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Abstract. Hyperchaotic system is a very useful tool in secure and encrypted communications.
But situations arise when engineers and scientists seek to synchronize two hyperchaotic systems.
This gives another (error) system. The goal is to minimize the error as much as can be in order
to make one system look like the other by synchronization. This is a particularly challenging
situation. In this paper, two hyperchaotic systems are synchronized by impulsive control. Also,
the condition for uniform asymptotic stability of the synchronized error system was given.
Finally, the simulation results to justify the reliability of this method is also presented.

1. Introduction
A typical differential equation which is impulsive is of the form

ẋ = f(t, x), t 6= tk
∆x = x(t+k )− x(t−k ) = Ik(x), t = tk, k ∈ IN
x(t+0 ) = θ.

(1)

So many studies on chaotic control have been done and more information can be found in [1],
[2], [3], [4], [5], [6] and [7].

Of particular interest is the work of [8]. It obtained a control matrix. In practice, control
should not be continuous, otherwise, it is not impulsive. The intensity of control should reduce
with passing time so that the energy of the system is also gradually controlled as control should
not suddenly and significantly change the state of the system.
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Further to the work of [8], a set of control matrices was obtained to give room for varying and
flexible data about interval of impulses and the time at which stabilization is achieved. Also, a
completely different sufficient condition for the synchronized error system of Chen to be uniform
and asymptotically stable was given.

2. Preliminaries
In what follows, IR+ represents the nonnegative real numbers and IRn the Euclidean space. Let
S ∈ IRn and xt , a piecewise continuous function.

However, it is important to note that choosing a constant r > 0 as the delay system upper
bound and open set D ⊂ IRn, given the functionals f, I : J × PC([−r, 0], D)→ IRn, the system{

ẋ(t) = f(x, xt), t 6= τk
∆x(t) = I(t, xt−), t = τk

(2)

where ∆x(t) = x(t)− x(t−) with the initial condition

xt0 = θ, (3)

where t0 ∈ IR+ and θ ∈ PC([−r, 0], IRn), has a trivial solution. This is especially when τk, the
impulse instances, are assumed to satisfy 0 = τ0 < τ1 < τ2 < · · · and lim

k→∞
τk =∞.

The solution of (2) which is trivial is stable if for every ε > 0 and a non negative real number
t0 , there exists some δ > 0 such that if θ is piecewise continuous on ([−r, 0], D) such that
||θ||r ≤ δ and any solution of (2) and (3) of the form x = x(t0, θ) implies x(t, t0, θ) is defined
and ||x(t, t0, θ)|| ≤ ε, for all t ≥ t0. Let δ be independent of t0, then that trivial solution has
a uniform stability. Its stability is uniform and asymptotical if, in addition, there exists some
η > 0 and for every γ > 0, there is some F = F (η, γ) > 0 such that if θ ∈ PC([−r, 0], D) with
||θ||r ≤ η, then ||x(t, t0, θ)|| ≤ γ for t ≥ t0 + F .

Take V : J ×D −→ IR+, where J is a clopen interval of the form [0,∞) in IR+. The upper
directional derivative of V on the right with respect to system (2) is defined by

D+V (t, φ(0)) = lim
h→0+

sup
1

h
[V (t+ h, φ(0) + hf(t, φ))− V (t, φ(0))], (4)

for (t, φ) ∈ J × PC([−r, 0], D).
Furthermore, take K1 = {g(s)} as a set of continuous functions on IR+ such that g(s) 6= 0

for 0 6= s ∈ IR+. Also, let α, β, a, g ∈ K1 such that g is nondecreasing in s and

V : [−r,∞)×W (ρ)→ IR+,

where V is continuous on both [−r, τ0)×W (ρ) and [τk−1, τk)×W (ρ) with the

lim
(t,y)→(τ−k ,x)

V (t, y) = V (τ−k , x),

for each x ∈ W (ρ) and k = 0, 1, 2, 3, · · · . Then, V is said to be locally Lipschitz in x, if when
restricted to IR+ ×W (ρ), and q ∈ PC(IR+, IR+), the following conditions are satisfied:

(i) β(||X||) and α(||X||) bound V (t, x) below and above, respectively, for all (t, x) ∈ [−r,∞)×
W (ρ);

(ii) D+V (t, φ(0)) is bounded above by q(t)a(V (t, φ(0))), for all t 6= τk in IR+ and φ ∈
PC([−r, 0],W (ρ)) whenever V (t, φ(0)) ≥ gV (t+ s, φ(s)) for s ∈ [−r, 0];

(iii) V (τk, φ(0) + I(τk, φ)) ≤ g(V (τ−k , φ(0))), ∀ (τk, φ) ∈ IR+ × PC([−r, 0],W (ρ1)) for which
φ(0−) = φ(0); and



ISAIC 2020
Journal of Physics: Conference Series 1828 (2021) 012143

IOP Publishing
doi:10.1088/1742-6596/1828/1/012143

3

(iv) τ = sup
k∈ZZ
{τk − τk−1} <∞, T1 = sup

t≥0

∫ t+r

t
q(s)ds <∞, and T2 = inf

p>0

∫ p

g(p)

ds

a(s)
> T1.

In that case, the solution of (2) which is trivial is uniform and asymptotically stable. More
explanations can be found in [5].

Consider the drive system given by

ẋ(t)= Mx(t) +Nx(t− τ) + φ(x(t)) (5)

where x(t) =

 x
y
z

. From the (drive) system (5) and the (response) system (6) below

{
ẋ′(t)= Mx′(t) +Nx′(t− τ) + φ(x′(t)), t 6= tk
∆x′ = x′(t+k )− x′(t−k ) = Jk(x

′(tk)− x(tk)), t = tk
(6)

where φ(x′(t)) =

 0
−x′z′
x′y′

, the error system below can be obtained as

{
ė(t)= Me(t) +Ne(t− τ) + φ(x(t), x′(t)), t 6= tk
∆e(tk) = Jke(t−k ), t = tk

(7)

3. Main Result
Theorem 3.1 Given an error system (7), if there exist a constant µ and matrix A such that

(i) ||φ(x)||2 ≤ µ||x||2
(ii) for ||x|| ≤ 1

V = [
λx(MTA+AM) + 2λx(ATA)µ

λn(A)
+

2λx(ATA)||N ||2

λx[(I + Jk)TA(I + Jk)]
] > 0

and

0 < δk < −
ln(λx[(I + Jk)

TA(I + Jk))]/λn(A)

V
,

where A is a symmetric matrix which is positive definite, λx(A) is the spectral (or maximum
eigenvalue) of matrix A, λn(A) is that eigenvalue of A which is minimum and δk is the interval
range of impulse. Then, the stability of (7) is uniform and asymptotic.

proof Consider the Lyapunov function

V (t, e(t)) = eTAe

such that λn(A)||e||2 ≤ V (t, e(t)) ≤ λx(A)||e||2. For t = tk

V (e(t)) = e(tk)
TAe(tk) = e(t−k )T [(I + Jk)

TA(I + Jk)]e(t−k )

≤ λx[(I + Jk)
TA(I + Jk)]||e(t−k )||2

≤ λx[(I + Jk)
TA(I + Jk)]

λn(A)
V (t−k , e(t−k ))

≤ gV (t−k , e(t−k )),

(8)

where g =
λx[(I + Jk)

TA(I + Jk)]

λn(A)
.
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If V (t, e(t)) ≥ gV (t+ i, e(t+ i)) for −τ ≤ i ≤ 0, then, V (t, e(t)) ≥ gλn(A)||e(t+ i)||2 and

||e(t+ i)||2 ≤ V (t+ i, e(t+ i))

λn(A)
≤ V (t, e(t))

gλn(A)
.

For t 6= tk

D+(V (e))

= 2[Me +Ne(t− τ) + φ(e)]TAe

= eT (MTA+AM)e + 2eTANe(t− τ) + 2eTAφ(e)

≤ λx[MTA+AM ]

λn(A)
V (e) + 2||Ae||2||N ||2||e(t− τ)||2 + 2||Ae||2||φ(e)||2

≤ λx[MTA+AM ]

λn(A)
V (e) +

2λx(ATA)||e||2||N ||2

gλn(A)
V (e) + 2λx(ATA)||e||2||φ(e)||2

≤ λx[MTA+AM ]

λn(A)
V (e) +

2λx(ATA)||e||2||N ||2

gλn(A)
V (e) + 2λx(ATA)||e||2µ||e||2

≤ λx[MTA+AM ]

λn(A)
V (e) +

2λx(ATA)||e||2||N ||2

gλn(A)
V (e) +

2λx(ATA)||e||2µ
λn(A)

V (e)

≤ [
λx[MTA+AM ]

λn(A)
+

2λx(ATA)||N ||2

gλn(A)
+

2λx(ATA)µ

λn(A)
]V (e)

≤ [
λx[MTA+AM ] + 2λx(ATA)µ

λn(A)
+

2λx(ATA)||N ||2

gλn(A)
]V (e)

≤ [
λx[MTA+AM ] + 2λx(ATA)µ

λn(A)
+

2λx(ATA)||N ||2λn(A)

λx[(I + Jk)TA(I + Jk)]λn(A)
]V (e)

= [
λx[MTA+AM ] + 2λx(ATA)µ

λn(A)
+

2λx(ATA)||N ||2

λx[(I + Jk)TA(I + Jk)]
]V (e)

= q(t)V (t, e),

(9)

where q(t)=
λx[MTA+AM ] + 2λx(ATA)µ

λn(A)
+

2λx(ATA)||N ||2

λx[(I + Jk)TA(I + Jk)]
= V.

Assume a(s) = s, from item (iv) of the hypothesis,

T2 − T1 = inf
p>0

∫ p

g(p)

ds

a(s)
− sup

t≥0

∫ t+δ

t
q(s)ds > 0

= inf
p>0

[ln p− ln g(p)]− sup
t≥0

[q(t+ δ)− q(t)] > 0

= − ln g(p)− ((V + δV)− V) > 0

= − ln g(p)− δV > 0

= − ln
λx[(I + Jk)

TA(I + Jk)]

λn(A)
− δkV > 0

Hence,

0 < δk < −
ln(λx[(I + Jk)

TA(I + Jk)]/λn(A))

V
.

According to the hypothesis, the error system (7) is uniform and asymptotically stable.

4. Simulation of numerical example
The following is a system of Chen [3]
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Figure 1. Chen System’s hyperchaotic phenomenon when c = 18.35978

Figure 2. x against t when c = 18.35978

 ẋ= a(y − x)
ẏ= (c− a)x− xz + cy
ż= xy − bz +K(z − z(t− τ))

(10)

where a = 35, b = 3,K = 2.85, τ = 0.3, x(0) =

 2.27
2.27
1.72

 and z(t) = 0 for t ∈ [−0.3, 0).

This system exhibits a single-scroll attractor when c = 18.35978 as in [2]. This same system is
hyperchaotic as shown in Figure 1. The chaos diagrams along x, y and z axes against t axis
are respectively shown in Figure 2, Figure 3 and Figure 4.

From (10),

M =

 −35 35 0
−16.64 18.35978 0

0 0 −0.15

 ,

N =

 0 0 0
0 0 0
0 0 −2.85

 ,
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Figure 3. y against t when c = 18.35978

Figure 4. z against t when c = 18.35978

φ(x(t)) =

 0
−xz
xy

 and ||φ(x(t))||2 = x2(y2 + z2) ≤ x2(x2 + y2 + z2) ≤ 5.1529||x||2, whence

µ = 5.1529. This fulfills condition (i) in Theorem 3.1.
Furthermore, take A = I3 (the 3×3 identity matrix) and the set of Impulse Control Matrices

(ICM) {Jk} such that

Jk =
k + 1

k

 −0.2 0 0
0 −0.8 0
0 0 −0.8

 .

Note that
k + 1

k
→ 1 as k →∞ so that Jk → J∞. Hence,

J1 = 2.000

 −0.2 0 0
0 −0.8 0
0 0 −0.8

 ,

J2 = 1.500

 −0.2 0 0
0 −0.8 0
0 0 −0.8

 ,

J3 = 1.333

 −0.2 0 0
0 −0.8 0
0 0 −0.8

 ,

. . .

J∞ =

 −0.2 0 0
0 −0.8 0
0 0 −0.8

 .
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From condition (ii) of Theorem 3.1,

V =
λx[MTA+AM ] + 2λx(ATA)µ

λn(A)
+

2λx(ATA)||N ||2

λx[(I + Jk)TA(I + Jk)]
> 0

0 < δk < −
ln(λx[(I + Jk)

TA(I + Jk)]/λn(A))

V
For k = 1, we have

V =
38.9732 + 2(5.1529)

1
+

2(8.1225)

0.36
= 94.404 > 0

0 < δ1 < −
ln(0.36)

94.404
= 0.010822

Choose δ1 = 0.01.
For k = 2, we have

V =
38.9732 + 2(5.1529)

1
+

2(8.1225)

0.49
= 82.43206 > 0

0 < δ2 < −
ln(0.49)

82.43206
= 0.008654

Choose δ2 = 0.008.
For k = 3, we have

V =
38.9732 + 2(5.1529)

1
+

2(8.1225)

0.5379
= 79.47978 > 0

0 < δ3 < −
ln(0.5379)

79.47978
= 0.007802

Choose δ3 = 0.007.
For k =∞, we have

V =
38.9732 + 2(5.1529)

1
+

2(8.1225)

0.64
= 74.6618 > 0

0 < δ∞ < − ln(0.64)

74.6618
= 0.005977

Choose δ∞ = 0.005.
The choice of the impulsive interval δk varies from one control instance to the other as shown

in Table 1. However, it is such that all the properties in Theorem 3.1 are obtained for all k as
k →∞.

5. Simulation with Control
Figure 5, Figure 6, Figure 7 show the control effects in x, y, z against t when c = 18.35978,
respectively.

Table 1 summarizes the data of time of synchronization along axes x, y and z and the
instantaneous impulsive intervals.
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Figure 5. Control in x against t when c = 18.35978

Figure 6. Control in y against t when c = 18.35978

Figure 7. Control in z against t when c = 18.35978

Table 1. Synchronization time along axes.

Jk x y z δk

k = 1 2.718 2.457 4.911 0.01
k = 2 1.344 1.482 4.242 0.008
k = 3 1.185 1.224 3.726 0.007

...
...

...
...

...
k =∞ 1.173 1.083 3.192 0.005

6. Conclusion
In this paper, a condition which is sufficient to synchronize two hyperchaotic systems via
impulsive control is given. The set {δk} of the upper bounds of the impulses at different
instances which will make the synchronized error system to be uniformly asymptotically stable
is also given. This gives infinitely many ways to control the error system.

Finally, the simulations show that this method is effective as the control could be achieved
in less time than when it could be achieved in [8]. With the control method proposed in this
paper, the control is more efficient, quick and flexible.
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