
Proceedings of the lASTED International Conference
COMPUTATIONAL INTELLIGENCE
November 20-22, 2006, San Francisco, CA, USA
ISBN Hardcopy: 0-88986-602-3/ CD: 0-88986-603-1

A DYNAMIC STORAGE METHOD FOR STOCK TRANSACTION DATA
Jiarui Ni and Chengqi Zhang

Faculty of Information Technology
University of Technology, Sydney

GPO Box 123, Broadway, NSW 2007, Australia
email: {jiarui.chengqij Oit.uts.edu.au

ABSTRACT
Stock transaction data have become very detailed and enor-
mous with the introduction of electronic-trading systems.
This makes it a problem to store and to access,the data in
later analyses such as mining useful gatterns and backtest-
ing trading strategies. This paper investigates several stor-
age methods in terms of both storage space and access ef-
ficiency and then proposes a new dynamic storage method
which provides a flexible mechanism to balance between
storage space and access efficiency for storing huge intra-
day transaction data.

KEYWORDS
data preparation, storage, stock transaction, database, data
compression

1 Introduction

With the help of modem computer systems, it is now possi-
ble to record every piece of transaction information during
the operation of a stock market and save the information
for later analyses. Professional and amateur traders rely
on these information to understand the market and make
decisions. Researchers can also use these data to study
various financial or social theories such as market dynam-
ics, herd behaviour, etc. Mining useful patterns and back-
testing technical trading strategies based on historical stock
transaction data have also been very popular in recent years
[1,2,3].

Many data providers provide stock transaction data to
their subscribers in various formats. As the data become
more detailed, the space required to store them and the ef-
fort required to utilize the data also expand dramatically.
For example, three years' intraday data (2001 - 2003, in
CSV format) take up 3 gigabytes (GB) disk space for Mi-
crosoft (MSFT) and it takes about two minutes to simply
read through the data. This makes it necessary to develop
efficient storage methods in terms of both storage space and
access efficiency.

There are various techniques to store time series data
efficiently [4]. Some storage methods for time series data
use lossy compression techniques, such as discrete cosine
transform (DCT), fractal compression, wavelet compres-
sion, etc. However, for the analysis of stock transaction
data, a small change in the data could cause severe dis-

523-095

tortion in the result. Therefore lossless compression tech-
niques are the only choice. The Lempel-Ziv (LZ) com-
pression methods are among the most popular algorithms
for lossless storage. And the widely used gzip[5] util-
ity uses a variation of LZ, DEFLATE, which is optimized
for decompression speed and compression ratio, although
compression can be slow [6].

This paper investigates several storage methods and
then proposes a new dynamic storage method in detail. The
rest of this paper is organized as follows. Section 2 explains
the characters of stock transaction data and their normal
access patterns. Section 3 shows several storage methods
and discusses their pros and cons. Section 4 presents our
dynamic storage method. Section 5 gives the experimental
results. And finally, Section 6 concludes this paper.

2 Characters of Stock Transaction Data

Stock transaction data can be roughly categorized into
two groups: daily data and intraday data. Daily data
usually include volume, open price, close price, high-
est price and lowest price. Daily data may also include
other aggregation data such as volume weighted average
price (VWAP), etc. There may also be other infonna-
tion such as dividend. Daily data contain only aggre-
gate information and there is only one record per day.
A short sample is shown below, where the first column
is the security code, the second column shows the date,
and the final five columns are the open price, highest
price, lowest price, close price and volume, respectively.

ASX,"Ol May 2006",32.84,33,32.5,32.61,100807
ASX,"02 May 2006",32.49,32.49,31.8,31.81,383398
ASX, "03 May 2006", 31.81,32 .04,31.2,31.61,1046849
ASX, "04 May 2006",31.35,32.19,31.35,32,382486
ASX,"05 May 2006",32.14,32.17,31.8,32.15,242832
ASX,"08 May 2006",32.47,32.48,32.11,32.2,294295
ASX,"09 May 2006",32.15,32.29,31.9,32,244347
ASX,"10 May 2006",32.32,32.44,32,32.2,266441
ASX,"ll May 2006",32.47,32.47,32.06,32.15,246636
ASX,"12 May 2006",31.86,32.2,31.72,32.19,259179

Intraday data may include the following details: 1) the
time, price and volume of every single trade; 2) the market
depth at any time during the day; 3) the details of every
order and its amendment, cancellation or execution, etc.
There may also be other information such as the identity

338



of the initiator of every order, etc. Depending on the stock
under consideration, there may be zero or tens of thousands
of records per day. An example of intraday data is shown
as follows, where two kinds of records are available. A
QUOTE record shows the best bid price/volume, best ask
price/volume at a given time, and a TRADE record shows
the time, price and volume of a trade transaction, and the
best bid price and ask price immediately after the trade.

QUOTE,20020102,14:18:51"",11.38,3910,11.39,lOOO
TRADE,20020102,14:18:51,11.38,3090,11.38,11.39""
QUOTE,20020102,14:25:09"",11.37,200,11.38,1090
TRADE,20020102,14:25:09,11.38,3910,11.38,11.39""
QUOTE,20020102,14:29:34"",11.37,5200,11.38,1090
QUOTE,20020102,14:31:04"",11.37,5200,11.38,90
TRADE,20020102,14:31:04,11.38,lOOO,11.37,11.38""
QUOTE,20020102,14:31:50"",11.37,200,11.38,90
TRADE,20020102,14:31:50,11.37,200,11.37,11.38""
TRADE,20020102,14:31:50,11.37,4800,11.37,11.38""

As a time series, stock transaction data are usually re-
trieved sequentially. For example, to display a historical
chart, or to backtest a trading strategy, we normally have
to read the data from the start to the end of a certain pe-
riod. Only in the case of historical price lookup, we need
to search the data according to a given condition such as the
date. However, this does not happen often since a separated
record here provides hardly any useful information.

Usually people focus on one stock at a time. However,
sometimes it is also necessary to read the data for multiple
stocks simultaneously. One example is the pairs mining
which considers multiple stocks and trading strategies at
the same time [7].

3 Existing Storage Methods

Various storage methods have been used to store stock
transaction data. One simple and widely used method is
a formatted plain text file, such as a comma separated val-
ues (CSV) file. Many stock data providers, such as Ya-
hooll-inance! and Commonwealth Securities Ltd.2, provide
daily data in this format. The sample data shown in Sec-
tion 2 are displayed in this format, too.

Plain text files are easy to understand, to create and to
read. It is normally good enough for daily data since daily
data are not too big. However, it requires very large storage
space for intraday data. As mentioned in Section 1, three
years' intraday data (2001 - 2003, in CSV format) take up
3 GB disk space for MSFf. One solution to this problem is
to compress the file. For example, with default settings, the
gzip utility can deflate the MSFf data by near 90 percent
to 330 megabytes (MB).

There are several intuitive variants to store intraday
data in plain text files. One is to use one file per day for
all stocks. Another one is to use one file per stock for all
dates. A third one is to use one file per stock, per day. The

Ifinance.yahoo.com
2www.comsec.com.au

first one is good for replaying the whole market in a time
sequence, however, it is very inefficient to retrieve the data
for a particular stock, which is often needed in many min-
ing and backtesting processes. As a result, it will not be
considered in this work. The second variant has the prob-
lem that the files would be pretty large when there is a long
history of data. As a text file has to be read sequentially,
it is very inefficient to read a chunk of records from the
file since everything before that chunk has to be read and
discarded. This problem might be alleviated by the intro-
duction of some indices marking the start positions of each
day in the file, however, when compression is used to re-
duce the file size, it becomes pretty hard to apply such a
technique to the compressed file. The third variant is the
finest one. It has little problem with the data access effi-
ciency. However, for those stocks which are not heavily
traded (unfortunately, a large portion of stocks fall into this
category), there are not much transaction data for one sin-
gle day, and this variant results in a lot of tiny files which
occupy much more storage than what the data really de-
serve.

A second storage method is to use a relational data-
base such as the commercial Oracle[8] database or the open
source PostgreSQL[9] database, and take advantage of the
power of the database management system (DBMS). In
this way, the data can be retrieved more efficiently, espe-
cially for random access requirements. However, the stor-
age problem is worsened because a DBMS usually creates
a lot of metadata such as indices to facilitate its fast opera-
tions. And it is usually not possible to compress the data in
a database.

There are other customized storage methods. For
example, SMARTS3 stores its data in FAV format which
splits the data into multiple files where each file contains
only one day's data of all stocks, and then compresses these
files separately. It also uses a separate file to store daily data
apart from the intraday data.

The FAV format bears the same disadvantages as the
first variant of plain text file described above because it also
mixes the data for all stocks into a single file. Another prob-
lem with the FAV format is that it uses its own encoding
method and every transaction is encoded into a variable-
length record. Proprietary utilities or APls are necessary to
create and read FAV files.

4 A Dynamic Storage Method

Based on the pros and cons of the storage methods dis-
cussed in Section 3, we have developed a dynamic stor-
age method for large intraday data to make use of the ad-
vantages and avoid the disadvantages as much as possible.
This section explains how it works and gives some theoret-
ical analysis of its performance.

3www.smarts.com.au

339

http://2www.comsec.com.au
http://3www.smarts.com.au


4.1 The implementation

In our storage schema, we use compressed text files to
store stock transaction data. There is one folder for
each stock. In this folder, the data will be further split
into several files. The size of each file (before com-
pression) is controlled to be around S, which is to be
tuned according to performance tests. Each file may con-
tain data for a single day or multiple days, depending
on the number or transaction records. An index file is
used to map the date to data files. The algorithm to
create such data storage for one stock is shown below.

I. let N be the total number of days;
2. let Si(i = 1.2."·· ,N) be the data size for each

day;
3. let S be the desired size for each data file;
4. let C be the size of the current data file;
5. C = 0;
6. for i = 1: i < X: i + + do

if C 2: S or
C + S, > Sand C + S, - S > S - C do
close current data file;
update index file;
add data for day i into a new data file:
C=Si;

else do
add data for day i into current data file;
C= C+Si;

end if
end for
close current data file:
update index file;

The data files are named according to a certain
schema. We use XYZ_YYYYMMDD. csv where XYZ is the
stock code or name, and YYYYMMDD represents the start
date of the data contained in the data file. The index file
stores the mapping from the date to data files, such as

20030108 ~> BHP2003010B.csv
20030115 => BH?~0030115.csv
2003012, BHP...20:J30:2l. csv

20030129 BHP20030129. csv
Note that the dates here are not consecutive because one
data file may hold data for several days.

With the help of the index file, it is possible to fast
identify the data file containing the data for any specific
date. And because the size of each data file is restricted
to somewhere around S, the maximum data to be read and
discarded in order to read the data for any specific date is
also limited. Further, since plain text files are used here, we
can use any standard compression utilities to compress the
data file to save storage space.

When new data are available, it is also easy to merge
new data with existing data under this storage method.
Only the index file and the last data file (if necessary) have
to be rebuilt.

4.2 Performance analysis

Storage space and access efficiency are the two perfor-
mance factors of the most concern in this work. In our
storage method, the storage space depends mainly on the
compression ratio, which is influenced by the compression
technique in use, by the file size, and particularly by the
property of the stock data to be stored. It has been men-
tioned that the compression ratio for MSFT data is near
10. The result is similar for the data of other stocks from
the same data source. However, for another set of stocks
from a different data source, the highest compression ratio
is only around 4, as will be shown in Section 5. The prop-
erty of the data, however, is out of control, and can only
be accepted as it is. What can be done is to select a proper
compression technique and to adjust the file size.

As to the access efficiency, we have concern about
the time needed to read the transaction data for any specific
date from the data reservoir. For our storage method, sup-
pose the average data size for one day is SD, the selected
file size S = k x S D, and the reading speed is v, then the
average reading time for one day is

k+ 1 SDt=--x-2 t'
(1)

Therefore, a larger S means a longer reading time. For
better access efficiency, a small S is preferred.

When S is small enough, i.e., no more than the aver-
age data size for one day, our method becomes the same as
using one file per stock, per day. On the other hand, if S is
arbitrarily large, our method turns to be using one file per
stock.

5 Experimental Results and Discussions

In this section we show the experimental results of the per-
formance of the dynamic storage method and compare it
with the first two methods presented in Section 3, i.e., plain
text files and databases. We do not try to compare with
FAV format because its utilities and APls are not available.
All experiments described in this section are carried on in
a Red Hat Linux box with an Intel(R) Xeon(TM) MP CPU
(2.00GHz) and 4 GB memory.

5.1 Storage space

We use the standard gzip utility shipped with Red Hat
Linux to compress the plain text files. As a first step, we
study the relationship between the compression ratio and
the size of the file. Figure 1 displays the average compres-
sion ratio with respect to file size. The sample files here
contain three years (2003-2005) transaction data for stocks
traded on Australian Stock Exchange (ASX). Each file cor-
responds to one stock. There are 2190 files in total.

The results show that when the size of the data files
are larger than 1 MB, the compression ratio keeps stable

340



",---------------------,

~

----
4.0

a .s

a.a ,I
'.1

,d
;

"i,.41'
a

!
32 r,,+-~__,_~_.~_____,_~__,-~._~_,__~__,_~-1

o 12

Figure 1. Compression ratio vs. File size (MB)

around 4. There is no big improvement for larger files,
however, when the file size goes below I MB, the com-
pression ratio drops significantly as the file size decreases.
This means that the size of the data files 5 should be kept
no less than 1 MB.

In our experiment, we test several different values for
5. Table 1 lists all the storage methods we have tested.
Table 2 lists the space used by these storage methods" for
three stocks with decreasing total data size, namely, BRP,
LHG and TSE. The average data size for one day is around
300 kilobytes (KB) for BHP, 60 KB for LHG, and 16 KB
for TSE. And among the 2190 stocks, there are more than
2000 stocks that have less data than TSE.

Table 1. Storage methods

I Method I Description
SM1 One file per stock (plain text)
SM2 One file per stock (compressed)
SM3 One file per day (plain text)
SM4 One file per day (compressed)
SMs PostgreSQL database
SM6 Dynamic method (5 = 1MB)
SM7 Dynamic method (5 = 2 MB)
SMs Dynamic method (5 = 4 MB)

The PostgreSQL database consumes astonishingly
large disk space, which is highly discouraging,

A fixed 5 has the biggest impact on TSE, less impact
on LHG, and the least impact on BHP. When 5 is set to

4The values for PostgreSQL database are not very accurate. We simply
calculate the size difference after and before the data are inserted into the
database. Due to the implementation of PostgreSQL database, this may
not be the exact space used by the inserted data. Besides, for faster access,
an index is created on the date field, which contributes about 18 per cent
to the disk usage.

Table 2. Storage space for 3 stocks

Storage Storage space (MB)
Method BHP LHG TSE

SM1 224.5 42.75 10.49

SM2 48.3 9.86 2.68
SM3 228.9 45.70 12.03
SM4 51.7 11.44 4.40
SMs 585.6 109.17 27.36
SM6 49.5 10.11 2.74
SM7 48.9 9.98 2.70
SMs 48.5 9.92 2.69

I MB, our dynamic method can save 37 percent storage
space comparing with the method SM4 for TSE, IIpercent
for LHG, and only 4 percent for BHP. For stocks like TSE,
the method SM4 consumes much more storage space than
our dynamic method.

A larger 5 can further save the storage space but the
improvement is not too much. And it can be seen that the
result of SMs is already very close to SM2.

5.2 Reading time

To test the reading time, we randomly select five days
within the available time range and try to read the data
for those days for a single stock from various data sources
(based on different storage methods) and compare the read-
ing time. The stock BHP is used in this experiment. Table 3
lists the results.

Table 3. Reading time for BHP

Storage Reading time (ms)
method day 1 day 2 day 3 day 4 day 5

[SMd 340 1410 3000 4600 11800
[SM2] 390 1510 3000 5800 13200
[SM3] 5.8 5.8 5.8 5.8 6.0
[SM4] 9.6 9.6 9.6 9.0 12.0
[SMs] 136 136 138 132 160
[SM6] 70 36 40 80 34
[SM7] 70 90 58 140 126
[SMs] 114 122 112 56 150

Again the results for the database approach (SMs) are
beyond the wildest expectation. It turns out that database is
really a bad choice for such an application where sequential
access of data dominates.

SM3 achieves the shortest reading time in the exper-
iment, which is quite reasonable since no extra work than
necessary is done here. The single compressed file (SM2)
is the worst approach in terms of reading time. Our dy-
namic method makes a compromise between storage space

341



and reading time. It achieves much shorter reading time
than SM2, and much less storage space than SM4 for stocks
with little data per day.

It can also be seen that a larger S causes a longer read-
ing time, which could hardly justify the little gain in storage
space.

6 Conclusion

In this paper we investigate several storage methods for
stock transaction data. After examining their pros and cons,
we present a new dynamic storage method which tries
combine the advantages of these existing storage meth-
ods. The new method provides a flexible mechanism to
balance between storage space and access efficiency. With
this method, it is easy to trade storage space for access ef-
ficiency and vice versa.

Acknowledgement

This work was supported in part by the Australian Re-
search Council (ARC) Discovery Projects (DP0449535
and DP0667060), National Science Foundation of China
(NSFC) (60496327) and Overseas Outstanding Talent
Research Program of Chinese Academy of Sciences
(06S30l1S0l).

References

[1] J. Ni, C. Zhang, An efficient implementation of
the backtesting of trading strategies, Proc. Third In-
ternational Symposium on Parallel and Distributed
Processing and Applications (ISPA'2005), Nanjing,
China, 2005, 126- I3 I.

[2] L. Lin, L. Cao, J. Wang and C. Zhang, The appli-
cations of genetic algorithms in stock market data
mining optimization, Proc. Fifth International Con-
ference on Data Mining, Text Mining and their Busi-
ness Applications, Malaga, Spain, 2004, 273-280.

[3] L. Lin, L. Cao, C. Zhang, Genetic algorithms for ro-
bust optimization in financial applications, Proc. The
lASTED International Conference on Computational
Intelligence (CI 2005), Calgary, Canada, 2005, 387-
391.

[4] M. Last, A. Kandel and H. Bunke (Eds.), Data mining
in time series databases (New Jersey: World Scien- to
tific, 2004).

[5] http://www.gzip.org

[6] D. Salomon, A guide to data compression methods
(New York: Springer, 2002).

[7] L. Cao, D. Luo, C. Zhang, Fuzzy genetic algorithms
for pairs mining, Proc. The Pacific Rim International
Conferences on Artificial Intelligence 2006, Guilin,
China, 2006.

[8] http://www.oracle.com

[9] http://www.postgresqI.org

342

http://www.gzip.org
http://www.oracle.com
http://www.postgresqI.org



