
Agricultural Water Management 284 (2023) 108359

Available online 16 May 2023
0378-3774/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Probabilistic assessment of drought impacts on wheat yield in 
south-eastern Australia 

Keyu Xiang a,b, Bin Wang b,*, De Li Liu b,c,**, Chao Chen d, Cathy Waters e, Alfredo Huete a, 
Qiang Yu f 

a School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia 
b NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia 
c Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia 
d CSIRO Agriculture and Food, Private Bag 5, PO Wembley, WA 6913, Australia 
e NSW Department of Primary Industries, Dubbo NSW 2830, Australia 
f State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China   

A R T I C L E  I N F O   

Handling Editor - Dr. B.E. Clothier  

Keywords: 
Wheat yield 
Drought index 
Copula-based function 
Yield loss probability 
Drought threshold 

A B S T R A C T   

A risk-based approach is more meaningful to quantify the effects of drought on crop yield given the randomness 
nature of past drought events, compared to the deterministic approach. However, the majority of these proba
bilistic studies are conducted at national or global scale to assess the yield loss probability under given drought 
conditions. There is still a lack of research combining droughts and crop yields in a probabilistic way at a local 
scale. Moreover, it is unclear how drought threshold triggering yield loss at a given conditional probability will 
vary in dryland cropping regions. Here, we used wheat yield data from 66 shires in New South Wales (NSW) 
wheat belt and meteorological data from 986 weather stations. A copula-based probabilistic method was 
developed to explore the yield loss probability to various drought conditions. We investigated the drought 
threshold under a given yield loss probability using the constructed copula function. We found that SPEI-6 in 
October was the optimal drought index to represent detrended wheat yield variation as this period covered the 
main growth stages of winter wheat in the study region. Our results show that as the severity of drought 
increased, the wheat yield loss probability also increased. Yield loss probability varied among the study shires, 
mainly due to the various climate conditions of each region. The drought threshold in subregion 1 (the north
west) was highest, followed by subregion 2 (the southwest) and subregion 3 (the eastern), indicating that wheat 
yield in subregion 1 was more sensitive to drought. The findings could provide important direction and 
benchmarks for stakeholders in evaluating the agricultural impact of drought, especially in those drought prone 
areas. We expect that the methodological framework developed here can be extended to other dryland areas to 
provide helpful information to growers, risk management policy makers and agricultural insurance evaluators.   

1. Introduction 

Climate variability can cause various natural hazards (Loukas et al., 
2008; Sun et al., 2023; Yin et al., 2022), with drought being one of the 
most common hazards around the world (Chiang et al., 2021; Christian 
et al., 2021; Meza et al., 2021). Drought can lead to several negative 
effects on ecosystem, including but not limited to, carbon and water 
cycle (Hoover et al., 2022; Yang et al., 2016), vegetation growth (Ding 
et al., 2020b; He et al., 2022), and water resources (Chang et al., 2019; Li 
et al., 2022b). One of the most relevant to human society is the negative 

impact on crop production, which has become a very serious issue, 
especially in those regions and countries where crop is vulnerable to 
drought (Araneda-Cabrera et al., 2021; Deb et al., 2022; Li et al., 2021). 
For example, global yields of wheat and maize can be reduced by 40 % 
and 21 %, respectively, when the water availability ratio was reduced to 
50 % caused by drought events (Daryanto et al., 2016). 

Different drought conditions cause varied magnitudes of yield loss. 
To quantify the effects of the various drought conditions, drought index, 
such as Standardized Precipitation Index (SPI) (McKee et al., 1993) and 
Standardized Precipitation Evapotranspiration Index (SPEI), has been 
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developed and implemented to quantify drought characteristics. SPI is 
the most commonly used meteorological drought index as it is easy to 
compute with only precipitation data. It was used as the standard to 
compare with other indices (Sǒláková et al., 2014; Szalai and Szinell, 
2000). Additionally, SPEI, proposed by Vicente-Serrano et al. (2010), 
was widely used because it adopts a similar mechanism theory to the SPI 
and takes potential evapotranspiration (PET) into account to provide a 
more realistic description of the water variability in the study area. 
Wang et al. (2015b) assessed the change of long-term (1961–2012) 
drought severity in China with SPI and SPEI. They found that SPI/SPEI 
was able to characterize the evolution of the wet and dry conditions of 
the study region. Haile et al. (2020) analysed drought pattern on 
monthly, seasonal and interannual basis with SPEI at various timescales 
in the Greater Horn of Africa. The results showed that drought was more 
frequent and persistent in Sudan and Tanzania, but more severe in So
malia, Ethiopia and Kenya. 

The characteristics of the effects of droughts on crop yield can be 
captured by the drought index (Araneda-Cabrera et al., 2021; Mokhtar 
et al., 2022). But the suitability of SPI and SPEI was highly dependent on 
the study area and crop types. For example, Chen et al. (2020b) 
compared the relationship between multiple drought indices and crop 
yield at different time scales. They found that the reliability of yield 
variation analysis was influenced by the choice of drought indices and 
time scales. Labudová et al. (2017) investigated the correlation between 
dry/wet conditions and crop yields in Danubian Lowland and the East 
Slovakian Lowland with SPI and SPEI. They found that the SPEI had a 
higher correlation with yield fluctuations for most crops than SPI except 
potato. Thus, it is important to identify the optimal drought index at 
different time scales to evaluate the effects of drought on crop yield in a 
given study area (Kamali et al., 2022; Prodhan et al., 2022). 

Both statistical models and process-based crop models have been 
widely used to evaluate the effects of drought events on crop yield. For 
example, Zhang et al. (2019) used CERES-Maize model based on risk 
assessment theory to construct a dynamical drought risk assessment 
model for maize and analysed the drought impacts on maize yield in 
north-eastern China. They found that the hazard level caused by drought 
varied in the different growth stages of maize. In Iran, Zarei et al. (2019) 
tested the R2 coefficients between several climate indices and wheat 
yield loss simulated by AquaCrop model. They found that selecting 
optimal index to assess climate change impacts on crop yield was 
required in different regions. As we all know, process-based crop models 
use the parameters calibrated in a few locations to simulate crop yield at 
a large area. However, this approach introduces uncertainties when they 
are applied beyond locations/regions where they are originally devel
oped (Leng, 2021). Moreover, statistical models are used to study the 
impacts of droughts on crop yields by fitting a linear or non-linear re
lationships between long-term historical yield and observed climate 
variables (Kamali et al., 2015; Wambua, 2019). The advantage of such 
empirical analysis is to provide the overall sensitivity of yield response 
to drought given its simplicity and less computation cost. Recently, a 
risk-based approach is more meaningful to study the effects of drought 
on crop yield given the randomness nature of drought events (Feng and 
Hao, 2020; Ribeiro et al., 2019a). As one of probability-based statistical 
approaches, copula function is getting more widely used because of its 
capability of linking several variables to obtain their joint probabilities 
(Sklar, 1973). Copula can establish the joint distribution function of 
variables via combining the marginal distribution functions of different 
variables (Patton, 2012; Poonia et al., 2021). Integrated with the con
ditional probability theory, copula enables estimating the probability of 
crop yield loss under various drought scenarios. It can provide more 
valuable information to the practitioners when designing agricultural 
risk policies compared to the deterministic approach (Liu et al., 2022; 
Ribeiro et al., 2019a). 

Australia is a significant player in the global grain trade and has been 
a major exporter of wheat for several years (Grundy et al., 2016; Zeleke 
and Nendel, 2016). The New South Wales (NSW) wheat belt is the main 

wheat production area of Australia, accounting for 27 % of the national 
production (www.abares.gov.au, 2013–14). However, the wheat in this 
region is grown under rainfed conditions and its yield is highly variable 
due to great climate variability. Almost half of the total production 
variation was caused by inter-annual variability of precipitation and 
temperature in south-eastern Australia (Ray et al., 2015; Waha et al., 
2022). The recent 2018 drought in NSW resulted in local crop yields 
being about 53 % lower than the 20-year average (1999–2018) (Steve 
et al., 2018). Numerous studies investigated the impacts of historical 
climate variations on agricultural production in Australia (Feng et al., 
2018; Potgieter et al., 2013; Wang et al., 2015a), but the majority of 
their conclusions are based on deterministic approaches, which are 
unable to provide any risk assessment information. Nevertheless, 
Madadgar et al. (2017) used copula functions to investigate drought 
impacts on five main crops at a national scale in Australia. The use of 
copula-based probabilistic approach to assess the probability of yield 
loss under given drought conditions has not been investigated at a local 
scale in Australia (Godfrey et al., 2022). Furthermore, it is not clear how 
drought threshold triggering yield loss at a given conditional probability 
will vary with different regions in Australian dryland cropping areas (Liu 
et al., 2022). 

Here, we used a copula-based probabilistic method to explore the 
potential response of yield loss to various drought conditions in NSW 
wheat belt of south-eastern Australia based on long-term historical 
observed wheat yield and climate data for 66 shires. We aim to (1) 
identify the optimum drought index within the wheat growing season 
determining yield variation in the NSW wheat belt, (2) select marginal 
distribution function and establish the copula-based joint distribution 
function to quantify the probability of yield loss under different drought 
conditions for each shire, and (3) identify drought threshold triggering 
yield loss at a given conditional probability in the study region. 

2. Materials and methods 

2.1. Study area and data sources 

The NSW wheat-belt (141.0◦− 152.0◦E, 28.5◦− 36.1◦S) is located in 
the south-eastern Australia and covers an area of 360,000 km2 (Liu et al., 
2014). The large parts of the NSW wheat belt are characterized by 
Mediterranean climate with a large interannual variation of precipita
tion. The western part of the NSW belt is warm and dry, while in 
contrast, the eastern part is cold and wet (Feng et al., 2018). The annual 
mean amount of precipitation varies from 200 mm in southwest to 1000 
mm in southeast, while the annual mean temperature decreases from 
20 ◦C in the northwest part to 11 ◦C towards the southeast part (Feng 
et al., 2019a). 

There are 66 shires in the NSW wheat-belt, where the harvest area of 
wheat was nearly double up from 2123 to 3800 kha and the production 
increased almost four times from 3432 kt to 13,110 kt during the last 
several decades (ABARES: https://www.agriculture.gov.au). In our 
study, the wheat-growing region was separated into three sub-areas 
based on climatic conditions (Fig. 1) (Wang et al., 2015a). We selected 
six shires to represent the specific climatic characteristics of each region, 
and then these shires were used to demonstrate the probabilistic analysis 
at a shire-scale. Coonabarabbran (CB) and Moree Plains (MP) are rela
tively warm, Wakool (WK) and Narromine (NM) are relatively dry, 
Nundle (ND) and Gundagai (GD) are relatively cool and wet sites. 

We used the historical climate data, including daily precipitation (P), 
maximum and minimum temperature (Tmax and Tmin), which were 
extracted from SILO patched point dataset (Jeffrey et al., 2001). We 
obtained the annual wheat yield data of 66 shires from Fitzsimmons 
(2001). The principal characteristics of all shires in the entire study 
region are summarized in Supplementary Table S1. 
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2.2. Yield detrend 

The NSW wheat yield has experienced a significant increase in recent 
decades as a result of improvements in agricultural management and 
technology (Wang et al., 2015a). The non-climatic factor should be 
removed before quantifying the drought impact on the wheat yield. First 
difference (FD) has been widely used to remove the influence of 
non-climatic factors (Tao et al., 2008; Zhang et al., 2010) by calculating 
the difference of crop yield between two successive year (Wang et al., 
2015a),  

ΔYield = Yieldi – Yieldi-1                                                                  (1) 

where ΔYield is the first difference of wheat yield (i.e., detrended yield), 
Yieldi is the original yield for the ith year, Yieldi-1 is the original yield for 
the (i-1)th year, i starts from 1923 or 1961 in this study. 

To ensure a comprehensive analysis and minimize biases caused by 
relying on a single detrend method, three additional detrended methods 
including Centre Moving Average (CMA) (Li et al., 2022c; Lu et al., 
2017), Hodrick-Prescott (HP) filter (Cheng and Yin, 2021; Harvey and 
Trimbur, 2008), and Holt Exponential Smoothing (HES) (Holt, 2004; Li, 
2013) were taken into consideration in our study. These alternative 
methods were employed to compare the detrended yield and provide a 
more robust understanding of the yield data. The specific equations and 
compared results of these three methods are listed in the supplementary 
materials. 

2.3. Drought index 

We used SPI and SPEI to investigate the impact of drought conditions 
on wheat yield variation. The SPI transforms the fitted distribution of 
precipitation record into a normal distribution with equiprobability 
transformation, and then zero is set as the mean value. Therefore, the 
values above or below zero represent the wet and dry conditions, 

respectively (McKee et al., 1993; Zargar et al., 2011). Also, we adopted 
this process into the construction of SPEI. However, we used the water 
balance (instead of precipitation), because it is the difference between 
precipitation and potential evapotranspiration (PET), to fit distribution 
(Vicente-Serrano et al., 2010). We selected the Thornthwaite model 
(Thornthwaite, 1948) to obtain the PET since the calculation procedure 
was simple and only mean temperature data was needed. As wheat 
growing season was April to November, the 3-month (Jul.-Sep., 
Aug.-Oct., and Sep.-Nov.) and 6-month (Apr.-Sep., May-Oct., and 
Jun.-Nov.) scales were used to calculate SPI and SPEI. For example, 
SPI-3-Sep. is the 3-month scale (Jul.-Sep.) in September, SPI-6-Sep. is the 
6-month scale (Apr.-Sep.) in September. The classification of the two 
drought indices is shown in the Table 1 (McKee et al., 1993). 

2.4. Optimal index selection 

We used the Kendall tau correlation coefficient to select the drought 
index (Bonett and Wright, 2000; Croux and Dehon, 2010). We selected 
the index that had the highest tau value with detrended yield as the 
optimal drought index (DIo) to reflect the impacts of drought on yield 
variation, and then we used this index to estimate the yield loss prob
abilities with the conditional values that represent the different drought 
severities. The tau coefficients calculated by the following equation 
(Temizhan et al., 2022): 

Fig. 1. Locations of the 66 shires and 986 SILO climate sites (grey dots) in the NSW wheat belt of south-eastern Australia. Six selected shires (red stars) including 
Coonabarabbran (CB), Moree Plains (MP), Wakool (WK), Narromine (NM), Nundle (ND), and Gundagai (GD) were used to demonstrate the probabilistic analysis. 

Table 1 
Classification standard for SPI and SPEI.  

Drought severity SPI/SPEI 

Mild drought (− 1, − 0.5] 
Moderate drought (− 1.5, − 1] 
Severe drought (− 2, − 1.5] 
Extreme drought (-∞, − 2]  
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τ =
nconcordant – ndiscordant

n(n − 1)/2
(2)  

where nconcordant is the number of concordant pairs of drought index and 
detrended yield, ndiscordant is the number of discordant pairs, n is the 
number of pairs. 

2.5. Probabilistic estimation of drought impacts on yield loss 

2.5.1. Copula 
Copula function initially proposed by Sklar (1973) is able to obtain 

the joint distribution by connecting the marginal distribution of any two 
or more variables depending on their correlation levels. It was previ
ously used to estimate financial risk issues. Copula function is becoming 
more popular in the climatic hazards risk modelling due to less limita
tion on dependence of marginal functions and simplicity in construction 
(Won et al., 2020; Zhang and Jiang, 2019). A detailed description of 
copula can be obtained in Nelsen (2007). Here, we used a 2-dimensional 
copula function to model the joint distribution of drought index (x) and 
detrended yield (y), as shown in Eq. (3):  

Fx,y(x,y) = C[Fx(x), Fy(y)]                                                                 (3) 

where F is the marginal distributions of related variables, C is the cu
mulative distribution function of copula. 

There are numerous copula functions that enable the description of 
the joint probability, dependence, and relationships between univariate 
variables under extreme situations (Nelsen, 2007). We compared six 
commonly used copula functions including Gaussian, t, Clayton, Gum
bel, Frank, and Joe (Table 2) and fitted these functions in each shire. We 
used the Akaike information criterion (AIC) as the selection standard in 
the marginal distribution and copula fitting (Sakamoto et al., 1986). The 
smaller the AIC value showed the better fitting result. 

Prior to the construction of copula function, the distribution of var
iables needs to be fitted. We used Normal distribution to fit drought 
index because SPI and SPEI conformed to the normal distribution ac
cording to their principle. Additionally, the Normal, Logistic, and Uni
form distributions (Table 3) were used to fit the detrended yield for each 
shire. 

2.5.2. Estimating conditional yield loss probability under different drought 
conditions 

Based on the copula joint distribution, the conditional probability of 
yield loss under drought and non-drought conditions were estimated by 
Eqs. (4) and (5), respectively (Ribeiro et al., 2019b). We used different 
levels of drought severity, i.e., X = − 0.5, − 0.75, − 1, − 1.25, − 1.5, and 
− 1.75 as the different conditional values of DIo. We set the conditional 
value of ΔYield to -0.5, i.e., Y = − 0.5, which represented the average 
yield loss. 

P(y ≤ Y | x ≤ X) =
P(x ≤ X, y ≤ Y)

P(x ≤ X)
=

C[Fx(X), Fy(Y)]

Fx(X)
(4)  

P(y ≤ Y|x > X) =
Fy(Y) − C[Fx(X),Fy(Y)]

1 − Fx(X)
(5)  

where P is the probability under specific conditions, C and F are the 
copula and marginal distributions, x and y represent the value of DIo and 
ΔYield, respectively, X and Y are conditional values of x and y, 
respectively. 

2.5.3. Identifying drought threshold 
Note that when the conditional value of ΔYield is determined, the 

yield loss probability increases consistently with more severe drought. 
Here, we set the probability of yield loss (ΔYield = − 0.5) as 80 %, to 
obtain the corresponding drought severity. As shown in Eq. (6), the 
specific derived value of DIo is the drought threshold (DT) that causes the 
corresponding yield loss for each shire (Li et al., 2022a).  

P(ΔYield ≤ − 0⋅5 | DIo = DT) = 80 %                                                (6) 

Fig. 2 shows our brief framework. We used the R package of ‘SPEI’ to 
calculate the SPI and SPEI (Beguería et al., 2017), ‘VineCopula’ was used 
to calculate the joint and conditional probability (Schepsmeier et al., 
2015), and ‘ggplot2’ was used to make the figures (Wickham, 2016). 

3. Results 

3.1. Correlation between wheat yield variation and drought index 

Fig. 3a shows the tau correlation coefficient (τ) between ΔYield and 
3-, 6-month SPI/SPEI across 66 shires. The average τ value of 3-month 
SPI had a largest value in September (0.26) while that of 6-month 
scale SPI was highest in October (0.30) (Fig. 3a). We found similar re
sults for SPEI. Also, we found that regardless of the time scale, the 
correlation between SPEI and ΔYield was slightly higher than SPI in most 
months. We selected SPEI-6 in October as the optimal drought index 
(hereinafter referred to as DIo) capturing wheat yield variation in the 
study area. Moreover, we found that SPEI-6 in October was significantly 
correlated with detrended yield calculated by other three methods 
(Fig. S1-S3). The spatial distribution of the correlation between DIo and 
ΔYield within the wheat belt is shown in Fig. 3b, with p-values less than 
0.05 for 62 shires. We did not consider four shires due to non-significant 
relation between drought index and yield variation. Moreover, the τ 
values were higher in the central and western regions than in other parts 
of the belt. 

3.2. Marginal distribution and Copula selection 

Table 4 shows the AIC values of the three distribution functions fitted 
for each shire. The bold number was the minimum AIC among the three 
distribution functions, with the corresponding distribution being the 
optimal function. The distribution function of ΔYield for most shires was 
Logistic, and only a few shires were suitable for the Normal distribution. 

Once the optimal distribution function of ΔYield was determined, we 
selected the optimal joint distribution function of ΔYield and DIo for 
each shire from the six alternative copula functions. Fig. 4a depicts the 
spatial distribution of the optimal copula function in the wheat belt. We 
found that Clayton was suitable for most shires, with a few shires being 
suitable for other copula functions of Frank, Gaussian, and t function. 

Table 2 
An overview of the candidate copula functions.  

Copula Expression Parameter range 

Gaussian ΦΣ [Φ− 1(u), Φ− 1(v)] / 
t tΣ,v [t− 1

v (u), t− 1
v (v)] / 

Clayton (u− θ + v− θ − 1)− 1/θ θ∈[− 1, +∞]\{0} 
Gumbel exp{− [( − lnu)θ

+ ( − lnv)θ
]
1/θ

} θ≥1 
Frank 1

θ
ln[1 +

(e− θu − 1)(e− θv − 1)
e− θ − 1

]
θ∈R\{0} 

Joe 1 − [(1 − u)θ
+ (1 − v)θ

+ (1 − u)θ
(1 − v)θ

]
1/θ θ≥1  

Table 3 
The equations of three distribution functions used in this study.  

Distributions CDF 

Normal 
F(x) =

1̅̅
̅̅̅̅

2π
√

∫ x

− ∞
e− t2/2dt 

Logistic F(x; μ, s) =
1

1 + e− (x− μ)/s 

Uniform 

F(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x − μ < − σ
̅̅̅
3

√

1
2
(
x − μ
σ

̅̅̅
3

√ + 1) for − σ
̅̅̅
3

√
≤ x − μ < σ

̅̅̅
3

√

1 for x − μ ≥ σ
̅̅̅
3

√
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Additionally, similar results were illustrated for other detrended 
methods (Fig. S4-S6). Note that none of our shires were suitable for Joe 
and Gumbel copula functions (see Table 2). The spatial distribution of 
AIC values corresponding to the optimal copula function for each shire 
showed that the central and southern regions had a slightly lower AIC 
compared to the other regions (Fig. 4b). 

3.3. The probability of yield loss under different drought conditions 

We exemplified the conditional probability density values of ΔYield 
at given DIo values (red shadow) to compare with their pair-wise 
observed values (black dots) for selected six shires (Fig. 5). The 

probability density values were normalized into an interval of [0,1] to 
eliminate the differences in numerical scales of these shires. Most of 
observed values were located in the red shadow, indicating that the 
simulated values based on copula function were able to describe the 
relationship of ΔYield and DIo. 

Fig. 6 shows the conditional probability of yield loss under drought 
(DIo ≤ − 0.5) and non-drought (DIo > − 0.5) conditions at six selected 
representative shires. The yellow percentage in the figure represents the 
non-exceedance conditional probability of yield loss (ΔYield ≤ − 0.5) 
under the drought condition, while the green percent represents the 
probability under the non-drought condition. The conditional proba
bility of yield loss under the drought condition was much greater than 

Fig. 2. Schematic diagram of probability evaluation framework of wheat yield loss under different drought severities based on optimal copula functions.  

Fig. 3. The tau correlation coefficients (τ) between ΔYield and SPI/SPEI calculated in wheat growing season across 66 shires (a), and spatial distribution of τ 
(p < 0.05) between the optimal drought index (SPEI-6 in Oct.) and ΔYield for 62 shires (b). Non-significant (p > 0.05) shires are shown as blank. 
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that under the non-drought condition, indicating that drought was more 
likely to cause yield loss. The probability value for ND in region 3 was 
smallest, with only 35 %, if only considering the probability of yield loss 
that occurred under drought condition. The drought conditional prob
ability at NM in region 2 was highest with 53.3 %. Under the non- 
drought condition, the probability of yield loss was 13.7 % and 13 % 
at ND and HB, respectively, which was higher than other shires. This 
might be due to the higher rainfall in these two shires, thus the proba
bility of yield loss caused by non-drought factors like (such as water
logging) was higher than that in other shires. It is notable that yield loss 
probability under non-drought condition was only 4.4 % for WK as it 
was the driest in six selected shires. 

Fig. 7 shows the spatial distribution of yield loss probability across 

the wheat belt under different drought severities. In general, the loss 
probability of yield increased as the increase of drought severity. For 
example, the average probability of yield loss was 50.1 % when DIo was 
less than − 0.5, but the probability of yield loss increased to 88.6 % 
under severer drought conditions (DIo ≤ − 1.5). We also calculated the 
yield loss probability due to different drought severities for each region 
(Fig. 8). Generally, under drought condition, the yield loss probabilities 
in all three regions tended to increase as drought severity increased. The 
yield loss probability was lowest in region 3, indicating that it was less 
affected by drought compared to other two regions. The yield loss 
probability was close (higher than 75 %) for region 1 and region 2 when 
moderate and severe drought occurred. The results based on other three 
detrended methods of CMA, HP, and HES also showed that yield loss 

Table 4 
AIC values of three marginal distributions for detrended yield at 62 shires.  

Shire Distribution Shire Distribution 

Normal Logistic Uniform Normal Logistic Uniform 

Balranald  73.88  72.85  90.27 Lockhart  153.87  144.21  229.72 
Barraba  193.51  191.67  242.74 Manilla  192.52  188.93  248.38 
Berrigan  122.04  124.36  139.92 Merriwa  188.03  182.9  247.07 
Bingara  175.96  173.37  233.35 Moree Plains  187.71  186.55  230.09 
Bland  158.42  152.96  210.61 Mudgee  191.76  183.38  246.08 
Bogan  165.67  166.99  198.98 Murray  144.9  143.31  191.66 
Boorowa  192.68  187.15  261.79 Murrumbidgee  128.1  130.75  141.22 
Cabonne  200.04  192.83  263.57 Murrurundi  203.74  198.26  263.28 
Carrathool  144.89  138.02  216.71 Muswellbrook  185.26  173.33  285.84 
Conargo  121.57  123.41  151.86 Narrabri  178.63  180.15  208.52 
Coolah  189.78  185.46  238.98 Narrandera  157.22  147.36  240.7 
Coolamon  174.12  167.25  243.42 Narromine  190.99  190.03  217.11 
Coonabarabbran  177.76  173.5  231.91 Nundle  174.15  168.42  236.54 
Coonamble  186.7  183.02  246.74 Parkes  180.96  181.15  219.48 
Cootamundra  202.72  195.41  262.39 Parry  186.71  185.94  232.63 
Corowa  146.27  140.99  205.12 Quirindi  195.7  193.51  232.99 
Cowra  189.36  183.12  242.74 Rylstone  177.96  173.29  228.24 
Dubbo  175.58  172.15  227.13 Scone  206.63  181.39  324.04 
Evans  199.87  182.93  279.3 Temora  173.63  166.44  239.67 
Forbes  181.73  178.99  230.82 Urana  145.68  143.16  186.91 
Gilgandra  178.07  176.5  226.38 Wagga Wagga  153.49  144.32  228.98 
Griffith  51.61  52.44  74.43 Wakool  142.36  140.96  188.35 
Gundagai  208.18  192.5  297.67 Walgett  188.66  192.65  207.25 
Gunnedah  190.48  190.09  230.09 Warren  195.41  197.79  234.42 
Harden  185.59  177.21  239.33 Weddin  195.46  190.55  249.68 
Hume  153.98  143.73  237.94 Wellington  193.65  190.91  241.39 
Inverell  170.31  167.47  221.04 Wentworth  104.4  100.43  124.15 
Jerilderie  122.21  125.98  130.92 Windouran  166.56  159.88  250 
Junee  186.35  178.43  253.82 Yallaroi  169.87  166.02  226.75 
Lachlan  157.8  157.51  211.44 Yass  179.05  160.49  290.38 
Leeton  80.32  74.77  150.63 Young  193.62  185.39  263.87  

Fig. 4. Optimal copula function between ΔYield and DIo (a) and the corresponding AIC values (b) in the NSW wheat belt.  
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probability in region 3 was lowest compared to other two regions 
(Fig. S16 – S18). 

The drought threshold for each region and shire was shown in Fig. 9. 
We found that averaged drought threshold value increased from region 
3 (− 2.18) to region 1 (− 1.62) (Fig. 9a). Also, DT in the shires of western 
NSW wheat belt had higher values than those shires in eastern Australia 
(Fig. 9b). These results indicated that the wheat yield in northwest re
gion was more sensitive to drought than that in eastern high-rainfall 
region. Other detrended methods illustrated similar distribution of DT 
except the CMA method. Specifically, CMA method showed that the 
averaged drought threshold of region 2 was slightly higher than region 1 
(Fig. S19a). 

4. Discussion 

We firstly investigated the relationship between the detrended yield 
and drought index. Then we established the joint probability model to 
estimate the yield loss risk under various drought severities based on the 
conditional probability theory. Moreover, we derived the drought 
thresholds triggering same level of yield loss for each shire. As far as we 
know, our study represents the first instance of utilizing a copula-based 
method to conduct a probabilistic assessment of the impact of drought 
events on wheat yields in Australia at a local scale (shire level). Addi
tionally, our study also quantifies the specific drought thresholds that 
trigger yield loss. We expect our method could be used in other major 

Fig. 5. Simulated (red shadows) and observed (black dots) pairwise values of ΔYield and DIo for Coonabarabbran (CB), Moree Plains (MP), Wakool (WK), Narromine 
(NM), Nundle (ND), and Gundagai (GD). The colour represents the normalized probability density values of ΔYield at given DIo values calculated by corresponding 
probability density functions (PDF). 

Fig. 6. Yield loss probability density curves 
under drought (DIo < − 0.5) and non-drought 
(DIo > − 0.5) conditions at Coonabarabbran 
(CB), Moree Plains (MP), Wakool (WK), Narro
mine (NM), Nundle (ND), and Gundagai (GD). 
The black vertical dashed line is the conditional 
value of yield loss (ΔYield = − 0.5). The yellow 
and green lines are probability density line 
under drought and non-drought conditions, 
respectively. The yellow and green shadow 
areas represent the probability of yield loss 
under drought and non-drought conditions, 
respectively.   
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rainfed cropping regions around the world where crops often suffer from 
drought stress. 

Previous studies have emphasized the characteristics between crop 
yield and drought indices with different time scales (Hunt et al., 2014; 
Zipper et al., 2016). Our study provided further evidence. For example, 
we found that, among all four detrended methods, the 6-month SPEI in 
October exhibited the strongest correlation with the variability of 
detrended wheat yield across the wheat belt region in NSW. These 
findings are consistent with results from previous studies. For example, 
Peña-Gallardo et al. (2019) analysed the response of several crop yields 
to different time scales of drought indices in the U.S., and they found 
that a high correlation occurs between winter wheat yield and 6-month 
SPEI. Usually, wheat is sowed in May and harvested in November in the 
Australian wheat belt, and thus, the 6-month scale covers the most 
growth periods of wheat. Therefore, the climatic change during this 
period could better explain the variability of wheat yield than 3-month 

index. However, the correlation between SPEI and detrended yield is 
only slightly better than that of SPI (Fig. 3), indicating that the sensi
tivity of drought index to capture yield variation is not significantly 
improved by taking PET into account. This is likely due to the equation 
used to estimate PET only considering temperature. However, the PET 
can be affected by many other climatic factors, such as wind speed and 
humidity (Shi et al., 2022; Xiang et al., 2020). 

We found that the Clayton was the optimal copula function for most 
of our shires among four detrended methods (Fig. 4, S4-S6), revealing 
that a strong lower tail dependence between the time series of detrended 
yield and SPEI existed in most shires (Du et al., 2018; She and Xia, 
2018). The comparison of simulated conditional probability of detren
ded yield and drought index with corresponding pair-wise observed 
value, illustrated that most of the observed samples fall within the 
probability density range estimated by the Clayton copula function. 
Additionally, a small number of samples deviated from this range, 
possibly due to anomalous weather in the corresponding year (Potgieter 
et al., 2013). The yield loss probabilities under drought condition were 
much higher than that under non-drought condition (Fig. 6). We suspect 
that other factors such as excessive water supply had limited effects on 
wheat yield under non-drought condition (Cossani and Sadras, 2018; 
Sadras et al., 2016). 

The yield loss probability under different drought severities illus
trates a tendency that as the severity level of drought increases, the 
probability of wheat yield loss gradually increases (Fig. 7), which is 
consistent with previous studies (Li et al., 2022a; Liu et al., 2022). The 
severity of drought represents the adequacy of the water supply required 
for wheat growth. More severe droughts have greater water deficit. 
During drought conditions, the limited availability of water significantly 
constrains the growth of wheat and has a pronounced impact on its yield 
(Asseng et al., 2004; Song et al., 2019), thus increasing the probability of 
yield loss. Under severe drought conditions, the water deficit becomes 
the dominant factor affecting the growth and leading to the increase of 
the yield loss probability. As the severity tends to extreme levels, the 
yield loss probability approaches to 100 % for several shires if no 
measures are taken to interfere with this process. The results of condi
tional probability showed that the copula function was capable of 
capturing the probability variations of yield loss at the shire scale. 

In addition, yield loss probability varied regionally (Fig. 8). The loss 
probability in region 1 was highest, followed by region 2 and region 3. 

Fig. 7. Spatial distribution of yield loss probability under different drought severities. Shires in grey indicating that the conditional values of DIo are too extreme to 
estimate the yield loss probability with copula function. 

Fig. 8. Regional average of yield loss probability under different 
drought severities. 
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The growing season rainfall decreased from the east to west, and the 
temperature decrease from the northwest to the southeast in the wheat 
belt. We anticipate that the region 1 is under the dry and hot climate 
conditions with more severe water shortage compared to region 3 with a 
cool and moist climate (Feng and Wang, 2019b). Although the soil in 
region 1 has a high water holding capacity (Page et al., 2018), the rain 
mainly falls in the summer. By contrast, the rainfall of region 2 mainly 
occurs in winter. As a result, the water for wheat growth can be 
recharged to some extent. 

Additionally, we quantified the drought threshold for each region 
(Fig. 9). Although the results of CMA detrended method depicted a little 
difference from other methods, the drought threshold of region 1 was 
highest, followed by region 2 and region 3. The values of drought 
threshold represent the sensitivity of wheat yield to drought. We spec
ulate that region 1 was the most sensitive to drought, and region 3 had a 
less sensitivity to drought. Therefore, some targeted actions are required 
to lower the loss probability of wheat yield in drought sensitive regions, 
especially as drought severity continues to worsen. For example, 
drought-tolerant wheat cultivars should be considered to enhance the 
drought resistance for region 1 and 2 (Wang et al., 2019). The man
agement practices, such as sowing dates, could be adjusted to avoid the 
impact of drought on critical growth stages of wheat (Chen et al., 2020a; 
Zeleke and Nendel, 2016; Zhao et al., 2015). Moreover, implementing a 
crop rotation system featuring well-suited crops and wheat, using the 
right amount of fertilizer, and employing practical agronomy options 
such as stubble return, can enhance both the drought resistance and 
agricultural benefits of this region (Edwards, 2000; Ryan et al., 2008; 
Sedri et al., 2019). Therefore, our results can help government agencies 
to identify the hotspots that are vulnerable to drought conditions and 
enable local growers to employ effective agronomic options to cope with 
extreme drought. 

There are some limitations in our study. Firstly, the research period 
for wheat yield only covered 1922–2000. The lack of recent wheat yield 
data for each shire prevents us evaluating the yield loss risk in the latest 
decades when the occurrence of drought years has increased. Crop 
model has been widely used to simulate crop yield forced with climate 
data. It is possible to employ APSIM model to obtain wheat yield in a 
long-term period (e.g., 1900–2022) for each study shire. Then the 
simulated yield can be used to quantify the drought impact (Leng and 
Hall, 2019). Secondly, using SPEI or SPI to characterize the drought 
condition is partially inadequate since only the precipitation and tem
perature were considered (Beguería et al., 2014). There are other factors 
that can affect the wheat growth and yield, such as soil properties (Ding 
et al., 2020a; Ko et al., 2010). For example, clay soil has a better buffer 
capacity to cope with drought than sandy soil (Karhu et al., 2011; Olmo 
et al., 2016). Thus, soil moisture-related drought indices should be used 
to provide more comprehensive information of agricultural drought 
impacts on crop production. Furthermore, more correlation methods 

should be considered to provide robust results for optimal drought index 
selection (Pan et al., 2019). Lastly, other extreme climate events, such as 
heat and frost, often accompany drought. Zhao et al. (2022) evaluated 
the shock trend of wheat yield loss under hot-dry-windy events of USA 
wheat belt. They found that the compound events can lead to the 4 % of 
yield reduction. Moreover, global warming is projected to result in the 
more frequent compound events in the future (Hao and Singh, 2020; 
Meng et al., 2022), especially for the cropland (Lesk and Anderson, 
2021). Therefore, we recommend that future work should pay attention 
towards understanding the impacts of compound drought and heat 
events on crop yield in rainfed areas. 

5. Conclusion 

For the first time, we developed a probabilistic analysis method 
rather than using a deterministic approach to quantify the yield loss 
probability under various drought severities at a shire scale in the NSW 
wheat belt, south-eastern Australia. We also empirically determined the 
drought threshold for each shire based on the copula functions. We 
found that the 6-month SPEI could well explain the variability of 
detrended wheat yield, although taking evapotranspiration into account 
did not significantly improve the correlation coefficients between 
drought index and detrended yield. Due to diverse climatic patterns in 
the wheat belt, our results showed that both yield loss possibility and 
drought threshold were region-specific. We found that the western study 
area was more sensitive to drought. Therefore, more effective agronomic 
options were required to mitigate the risk of yield loss in these drought- 
prone regions. 

A probabilistic investigation of yield variability under drought 
severity is more valuable than the results of using deterministic method 
for risk management policy makers and agricultural insurance evalua
tors. The vulnerable hotspots can be quickly identified, and their dy
namic change could be effectively detected based on the climatic 
variability. We expect that our research framework can be extended to 
other areas, particularly in the context of more frequent drought events, 
by integrating compound events such as drought and heat with crop 
models under future climate scenarios. 
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Fig. 9. Drought threshold (DT) for each region (a) and shire (b) when the probability of yield loss (ΔYield ≤ − 0.5) is 80 % in the NSW wheat belt.  
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