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 Key points 19 

o Evapotranspiration, surface temperature and forest structure data can inform about the 20 

effects of canopy cover changes in the Amazon  21 

o Forest disturbances affect evapotranspiration-temperature relationships differently across 22 

wet and dry seasons and disturbance levels 23 

o Forest structure showed moderate relationship with evapotranspiration in heavily 24 

disturbed forests and weak correlation at intact forests 25 

 Abstract 26 

The Brazilian Amazon has been a focus of land development with large swaths of forests 27 

converted to agriculture. Forest degradation by selective logging and fires has accompanied the 28 

advance of the frontier and has resulted in significant impacts on Amazonian ecosystems. 29 

Changes in forest structure resulting from forest disturbances have large impacts on the surface 30 

energy balance, including on land surface temperature (LST) and evapotranspiration (ET). The 31 
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objective of this study is to assess the effects of forest disturbances on water fluxes and canopy 32 

structural properties in a transitional forest site located in Mato Grosso State, Southern Amazon. 33 

We used ET and LST products from MODIS and Landsat 8 as well as GEDI-derived forest 34 

structure data to address our research questions. We found that disturbances induced seasonal 35 

water stress, more pronounced and earlier in croplands and pastures than in forests, and more 36 

pronounced in second-growth and recently burned areas than in logged and intact forests. 37 

Moreover, we found that ET and LST were negatively related, with a more consistent 38 

relationship across disturbance classes in the dry season than the wet season, and that forest and 39 

cropland and pasture classes showed contrasting relationships in the dry season. Finally, we 40 

found that canopy structural properties exhibited moderate relationships with ET and LST in the 41 

most disturbed forests, but negligible correlations in the least disturbed forests. Our findings help 42 

to elucidate degraded forests functioning under a changing climate and to improve estimates of 43 

water and energy fluxes in the Amazon degraded forests. 44 

 Plain Language Summary 45 

Deforestation, selective timber extraction and forest fires are the main causes of forest 46 

disturbances in the Amazon region. These disturbances alter how forests function. Forest 47 

degraded by logging and fires may exchange less water and absorb less carbon dioxide from the 48 

atmosphere during photosynthesis. We used satellite-based observations on the amount of water 49 

transpired to the atmosphere by trees (known as evapotranspiration), land surface temperature, 50 

and forest structural properties such as canopy cover and height over a region in the Southern 51 

Amazon to understand the differences in function between disturbed and intact forests. We found 52 

that disturbances induced stronger and earlier water stress in the dry season in croplands and 53 

pastures than in forests, and stronger water stress in second growth and recently burned areas 54 

than in logged and intact forests. We also found that structural properties show a moderate 55 

relationship with evapotranspiration and temperature in the most disturbed forests, but weak 56 

relationships in the least disturbed forests. Our findings highlight the importance of intact forests 57 

in maintaining water balance in the Amazon region and suggest that disturbed forests may have 58 

limited ability to cope with the changing climate. 59 

 Keywords 60 
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 62 

 1. Introduction 63 

Changes in tree cover and forest structure have large impacts on energy balance and 64 

ecosystem properties, altering components of the biosphere-atmosphere interactions that operate 65 
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from the leaf (plant physiology) to global (atmospheric circulation) scales. Deforestation and 66 

forest degradation can alter rainfall regimes, water availability, and surface‐atmosphere flux of 67 

water and energy of tropical forests (Davidson et al., 2012; Jucker et al., 2018; Longo et al., 68 

2020; Spracklen et al., 2018). These impacts are particularly pronounced in ecotonal, semi‐69 

deciduous tropical forests of the southern Amazon Basin, which have experienced rapid regional 70 

warming and deforestation over the last three decades (Vourlitis et al., 2008). However, 71 

integrated assessments linking structural and functional changes resulting from forest 72 

disturbances are still lacking, and climate and forecast models are incipient in representing the 73 

influence of canopy structure on energy and water balances in degraded Amazon forests (Huang 74 

et al., 2020; Longo et al., 2020).  75 

Chief among the water balance variables, evapotranspiration (ET) is a multi-faceted variable 76 

controlled by a combination of vegetation, atmospheric, and radiative drivers. ET measurements 77 

need to ensure that the abiotic and biotic controls are adequately captured: net radiation and land 78 

surface temperature provide the physical drivers for the state change of water and the subsequent 79 

impact on latent and sensible heat partitioning; humidity and air temperature regulate the transfer 80 

of water from the land into the air, and phenology and vegetation cover information are 81 

necessary for seasonal dynamics and relative magnitudes of ET fluxes (Fisher et al., 2008). One 82 

critical measurement to the estimation of remotely-sensed ET is the land surface temperature 83 

(LST), as it can capture fine spatial and temporal dynamics associated with heterogeneous land 84 

surface processes controlling ET (Fisher et al., 2017).  85 

Variability in the strength of ET drivers may be linked to different degrees of the canopy–86 

atmosphere coupling (Jarvis & McNaughton, 1986). The control of ET can be viewed as 87 

complex supply-demand interactions, where net radiation and soil moisture represent the supply 88 

and the atmospheric vapor pressure deficit (VPD) represents the demand. This supply-demand 89 

interaction accelerates the biophysical feedbacks in ET. The degree of biophysical control is a 90 

function of the ratio of canopy conductance (an aggregated measure of canopy control on 91 

transpiration) to aerodynamic conductance. When the canopy and aerodynamic conductance 92 

ratio is very small (i.e., water-stress conditions), stomata principally control the water loss and a 93 

change in canopy conductance results in a nearly proportional change in transpiration. Such 94 

conditions trigger a strong biophysical control on transpiration. In this case, vegetation is 95 

believed to be fully coupled to the atmosphere. In contrast, for a high canopy and aerodynamic 96 

conductance ratio (i.e., high water availability), changes in canopy conductance will have little 97 

effect on the transpiration rate, and transpiration is predominantly controlled by net radiation 98 

(Mallick et al., 2016).  99 
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In the Amazon basin, ET exerts a large influence on regional and global climate patterns, and 100 

provides a significant source of rainfall water in South America (Maeda et al., 2017; Spracklen 101 

et al., 2012; van der Ent et al., 2010), by returning to the atmosphere between 50 and 75% of the 102 

regional precipitation (Lathuillière et al., 2012; Malhi et al., 2002). The major environmental 103 

controls driving spatial and temporal variability of ET in the Amazon are solar radiation 104 

(accounting for more than 80% of ET variability), atmospheric VPD, vegetation cover, and 105 

precipitation (Fisher et al., 2009), but complex interactions resulting from local climatic and 106 

biotic conditions generate highly heterogeneous patterns across the region (Fisher et al., 2009; 107 

Hasler & Avissar, 2007; Maeda et al., 2017). Synergies between climate and forest structure and 108 

functioning control much of the spatial variability in water and energy balances in the Amazon 109 

(Coe et al., 2016). While forest ET increases during the dry season in equatorial Amazonian 110 

forests, seasonally dry forests at the southern fringe of the biome present the opposite trend (da 111 

Rocha et al., 2009; Hasler & Avissar, 2007; Restrepo-Coupe et al., 2013). 112 

Land cover changes alter vegetation cover and structure and land surface properties such as 113 

albedo, emissivity, and surface roughness (Bonan, 2008; Bright et al., 2015). Ultimately, the 114 

conversion of natural areas to urban or agricultural development affects gas and energy exchange 115 

processes between the land surface and the atmosphere, by changing how incoming precipitation 116 

and radiation are partitioned among sensible and latent heat fluxes and run-off (Coe et al., 2016). 117 

Decreased forest cover increases surface albedo and reduces net radiation and ET (Costa & 118 

Foley, 1997). Based on eddy covariance data collected in the Western Amazon, von Randow et 119 

al. (2004) found evapotranspiration rates 20-41% lower in pastures compared to forests. Silvério 120 

et al. (2015) showed, for a large river basin in the southern Amazon, that abrupt transitions in 121 

land uses such as forest/crops and forest/pastures decreased ET by 32% and 24%, respectively. 122 

These authors also found that LST was 6.4°C higher over croplands and 4.3°C higher over 123 

pasturelands, compared to the forests they replaced. Using an ecosystem demography model 124 

calibrated with tropical forest parameters, Longo et al. (2020) estimated that severely degraded 125 

forests experience water-stress with ET declines up to 34% and increases in daily mean ground 126 

temperatures (up to 6.5° C) relative to intact forests. Seasonality of water and energy fluxes also 127 

amplifies differences among disturbed and intact vegetation, due to their differential capability to 128 

access subsurface water during seasonal drought (von Randow et al., 2004; Zemp et al., 2017). 129 

Disturbed forests in the Amazon are expected to transpire substantially less compared to old-130 

growth forests, because of the potential reductions in LAI and rooting depth (Silvério et al., 131 

2015), but recent research has shown contrasting results. Some degraded forests have shown ET 132 

levels similar to intact forests’ or even increased ET after a few years after fires or start of the 133 

secondary growth, with no corresponding recovery in structural attributes such as biomass or leaf 134 
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area index (LAI) (Brando et al., 2019; Von Randow et al., 2020). Canopy structural properties 135 

are intrinsically affected by disturbance type, intensity, and time since events. Given that 136 

changes in tree cover and structure have large impacts on energy balance and ecosystem 137 

properties, there is an urgent need to quantify these properties not only for mature forests but 138 

also for forests with lower, less complex cover and structure. 139 

Active and optical remote sensing approaches have been widely used to directly observe or 140 

estimate LST, ET and forest structural properties. The ET product from the Moderate Resolution 141 

Imaging Spectroradiometer (MODIS) is estimated using the Penman-Monteith equation 142 

(Monteith, 1965) and utilizes other MODIS products and meteorological inputs. While MODIS 143 

has long run and well-established ET products, its coarse resolution may not be adequate to 144 

capture the ET variability associated with small scale disturbances. Therefore, we also used  ET 145 

derived from Landsat 8 data, retrieved as a residual of the surface energy balance (SEBAL 146 

algorithm; Bastiaanssen et al., 1998), and using LST observations as the most important input. 147 

Landsat is distinguished by being both the first medium resolution Earth observation satellite as 148 

well as the longest running continuous program, with the recent Landsat launches showing 149 

improved geometric and radiometric properties (Wulder et al., 2019). Laser scanning, an active 150 

form of remote sensing commonly known as lidar, is suitable to characterize three-dimensional 151 

forest structural properties (Lefsky et al., 2002). The Global Ecosystem Dynamics Investigation 152 

(GEDI) spaceborne lidar instrument has been providing unprecedented three-dimensional 153 

information of tropical and temperate forests worldwide (Dubayah et al., 2022; Dubayah et al., 154 

2020; Duncanson et al., 2022) and has made it possible to investigate forest structure over large 155 

areas in the Amazon.  156 

The objective of this study is to assess the effects of forest disturbances (both 157 

deforestation/total canopy cover removal and degradation/partial canopy cover removal) on the 158 

seasonal ET fluxes and canopy structural properties in a transitional forest site located in Mato 159 

Grosso State, Southern Amazon. We use ET and LST data from MODIS and Landsat 8 OLI and 160 

TIRS sensors, taking advantage of their well-established record in the investigation of water 161 

fluxes (Anderson et al., 2012; Mu et al., 2011), as well as the novel GEDI forest structure data 162 

(Dubayah et al., 2022) to address the following questions: a) What is the effect of forest 163 

disturbances on the seasonal water stress of the canopy? b) How are variations in seasonal water 164 

stress manifested in LST-ET relationships across the study site, and do these relationships vary 165 

with season and disturbance severity levels? c) What is the contribution of canopy structural 166 

properties to ET and LST? Table 1 summarizes our research questions and related hypotheses, 167 

and the datasets used to address each of them. 168 

 169 
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Table 1. Hypotheses and datasets for the research questions. 170 

Research questions Hypotheses tested Datasets used 

Q1. What is the effect of 
forest disturbances on the 

seasonal water stress of the 
canopy? 

H1. Areas with decreased 
vegetative cover exhibit 

reduced ET earlier in the dry 
season, with equivalent water 

stress 

MODIS MYD16A2 product 
(Total Evapotranspiration and 

Total Potential 
Evapotranspiration layers), 1 

year of 8-day composites at 500-
m resolution.  

Q2a. How are variations in 
seasonal water stress 

manifested in LST and ET 
relationships in the study 

site? 

H2.a. LST is higher in areas 
with low ET and canopy cover Landsat 8 LST, Landsat 8 ET 

(derived from the METRIC 
model), wet and dry season 

single dates at 30-m resolution Q2b. Do these 
relationships vary with 
seasons and disturbance 

level? 

H2.b. The negative ET-LST 
relationship will be stronger in 
more severely disturbed forests 
and during periods of greater 

water stress 

Q3.a. What is the 
contribution of canopy 

structural properties to ET 
and LST? 

H3.a. ET and LST covaries 
with structural properties in 
Amazon disturbed forests 

 

Landsat 8 LST, Landsat 8 ET 
(derived from the METRIC 

model), dry season single date at 
30-m resolution  

 Structural properties (canopy 
cover, plant area index, top-of-

canopy height, and foliage height 
diversity) from GEDI at 25-m 

footprint  
 171 

 2. Material and methods 172 

2.1. Study area  173 

The study area covers approximately 100,000 km2 at the southern and drier flank of closed-174 

canopy Amazon forests in the Brazilian state of Mato Grosso (Figure 1), including the 175 

municipality of Feliz Natal. The area is covered by evergreen broadleaf forests (IBGE, 2021). A 176 

five-month dry season (May to September) accounts for only 6% of mean annual precipitation 177 

(inset in Figure 1). 178 

This site is located in the ‘Arc of deforestation’, a region that surrounds the southern edge of 179 

the Amazon biome, where conventional practices include land clearing for cattle ranching, 180 

small-scale subsistence farming, logging, and, increasingly, soybean production for global 181 

markets. Decades of agricultural expansion (which includes fire as a land clearing technique) and 182 

selective logging have left a mosaic of fragmented and degraded forests in the area (Matricardi et 183 

al., 2010; Morton et al., 2013; Souza et al., 2005), with the majority of intact forests remaining 184 

inside the indigenous reserves (Figure 1).  185 
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 186 

 187 
Figure 1. Location, forest cover and monthly precipitation (inset) of the study area. Source of precipitation data: 188 
climate-data.org. Source of deforestation data: INPE (2020). 189 

2.2. Disturbance history assessment 190 

We mapped the land cover/land use of the Feliz Natal region from 2000 to 2018, including 191 

both disturbances that lead to degradation of standing forests (selective logging and fires) and 192 

classes of land use that follow stand-replacement disturbances (croplands, pastures and 193 

secondary forests). To map forest degradation, we masked out accumulated deforestation until 194 

2019 (INPE, 2020) and areas of alluvial vegetation. Subsequently, we mapped logged and 195 

burned areas on the forest remnants based on visual interpretation of yearly fitted Normalized 196 

Burn Ratio (NBR) images derived from Landsat 5, 7, and 8 observations. To differentiate forests 197 

experiencing variable degrees of disturbance, we classified degraded forests into six classes: 0-3 198 

years (L1), 4-7 years (L2), and 8-14 (L3) years after logging, and 0-3 years (B1), 4-7 years (B2), 199 

and 8-14 (B3) years after burning, while forested areas with no signs of logging or fires in the 200 

time-series were classified as intact forests (IN). Polygons that experienced multiple degradation 201 

events in the time-series were classified according to the latest event. Details of the methodology 202 

for mapping intact and degraded forests can be found in Rangel Pinagé et al. (2022). 203 

Subsequently, we included classes of land cover following deforestation in the disturbance 204 

history. Crop (CR) and pasture (PA) polygons for 2019 were obtained from the MapBiomas 205 

Collection 5 data of Brazil's annual land cover and use maps, based on Landsat images 206 
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(MapBiomas Project, 2019). Also from MapBiomas data, we extracted a land cover class 207 

representing the transition of pasture and crops to forest cover from 2015 to 2019 to represent 208 

young secondary forests (SFN). Next, we extracted data for the old secondary forest class (SFO) 209 

from the TerraClass dataset, which classifies land uses following deforestation in the Amazon, 210 

based on Landsat and MODIS data. We chose to use TerraClass until 2014 instead of the 211 

regeneration data from MapBiomas because the former is more consistent with the INPE 212 

methodology for deforestation mapping (Almeida et al., 2016). 213 

The consolidated layer of disturbance history was generated by merging the forest 214 

degradation, old secondary forest (from TerraClass), and crop/pasture and young secondary 215 

forest (from MapBiomas) individual layers (Figure 2). We eliminated isolated polygons with 216 

areas smaller than 50 hectares to be consistent with MODIS resolution.   217 

2.3. Remote sensing data 218 

The remote sensing data employed in this study includes ET modelled from MODIS 219 

observations, ET (modeled) and LST from Landsat 8 observations, and forest structural 220 

properties from GEDI observations.  221 

2.3.1. MODIS data 222 

Due to its high temporal resolution and compositing scheme, MODIS data allow for the 223 

generation of consistent seasonal patterns. To address Q1, we used the MYD16A2 Version 6 224 

Evapotranspiration/Latent Heat Flux product, an 8-day composite dataset produced at 500-m 225 

resolution (Running et al., 2017). The layers ET_500m (for total evapotranspiration) and 226 

PET_500m (for total potential evapotranspiration) were selected, along with the quality control 227 

flag layer to filter out low-quality data. The improved algorithm of product MYD16A2 is based 228 

on the logic of the Penman-Monteith equation, which includes inputs of daily meteorological 229 

reanalysis data along with MODIS data products such as vegetation property dynamics, albedo, 230 

and land cover. The pixel values for the ET and PET layers represent the sum of all eight days 231 

within the composite period.   232 

To test the hypothesis that areas with low forest cover experience water stress earlier in the 233 

dry season (H1), we applied the concept of Evaporative Stress Index (ESI, Fisher, 2013), 234 

computed from the ratio between actual and potential evapotranspiration. Any ET less than the 235 

PET is an indicator that water supply is limited; plants may close stomata to conserve water, and 236 

productivity may therefore be less than optimal. Hence, the actual-to-potential ET ratio 237 

(ET/PET) is a key indicator of plant water stress (low values of ESI are associated with increased 238 

water stress, and high ESI values are associated with lack of water stress). Moreover, anomalies 239 

to ET/PET can provide valuable information about water stress without requiring precipitation or 240 
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soil moisture information (Anderson et al., 2012). We divided the ET by the PET layer, extracted 241 

the pixels over the polygons of each disturbance class, and finally, extracted their mean values 242 

for each 8-day composite to build the 2019 annual profile of ESI.  243 

2.3.2. Landsat 8 OLI and TIRS data 244 

While MODIS ET estimates are valuable for understanding spatially integrated regional ET 245 

patterns and seasonality, they are not able to capture fine-scale spatial dynamics associated with 246 

heterogeneous land surface processes controlling ET. Hence, to address Q2 and Q3, which are 247 

related to relationships of ET with LST and forest structure, we used Landsat data at 30-m 248 

resolution over a ~ 300,000-hectare subset (approximately 3.5% of the total area, yellow outline 249 

polygon in Figure 2) within the same image scene. Using one single scene minimizes 250 

inconsistency of ET values across disturbance classes. For Q2, we compared ET and LST 251 

relationships across disturbance classes at single dates at the wet (January 31st, 2019) and dry 252 

(September 28th, 2019) seasons. For Q3, we used the ET and LST data from September only 253 

along with structural variables from GEDI (described in the next section). We used only one dry 254 

season date to compare ET and LST relationships with forest structure data because the latter is 255 

not expected to change seasonally or daily, unlike process variables such as evapotranspiration 256 

or gross primary productivity.  257 

Land surface temperature and evapotranspiration data were derived from Landsat 8 258 

observations. The images were obtained through the Earth Engine Evapotranspiration Flux 259 

(EEFlux version 0.20.3, described at Allen et al. (2015)). EEFLUX is based on the Mapping 260 

Evapotranspiration at High Resolution Internalized Calibration (METRIC) (Allen et al., 2007). 261 

Within EEFLUX workflow, LST data is generated using a fixed atmospheric calibration, where 262 

the near-surface temperature gradients are an indexed function of radiometric surface 263 

temperature, thereby eliminating the need for absolutely accurate surface temperature and the 264 

need for air-temperature measurements. Actual evapotranspiration is derived from the Landsat 265 

images representing the 24-hour actual ET, via the standard automated calibration within 266 

EEFlux. In this framework, actual ET is calculated as a residual of the surface energy balance, 267 

according to the following equation: 268 𝐿𝐸 = R௡ − 𝐻 − 𝐺  
where: LE is the latent heat flux (energy spent in the evapotranspiration process (W m−2); Rn is 269 

net radiation (W m−2); G is the heat flux in the soil (W m−2), and H is the sensible heat flux (W 270 

m−2). The EEFlux calibration uses the Landsat thermal band and shortwave bands to estimate the 271 

surface energy balance and to estimate the amount of vegetation, albedo and surface roughness. 272 

Version 0.20.3 of EEFlux employs automated image calibration by assigning values for EToF 273 
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(which represents ET as a fraction of the reference evapotranspiration) for the 'hot' and 'cold' 274 

pixels of the surface temperature spectrum of the scene. LE is estimated at the exact moment of 275 

the passage of the satellite for each pixel and instantaneous ET is then calculated by dividing the 276 

LE by the latent heat of vaporization, according to the following equation: 277 𝐸𝑇௜௡௦௧ = 3600 𝐿𝐸/λρw 

where: ETinst is the instant evapotranspiration (mm h−1); 3600 converts seconds to hours; λ is the 278 

latent heat of vaporization (J kg−1), and ρw is the density of water (∼1000 kg-3). Numata et al. 279 

(2017) assessed the accuracy of METRIC ET estimates for the Amazon region and found good 280 

agreement between METRIC and flux tower-derived ET (R2 > 0.7). 281 

To assess the ability of Landsat data to capture the seasonal water stress detected with 282 

MODIS, we chose two Landsat images of a subset of the study area (yellow polygon in Figure 2) 283 

from the wet and late dry seasons with the least cloud coverage and extracted the equivalent of 284 

an ESI (ratio of actual and reference ET). 285 

2.3.3. GEDI data 286 

GEDI produces high resolution 3D observations of Earth’s forests and topography (Dubayah 287 

et al., 2020). GEDI’s precise measurements of forest canopy height, canopy vertical structure, 288 

and surface elevation at a 25-meter footprint can characterize important carbon and water 289 

cycling processes, biodiversity, and habitat (Dubayah et al., 2020).  290 

To address Q3, we extracted four structural properties from GEDI Level 2A and 2B data: top 291 

of canopy height (TCH, m), plant area index (PAI, m2/m2), canopy cover (CC, %) and foliage 292 

height diversity (FHD, unitless). TCH was derived from level 2A data (GEDI L2A Canopy 293 

Elevation and Height Metrics). The RH98 (the 98th percentile return height) was used as a proxy 294 

for TCH. PAI, CC and FHD were derived from Level 2B (GEDI L2B Footprint Canopy Cover 295 

and Vertical Profile Metrics) (Tang & Armston, 2019).  296 

We processed the version 2 of GEDI Level 2A and Level 2B data for the study area, for the 297 

period between May 5 and November 11, 2019. To filter low-quality data, we only kept laser 298 

shots with the recommended quality flags (i.e., sensitivity ≥ 0.95, quality flag = 0, and degrade ≠ 299 

0; Hofton et al., 2019). We implemented an additional filter to remove data in the adjacency of 300 

low-quality data, by keeping the shots along a single beam that were part of a continuous strike 301 

of at least 30 good quality filtered shots. Finally, we excluded additional shots within fire scars 302 

detected in 2019 according to the DETER-B datasets (Diniz et al., 2015) and without associated 303 

values of ET or LST (i.e., due to cloud on Landsat observations). After the application of all 304 

filters, a total of 12.551 shots from the subset of the study area were retained (Figure 2). GEDI 305 
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data processing was performed in a Geographic Information System (GIS) platform and the R 306 

statistical software (R Core Team, 2021), with the aid of the rGEDI package (Silva et al., 2020).   307 

 308 
Figure 2. Disturbance classification at Feliz Natal region and post-filtered GEDI shots over the focal area (yellow 309 
outline polygon). Insets are zooms from the red outline polygon in the main map and show GEDI structural 310 
properties (PAI, CC and TCH). Inset background images are LST and ET from Sep-2019. Higher values of LST and 311 
ET are brighter. Unclassified areas (over alluvial vegetation or savannas, or due to mismatch among input datasets) 312 
are shown in white in the disturbance classification.   313 

2.4. Statistical analysis 314 

To compare ET and LST among the disturbance classes and across seasons, we applied the 315 

Tukey’s Honestly Significant Difference test (henceforth Tukey’s test) (Tukey, 1977) to identify 316 

statistically distinct groups. 317 

To assess ET-LST relationships, we developed linear regression models with ET as the 318 

dependent variable. The models were fit at the pixel level for dry and wet seasons for the 319 

disturbance classes separately. We did not fit models for the data encompassing all classes 320 

because the ET-LST relationship in that case was clearly nonlinear. In addition, we tested the 321 

differences in slope coefficients between wet and dry seasons for each group to evaluate how 322 

seasonal moisture stress influences the relationship between ET and LST. Only 1/500 pixels 323 

were included in the regression models, and observations falling below the 2.5th and above the 324 
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97.5th percentiles were excluded, to minimize outliers that are likely to occur in the edges of 325 

polygons from the different classes. 326 

To compare GEDI-derived structural properties among the disturbance classes, we also used 327 

violin plots and the Tukey’s test to compare all possible pairs of means. Next, we fitted linear 328 

regression models at the GEDI footprint level with ET and LST as dependent variables and each 329 

structural attribute as the independent variable, to assess the relationship between ET or LST 330 

with structural variables. We made no assumptions on the normality or transformation of the 331 

data due the large sample size (> 1000 observations). All statistical tests, analysis and plotting 332 

were performed in the R statistical environment (R Core Team, 2021). 333 

 3. Results  334 

3.1. Seasonal water stress 335 

The 2019 annual profile of the ESI showed that forest and non-forest classes in Feliz Natal 336 

region experience year-round ESI < 1(Figure 3). The disturbance classes showed varied 337 

evaporative stress in the dry season (May through September) and could be distinguished into 338 

two groups with well-marked water stress signals: croplands and pastures and forests (Figure 3). 339 

 Croplands and pastures exhibited the sharpest ESI decline at the onset of the dry season, 340 

with ESI almost reaching zero (meaning maximum evaporative stress or no vegetation cover) at 341 

the end of the dry season (Figure 3A). Pastures showed a similar annual pattern to that of 342 

croplands but with a less pronounced ESI decrease.  343 

 344 
Figure 3. Annual profile of the MODIS Evaporative Stress Index for the disturbance classes for Feliz Natal region 345 
(A). The cyan and brown arrows in A indicate the dates that the Landsat-based ESI for a subset of the study area 346 
was extracted (B). A sample of 100 Landsat pixels was included for each class. The error bars in B represent 95% 347 
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confidence interval of the mean. Labels in the x-axis in B represent the disturbance classes and are in the same order 348 
and color of the legend in (A).  349 

ESI from the different forest classes declined sharply later in the dry season, and with a much 350 

weaker descent than crops and pastures. Among the forest classes, logged forests showed higher 351 

ESI than intact forests at the time of the most severe water stress signal in early September (0.45-352 

0.46 and 0.39, respectively). Recently burned forests showed lower ESI than intact forests 353 

(0.36), whereas the older burned classes showed similar or higher ESI compared to intact forests 354 

(0.39-0.41). Meanwhile secondary forests showed slightly lower ESI values compared to the 355 

other forest classes (~ 0.33). Interestingly, pastures and croplands showed similar MODIS-based 356 

ESI levels as that of forests during most of the wet season (Figure 3A).  357 

Water stress in the late dry season (in September) is also detected by Landsat data (Figure 358 

3B), but with improved water stress discrimination among classes (e.g., larger differences within 359 

burned and secondary forests). However, Landsat data showed larger differences between the 360 

least and most disturbed classes in both seasons with substantially lower ESI values for 361 

croplands and pastures, while MODIS ESI showed little divergence in the wet season (Figure 362 

3A). Landsat’s finer spatial resolution is likely producing this better discrimination, but it could 363 

be due to different sensor’s characteristics  and ET retrieval algorithms. 364 

3.2. ET-LST relationships 365 

By using Landsat observations of land surface temperature (LST) and evapotranspiration 366 

(ET), we found that some areas of croplands and pasturelands show moderate ET in January (wet 367 

season), comparable to degraded forests, and that ET differences within degraded and intact 368 

forests are amplified in September (dry season). LST in the other hand shows higher values in 369 

crop and pasturelands in both analyzed periods, but with notably higher differences compared to 370 

forests in the dry season (Figure 4). 371 
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 372 
Figure 4. Disturbance classification (A), evapotranspiration in wet and dry seasons (B-C), a false-color RGB 373 
composite (D), and land surface temperature in wet and dry seasons (E-F) over a subset of the study area. RGB 374 
composite image info: Landsat 8, path/row 225/069, date 28-Sep-2019, R6G4B5. ET and LST data are from 375 
EEFLUX. 376 

The seasonal variation in ET and LST was largely consistent with the continuum of 377 

disturbance intensity (Figure 5, sorted from intact forests to crops). ET and LST were inversely 378 

correlated, showing opposite trends in both wet and dry season dates. In January, most forest 379 

classes showed similarly high ET ranges (median: 3.4-3.8) , except for the most recent burned 380 

and secondary forests (median: 3.2 and 2.9, respectively) (Figure 5A). Croplands and pastures 381 

showed greater variability than forests, but croplands exhibited a high proportion of pixels with 382 

high ET as well (median:2.6 and 13, respectively). Toward the end of the dry season (e.g., 383 

September), following maximum evaporative stress (Figure 3), ET and LST in pasture and 384 

croplands patterns were distinct from all forest classes. Forests also showed increased 385 

differentiation in the dry period compared to the wet season. LST showed a similar pattern of 386 

differentiation among the classes, but an opposite trend of values (higher in those classes with 387 

lower ET estimates, Figure 5B).  388 

 389 
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 390 
Figure 5. Distribution of ET (A) and LST (B) in the wet and dry seasons across the disturbance classes. Only 1/500 391 
pixels were included, and observations falling below the 2.5th and above the 97.5th percentiles were excluded. Violin 392 
plots show the kernel probability density of the data at different values. All violins have the same width, and the 393 
median of each group is indicated by the white dots. Groups labelled with the same letter are not significantly 394 
different at a confidence level of 95% (Tukey's HSD test). The wet season image date is January 31st, 2019, and the 395 
dry season image date is September 28th, 2019.  396 

We found a strong negative relationship between ET and LST across disturbance classes, 397 

with a global correlation coefficient of -0.81 (Figure 6). Two clusters of points were observed in 398 

the dry season data: forest classes at one end (with intact forests at the edge of this cluster), and 399 

crops and pastures at the other end. In the wet season data, there is no such clear differentiation: 400 

ET from cropland and pastures is more variable, with the highest values being like those 401 

observed in forests. Moreover, the secondary forest classes mostly had their points spread in the 402 

transition between the two clusters in the dry season. 403 
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 404 
Figure 6. Relationship between ET and LST in wet and dry seasons for all classes (A), and for the broad disturbance 405 
classes separately (B). 1/500 pixels were randomly included, and observations falling below the 2.5th and above the 406 
97.5th percentiles were excluded. Black lines represent the best fit line. 407 

To assess ET and LST relationships over different land cover types, we merged the 408 

disturbance classes into five broad classes, namely intact, logged, burned and secondary forests, 409 

and crops and pastures (Figure 6B). All the regression models were significant, but the 410 

regression coefficients varied widely. Dry season conditions strengthened ET-LST relationship 411 

(i.e., increased the coefficient of determination, R2) in intact, logged, burned and secondary 412 

forests. Nevertheless, in terms of sensitivity of the relationship (i.e., the slope coefficient), 413 

burned and secondary forest classes showed very small or not significant differences in slope 414 

across seasons (Table 2). Croplands and pastures were the only class that showed a lower 415 

coefficient of determination, and a much lower slope in the dry season. 416 

All classes showed significantly different slopes between wet and dry seasons (p-value < 417 

0.05), except secondary forests (p-value = 0.72), whereas the largest difference was observed at 418 

the cropland and pasture class (Table 2). A significant finding is that intact and logged forests 419 

showed a positive difference in trend (significantly higher slope in the dry season), whereas 420 

burned and secondary forests showed a negative trend (implying smaller slopes in the dry 421 

season, but with non-significant or marginally significant differences). 422 

 423 

 424 
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Table 2. Estimates of slope differences between wet and dry season in ET and LST relationship for the broad 425 
disturbance classes. P-values of pairwise comparisons > 0.05 (highlighted in gray) indicate non-statistically 426 
significant differences in slope at 95% confidence level.  427 

Pair Difference in trend SE df t.ratio p.value 
Intact forest  0.149 0.0182 2577 8.205 <.0001 
Logged forest  0.282 0.0149 1248 18.948 <.0001 
Burned forest  -0.041 0.0133 2917 -3.087 0.002 
Secondary forest  -0.025 0.0710 202 -0.358 0.720 
Cropland and pasture  -0.350 0.0138 1992 -25.363 <.0001 

 428 

3.3. Structure-function relationships 429 

Forest structural properties derived from GEDI observations over all disturbance classes 430 

were significantly affected by disturbances. Classes following deforestation (secondary forests, 431 

croplands, and pastures) showed the most pronounced responses in the structural properties 432 

assessed (Figure 7). For both canopy cover (CC) and plant area index (PAI), intact forests 433 

showed the highest values, crops and pastures showed the lowest values and the least dispersed 434 

range, whereas young secondary forests showed intermediate values and the broadest range. 435 

Burned and logged forests clearly responsed to time since disturbance and disturbance type, as 436 

indicated by increasing CC and PAI with time since disturbance. Young secondary forests (≤ 5 437 

years) showed CC and PAI similar to the most recent burns. FHD, a measure of structural 438 

complexity, showed very little variability among intact and logged forests, whereas burned and 439 

secondary forests and crops/pastures differed significantly from those classes. Except for the 440 

FHD metric, young secondary forests had all GEDI structural metrics not significantly different 441 

from crops and pastures.  442 

 443 
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Figure 7. Structural properties derived from GEDI data for the disturbance classes. Groups labelled with the same 444 
letter are not significantly different at a confidence level of 95% (Tukey's HSD test). Observations falling below the 445 
2.5th and above the 97.5th percentiles were excluded.  446 

To assess the relationships between structural properties and ET and LST, we grouped the 447 

disturbance classes into four broad categories: intact, logged, burned and secondary forests. 448 

Croplands and pastures were excluded from this analysis because the structure in these classes 449 

might be ephemeral (i.e., crops are harvested), making the examination of relationships of 450 

structure to ET and LST less meaningful.  451 

Structural properties showed moderate to high correlations with ET (positively correlated, 452 

coefficients from 0.50 to 0.59) and LST (negatively correlated, coefficients from -0.50 to -0.76) 453 

(Table 3). The strongest relationships between structure and ET and LST were observed in the 454 

most intensively disturbed classes (burned and secondary forests), whereas intact and logged 455 

forests showed no significant slopes in the relationships. For instance, CC explained 28 and 44% 456 

of ET and LST in burned forests, and PAI explained 25% of ET in burned and secondary forests. 457 

The greater regression slope for burned and secondary forests compared to intact and logged 458 

forests was consistent across all GEDI-derived structural properties (Figure 8).  459 

 460 

Table 3. Correlation matrix of structural properties with ET and LST. All correlations are significant at 99% 461 
confidence. Positive coefficients are shown in blue and negative coefficients are shown in red. 462 

  
Canopy 
height 

Canopy 
cover PAI FHD ET LST 

Canopy height 1.00 0.79 0.71 0.93 0.56 -0.67 
Canopy cover 1.00 0.95 0.74 0.59 -0.62 
PAI 1.00 0.63 0.50 -0.50 
FHD 1.00 0.58 -0.76 
ET 1.00 -0.77 
LST           1.00 

 463 
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 464 
Figure 8. Relationship between GEDI structural properties and evapotranspiration (A) and land surface temperature 465 
(B) for the broad forest classes. Lines represent the best fit from the linear regression models.   466 

ET and LST varied substantially among classes at the lower end of forest structure (short or 467 

low PAI forests), but not at the upper end (tall or high PAI forests) (Figure 8). There was a 468 

separation across the classes because intact and logged forests do not have the extremely low 469 

PAI, CC, canopy height and FHD. Interestingly, ET and LST have different ranges between 470 

intact and logged versus secondary and burned forests with similar PAI or canopy cover at the 471 

intermediate values. Moreover, the regression analysis suggests that most variation in ecosystem 472 

function (ET and LST) from these heavily disturbed forests can be explained by structure, 473 

whereas there is much lower variation in the least disturbed forests explained by structure and 474 

disturbance.  475 

 4. Discussion  476 

In this study, we employed a novel combination of MODIS, Landsat and GEDI observations 477 

to compare seasonal water stress and ET-LST relationships over a continuum of disturbance 478 

conditions; and to quantify the contribution of forest structure properties to ET and LST 479 

variability in secondary, degraded and intact forests. The results showed that disturbances 480 

increased seasonal water stress, earlier and more pronounced in croplands and pastures than in 481 

forests, and more pronounced in second-growth and recently burned areas than in logged and 482 

intact forests. Moreover, we found that the negative ET- LST relationships were more consistent 483 

across disturbance classes in the dry season, and that the forest and cropland & pasture classes 484 

showed contrasting relationships in the dry season. Finally, we found that structural properties of 485 

the canopy such as plant area index, canopy cover, canopy height, and foliage height diversity 486 
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exhibited moderate relationships with ET and LST in the most disturbed forests, but negligible 487 

correlations at the least disturbed forests.  488 

4.1. Water stress, ET and LST variability across a disturbance continuum 489 

The ESI seasonal profile analysis indicated that, while forest classes still showed some 490 

divergence in water stress especially at the end of the dry season, pastures and croplands in our 491 

study region are highly seasonal with a growing season-dependent exclusively on rainfall (Arvor 492 

et al., 2014) (Figure 3). This contrasting pattern occurs because the maximum rooting depth of 493 

these crops and grasses is far shallower than those of forests (Nepstad et al., 1994; O'Connor et 494 

al., 2019). But certainly, the most novel results of our study are those related to the behavior of 495 

secondary-growth and burned forests, showing that they experienced moderate and delayed 496 

water stress compared to intact and logged forests, related to changes in structural properties of 497 

these forests caused by disturbances (assessed with GEDI data) and potentially to species 498 

composition shifts (not assessed in this study).   499 

ET generally increased and LST generally increased in the disturbance classes along a 500 

disturbance intensity continuum (intact forests < logged forests < burned forests < secondary 501 

forests < croplands & pastures). Although studies assessing ET and LST relationships in tropical 502 

forests are rare, the dry season declines in ET and increases in LST observed in this study 503 

(Figure 5 and Figure 6) agree with similar comparisons in the southern Amazon. Hasler and 504 

Avissar (2007) found 5-10% decreases in flux tower -measured ET in the dry season at sites in 505 

Rondônia and Mato Grosso States, while (von Randow et al., 2004) found 25% less ET in 506 

pastures in Rondonia state during the dry season. In general, we found similar trends, but more 507 

pronounced ET declines from January to September (33-40% at intact and least disturbed sites, 508 

and even greater declines (~50%) for the most heavily degraded forests, with crops and pastures 509 

showing the largest differences (60-80%), and greatest variability (Figure 4, Figure 5, Figure 6). 510 

These differences in magnitude could be due to the different methods of data acquisition (e.g., 511 

flux tower data versus satellite-based estimates, or single flux tower sites versus patch averages 512 

within a large area). Other plausible explanation for these differences is that the aforementioned  513 

studies used data from the early 2000’s, while we looked at data from 2020. Temperatures and 514 

VPD increased in this interval, which could be adding more stress to these forests 515 

(Barkhordarian et al., 2019; Da Silva et al., 2019). 516 

Despite slightly reduced PAI (Figure 7), the least disturbed forests such as logged and oldest 517 

burns showed ET and LST comparable to intact forests during both seasons (Figure 5), 518 

suggesting that albedo and net radiation on these forests recovered or never shifted from that of 519 

intact forests. Classes with intermediate levels of disturbance (4-7 yr fires and old secondary 520 
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forests) showed stronger ET depletion during the dry season, and the most heavily degraded 521 

classes (0-3yr fire and young secondary forests) exhibited significantly lower LST and ET 522 

compared to intact forests on both seasons. These results agree with Miller et al. (2011), that 523 

found modest and ephemeral effects on the water and heat fluxes in a logged forest site in 524 

Central Amazon, with changes due to logging smaller than the interseasonal and interannual 525 

variability; these authors also found albedo not being significantly affected by logging activities. 526 

Similar to our results for burned forests, Brando et al. (2019) found that ET had fully recovered 527 

seven years after experimental fires in the same region. Comparing ET between intact and 20-528 

years old secondary forests in Central Amazon, Von Randow et al. (2020) found that secondary 529 

forests showed ET approximately 20% higher than primary forests over wet and dry seasons. 530 

Given the shorter and less severe dry season in Central Amazon compared to Feliz Natal region, 531 

it is reasonable to expect lower ET in the dry season in Feliz Natal. Moreover, our samples 532 

include a much larger spatial variability of secondary forest conditions.  533 

The strongest (negative) ET-LST relationships were observed at the disturbance classes with 534 

larger ranges of ET and LST values (e.g., burned and secondary forests), rather than at the most 535 

severely disturbed classes (e.g., crops and pastures, Figure 6). Among the forest classes, 536 

variations in seasonal water stress manifested in ET-LST relationships in different ways: burned 537 

and secondary forests showed little change from wet to dry season (differences in trend from -538 

0.04 to -0.02), whereas the dry season substantially improved ET-LST relationships at intact and 539 

logged forests (differences in trend from 0.15 to 0.28; Figure 6, Table 2). These findings, along 540 

with the ESI profile from Landsat (Figure 3B), suggest that patches of burned and secondary 541 

forests, especially the most recent ones, experience year-round moisture stress (e.g., patches with 542 

low ET and high LST even in the wet season). Therefore, strong inverse correlations between ET 543 

and LST in wet periods could be used as an indicator of water stress and inform about the 544 

functioning of disturbed forests.  545 

Patchy mosaics are prominent following fires and can include severely disturbed patches 546 

adjacent to fragments with substantial residual vegetation and organic matter (Chazdon, 2003). 547 

In this sense, Landsat fine-scale ET and LST estimates showed improved discrimination of the 548 

internal ET and LST variability of these patches. While MODIS data showed similarly low water 549 

stress across all forest classes in January (Figure 3A), Landsat finer-scale data showed larger 550 

differences among those classes even in the wet season (Figure 3B). These larger differences in 551 

the Landsat-based ESI may imply that MODIS-based assessments of water fluxes or water-use 552 

efficiency (e.g., Brunsell et al., 2020) are underestimating moisture deficit in these more 553 

degraded and patchier areas such as burned forests.  554 
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Taken together, these results highlight the wide range of forest functional responses to 555 

disturbances from a continuum of canopy structure and energy balance. This is a bi-directional 556 

gradient, resulting from deforestation and degradation in one direction, and forest regeneration or 557 

succession in the other. The characteristics of these disturbance gradients are integrally linked to 558 

canopy structural properties and may influence energy balance components and associated 559 

microclimates in linear or non-linear ways (Breshears, 2006; Stark et al., 2020). For example, as 560 

woody plant cover decreases, albedo and near-ground solar radiation increase, which increases 561 

the Bowen ratio (von Randow et al., 2004). Additionally, these patterns may also manifest 562 

nonlinearly, displaying threshold-type responses. Near-ground solar radiation, for instance, 563 

decreases nonlinearly with increasing canopy cover. Similarly, surface roughness and associated 564 

wind flow category change nonlinearly with increasing cover (Breshears, 2006; Stark et al., 565 

2020). 566 

4.2. Forest structure controls on energy balance 567 

Although radiation controls on water and energy cycles prevail over our study area, forest 568 

structure seems to be an important secondary control of transpiration in degraded and secondary 569 

forests. Building on the Landsat-based ET and LST characterization during the dry season and 570 

the structural characterization provided by GEDI data, we showed that forest structure 571 

moderately explained ET and LST variability in the most heavily disturbed forests (burned and 572 

secondary), whereas forest structure provided little or no ET and LST predictive power  in the 573 

least disturbed logged and intact forests (Figure 8). These findings suggest that disturbances 574 

enhance ET biophysical controls (from forest structure) and that the contribution of canopy 575 

structural properties to ET and LST is modulated by disturbances and the associated water stress. 576 

Also, forest structure’s contribution to ET decreased with time since disturbance, pointing to the 577 

functional recovery of these forests, with decreasing water stress and biophysical control over 578 

time as regeneration takes place.  579 

Previous modelling studies converge with our findings. Using a land surface model, Mallick 580 

et al. (2016) quantified the controls on evaporation and transpiration across representative plant 581 

functional types in the Amazon and found enhanced biophysical influence on ET during the dry 582 

season, especially over pastures and dry forest functional types. This same effect was observed 583 

on the diurnal cycle, which shows higher VPD in the afternoon than in the morning, and during 584 

the strong 2005 drought. Longo et al. (2020) investigated the effects of forest degradation on ET 585 

using an ecosystem demography model, and found that the magnitude and seasonality of fluxes 586 

were modulated by changes in forest structure caused by degradation. During the dry season and 587 

under typical conditions, severely degraded forests (biomass loss ≥ 66%) experienced water 588 
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stress with declines in ET (up to 34%) and daily mean ground temperatures (up to 6.5°C) relative 589 

to intact forests. 590 

Studies using observational data such as satellite observations and flux tower measurements 591 

also show degrees of agreement with our results. von Randow et al. (2012) found enhanced 592 

biophysical control on ET for pastures during the dry season, whereas the findings from Oliveira 593 

et al. (2019) suggested that the control of canopy stomatal conductance and root depth on 594 

vegetation water use is stronger in agricultural systems than in primary and secondary forests in 595 

the Amazon. 596 

We observed larger ET and LST variability in the dry season for the majority of the forest 597 

classes (Figure 5). Hasler and Avissar (2007) also found a larger scatter of ET values during dry 598 

season throughout the Amazon and suggested that this effect is due to the increasing importance 599 

of secondary drivers of latent heat flux in the dry period, such as VPD and water availability. 600 

The ESI annual profile (Figure 3) showing increasing evaporative stress towards the end of the 601 

dry season for all classes corroborates this. In contrast, the most recent classes (and likely, the 602 

most impacted) of logged, burned and secondary forests showed larger ET variability in the wet 603 

season (Figure 5), suggesting that these classes may be experiencing the dry season enhanced 604 

biophysical controls during the wet season as well. This hypothesis is also supported by the 605 

strong ET-LST relationships in these forests during both seasons (Figure 6). 606 

Forest structure plays an essential role in determining roughness lengths and aerodynamic 607 

conductance to heat, moisture, and momentum between the canopy and atmospheric (Bright et 608 

al., 2015). Supporting the strong influence of forest structure on the canopy and aerodynamic 609 

conductances, we found that ET and LST were strongly correlated with FHD, TCH, CC, and 610 

PAI (Table 3). Moreover, the FHD metric (an indirect measure of surface roughness given by 611 

structural complexity) was significantly lower in burned and secondary sites compared to intact 612 

forests (Figure 7) likely leading to decreased canopy conductance to heat and moisture and 613 

consequent lower ET and higher LST in these forests (Figure 5, Figure 6).  614 

Due to their larger aerodynamic properties, forests are more efficient at dissipating sensible 615 

heat away from the surface and into the boundary layer relative to areas with shorter vegetation, 616 

particularly during the daytime (Bright et al., 2015; Hoffmann & Jackson, 2000). Our detailed 617 

characterization of ET, LST and forest structure relationships strongly supports these statements, 618 

as the classes with lower stature and complexity (described by CC and FHD metrics in Figure 7) 619 

showed the highest temperatures on both wet and dry seasons (Figure 5). Moreover, the highest 620 

correlation of the FHD metric with surface temperature also suggests that structural complexity 621 

plays an important role in cooling the canopy. 622 
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4.3. Implications for vegetation modelling 623 

Land cover changes (Davidson et al., 2012) and their positive feedbacks in the precipitation 624 

variability in the Amazon Basin (Hilker et al., 2014; Wang et al., 2011) are expected to increase 625 

the canopy–atmosphere coupling of forest systems under drier conditions by altering the ratio of 626 

the biological and aerodynamic conductances. Our observational findings support previous 627 

model-based and eddy-covariance findings showing that under drier conditions, the canopy-628 

atmosphere coupling increases, and so the biophysical controls on ET amplify as well. An 629 

increase in biophysical control is an indicator of a potential transpiration shift from an energy-630 

limited to a water-limited regime (due to the impact of air and surface temperatures and VPD on 631 

the canopy and aerodynamic conductance ratio), with further consequences for the global surface 632 

water balance and rainfall recycling. 633 

The implications of these findings to vegetation models in tropical forests are significant. 634 

The largely aggregated ‘big-leaf’ vegetation models, which represent forests with single 635 

functional types, may not be able to characterize complex and heterogeneous structure-climate 636 

interactions across different forest types and disturbance conditions. Cohort-based vegetation 637 

models (CBVM) stand between ‘big leaf’ and individual-based models and can efficiently 638 

represent structural and functional diversity within forest ecosystems at regional and global 639 

scales (Fisher et al., 2018). CBVM may provide a more appropriate way to account for forest 640 

responses to the changes in the micro-environment caused by disturbances (Longo et al., 2020). 641 

Explicitly incorporating forest structure information into CBVM to inform about the degradation 642 

status and the degree of vegetation canopy coupling to the atmosphere could certainly improve 643 

estimates of seasonal water and energy fluxes at heterogeneous forests such as those in the 644 

Southern Amazon.  645 
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All remote sensing data utilized in this study is freely available for users. MODIS and GEDI 656 
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