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Abstract: 
Accurate vegetation analysis is crucial amid accelerating global 
changes and human activities. Achieving precise characterization 
with multi-temporal Sentinel-2 data is challenging. In this article, we 
present a comprehensive analysis of 2021’s seasonal vegetation 
cover in Greater Sydney using Google Earth Engine (GEE) to process 
Sentinel-2 data. Using the random forest (RF) method, we performed 
image classification for vegetation patterns. Supplementary factors 
such as topographic elements, texture information, and vegetation 
indices enhanced the process and overcome limited input variables. 
Our model outperformed existing methods, offering superior insights 
into season-based vegetation dynamics. Multi-temporal Sentinel-2 
data, topographic elements, vegetation indices, and textural factors 
proved to be critical for accurate analysis. Leveraging GEE and rich 
Sentinel-2 data, our study would benefit decision-makers involved in 
vegetation monitoring.
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1. Introduction

Human beings benefit significantly from resourc-
es provided by Earth’s unique ecosystems. Social 
well-being, resource management, and environmen-
tal planning could all benefit from accurate map-
ping of various ecosystems [1, 2]. For a wide range 
of end-users, accurate information on vegetation 
spreading on a global or regional scale is becoming 
increasingly important [3]. This is because climate 
change is hastening the pace of vegetation dynamics 
and the rapid growth of the human population [4]. The 
earliest stages of vegetation mapping relied heavi-
ly on specialists’ expertise in identifying vegetation 

class borders [5]. This strategy is not only limited in its 
applicability but also time-consuming, despite being 
fairly precise at a small regional scale. The application 
of the remote sensing (RS) technology has substan-
tially improved the mapping accuracy and efficien-
cy [6, 7]. Different types of RS data, such as aerial 
photography, Landsat, Sentinel-2, IKONOS, and the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS), may allow map makers to generate vegeta-
tion maps at global and regional scales [8–11]. At vari-
ous cartographic scales, satellite images can be used 
to map the vegetation cover. In addition, because 
they register a broad geographic region on a regular 
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basis, they include valuable sources of data for map-
ping vegetation [12, 13]. However, the accuracy of 
satellite image classification highly depends on the 
method used to execute it and the availability of data 
[14]. Traditional supervised approaches [15], such as 
the Mahalanobis distance, minimum distance, and 
maximum likelihood, and unsupervised methods [16], 
such as iterative self-organizing data analysis tech-
nique (ISODATA) and K-means, are used to perform 
image classification and vegetation mapping tasks. 
Nevertheless, new methods are needed to address 
this problem, particularly in light of technological ad-
vancements that have enabled the development of 
sensors capable of acquiring images with high spa-
tial, spectral, and temporal resolutions, resulting in a 
significant volume of data to be evaluated [17].

Machine learning (ML) methods are used for data 
processing. ML methods are commonly used to ana-
lyze remote sensing data [18, 19]. Compared with tra-
ditional linear methods, ML approaches allowed for the 
establishment of nonlinear and non-parametric interac-
tions between dependent and independent variables, 
leading to an overall improved performance [20]. These 
classifiers can model various types of data reliably. ML 
algorithms have been used in several studies to map 
the spatial distribution of vegetation regions. For ex-
ample, Macintyre et al. [21] applied tasseled cap trans-
formations and principal component analysis (PCA) 
to analyze various multi-temporal Sentinel-2 images. 
They fed the data into four ML approaches, namely, 
classification tree (CT), RF, K-nearest neighbor (KNN), 
and SVM, to distinguish vegetation species. They 
found that the methods produced a satisfactory result, 
but they have shown that more research is needed to 
see if these findings can be replicated in different veg-
etation types and areas. According to another study 
[22], ML algorithms can be used to map vegetation 
cover, and they are particularly useful when training 
data contain a significant number of observations and 
variables. Michez et al. [23] verified the accuracy of 
ML learners for invasive tree-mapping tasks with un-
manned aerial vehicle (UAV) imagery in riparian zones. 
They computed spectral and textural properties and 
visible and near-infrared data at different scales and 
used a supervised classification method according to 
the RF method to identify the most significant varia-
ble. The performance of RF and SVM algorithms for 
cork oak woodlands categorization from UAV images 
was also studied in a previous study [24]. Parente and 
Ferreira [25] applied RF to map the pastureland from 
MODIS data in Brazil and obtained 80% accuracy. In 
one other study [26], different ML algorithms for crop 

mapping were from Landsat 8 data in Ukraine and 
achieved an accuracy of around 75% using the CART 
method. Johansen et al. [27] used Landsat 5 and 7 
images to map woody vegetation in Australia using ML 
methods and found that CART and RF methods pro-
vided accurate vegetation maps. Sluiter and Pebesma 
[28] used Landsat 7 images, airborne imaging spec-
trometer (HyMap), and ASTER optical bands to clas-
sify the natural vegetation in the Mediterranean area. 
They showed ML approaches outperformed traditional 
statistics-based methods and yielded up to 75% accu-
racy. Another study [29] confirmed that in comparison 
to SVM and NN methods, the RF classifier produced 
higher classification accuracies, was less susceptible 
to training sample quality, and took less training time. 
However, it is difficult to classify the images and iden-
tify the vegetation cover from satellite images accu-
rately because of the presence of obstacles such as 
buildings, roads, and shadows, which appear as noise 
in the images [5]. Moreover, it remains challenging to 
improve vegetation mapping accuracy in heterogene-
ous landscapes due to (a) the lack of vegetation field 
survey data because of time-consuming and expen-
sive fieldwork [3], and (b) existing approaches are in-
capable of distinguishing small changes in vegetation 
types based on spectral information [5]. Therefore, for 
vegetation cover mapping, more factors and informa-
tion that may affect the distribution of vegetation and 
the classification accuracy should be considered.

Cloud-based computing services may enable ef-
fective image processing, such as the classification 
of huge amounts of image data using ML approach-
es [5]. Google Earth Engine (GEE) is a cloud-based 
geospatial analysis platform [30] that is free to use. 
Gaining access to a large volume of RS data and 
pre-processing have become more convenient with 
GEE. GEE empowers researchers and practitioners 
across various domains. It facilitates comprehensive 
analyses of land use and land cover changes, con-
tributing to assessments of urban expansion, disaster 
impacts, and water resource management. Moreover, 
GEE supports research on climate change, biodiver-
sity monitoring, and agricultural analysis, leveraging 
both historical and current satellite data. GEE’s capa-
bilities extend to air quality assessment, forest car-
bon monitoring, and infrastructure planning, proving 
invaluable for crisis response efforts and educational 
initiatives. The platform’s ability to handle extensive 
remote sensing and geospatial data continues to un-
lock innovative solutions for a wide array of environ-
mental and societal challenges. For implementation, 
GEE offers a variety of classification methods, such 
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as naïve Bayes classifier, SVM, decision tree, and RF, 
in which RF is the most widely used categorization 
method [31]. Therefore, the aim of this study is to ana-
lyze the season-based vegetation cover using the ML 
classification method (RF). The RF method is a robust 
choice for analyzing the seasonal vegetation cover 
due to its strengths in capturing complex relation-
ships, managing multicollinearity, avoiding overfitting, 
and assessing feature importance. Given the intricate 
factors affecting vegetation across seasons, its resil-
ience to noise and outliers makes it an ideal choice 
for remote sensing data. Additionally, this method’s 
ability to generalize, perform parallel processing, and 
offer reasonable interpretability further endorses its 
suitability. By leveraging these advantages, RF can 
provide accurate predictions of and valuable insights 
into the key drivers of seasonal vegetation cover 
changes. The aim of the current study is to analyze 
the spatial distributions of vegetation during different 
seasons (e.g., summer, autumn, and winter) in 2021 
using Sentinel-2 data for a large-scale area (e.g., 
Greater Sydney region, Australia) with 12,368.2 km2 
on the cloud-based GEE platform.

The following is a list of the study’s major contri-
butions: (1) With the aid of the ML technique (RF) and 
cloud-based GEE platform, we assessed the vegeta-
tion spatial distribution and the area of pixels in each 
class during the seasons of the year by analyzing a 
large amount of Sentinel-2 data. (2) We used multiple 
data, such as topographic factors, textural informa-
tion, spectral indices, and spectral bands, to improve 
the classification and overcome the aforementioned 
issues of ML in the classification with limited input 
variables. (3) We used each feature contribution infor-
mation to arrange the features based on their impor-
tance of vegetation mapping for each season and to 
see which factors show a high contribution to classi-
fication. The presented method has not been applied 
for the given task, especially on a regional scale simi-
lar to the Greater Sydney region, Australia. Moreover, 
we compared our findings obtained by RF+all factors 
with those of other researchers’ works to demon-
strate the efficacy of the proposed method for sea-
son-based vegetation analysis using multi-temporal 
data in a complex regional setting.

2. Materials and Methods

Data collection, classification and accuracy assess-
ment, and evaluation of feature importance were the 
three primary processes in the classification process. 
First, GEE was used to collect surface reflectance 

data for 2021, which was then separated into three 
seasonal intervals (e.g., summer (1st of December to 
the 28th of February), autumn (1st of March to the 31st 
of May), and winter (1st of June to the 31st of August)). 
Then, we derived spectral indices, topographic fac-
tors, and gray-level co-occurrence matrices (GLCMs). 
The RF method and a confusion matrix were used 
in the second stage to perform image classification 
and accuracy evaluation. We also provided a feature 
selection process using the RF model to determine 
how the contribution of each feature affects the clas-
sification results. Finally, we compared the generat-
ed vegetation maps by the proposed RF model with 
other researcher’s works to further investigate the 
benefit of the proposed method and multi-temporal 
Sentinel-2 data to map the vegetation cover. Figure 1 
depicts the general procedures involved in creating 
season-based vegetation maps, and more informa-
tion on each phase will be provided in the following 
sections.

2.1. Data and Study Area

The test region is Greater Sydney, which is located at 
33.8048° S, 150.7214° E on Australia’s east coast with 
12,368.2 km2 (Figure 2). Grasslands and woodlands 
are the most common types of land cover, with a va-
riety of other land uses. To implement the classifica-
tion, multi-temporal Sentinel-2 satellite imagery was 
obtained from GEE datasets. Sentinel-2 is a significant 
orbital platform for monitoring and studying the global 
vegetation. Sentinel-2 data have gained immense pop-
ularity in the remote sensing field due to its higher spa-
tial and temporal resolution, as well as its global cover-
age and free access (Gašparović and Jogun 2018). It 
is the latest generation of the European Space Agency 
(ESA)’s Earth observation mission, with the high spatial 
(10–60 m) and temporal (10 days/5 days) resolution. 
Sentinel-2 data on local and regional scales provide 
information on land surface reflectance for a variety of 
wavelengths because Sentinel-2’s high-resolution mul-
tispectral sensor operates on thirteen different bands, 
three of which have a resolution of 60 m, six of which 
have a resolution of 20 m, and four of which have a 
resolution of 10 m (Mylona et al. 2018). The dataset 
used in this study contains different cloud-free imag-
es for three seasons, namely, summer, autumn, and 
winter (each season with 3 months). For each season, 
we collected and processed the Sentinel-2 data sepa-
rately. The number of images that were processed for 
each season was 39 images for summer, 61 images 
for autumn, and 55 images for winter. Then, from all 
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of the pixels in the stack, we produced a composite 
image by applying selection criteria to each pixel. The 
median () function was used to generate a compos-
ite in which each pixel value represents the median 
of all pixels in the stack. In total, we processed 155 
Sentinel-2 images for the classification and spatial dis-
tribution evaluation of vegetation during each season. 
To create high-resolution vegetation maps, we used 10 
bands (blue, green, red, vegetation red edge, near-in-
frared, and SWIR) with the 10-m and 20-m resolution 
out of 13 bands (Table 1) available for Sentinel-2 data. 
The red-edge and short-wave bands with 20-m spa-
tial resolution were resampled to the spatial resolution 
of visible to near-infrared bands with 10 m to maintain 
the spatial consistency across the Sentinel-2 data. We 
used Sentinel images with a spatial resolution of 10 m, 
which can be used to explore the Earth’s surface in 
more detail. In addition, we illustrated the usage of the 
red edge (RE) and SWIR bands, which improved the 
classification accuracy, especially for vegetation [32].

2.2. Training and Testing Samples

In this work, we defined the classification scheme as 
dominance vegetation types such as trees, grass are-
as, crops, and non-vegetation areas such as built-up 
area and water body. With the use of Google Earth 

Table 1. Spatial and spectral resolutions 
of Sentinel-2 satellite data.

Band
Central 

wavelength 
(nm)

Spatial 
resolution 

(m)

Coastal aerosol 443 60

Blue 490 10

Green 560 10

Red 665 10

Vegetation red edge 705 20

Vegetation red edge 740 20

Vegetation red edge 783 20

NIR 842 10

Vegetation red edge 865 20

Water vapor 945 60

SWIR-Cirrus 1,380 60

SWIR 1,610 20

SWIR 2,190 20

images, exploration of the true and false color com-
posites of the Sentinel-2 data, and expert knowledge, 
ground truth samples were obtained.

Figure 1: Overall flowchart of vegetation classification process in the GEE platform.
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We used a function called glcmTexture (size, kernel, 
average) in GEE to calculate GLCM. According to the 
experimental results in earlier investigations, the best 
classification outcomes were obtained with a kernel 
size ranging from 5*5 to 13*13 [35], and the 7*7 ker-
nel size was proven to be optimal for vegetation clas-
sification in this study. Correlation calculates the linear 
relationship between the gray levels of adjacent pixels. 
When the local areas have significant contrast, dissim-
ilarity acquires large values and rises linearly. Contrast 
is a measure that shows the number of variations in 
an image. Homogeneity weighs the values that de-
crease exponentially as the distance from the diagonal 
increases by inverting the contrast weight. Variance 
measures the distribution of pixels’ gray levels. We cal-
culated the GLCM around each pixel of every band, 
and 50 elements were generated in total. For the spec-
tral bands, we used the bands with 10-m and 20-m 

Figure 2: Greater Sydney region, Australia.

2.3. Input Data

To characterize training samples and differentiate be-
tween various vegetation types, a time-series of input 
variables was gathered. For the season-based vege-
tation mapping of the Greater Sydney region in 2021, 
a total of 67 input variables, including topographic pa-
rameters, spectral indices, textural information, and 
spectral bands, were used for each season, as given 
in Table 2. The variables were formed as the average of 
the 3 months. The Shuttle Radar Topographic Mission 
(SRTM) digital elevation layer with a spatial resolution 
of 30 m was used to calculate topographic elements, 
such as aspect, slope, and elevation (three variables). 
A GLCM [33, 34] in the 7*7 neighborhood of each pix-
el was used to calculate texture information, while a 
five-layer image stack with variance, contrast, dissim-
ilarity, homogeneity, and correlation was constructed. 
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spatial resolution (10 variables), as discussed in Section 
2.1. Then, we calculated vegetation indices, such 
as the normalized difference tillage index (NDTI) [36], 
modified normalized difference water index (MNDWI) 
[37], normalized difference built-up index (NDBI) [38], 
and normalized difference vegetation index (NDVI) [39] 
based on Eqs (1)–(4).

-=
+

SWIR1 SWIR2
NDTI

SWIR1 SWIR2
 (1)

-=
+

Green SWIR1
MNDWI

Green SWIR1
 (2)

-=
+

SWIR NIR
NDBI

SWIR NIR
 (3)

-=
+

NIR Red
NDVI

NIR Red
 (4)

2.4. Random Forest (RF) Method

We applied RF to classify Sentinel-2 images and gen-
erate season-based vegetation maps for 2021 due to 
its efficiency and robustness. Breiman [40] suggested 
RF as an ensemble learning approach. When running 
RF, only a few parameters are required to be speci-
fied compared to other machine learning approach-
es, such as SVM and ANN [40]. Furthermore, RF is 
increasingly being used in remote sensing domains 
for image classification and vegetation mapping [41–
43]. RF is composed of several base learners, such 
as classification and regression trees (CART), which 
can be calculated as follows:

q = 1,2,... ...}{h(x, ),k ik  (5)

where h, x, and θk denote the RF classifier, input 
variable, and random predictor variables that are uti-
lized for creating every CART tree, respectively. The 
output of all decision trees involved is used to calcu-
late the RF’s final response. Figure 3 shows a sche-
matic representation of the RF for vegetation classi-
fication. The success of RF depends on the design 
of each decision tree that makes up the forest [40]. 
This procedure uses two steps involving random se-
lection. To build each decision tree, the initial phase 
uses a bootstrap technique [40] to select the train-
ing samples and out-of-bag (OOB) data with replace-
ment randomly. The split conditions for each node in 
the decision tree are determined in the second ran-
dom sample stage [40]. To split each tree using the 
Gini index [40], which is a measurement of heteroge-
neity, a subset of the predictor variables is randomly 
picked. Because only a random selection of predictor 
variables is used, there is less connection between 
trees and a higher generalization capability. RF also 
has the benefit of being able to quantify the input var-
iable importance [40], which reveals the contribution 
to classification accuracy. RF simply requires two pa-
rameters [44]: the number of predictor variables (mtry) 
and the number of trees (ntree) to grow into an entire 
forest to be randomly chosen, which were set to the 
square root of the input variables and 300, respec-
tively, in this study. As ntree increases, OOB error 
decreases. When ntree exceeds a specific threshold, 
the OOB error is convergent, according to the law of 
large numbers [44]. The RF is computationally light 
and unaffected by the outliers or the parameters uti-
lized to run it [41]. When opposed to individual deci-
sion trees, overfitting is less of a concern, and it is not 
required to prune the trees, which is a cumbersome 
job [44]. Furthermore, determining which parameters 
to use is simple. All the RF’s features may bring up 

Table 2. The number of input variables for the RF method used to create season-
based vegetation maps.

Category Description Input variables number

Topographic Elevation, slope, aspect 3

Spectral bands Blue, green, red, vegetation red edge, near-infrared,  
and SWIR

10

Spectral indices NDVI, NDBI, MNDWI, NDTI 4

Textural information Variance, contrast, dissimilarity, homogeneity, correlation 5×10

Total variable 67
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numerous options for classifying complex Sentinel-2 
imagery to generate high-quality vegetation maps. 

2.5. Accuracy Assessment Metrics

In this work, we calculated the accuracy of the pro-
posed model for season-based vegetation mapping 
based on F1 score, precision, recall, overall accura-
cy (OA), and kappa coefficient [45, 46]. OA is a sim-
ple and straightforward summary assessment of 
the likelihood of a case being categorized properly.  
The degree of concordance between classified data 
and reference data is represented by the kappa co-
efficient. It not only considers the OA but also the 

variations in the number of samples in each catego-
ry [47]. The F1 score is a quantitative indicator that 
assesses the balance between recall and precision 
in unbalanced training data. Recall, also called sen-
sitivity, refers to the number of real pixels recognized 
in each category. Precision shows how many correct 
pixels are identified for every category. Based on true 
positive (TP), false negative (FN), false positive (FP), 
and true negative (TN), the aforementioned metrics 
can be calculated as follows:

´ ´=
+

2 Pr ecision Recall
F1 score

Pr ecision Recall
 (6)

Figure 3: The schematic diagram of RF for season-based vegetation mapping.



8

Regional-Scale Analysis of Vegetation Dynamics Using Satellite Data and Machine Learning Algorithms: Abdollahi et al.

=
+

TP
Pr ecision

TP FP
 (7)

=
+

TP
Recall

TP FN
 (8)

+= TP TN
OA

N
 (9)

-
=

1-
0 e

e

p p
Kappa

p
 (10)

where

+=
+ + +0

TP TN
TP TN FP FN

P  and 

( ) ( ) ( ) ( )
( )

+ ´ + ´ + ´ +
=

+ + +
e 2

TP FN TP FP FP TN FN TN

TP TN FP FN
P

3. Results

In this part, we discuss the quantitative and qualita-
tive outcomes obtained by using the proposed RF 
approach for season-based vegetation mapping 
of Sentinel-2 images. Table 3 depicts the results of 
all aforementioned metrics (e.g., precision, recall, 
F1 score, OA, and kappa) obtained by using the RF 
method along with other factors such as spectral in-
dices, topographic factors, and texture information. 
According to the Table 3, the accuracy of OA and 
kappa for the proposed RF+spectral indices were 
90.65% and 86.11% for summer, 90.08% and 85.27% 
for autumn, and 91.35% and 87.17% for winter. By 
adding topographic factors to the model (RF+spectral 
indices+topographic factors), the accuracy of OA and 
kappa was increased to 91.29% and 87.06% for sum-
mer, 90.60% and 86.06% for autumn, and 92.08% 
and 88.27% for winter. In the next step, we integrated 
the topographic factors and texture information into 
the method (e.g., RF+spectral indices+topographic 
factors+texture information) and found that the results 
were improved for each season compared to the 
RF+spectral indices and RF+spectral indices+top-
ographic factors. For example, the model could 
achieve OA and kappa with 92.56% and 88.96% for 
summer, 91.64% and 87.60% for autumn, and 92.89% 
and 89.46%, respectively. The proposed model with 
different factors could achieve satisfactory results of 
vegetation mapping for the Greater Sydney region for 
each season. However, the model with all parameters 

could obtain better results of OA and kappa for winter 
with 92.89% and 89.46% compared to summer with 
92.56% and 88.96%, and autumn with 91.64% and 
87.60%. By contrast, the proposed model with all fac-
tors could obtain a higher accuracy of the F1 score 
(90.30%) for grassland mapping for summer than for 
autumn with 88.72% and winter with 89.78%. This 
might be because of high vegetation growth and over-
all greenness of grass areas in summer. The green-
ness element, which shows fluctuations in photosyn-
thetically active vegetation, is beneficial for vegetation 
and can help highlight the difference between winter 
and summer seasons [48]. Similarly, the red-edge 
band (high ranked factor in the summer) has a signifi-
cant association with leaves’ chlorophyll content and 
is considered to have contributed to the classification 
of vegetation types [49]. Thus, the proposed model 
could achieve better results for this class in summer. 
Moreover, for trees, the proposed RF+spectral indi-
ces+topographic factors+texture information could 
attain the lowest F1 score of 98.82% for summer and 
the highest F1 score for winter with 99.06%. In fact, 
the model misclassified pixels of trees as other pix-
els, specifically for the complex background, which 
leads to obtaining less accuracy for tree classification 
in summer. In addition, we compared the proportions 
of correctly categorized pixels (PCCPs) from the pro-
posed RF method with all variables and only spec-
tral indices using a two-proportion Z-test for each 
season [50]. The PCCP of RF pairings (RF+spectral 
indices+topographic factors+texture information and 
RF+spectral indices) for P < 0.05 shows that the null 
hypothesis is true according to the Z-test results. 
These are RF+spectral indices+topographic factors+ 
texture information for summer (P = 0.345), autumn 
(P = 0.339), and winter (P = 0.478). This suggests that 
adding more variables to the RF model could enable 
it to create PCCPs different from the RF+ spectral in-
dices for each season, despite the fact that their OAs 
are fairly close to one another. The accuracy of the 
proposed RF+spectral indices+topographic factors+-
texture information for vegetation cover classification 
was assessed using the confusion matrix, which 
is depicted in Figure 4. As it is clear from the figure 
and aforementioned quantitative results explained, 
the presented technique obtained better results for 
the confusion matrix in different seasons after adding 
more inputs into the model.

Moreover, we achieved the visualization results of 
season-based vegetation mapping by using the pro-
posed method with all spectral, topographic, and tex-
ture factors for summer, autumn, and winter seasons, 
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Table 3. Quantitative results were achieved by the suggested RF method for 
season-based vegetation mapping. 

Precision 
(%)

Recall 
(%)

F1 score 
(%)

OA 
(%)

Kappa  
(%)

S
um

m
er

RF+spectral indices Non-vegetation 82.45 91.22 86.61 90.65 86.11

Grass 91.54 83.96 87.59

Trees 98.93 97.64 87.59

Crops 67.01 75.01 70.78

RF+ spectral 
indices+topographic 
factors

Non-vegetation 82.99 91.39 86.99 91.29 87.06

Grass 92.80 84.46 88.43

Trees 99.24 97.94 98.58

Crops 67.87 78.15 72.65

RF+ spectral 
indices+topographic 
factors+texture information

Non-vegetation 84.27 92.08 88.00 92.56 88.96

Grass 93.50 87.31 90.30

Trees 99.37 98.28 98.82

Crops 74.98 80.89 77.82

A
ut

um
n

RF+spectral indices Non-vegetation 81.45 88.72 84.93 90.08 85.27

Grass 90.10 83.50 86.68

Trees 98.93 97.83 98.38

Crops 66.61 73.64 69.95

RF+ spectral 
indices+topographic 
factors

Non-vegetation 80.70 92.30 86.11 90.60 86.06

Grass 90.33 83.98 87.04

Trees 98.96 97.85 98.40

Crops 71.69 73.46 72.57

RF+ spectral 
indices+topographic 
factors+texture information

Non-vegetation 81.87 92.49 86.86 91.64 87.60

Grass 91.97 85.70 88.72

Trees 99.44 98.21 98.83

Crops 73.50 76.56 75.00

W
in

te
r

RF+spectral indices Non-vegetation 81.88 91.61 86.47 91.35 87.17

Grass 90.99 84.73 87.75

Trees 99.25 98.29 98.77

Crops 73.84 77.10 75.44

RF+ spectral 
indices+topographic 
factors

Non-vegetation 82.62 91.93 87.03 92.08 88.27

Grass 91.05 88.04 89.52

Trees 99.37 98.37 98.87

Crops 78.46 75.87 77.14

RF+ spectral 
indices+topographic 
factors+texture information

Non-vegetation 83.36 92.57 87.72 92.89 89.46

Grass 92.78 86.96 89.78

Trees 99.50 98.63 99.06

Crops 80.16 82.97 81.54
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which are shown in Figures 5–7, respectively. Each 
figure contains (a), (b), (c), and (d) presenting the orig-
inal multi-temporal Sentinel-2 images, the qualitative 
results of RF+spectral indices, the qualitative results of 
RF+spectral indices+topographic factors, and the vis-
ualization results of RF+spectral indices+topographic 
factors+texture information, respectively. According to 
the figures, after adding topographic factors (Figures 
5(c), 6(c), and 7(c)) to the RF model with only spectral 
indices (Figures 5(b), 6(b), and 7(b)), the visualization re-
sults improved, while the model could obtain smooth 
vegetation maps for each season compared to the RF 
model with only spectral indices (RF+spectral indices). 
The proposed RF+spectral indices+topographic fac-
tors+texture information (Figures 5(d), 6(d), and 7(d)) 
could predict a smaller number of FPs and FNs for 
various vegetation classes, which may result in pro-
ducing high-quality vegetation maps for each season 
compared to the RF+spectral indices and RF+spec-
tral indices+topographic factors. Based on the figures 
and visualization results, it is evident that the proposed 
RF model with all elements could accurately identify 
grasslands and crops areas and produce better maps 
of grass and crops in summer and winter, respectively.

Furthermore, based on the classification results 
achieved by the proposed Rf model with all factors 
(RF+spectral indices+topographic factors+texture in-
formation), we calculated the area of pixels in each 
class for each season in km2 (Table 4). As the Table 4 
shows, we achieved the highest area for trees and 
grasslands, with an average area of 9,368.9730 km2 
and 1,571.3156 km2, respectively, thus demonstrat-
ing that these two classes covered most parts of the 
Greater Sydney region. Moreover, we have shown 
the variable importance of season-based vegeta-
tion mapping achieved by the proposed RF model in 
Figure 8. Variable importance in this research refers 
to the mean decrease in accuracy (MDA), which illus-
trates the degree of accuracy the method loses by re-
moving every variable [51]. Only the top twenty input 
variables were chosen for presentation out of 67 input 
variables for each season to make visualization easier. 
The topographic factors, spectral indices, and texture 
elements are among the top twenty most significant 
input variables. The aforementioned factors were crit-
ical in the separation of classes and exhibited high 
contribution to the classification of Sentinel-2 images 
and season-based vegetation mapping for the Great-

Figure 4: Confusion matrix used in the proposed RF model’s training process: (a) with only 
spectral indices; and (b) all input variables. (i), (ii), and (iii) present the normalized confusion 
matrix for summer, autumn, and winter seasons, respectively.
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er Sydney region. This is also confirmed in the quan-
titative results, where we explained how adding the 
factors to the model could affect the accuracy of the 
metrics and improve the results.

4. Discussion

The results of our study demonstrate the effectiveness 
of using the random forest (RF) classification model in 

conjunction with multi-temporal Sentinel-2 data and 
additional factors such as topographic factors, tex-
ture information, and spectral indices for region-
al-scale vegetation analysis. One important aspect 
of our study was the inclusion of additional factors 
beyond Sentinel-2 spectral bands. The incorporation 
of topographic factors, such as elevation, slope and 
aspect, allowed us to account for terrain variations, 
which are known to influence vegetation patterns. 

Figure 5: Visualization results of season-based vegetation mapping achieved by the proposed 
model for summer season: (a) original multi-temporal Sentinel-2 image, (b) results of 
RF+spectral indices, (c) results of RF+spectral indices+topographic factors, and (d) results of 
RF+spectral indices+topographic factors+texture information.
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The inclusion of texture information enabled capturing 
finer details about the spatial arrangement and struc-
ture of vegetation, providing valuable information for 
classification. Moreover, the use of spectral indices 
helped extract meaningful information related to veg-
etation characteristics. The identification of variables 
that influence classification performance is crucial for 
understanding the underlying processes driving veg-
etation patterns. Our findings emphasize the signifi-
cance of multi-temporal Sentinel-2 data, topographic 

elements, spectral indices, and textural factors in ac-
curately mapping vegetation. The integration of these 
diverse data sources enables a more comprehensive 
characterization of the vegetation cover, contributing 
to improved monitoring and management of vegeta-
tion resources. We also compared the obtained re-
sults of this work with those of other studies to in-
vestigate the benefit of the proposed method for 
vegetation analysis of multi-temporal Sentinel-2 data. 
The results of the other works were derived from the 

Figure 6: Visualization results of season-based vegetation mapping achieved by the proposed 
model for autumn season: (a) original multi-temporal Sentinel-2 image, (b) results of 
RF+spectral indices, (c) results of RF+spectral indices+topographic factors, and (d) results of 
RF+spectral indices+topographic factors+texture information.
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original published articles; however, the given tech-
nique was developed utilizing an empirical dataset. 
For instance, de Colstoun et al. [52] applied the de-
cision tree (DT) method to multi-temporal Landsat 7 
images for vegetation mapping. When compared to a 
validation dataset collected on the ground, they could 
obtain an OA of 82% for the final map. Cingolani et al. 
[53] used Landsat data and discriminant functions to 
map vegetation in a heterogeneous mountain range-
land in central Argentina. The results showed that 

the proposed method obtained an OA of 86% when 
compared through field validation. Macintyre et al. 
[21] applied ML classifiers such as SVM, classification 
trees (CTs), and the nearest neighbor (NN) for vege-
tation mapping from multi-season Sentinel-2 images 
based on tasseled cap transformations (TCT), princi-
pal component (PC), vegetation indices, and spec-
tral bands. They achieved OAs of 50%, 72%, and 
74% for CT, NN, and SVM, respectively. Sharma et 
al. [54] performed RF and cross-validation methods 

Figure 7: Visualization results of season-based vegetation mapping achieved by the proposed 
model for winter season: (a) original multi-temporal Sentinel-2 image, (b) results of RF+spectral 
indices, (c) results of RF+spectral indices+topographic factors, and (d) results of RF+spectral 
indices+topographic factors+texture information.
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for vegetation mapping in Japan based on combin-
ing multi-source datasets, such as Landsat-8 and 
Sentinel-2. They obtained the OA and kappa coeffi-
cient of 77% and 74% for the Sentinel-2 dataset and 
86% and 84% for the Landsat-8 dataset. When they 
combined Sentinel-2 and Landsat-8 datasets, the 
classification was somewhat better (OA = 0.89, kap-
pa coefficient = 0.87) than that when the Landsat 8 
dataset was used separately. In comparison to the 
other experiments, our presented technique with ad-
ditional input variables achieved better results with 
the average OA and kappa coefficient of 92.37% and 
88.68%, respectively, thus confirming the efficacy of 
the proposed approach for vegetation mapping from 
multi-temporal Sentinel-2 images for large-scale are-
as. In our study, the developed RF model exhibited 
better performance than other traditional classifi-
cation methods. The ensemble nature of RF, which 
combines multiple decision trees, allows for robust 
and accurate classification by mitigating overfitting 
and reducing the impact of outliers or noise in the 
data. Additionally, the RF model can automatically 
rank the importance of input variables, enabling the 
identification of key factors that drive vegetation pat-
terns. This information is invaluable for understand-
ing the underlying processes governing vegetation 
dynamics and for guiding future research and man-
agement strategies. In addition, our findings indicat-
ed that GEE is productive and efficient in accessing 
satellite imagery, applying machine learning algo-
rithms, and producing vegetation maps. Unlike most 
commercial image-processing software, GEE does 

not require any special hardware. Thus, in a general 
sense, the open-access platform and methodology 
proposed in this work allow decision-makers to effec-
tively monitor vegetation cover over time using mul-
ti-temporal Sentinel-2 data without needing to pay or 
download software and data. However, it is important 
to note that our study solely relied on images from the 
Sentinel-2 sensor for vegetation mapping. While this 
dataset provided valuable information about the veg-
etation cover and dynamics, the integration of other 
data types has the potential to further enhance the 
accuracy and comprehensiveness of vegetation anal-
ysis. One promising data type that can be integrated 
with Sentinel-2 data is synthetic aperture radar (SAR) 
imagery. SAR sensors emit microwave signals and 
measure the backscattered signals, which can pen-
etrate cloud cover and provide valuable information 
about the vegetation structure, moisture content, and 
biomass. By combining SAR imagery with Sentinel-2 
data, we can leverage the complementary strengths 
of both sensors to improve vegetation analysis.

5. Conclusion

This work generated high-quality season-based veg-
etation maps from multi-temporal Sentinel-2 images 
based on the RF model. Using cloud-based image 
processing technologies such as Google Earth Engine 
(GEE), this study provided an efficient method for map-
ping vegetation cover for a large-scale area, such as 
the Greater Sydney region of Australia. We also used 
additional features, such as topographic factors, tex-
tural information, and spectral indices, to improve the 
classification. The classification map’s accuracy for 
each season was evaluated visually and quantitative-
ly. In addition, we compared the results obtained by 
the RF model with other works to demonstrate the effi-
ciency of the proposed methodology in producing ac-
curate vegetation maps. The RF model with all factors 
achieved an OA of 92.56% for the summer, 91.64% for 
autumn, and 92.89% for winter, which could improve 
the quantitative results compared to the other studies. 
The visualization results confirmed that the proposed 
model could obtain satisfactory season-based vege-
tation maps. Moreover, we demonstrated the most 
significant input variables that affected the classifica-
tion results and presented high-contribution to sea-
son-based vegetation mapping using the RF method. 
Results demonstrated that multi-temporal Sentinel-2 
data, spectral indices, topographic factors, and tex-
ture information were critical in separating classes and 
were effective for vegetation mapping. The findings re-
vealed that our method showed the ability to produce 

Table 4. Area of pixels in each class for 
each season in square km.

Class Area (km2)

S
um

m
er

Non-vegetation 1,364.3155

Grass 1,691.4873

Trees 9,225.3798

Crops 86.8179

A
ut

um
n

Non-vegetation 1,335.9587

Grass 1,537.0343

Trees 9,440.5423

Crops 54.4652

W
in

te
r

Non-vegetation 1,370.4691

Grass 1,485.4252

Trees 9,440.9971

Crops 71.1091
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satisfactory vegetation maps in a variety of terrestrial 
environments. Furthermore, by using GEE, multi-tem-
poral data, machine learning, and modern computing 
technologies opened the prospect of developing a 
timely vegetation monitoring platform.
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