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ABSTRACT
The widespread application of face recognition technology has
exacerbated privacy threats. Face de-identification is an effective
means of protecting visual privacy by concealing identity informa-
tion. While deep learning-based methods have greatly improved
de-identification results, most existing algorithms rely on 2D gener-
ative models that struggle to produce identity-consistent results for
multiple views. In this paper, we focus on identity disentanglement
within the latest 3D-aware face generation model, and propose an
advanced face de-identification framework that can be applied to
various scenarios. Our proposed framework disentangles identity
from other facial features, modifies only the former and generates
the de-identified face using a 3D generator. This approach results
in high-quality, identity-consistent de-identification that preserves
other facial features. We demonstrate our approach on StyleN-
eRF, one of the most widely-used style-based neural radiation field
models. Through extensive experiments, we demonstrate the effec-
tiveness of our approach in achieving face de-identification both for
a single image and group images with the same identity. Our work
is a significant step forward in the field of face de-identification,
opening up new possibilities for practical applications.

CCS CONCEPTS
• Computing methodologies → Computer vision representa-
tions; • Security and privacy→ Privacy protections; Usability
in security and privacy;
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1 INTRODUCTION
The proliferation of computer vision technologies like surveillance 
cameras and online video conferencing has made large-scale visual 
data collection possible. Additionally, the private images people 
share on social media are at risk of malicious attacks, posing a 
privacy threat. Privacy issues are gradually receiving attention, and 
there is an urgent need for more advanced protection methods.

Face de-identification is considered an effective way to protect 
sensitive information. Ribaric et al. [27] defined de-identification in 
multimedia content as "the process of concealing or removing personal 
identifiers, or replacing them with surrogate personal identifiers". Tra-
ditional methods, such as blurring and pixelation, tend to scramble 
the image content directly on pixels, which may greatly impair the 
visual quality and provide limited protection against face recogni-
tion models. Recently, Generative Adversarial Networks (GANs) 
have achieved impressive success in face image generation, and 
they have also been applied to privacy protection [17, 19, 21], signif-
icantly improving the quality of de-identification results. Further-
more, research on semantic exploration in latent space has proved 
that face images can be semantically divided into identity-related 
representations and identity-independent attributes. Identity disen-
tanglement enables us to de-identify images through more precise 
editing for identity [1, 14, 20, 34] while still maintaining as much 
visual similarity to the original image as possible.

However, existing face de-identification methods are always 
based on general GANs, which only operate in a single view and 
fail to obtain multi-view-consistent image synthesis. In contrast, 
3D-aware generative models are excel in handling the relationship 
between facial content and viewing directions. De-identification 
based on 3D generative models can better preserve the multi-view
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identity consistency, thus adapting to richer application scenarios
such as computer animation and beyond.

Due to the excellent performance of Neural Radiance Fields
(NeRFs) [23] in scene reconstruction, there has been a mainstream
trend to enhance 3D structures by incorporating them into face
generation [11, 38, 39]. Drawing on style-based generators [16],
style-based NeRFs [2, 9, 31] have also been proposed to address the
computationally expensive problem of NeRFs in rendering high-
resolution images. 3D-aware GANs perform well in explicitly mod-
eling objects’ geometry, but there is still limited research on NeRF
inversion or controlled face editing by 3D-aware generators.

With a focus on exploring the latent space of 3D-aware genera-
tors, we aim to address the problem of identity disentanglement and
investigate de-identification for various applications. Our proposed
framework disentangles face features by two encoders, where 𝐸𝑖𝑑
extracts identity and 𝐸𝑎𝑢𝑥 extracts auxiliary information includ-
ing non-identity attributes and camera directions. The extracted
attributes are combined with identity and fed into identity con-
version mapper 𝑀𝑐 to create a new representation in latent space.
Finally, we generate the de-identified results by 3D-aware generator
𝐺3𝑑 , which is hoped to have a different identity but high visual
similarity. We take StyleNeRF [9] as an example to validate the ef-
fectiveness of key components. Specifically, our approach is highly
adaptable and can be implemented using other generators.

The major contributions of our work can be summarized as:

(1) We propose a novel solution to the challenging problem of
face de-identification in 3D radiance fields, which can only
modify the disentangled identity. Our approach is versatile
and can be applied to various scenarios, including single-
view, multi-view, and group de-identification.

(2) Our novel framework is based on a two-stage process. First,
we employ two encoders that disentangle identity and auxil-
iary information. Next, a mapping network transforms the
identity, while a 3D generator reconstructs the face with
high fidelity, preserving non-identity attributes.

(3) We conduct extensive experiments to evaluate our frame-
work’s performance, and the results show that our approach
achieves superior image quality and identity consistency
for multi-view rendering, making it a compelling choice for
various real-world applications.

2 RELATEDWORK
2.1 Exploration of 3D-aware face generation
Early methods [24] attempted to learn pose from 2D-GANs by
disentangling pose representations, but they always rely on anno-
tation or 3D Morphable Model (3DMM) auxiliary information [33]
for supervision. The successful introduction of NeRFs leads to a
new paradigm for 3D-aware face generation. Some frameworks
[3, 6, 25, 30] utilize NeRF as a 3D representation for GAN generation,
and NeRF-GAN can learn ensemble information from unlabeled
images and provide explicit control based on volume rendering.

Some algorithms [2, 9, 26] draw on the success of StyleGAN [16]
to propose style-based NeRFs, which provide an efficient manner
for high-resolution geometry-aware image generation and also fa-
cilitate the explicit control [7, 11, 18, 37] of 3D-aware generated

content. For example, CoRF [37] embeds motion features in hierar-
chical latent space, enabling editing for identity, viewing direction,
and motion. HeadNeRF [11] is a novel NeRF-based parametric head
model that can directly control the rendering pose, identity, ex-
pression, and appearance. SURF-GAN [18] successfully discovers
semantic attributes and controls them in an unsupervised manner.

Nevertheless, most of these methods require training for gen-
erators under supervised conditions. We target disentanglement
and image synthesis with pre-trained style-based NeRF, which can
exploit their advanced generative capabilities, expressive latent
space and without a training burden.

2.2 Face de-identification
Conventional algorithms scrambled images directly at the pixel
level, failing to achieve a satisfactory trade-off between privacy
and utility. Deep learning techniques have led to significant leaps
in the quality of face de-identification results. This was accom-
plished by revisiting the face completion or face synthesis task
initially. Sun et al. [32] proposed to generate head inpainting based
on landmarks. DeepPrivacy [13] can automatically replace the orig-
inal face region with a generated one without altering posture and
background. This type of algorithm can ensure the deletion of all
privacy-sensitive information, but it cannot effectively retain simi-
larity. Another type of de-identification method utilizes auxiliary
modules or loss functions. PP-GAN [35] introduced two additional
modules: verificator and regulator, which are used to constrain
the identity away from the original sample and to preserve the
structural similarity, respectively. Zhao et al. [36] employed an
adjustable privacy-related loss in the training process, allowing
the generated results to have a certain identity distance from the
original. The study of latent spaces and disentanglement has made
face de-identification more targeted and fine-grained. IdentityDP
[34] applied differential privacy mechanisms for adjustable privacy
control on individual identity embedding. FICGAN [14] extracted
potential encodings of ID and non-ID and designed a layer-wise
generator structure to ensure de-identification and attribute reten-
tion control. However, most of the existing algorithms are based on
traditional GANs and designed for still frontal faces, which cannot
adapt to multiple views or large angles. We hope to introduce the
3D advantage of NeRF-GAN image generation to de-identification.

3 PROBLEM FORMULATION
Face de-identification is a rapidly growing research area with a wide
range of applications in security, privacy and data protection. Our
method can be applied to three categories for face de-identification,
including single-view images, multi-view images and image sets of
the same identity, with the following definitions.

Single-View De-identification. To protect a single image 𝑋 ,
general de-identification algorithm F can be formulated as,

𝐼𝐷 (F (𝑋 )) ≠ 𝐼𝐷 (𝑋 ), (1)

where F (𝑋 ) indicates the de-identified result and 𝐼𝐷 (𝑋 ) represents
the identity of the input image 𝑋 . Considering the image utility,
we prefer that F (𝑋 ) looks similar to 𝑋 as well as keeping other
identity-irrelevant attributes and viewpoints consistent.
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(a) Single-View De-id (b) Multi-View De-id (c) Group De-id

Figure 1: Different de-identification applications.

Multi-View De-identification. Our approach supports the gen-
eration of multi-view de-identification results for a single image.
For the input image 𝑋 , we can obtain multi-view de-identification
results D = {F (𝑋 )1, F (𝑋 )2, . . . , F (𝑋 )𝑛} as,

𝐼𝐷 (D) ≠ 𝐼𝐷 (𝑋 ), 𝐼𝐷 (F (𝑋 )𝑖 ) = 𝐼𝐷 (F (𝑋 ) 𝑗 ) ∀𝑖, 𝑗 ∈ [1, 𝑛] , (2)

where F (𝑋 )𝑖 indicates the de-identified result F (𝑋 ) from multiple
views 𝒛𝑑 = {𝒛1

𝑑
, 𝒛2

𝑑
, · · · , 𝒛𝑛

𝑑
}.

Group De-identification. In our approach, it could also achieve
effective anonymization for a series of imagesX = {𝑋 1, 𝑋 2, . . . , 𝑋𝑛}
of the same person under different viewpoints, and the de-identified
set D = {F (𝑋 1), F (𝑋 2), . . . , F (𝑋𝑛)} are still of the same identity
under the same conditions, which can be formulated as,

𝐼𝐷 (D) ≠ 𝐼𝐷 (X), 𝐼𝐷 (F (𝑋 𝑖 )) = 𝐼𝐷 (F (𝑋 𝑗 )) ∀𝑖, 𝑗 ∈ [1, 𝑛] . (3)

4 OUR APPROACH
4.1 Overview
As shown in Figure 1, our proposed method can be used for different
applications. All the above frameworks share the same fundamental
module composition and the same training process. The auxiliary
encoder 𝐸𝑎𝑢𝑥 and identity conversion mapper 𝑀𝑐 are trainable
while the pre-trained identity encoder 𝐸𝑖𝑑 and 3D-aware generator
𝐺3𝑑 remain frozen. The training process consists of two training
stages, firstly for basic disentanglement in latent space and secondly
for more fine-grained tuning of de-identification. More details will
be further explained in Subsec. 4.2 and Subsec. 4.3.

4.2 Training Stage 1: Disentanglement
As illustrated in Figure 2, we input two images in each iteration,
noted as𝑋𝑖 and𝑋 𝑗 , where 𝒛𝑖𝑑 is provided by𝑋𝑖 while 𝒛𝑎𝑡 and 𝒛𝑑 by
𝑋 𝑗 . We hope the information contained in 𝒛𝑖𝑑 and 𝒛𝑎𝑡 that satisfies
(1) representative of the entire face, while (2) as independent as
possible. These two points are achieved by the following training
modes: (1) face reconstruction (𝑋𝑖 = 𝑋 𝑗 ), using the extracted 𝑧𝑖𝑑
and 𝑧𝑎𝑡 to restore, and (2) face swapping (𝑋𝑖 ≠ 𝑋 𝑗 ), using two
images to provide 𝑧𝑖𝑑 and 𝑧𝑎𝑡 , the results obtained can maintain
the correspondence with the two images respectively. To unify
the notation, we use 𝑋𝑖→𝑗 to denote the generated results in both
modes in the subsequent equations.

We employ identity consistency loss between 𝑋𝑖 and the gener-
ated result 𝑋𝑖→𝑗 as,

L𝑖𝑑 =




𝐸𝑖𝑑 (𝑋𝑖 ) − 𝐸𝑖𝑑

(
𝑋𝑖→𝑗

)



2
, (4)

where 𝐸𝑖𝑑 is a pre-trained face recognition model [29] that pro-
vides supervision. Similarly, the training of 𝐸𝑎𝑢𝑥 involves attributes

consistency loss L𝑎𝑡𝑡𝑟 and camera direction loss L𝑑 as,

L𝑎𝑡𝑡𝑟 =


𝒛𝑎𝑡 (𝑋 𝑗 ) − 𝒛𝑎𝑡 (𝑋𝑖→𝑗 )




2 , L𝑑 =



𝒛𝑑 (𝑋 𝑗 ) − 𝒛𝑑 (𝑋𝑖→𝑗 )



1 .
(5)

To emphasize the face region while preserving geometric fea-
tures and expressions, we introduce a face parsing net 1 as 𝐸𝑚𝑎𝑠𝑘 ,
which segments the entire face into different categories and calcu-
lates the loss on the overlapping regions of pairs as,

L𝑚𝑎𝑠𝑘 =




(𝐸𝑚𝑎𝑠𝑘 (𝑋 𝑗 ) − 𝐸𝑚𝑎𝑠𝑘 (𝑋𝑖→𝑗 )
)
⊙
(
𝑋 𝑗 − 𝑋𝑖→𝑗

)



2
, (6)

where ⊙ denotes an element-wise product.
Apart from the above basic loss used in both training strategies,

there are some other constraints utilized solely. In reconstruction,
L𝑖𝑛𝑣 in Equ.(7) is applied to enhance the training stability. We
random sample latent codes𝒘 and camera poses 𝒅 as ground truth.

L𝑖𝑛𝑣 (𝑤 ) =


𝒘 −𝒘 (𝑋𝑖→𝑗 )




1 , L𝑖𝑛𝑣 (𝑑 ) =



𝒅 − 𝒛𝑑 (𝑋𝑖→𝑗 )



1 . (7)

Additionally, a reconstruction lossL𝑟𝑒𝑐 followed pSp [28] is applied
to capture both perceptual-level L𝐿𝑃𝐼𝑃𝑆 and pixel-level L2 loss.

In face swapping, 𝑋𝑖→𝑗 is encouraged to have the same identity
with 𝑋𝑖 and other identity-independent features are in accordance
with 𝑋 𝑗 . Inspired by contrastive learning [4, 15], we applied L𝑐𝑜𝑛

to encourage the generated identity to be close to 𝒛𝑖
𝑖𝑑

while being
away from 𝒛 𝑗

𝑖𝑑
, which can be expressed as,


𝒛𝑖𝑖𝑑 − 𝒛̂𝑖→𝑗

𝑖𝑑




2
2
+𝑚 <




𝒛̂𝑖→𝑗

𝑖𝑑
− 𝒛 𝑗

𝑖𝑑




2
2
, (8)

where𝑚 > 0 is the margin used to define the distance difference
between the positive pair and negative. To ensure the mapped
new latent codes 𝒘̂𝑖→𝑗 does not deviate far from the latent space,
we use a latent discriminator denoted as 𝐷 (shown in Figure 3),
which is trained in an adversarial scheme with the non-saturating
GAN loss [8] and R1 regularization [22]. We set corresponding
hyperparameters to adjust the weight of losses and control different
training modes.

4.3 Training Stage 2: De-identification
The key to de-identification is to alter the identity in face images.
Therefore, in the second training stage, we incorporate a privacy
parameter 𝜏 to transform the original identity loss L𝑖𝑑 into a de-
identification loss, denoted as L𝑑𝑒−𝑖𝑑 . We then fine-tune the net-
work with the modified loss to regulate the identity distance be-
tween the generated output and the source image. The L𝑑𝑒−𝑖𝑑 can
be formulated as,

L𝑑𝑒−𝑖𝑑 =
��𝜏 − 

𝐸𝑖𝑑 (𝑋 ) − 𝐸𝑖𝑑

(
𝑋 ′)



2
�� , (9)

1Code available at https://github.com/zllrunning/face-parsing.PyTorch

https://github.com/zllrunning/face-parsing.PyTorch
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Figure 2: The framework of the disentanglement training, where two strategies are used alternately to achieve disentanglement.
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De-identification

𝑧ௗ

ℒ௔ௗ௩

𝑤ᇱ

Figure 3: An overview of de-identification training phases.

(a) origin (b) 𝜏𝜏 = 0.5 (c) 𝜏𝜏 = 1.5 (d) 𝜏𝜏 = 3

Similarity Privacy

Figure 4: The impact of the privacy parameter 𝜏 in Eq. (9).

and the flow is shown in Figure 3.
The main objective is to achieve de-identification and expand

the range of identities that can be generated, even including new
identities that may not exist in the training dataset. On the other
hand, it is equivalent to a certain relaxation of the identity constraint
and can lead to better retention of desirable facial properties. We
also use attributes consistency loss L𝑎𝑡𝑡𝑟 , direction loss L𝑑 in
Eq. (5), and mask loss L𝑚𝑎𝑠𝑘 in Eq. (6) to ensure the de-identified
images maintain a high similarity and the same viewpoint with
the original image. As the de-identification procedure involves
generating new samples, we employ adversarial loss L𝑎𝑑𝑣 as well,
and the total loss L𝑑𝑡 can be summarized in Eq. (10). After this
stage, our model will no longer require other reference images to
generate de-identified results.

L𝑑𝑡 = L𝑑𝑒−𝑖𝑑+𝜆𝑎𝑡𝑡𝑟L𝑎𝑡𝑡𝑟+𝜆𝑑L𝑑+𝜆𝑚𝑎𝑠𝑘L𝑚𝑎𝑠𝑘+𝜆𝑎𝑑𝑣L𝑎𝑑𝑣 . (10)

5 EXPERIMENTS
5.1 Implementation Details
Network Architecture. The identity encoder 𝐸𝑖𝑑 is a pre-trained
face recognition model [29] to obtain 𝒛𝑖𝑑 ∈ R512. The auxiliary
encoder 𝐸𝑎𝑢𝑥 consists of ResBlock as the base module to extract
𝒛𝑎𝑡𝑡𝑟 ∈ R7×512 and 𝒛𝑑 ∈ S3. The identity conversion mapper𝑀𝑐 is
a five-layer MLP. All our experiments are conducted by StyleNeRF
[9] pretrained on FFHQ [16] as the 3D-aware generative model.
Datasets. We train 𝐸𝑎𝑢𝑥 and 𝑀𝑐 using multi-view synthesized
images from StyleNeRF, which contain 50,000 images with the

resolution of 512 × 512 generated by random latent codes 𝒘 and
camera poses 𝒅. In particular, the latent codes are ideally view-
independent, so that the dataset also contains the images generated
with the same latent codes and different camera poses.
Experimental Settings.We optimize the adversarial loss and non-
adversarial losses separately for a more stable training procession.
We train our network using Adam with 𝛽1 = 0.9, 𝛽2 = 0.999, and
the learning rate is set as 6×10−5 when optimizing non-adversarial
losses. For adversarial learning, we set the learning rate 5 × 10−6
for encoders and 2 × 10−6 for latent discriminator 𝐷 . The tradeoff
parameters are set to 𝜆𝑖𝑑 = 𝜆𝑚𝑎𝑠𝑘 = 𝜆𝑟𝑒𝑐 = 1, 𝜆𝑎𝑡𝑡𝑟 = 100, 𝜆𝑑 =

𝜆𝑖𝑛𝑣 (𝑑 ) = 10, 𝜆𝑖𝑛𝑣 (𝑤 ) = 0.1, 𝜆𝑐𝑜𝑛 = 0.5. In Training Stage1, the two
processes of reconstruction and face swapping are alternated in a
ratio of 2:1. The network is trained end-to-end on a single GeForce
RTX 3090 GPU with a batch size of 8.

5.2 Qualitative Analysis
Baselines.We mainly compare our approach with deep learning-
based face de-identification methods, including AMT-GAN [12],
DeepPrivacy [13], CIAGAN [21], Gu et al. [10] and IdentityDP
(𝜀 = 0.5) [34]. These algorithms have different design approaches
and represent advanced techniques in the field of de-identification.
Privacy Parameter. As demonstrated by the experimental results
presented in Figure 4, we discovered that the privacy parameter
𝜏 in Eq. (9) was too small to effectively transform the identity,
while a value that was too large could negatively impact attribute
consistency. Therefore, we set the privacy parameter as 𝜏 = 1.5 to
balance the tradeoff between privacy and similarity.

5.2.1 Single-View De-identification. The de-identification results
compared with baselines are shown in Figure 5. AMT-GAN [12]
(line-(b)) is designed based on adversarial perturbation combined
with the makeup transfer task. The de-identification methods based
on adversarial examples are often difficult to robust to various face
recognition models. DeepPrivacy [13] (line-(c)) replaces the orig-
inal face area by randomly generating faces, which has a better
generation effect and higher privacy level, but it does not consider
the similarity preservation and the generated results may have un-
natural expressions. CIAGAN [21] (line-(d)) has poor image quality
with obvious artifacts and low resolution. Gu et al. [10] (line-(e))
proposed a face identity transformer conditioned on passwords
to enable anonymization and de-anonymization, where there may
exist blob-like artifacts. IdentityDP [34] (line-(f)) retains more simi-
larity by adding noise to the disentangled identity features, which
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(a) 

(b) 

(c) 

(e) 

(f) 

(d) 

ⅰ ⅱ ⅲ w/o bg ⅰ ⅱ ⅲ w/o bg

(Ⅰ) StyleNeRF-syn (Ⅱ) FFHQ

(g) 

Figure 5: Single-View de-identification results, where (a) orig-
inal image (b) AMT-GAN (c) DeepPrivacy (d) CIAGAN (e) Gu
et al. (f) IdentityDP(𝜀 = 0.5) and (g) ours.

(Ⅰ) StyleNeRF-syn (Ⅱ) FFHQ
(ⅰ) Origin (ⅱ) Multi-View De-id (ⅰ) Origin (ⅱ) Multi-View De-id

Figure 6: Multi-view de-identification results.

performs effectively for frontal images but it may fail when the
face is viewed at a large angle. Our method achieves superior de-
identification results, particularly with side or large-angle faces. It
should be noted that we mainly focus on the face region and intro-
duce some randomness in rendering the background to enhance
naturalness so that the same background replacement strategy as
CIAGAN [21] is applied based on facial masks.

5.2.2 Multi-View De-identification. The qualitative results are dis-
played in Figure 6. It can be seen that our method can gener-
ate multi-view de-identification results while maintaining iden-
tity consistency when varying directions. The ability to generate
de-identification results from multiple viewpoints is relevant to
privacy issues such as avatar generation.

5.2.3 Group De-identification. We generate a series of images with
the same identity from different views and the results are presented
in Figure 7. In other methods, the same de-identification conditions
are typically applied across all images in each group in order to

(a) 

(b) 

(c) 

(e) 

(f) 

(g) 

ⅰ ⅱ ⅲ ⅰ ⅱ ⅲ 

Group-Ⅰ Group-Ⅱ 

(d) 

Figure 7: Group de-identification results, where (a) original
image (b) AMT-GAN (c) DeepPrivacy (d) CIAGAN (e) Gu et al.
(f) IdentityDP(𝜀 = 0.5) and (g) ours.

maximize the identity consistency of de-identified results. Specifi-
cally, AMT-GAN [12] uses the same reference images for makeup
transfer, Gu et al. [10] applies the same password as condition, and
IdentityDP [34] adds constant noise to each image in the same set.

DeepPrivacy [13] generates a new face for each image for re-
placement, and there is a large identity variation. Even if the same
noise is added, IdentityDP [34] generates results with more signifi-
cant identity differences. While AMT-GAN [12], CIAGAN [21] and
Gu et al. [10] have better control of identity, the image quality is
less satisfactory due to the presence of artifacts. In our approach,
we employ a novel technique that involves utilizing the same latent
code to guide the generation process. This unique method allows us
to maintain a remarkable level of consistency in terms of identity,
even when dealing with complex and challenging scenarios such
as large head rotations. When we de-identify video sequences of
the same person such as talking videos, maintaining the identity
consistency between frames is important for video coherence.

5.3 Quantitative Evaluation
To the best of our knowledge, there are not yet universally ac-
knowledged evaluation criteria for face de-identification. Based on
relevant studies, we evaluate our approach in terms of both privacy
protection effectiveness and image utility preservation.

(1) Privacy Protection Effectiveness: The determining factor for
whether two images possess the same identity information is the
distance of identity embedding. We respectively utilized various
state-of-the-art tools including ArcFace [5], Face Recognition Li-
brary (FR)2, FaceNet [29] to calculate the identity distance be-
tween de-identification results and the original images.

2Code available at https://github.com/ageitgey/face_recognition

https://github.com/ageitgey/face_recognition
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Table 1: Privacy protection effectiveness evaluation and com-
parison with other methods. The red one represents the best
and the blue one indicates the second.

Id-distance ArcFace↓ FR↑ FaceNet↑
VGGFace2 CASIA

AMT-GAN [12] 0.668 0.529 0.935 0.914
DeepPrivacy [13] 0.555 0.764 1.215 1.113
CIAGAN [21] 0.475 0.723 1.152 1.037
Gu et al. [10] 0.592 0.851 1.232 1.179

IdentityDP [34] 0.421 0.793 1.246 1.218
Ours 0.562 0.872 1.259 1.235

Table 2: Identity consistency evaluation and comparisonwith
other methods. Contrary to Table 1, the higher similarity
among a group of images, the greater level of consistency.

Id-consistency ArcFace↑ FR↓ FaceNet↓
VGGFace2 CASIA

AMT-GAN [12] 0.716 0.351 0.573 0.582
DeepPrivacy [13] 0.606 0.526 0.926 0.898
CIAGAN [21] 0.708 0.434 0.774 0.763
Gu et al. [10] 0.675 0.473 0.837 0.809

IdentityDP [34] 0.409 0.632 1.013 1.107
Ours 0.765 0.410 0.462 0.494

(2) Image Utility Preservation: Tomeasure the utility of computer
vision tasks, we define face detectability (FD) as the proportion
of de-identified faces that can still be detected by a face detector.
Additionally, we detect the face region to determine the pixel-level
difference (PD) from the original image.

Furthermore, we measure the similarity of de-identification re-
sults to the original using several metrics. We use PSNR (peak
signal-to-noise ratio) and SSIM (structure similarity) to measure
image similarity at the pixel level. Since these indicators primarily
focus on objective image quality, we incorporated LPIPS (Learned
perceptual image patch similarity) distance to measure visual sim-
ilarity, which has been demonstrated to be more correlated with
human perceptual similarity than traditional metrics.

We randomly selected 500 images from both the synthesized
datasets and FFHQ datasets for testing, and the comparison of pri-
vacy protection effectiveness is shown in Table 1. ArcFace calculates
the cosine similarity between identity embedding while all others
are Euclidean distance. In comparison, AMT-GAN [12] offers less
protection for identity. Compared with the de-identification meth-
ods based on entire face synthesis like DeepPrivacy [13], Gu et al.
[10], IdentityDP [34] and our approach are more specific to identity
features and thus can achieve better protection.

We also compute the identity distance between the results of
multi-view image de-identification. We randomly select 1,000 im-
ages from the synthesized datasets, corresponding to 125 identities
and 8 different viewpoints for each identity (including at least one
frontal image). The identity distance is between multi-view results
and the frontal de-identified result, where a closer distance indi-
cates a better consistency. The results shown in Table 2 prove that
our method can achieve effective de-identification while preserving
identity consistency in multi-view de-identification.

Table 3: Utility comparison under different metrics.

FD ↑ PD ↓ PSNR ↑ SSIM ↑ LPIPS ↓
AMT-GAN [12] 0.984 2.345 19.413 0.752 0.268
DeepPrivacy [13] 0.998 3.125 21.503 0.775 0.391
CIAGAN [21] 0.975 4.396 17.236 0.512 0.469
Gu et al. [10] 0.917 3.148 18.526 0.677 0.432

IdentityDP [34] 0.942 1.842 23.664 0.822 0.285
Ours 0.996 2.014 21.236 0.718 0.311

(a) Single-View De-identification

(ⅰ) Origin (ⅱ) De-id 

(a) Single-View De-identification

(b) Multi-View De-identification(left:origin)

(c) Group De-identification(upper:origin)

Figure 8: De-identification results using EG3D [2].

The utility evaluation results are shown in Table 3. Although
IdentityDP [34] can retain a greater degree of similarity between
the original and de-identified images, it may not be as effective
in generating certain images where facial features cannot be ac-
curately detected. Upon further investigation, we found out that
most of these failed results were for faces with large side angles.
Additionally, we analyzed that the reason for the lower similarity in
our approach mainly lies in the changes in the background. In order
to satisfy the naturalness of multi-view generation, we pay more
attention to face area and there exists randomness in rendering.

6 CONCLUSION
In this paper, we propose an advanced framework for face de-
identification, leveraging 3D-aware generative models, that offers
superior performance across diverse applications. In Single-View
De-identification, it can generate corresponding results based on the
input image. In Multi-View De-identification, it can generate multi-
view results with a single input image. In Group De-identification,
a series of anonymized results can be generated for a set of input
images. Through extensive experiments, we demonstrate that our
approach is highly effective in protecting privacy while maintain-
ing multi-view identity consistency. Furthermore, our framework is
highly adaptable, with the flow capable of being applied to different
3D-aware generators (such as EG3D in Figure 8). Our approach has
the potential to extend the application of de-identification and has
important implications for privacy issues such as avatar generation
and video sequence processing. Overall, our framework represents
a significant advancement in the field, offering unparalleled perfor-
mance and versatility for various applications.
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