMI

analysis, all other datasets exhibited a lower proportion of DDIs

compared to these datasets (Figure 1G).

Upon close examination of our analysis, less than 1% of DMIs and

less than 3% of DDIs can be explained by the known DMIs and DDIs.

Furthermore, a minimal number of PPIs were discovered to be both

DMIs and DDIs (~3%) (Figure 1H). To evaluate the significance of real

DMIs in each dataset in relation to other datasets, a chi‐square

pairwise test was conducted. All datasets showed significant differ-

ences (p < 0.001) when compared to each other except CoFrac‐12

compared to CoFrac‐15.

3.2 | Exploring the ability of binary and co‐complex
interactions to detect DMIs and DDIs

As both the BioPlex2.0 and HI‐II‐14 datasets exhibited substantial

enrichment (~106�, 81�), suggesting that both Y2H and AP‐MS

screens effectively captured DMIs, we opted to delve deeper into

F I GUR E 1 Identification of known DMIs and DDIs from different datasets. (A) Normalized number of DMIs captured over 1000

randomizations. The Y‐axis represents the normalized number of DMIs, with each bar depicting the real DMIs captured over 1000
randomizations, calculated by subtracting random DMIs from observed DMIs. (B) Overlap of captured known DMIs between high‐throughput
datasets. (C) Overlap of captured known DMIs between PPI databases. (D) Normalized number of DDIs captured over 1000 randomizations.

The Y‐axis signifies the normalized number of DDIs, and each bar indicates the real DDIs captured over 1000 randomizations, obtained by
subtracting random DDIs from observed DDIs. (E) Overlap of captured known DDIs between high‐throughput datasets. (F) Overlap of
captured known DDIs between PPI databases. (G) Total proportion of DMIs and DDIs captured from the known human DMIs (1236 DMIs) and

known human DDIs dataset (5589 DDIs). (H) Percentage of PPIs that are known DMIs, DDIs, or both (nonredundant and reviewed proteins
only). The Y‐axis depicts the percentage of PPIs that can be explained as DMIs or DDIs. DDI, domain–domain interaction; DMI, Domain Motif
Interactions; PPI, Protein–protein interaction.
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determining which method, Y2H or AP‐MS, performed better in

capturing DMIs. We conducted a binary versus co‐complex PPI

analysis, separating binary PPIs (Y2H) and co‐complex PPIs (AP‐MS

and CoFrac‐MS) from BioGrid, IntAct, and HIPPIE databases to

assess enrichment. Both binary and co‐complex PPIs displayed sig-

nificant DMI enrichment when compared to random protein pairs.

While all methods captured a notable number of known DMIs, the

Y2H method exhibited higher DMI enrichment (p‐value <0.001)

compared to other methods. We also examined which method,

among AP‐MS, Y2H, and CoFrac‐MS, excelled in capturing DDIs.

Once again, the Y2H method demonstrated higher enrichment than

the other methods (p < 0.001). In summary, Y2H screens showed

superior enrichment compared to other methods in capturing both

DMIs and DDIs (Table 2).

3.3 | The enrichment experienced a decline with
the introduction of noise into the DMI network

We employed noisier DMI predictions to augment the identification

of real DMIs as only a small fraction of known DMIs was captured by

high‐throughput datasets. The objective was to assess whether the

general pattern of enrichment remained consistent. Initially, the

ELMc‐Protein strategy was implemented, wherein known SLiMs

were mapped onto their respective protein partners through ELM

classes. While all datasets maintained significant enrichment (p‐value

<0.001) over random expectation, the overall enrichment scores

decreased for most datasets compared to the ELMi‐Protein strategy

(Figure 2A). Subsequently, the ELMc‐Domain strategy, incorporating

domain information, was employed. Despite a further decline in

enrichment scores, the overall trend of this strategy remained

consistent with that of ELMc‐Protein (Figure 2C, Table 3). The total

proportion of predicted DMIs captured from potential DMIs, repre-

senting the theoretical identifiability of DMIs given the proteins in

the PPI datasets, was then calculated. Using the ELMc‐Protein

strategy, BioGrid, HPRD, and HIPPIE databases predicted the high-

est proportion of DMIs from potential DMIs. Among high‐throughput

screens, HI‐II‐14 identified the highest proportion of DMIs, followed

by BioPlex2.0, QUBIC‐15, CoFrac‐15, and CoFrac‐12 (Figure 2B).

Conversely, only a small fraction (1%–8%) of DMIs was predicted

from potential DMIs through the ELMc‐Domain strategy, with HIP-

PIE having the highest proportion of predicted DMIs from potential

DMIs (Figure 2D). Despite the increase in the number of DMIs with

the elevation of noise in DMI prediction quality, the high enrichment

of these datasets suggests that the additional DMIs are likely to be

authentic (Table 3).

3.4 | High‐quality PPIs can be a good source of
capturing DMIs

We delved deeper into understanding how the quality of PPIs could

influence DMI enrichment. Specifically, we focused on the HIPPIE

dataset and assessed the enrichment for PPIs with varying confi-

dence scores (ranging from 0 to 1, where 1 represents highly confi-

dent PPIs). Our aim was to explore how the confidence score

TAB L E 2 Enrichment of DMIs and DDIs in high‐throughput PPIs.

Dataset Method PPIsa potDMIsb DMIsc
DMI enrichmentd

(4 s.f.) potDDIse DDIsf
DDI enrichmentg

(4 s.f.)

BioGrid AP‐MS 95,034 427 80 23.82** 1871 540 25.39**

Two‐hybrid 44,569 603 98 56.06** 2723 672 75.36**

CoFrac‐MS 37,532 245 22 48.03** 1979 392 18.15**

IntAct AP‐MS 17.926 223 27 16.47** 1757 184 8.83**

Two‐hybrid 17,533 378 35 28.41** 1980 220 22.06**

HIPPIE AP‐MS 13,675 435 94 31.28** 1532 294 43.5**

Two‐hybrid 95,403 778 121 49.94** 3548 792 74.95**

CoFrac‐MS 281 10 3 27.52** 43 20 29.07**

Abbreviations: CoFrac‐MS, Co‐Fraction‐coupled Mass Spectrometry; DDI, domain–domain interaction; DMI, Domain Motif Interactions; HIPPIE,

Human Integrated Protein–Protein Interaction rEference; PPI, Protein–protein interaction.
aNumber of nonredundant, reviewed, and symmetrical PPIs.
bAll potential DMIs.
cKnown DMIs captured by different datasets.
dEnrichment of known DMIs.
eAll potential DDIs.
fKnown DDIs captured by different datasets.
gEnrichment of DDIs.

**p‐value <0.001.
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impacted overall DMI enrichment. The quality of PPIs indeed had an

influence on enrichment. PPIs with higher confidence scores (0.6–0.9)

exhibited greater enrichment in terms of capturing known DMIs

(Figure 3A). We extended this analysis to evaluate the impact of PPI

quality on DDI enrichment. However, there was not a straightfor-

ward correlation between PPI confidence and DDI enrichment. Once

again, the optimal confidence score for DDI prediction fell between

0.8 and 0.9 (Figure 3A).

3.5 | Different ELM types can have an impact on
DMI enrichment

The ELM database encompasses six distinct ELM types, namely

cleavage (CLV), degron (DEG), docking (DOC), ligand (LIG), post‐
translational modification sites (MOD), and targeting (TRG). To

investigate whether specific ELM types influenced the effectiveness of

PPI detection techniques in capturing DMIs, we examined the

enrichment for individual ELM types using the ELMc‐Protein strategy.

This analysis involved amalgamating high‐throughput PPI data from

BioGrid, HIPPIE, and IntAct databases. Concerning predicted DMIs, all

methods exhibited a higher capture of LIG‐mediated interactions

compared to other ELM classes, while no CLV‐mediated interactions

were identified (Figure 3B). Real DMIs, observed over 1000 random-

izations, indicated a significant presence of DEG‐mediated DMIs but

did not capture a substantial amount of CLV (Figure 3C). Notably, AP‐
MS PPIs captured more LIG & DOC‐mediated real DMIs, while Two‐
hybrid and CoFrac methods captured more DEG‐mediated DMIs. In

summary, this analysis suggests that different ELM types can have

varying impacts on the detection of DMIs.

4 | DISCUSSION

Various methods have emerged to explore DMI, but most of them

focus on specific domain families (PDZ, SH2, SH3, and WW), leaving

gaps in our understanding.3 Contemporary studies aim to identify

SLiMs alongside their binding partners in the human proteome.41,42

While low‐throughput studies have contributed to DMI knowledge,

the efficiency of high‐throughput methods in capturing different in-

teractions, including DMIs and DDIs, remains unexplored. To address

this, we compared PPIs from different methods and databases,

assessing their ability to capture DMIs and DDIs. A challenge in PPI

analysis lies in inconsistent protein identifiers across datasets.43 To

F I GUR E 2 Predicting DMIs utilizing ELMc‐Protein and ELMc‐Domain strategies. (A) Normalized number of DMIs captured over 1000
randomizations using the ELMc‐Protein strategy. (B) Total proportion of DMIs predicted from potential DMIs using the ELMc‐Protein

strategy. Potential DMIs represent the overall proportion of those DMIs that could theoretically be identified based on the proteins in the
PPIs. (C) Normalized number of DMIs captured over 1000 randomizations using the ELMc‐Domain strategy. (D) Total proportion of predicted
DMIs captured from potential DMIs using the ELMc‐Domain strategy. DMI, Domain Motif Interactions; ELM, Eukaryotic Linear Motif; ELMc‐
Domain, Protein Interactions via ELM Class and Pfam Domains; ELMc‐Protein, Known ELM Instances Interacting Proteins.
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ensure uniformity, we mapped datasets lacking Uniprot IDs (e.g.,

CoFrac‐12, CoFrac‐15, HI‐II‐14, HIPPIE, BioGrid, and HPRD) to their

respective Uniprot IDs to facilitate reliability and mitigate redun-

dancy issues. The resulting number of interactions, pre‐ and post‐
mapping, instilled confidence in the datasets for subsequent anal-

ysis. Evaluation of high‐throughput screens (e.g., HI‐II‐14, BioPlex2.0,

CoFrac‐12, CoFrac‐15, and QUBIC‐15) revealed significant enrich-

ment in capturing DMIs compared to random protein pairs. Despite

capturing less than 1% of known DMIs, the substantial enrichment

fold suggests the authenticity of the captured interactions. High

throughput methods, specifically Y2H and AP‐MS, demonstrated

comparable or superior performance to curated PPI databases in

DMIs enrichment.

Assessment of DDI capture by different datasets showed signifi-

cant enrichment across the board, with BioPlex2.0 and HI‐II‐14

exhibiting higher enrichment than CoFrac datasets. However, only a

small fraction of PPIs could be attributed to known DDIs, emphasizing

the limited understanding of these interactions. Known DMI data

captured by diverse datasets accounted for less than 1% of PPIs,

aligning with literature indicating the scarcity of known DMIs.28

Analysis of known DDI data from 3DID revealed less than 3% of

coverage, implying potential gaps in high‐throughput methods in

capturing these interactions. Schuster‐Bockler and Bateman suggest

that the existing DDI data within iPfam can account for only a fraction,

specifically 4%–19%, of protein interactions in Homo sapiens.44 This

underscores the worry that a significant portion of DMIs/DDIs re-

mains undiscovered. The quantity of recognized DMIs and DDIs in

PPIs, along with their enrichment, underscores the significance of

protein composition in identifying these interactions. HIPPIE exhibi-

ted a greater proportion of known DMIs compared to other databases.

Conversely, high‐throughput methods demonstrated a lower pro-

portion of known DMIs when contrasted with curated databases.

The two distinct methods for mapping PPIs involve binary in-

teractions, where two proteins have direct physical contact and co‐
complex interactions, which usually require additional proteins to

form multimeric complexes. These complexes may encompass both

TAB L E 3 Noisier DMI prediction strategies.

DMI prediction strategy Dataset Method potDMIsa DMIsb Enrichmentc (4 s.f.) FDRd

ELMc‐protein HI‐II‐14 Y2H 165 26 34.26** 0.0219

BioPlex2.0 AP‐MS 327 40 107.5** 0.0093

QUBIC‐15 AP‐MS 516 50 15.99** 0.062

CoFrac‐12 CoFrac‐MS 150 5 16.03** 0.0624

CoFrac‐15 CoFrac‐MS 236 12 24.14** 0.0414

HPRD All 1510 445 15.75** 0.063

HINT All 1330 146 16.42** 0.060

IntAct All 1575 362 12.8** 0.078

BioGrid All 1617 486 18.78** 0.053

HIPPIE All 1652 407 9.97** 0.1003

ELMc‐domain HI‐II‐14 Y2H 6626 71 7.4** 0.134

BioPlex2.0 AP‐MS 19,404 110 6.03** 0.1657

QUBIC‐15 AP‐MS 22,979 166 2.29** 0.4353

CoFrac‐12 CoFrac‐MS 4526 30 2.29** 0.4354

CoFrac‐15 CoFrac‐MS 6708 40 4.26** 0.2344

HPRD All 83,239 1971 3.98** 0.250

HINT All 84,954 784 3.67** 0.272

IntAct All 97,391 1433 2.54** 0.3934

BioGrid All 95,091 1957 3.56** 0.280

HIPPIE All 110,042 8843 2.47** 0.403

Abbreviations: DMI, Domain Motif Interactions; FDR, False Discovery Rate; HINT, High‐quality INTeractome; HIPPIE, Human Integrated Protein–

Protein Interaction rEference; HPRD, Human Protein Reference Database; Y2H, Yeast two‐hybrid.
aPotential DMIs count.
bDMIs predicted in the PPIs.
cEnrichment of DMIs.
dFDR of the predictions.

**p‐value <0.001.
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direct and indirect interactions among various proteins. While Y2H is

renowned for identifying binary interactions, AP‐MS and CoFrac‐MS

are employed to detect co‐complex interactions.4 Given the higher

enrichment fold observed in both BioPlex2.0 and HI‐II‐14 datasets

(~106�, 81�), we delved deeper into determining which method,

binary or co‐complex, excelled in identifying DMIs and DDIs. We

extracted binary PPIs (Y2H) and co‐complex PPIs (AP‐MS and

CoFrac‐MS) from three renowned databases (BioGrid, IntAct, and

HIPPIE) for the enrichment evaluation. In prior studies,45,46 binary

approaches have been utilized to identify DMIs, such as the identi-

fication of SUMO interacting motifs that interact with SUMO1 and

SUMO2 proteins.45,46 However, there are no specific studies

employing co‐complex approaches to discover DMIs. Our analysis

revealed significant DMI enrichment in all datasets compared to

random protein pairs, with no clear winner between Y2H and CoFrac

data. Y2H and CoFrac data notably captured degron motif‐mediated

DMIs, while AP‐MS captured more conventional ligand‐mediated

DMIs. ELM‐type analysis indicated that CLV and MOD were gener-

ally not effective at capturing DMIs. The rationale behind other ELM

types capturing significant DMIs, while CLV and MOD could not,

might be related to motif complexity or their low complexity nature,

and involvement in PTMs. Overall, the analysis revealed that MOD

and CLV types were generally not effective at capturing DMIs. In

future studies, it would be intriguing to conduct a comparative

analysis, evaluating the efficacy of other different methods, including

BioID Mass Spectrometry47 and Phage Display,48 in capturing DMIs

and DDIs.

As evident, large PPI databases contain numerous interactions,

but only a fraction is known to be mediated by DMIs. Examining the

enrichment patterns of these databases revealed a limitation in

enrichment due to the low number of known DMIs, indicating a sub-

stantial reservoir of undiscovered DMIs. To investigate whether

F I GUR E 3 Impact of PPI quality and ELM types. (A) Impact of PPI quality on DMI and DDI enrichment: The X‐axis depicts the confidence
scores of various PPI subsets sourced from the HIPPIE database (ranging from 0.1 to 1), while the Y‐axis represents the enrichment
score of PPIs within distinct subsets based on their confidence scores. (B) Influence of ELM types on DMI enrichment in interactions from

three high‐throughput methods (AP‐MS, Y2H, and CoFrac‐MS) obtained from PPI databases. (C) The normalized count of real DMIs captured
by different ELM classes. CoFrac‐MS, Co‐Fraction‐coupled Mass Spectrometry; DDI, domain–domain interaction; DMI, Domain Motif
Interactions; ELM, Eukaryotic Linear Motif; HIPPIE, Human Integrated Protein–Protein Interaction rEference; PPI, Protein–protein

interaction; Y2H, Yeast two‐hybrid.
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introducing noise through DMI prediction methods could unveil

additional DMIs with significant enrichment, we employed various

strategies available in SLiMEnrich. In recent years, PPI data has been

combined with computational tools to discover new DMIs for recog-

nized domains such as PDZ, WW, SH3, and SH3 domains (e.g., 49–52).

In our approach, we integrated PPI data with motif and domain in-

formation available in the ELM database for DMI predictions. The

introduction of noise in the DMI network, using motif and/or Pfam

domain, increased the number of predicted DMIs, albeit with a decline

in the overall enrichment score for datasets. Generally, the ranking

and trend of dataset enrichments remained consistent when

employing ELMc‐Protein or ELMc‐Domain strategies, aligning with

previous studies that noise in the DMIs diminishes enrichment

scores.39,53 The predicted DMIs from the ELMc‐Protein strategy

exhibited a notably low FDR for high‐throughput datasets, suggesting

their potential authenticity. Conversely, the estimated FDR for indi-

vidual DMI predictions was relatively high (0.1–0.4) for the ELMc‐
Domain strategy, emphasizing the need for caution in interpreting

large‐scale predictions of this nature. Overall, diverse DMI predictions

indicated substantial enrichment in these databases. Motif predictions

from different tools, such as SLiMProb, incorporating conservation

masking, could potentially yield less noisy predictions. Future in-

vestigations could explore the impact of such predictions on the

quality of DMI predictions. Assessing whether PPI quality contributed

to enrichment, we evaluated enrichment in PPIs from the HIPPIE

database based on their confidence score. Higher‐confidence PPIs

showed promise in capturing DMIs, suggesting that curated and high‐
quality PPIs might serve as a valuable source for capturing DMIs.

However, examining the DDI enrichment trend revealed no consistent

correlation with confidence scores, indicating that confidence alone

may not equate to data quality for DDI predictions.

5 | CONCLUSION

The surge in high‐throughput experimental methods has led to the

generation of extensive PPI datasets. Given the error‐prone nature

of these methods, there is a growing need for new approaches to

evaluate the PPIs as potential sources of various interaction types,

such as DMI or DDI. In this study, we scrutinized PPIs derived from

various publicly available resources to gauge their efficacy in

capturing DMIs and DDIs. Our findings revealed significant enrich-

ment across all databases, with both Y2H and AP‐MS showing

promise in capturing DMIs and DDIs. This positions them as potential

methods of choice when exploring interactions involving domains and

motifs.
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