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Abstract. Mobile device plays an very important role in capturing document image. However, 

the quality of the captured image is influenced by many factors, such as device quality and 

shooting conditions. In this context, it is necessary to automatically assess the quality of 

captured document image. Although there has a lot of work in the filed of image quality 

assessment (IQA), insufficient attention has been paid to the establishment of document images 

dataset. Thus, we propose a large dataset of document images containing 19,943 images which 

are collected by mobile devices. During the process of image acquisition, many factors such as 

light intensity, distortion type, document material are considered. After capturing images, 

multiple volunteers participated in the evaluation and collection of  Mean Opinion Score (MOS) 

of the document images. We use two no-reference image quality assessment algorithms to test 

the proposed dataset. The experimental results show the validity of our dataset and the 

reliability of MOS. The proposed dataset can be used in the field of image quality assessment 

and Optical Character Recognition. 

1. Introduction 

With the proliferation of camera on smartphones, a growing number of people prefer to capture 

document image by using mobile devices [1, 2]. Although it can bring more convenience, the quality 

of the captured image is not steady, and it is limited by light conditions, the material of paper (or 

books), blur due to limited depth of field, out-of-focus blur and so on. Among these factors, the most 

easily perceived by the human visual perception and the most influential one is the blur of the image, 

and the main types of blur include the out-of-focus blur, the motion blur and blur due to the depth of 

field. Due to the influence of above factors, the quality of captured images may not meet the 

requirements we want. Thus, Image Quality Assessment (IQA) [3] is an indispensable preparatory step 

in image processing system. Image quality dataset is an important basis for IQA research. Many 

studies are now using deep learning methods, especially in the research of IQA [4-7], the image 

quality dataset with a large amount of data is needed as the support. 

In recent years, a lot of work has been done with image quality datasets. Some of these are datasets 

of natural scene images, these datasets include: LIVE dataset [8], TID2008 [9], TID 2013 [10], IVC 

dataset [11], CID:IQ dataset [12], categorical image quailty (CSIQ) dataset [13], Toyoma-MICT 

dataset [14], and Cornell-A57 dataset [15]. Others are datasets of document images [16, 17]. However, 

these datasets still cannot meet the research needs of IQA. To the extent of our knowledge, the 

distortion in each image of these datasets is uniformly distributed. But in practical application, there is 

a key problem that the image of each area of the distortion degree is not equal. Meanwhile, the sample 
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size of current IQA datasets is not sufficient for training a deep neural network. For example, The 

Smart-IQA document dataset which was proposed in 2015 by Nibal Nayef contains 4260 images 

captured from 30 different paper documents. The number of images of Live database and 

TID2008/2013 datasets both do not exceed 5000. Due to insufficient sample size of dataset, most of 

the image quality evaluation methods based on neural network divide the raw image into multiple 

patches as input rather than using the whole image as input which will cause the absence of local 

ground truth targets [18]. Taking all above-mentioned into account, it is necessary to propose a dataset 

that can reflect the real image acquisition and has large sample size. Thus, in this work, we proposed a 

new document image dataset which has the following prominent features compared to previous 

datasets: 

(1) Having 19,943 captured images which is much larger than other IQA datasets. 

(2) Considering adding documents with different materials and books as new categories. 

(3) Considering the condition that the texture on paper is inherently blurry. 

(4) Images reflects the influence of various distortion factors during acquisition. 

(5) Provide subjective assessment scores for images. 

(6) Containing English and Chinese texts. 

In our dataset, we have taken the following conditions into account: 

(1) The focal length of the camera on the smartphone.  

(2) The light condition.  

(3) The type of paper.  

(4) The type of Smartphone.  

In addition, we hope the proposed dataset can be useful in the field of IQA or Optical Character 

Recognition [19]. In Section 2, we will introduce the details of our dataset, the specific experimental 

process of image collection and the method of obtaining MOS of images [20, 21]. And the result in 

Section 3 shows the performance of two no-reference image quality assessment algorithms on our 

dataset. 

2. Description of the Proposed Image Dataset 

2.1. Type of Document 

Our dataset contains a total of 19,943 images, of which 7,083 are book images and the rest are 

document paper images. There are 6 types of book images with some differences in the color and 

texture. Meanwhile book images contain some colour or gray illustrations with varying degrees of 

distortion. Book images are shown in Figure 1. The 12,860 document samples were collected from 70 

raw document images, which were composed of four different textures with background colors of 

white, red, blue, and yellow. There are also different levels of ink on the paper of the document. At the 

same time, We consider a special case in which the image itself is blurred rather than caused by the 

shooting conditions. document images are shown in Figure 2. 

 

    
(a) (b) (c) (d) 

Figure 1. Books with different kinds of images or without images. 
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(a) (b) (c) (d) (e) 

Figure 2. (a)-(d) show documents of different materials, (e) shows document with blurred image. 

2.2. Type of Document 

All images were taken by the following three smartphones: 

(1) Xiaomi 6. It is equipped with dual camera. One camera has 12MP (Million Pixels) wide-angle 

lens and its aperture size is f/1.8. Its equivalent focal length is 27mm. The other camera has 12MP 

telephoto lens and its aperture size is f/2.6, and its equivalent focal length is 52mm. 

(2) Xiaomi 8. It is equipped with dual camera. One camera has 12MP wide-angle lens and its 

aperture size is f/1.8. Its equivalent focal length is 27mm. The other camera has 12MP telephoto lens 

and its aperture size is f/2.4, and its equivalent focal length is 56mm.  

(3) Huawei Honor v10. It is equipped with dual camera. The main camera has 16MP telephoto lens 

and its aperture size is f/1.8. The other has Black and White camera with 20MP. 

In the process of capturing images, we set the camera mode of the smartphone to manual mode, 

and all the adjustable parameters except focal length are set to automatic. In order to get different 

degrees of blurred images, we only manually change the focal length of the camera and fixed the 

distance between the mobile device and the subject. The capture interfaces of the three mobile phones 

are shown in Figure. 3, and the specific parameter list of the images taken by the three devices is 

shown in Table 1. 

 

Table 1. Properties of image taken by three mobile phones. 

Parameter XIAOMI 6 XIAOMI 8 HOSNOR V10 

Resolution 4032×3096 3024×4032 3456×4608 

Width 4032 3024 3456 

Height 3096 4032 4608 

Horizontal resolution 72dpi 72dpi 96dpi 

Vertical resolution 72dpi 72dpi 96dpi 

Bit depth 24 24 24 

Color space sRGB sRGB sRGB 

 

   
(a) (b) (c) 

Figure 3. Screenshot of three different mobile phones. 
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2.3. Lighting Condition 

Light sources will have an impact on the quality of the captured image, because different light sources 

have different color temperature. The color of the document image collected under different color 

temperature conditions will also have great differences. When the color temperature is too low, the 

overall image will appear yellow, while when the color temperature is too high, the image itself will 

appear blue (The color temperature scale table is shown in Figure 4). 

In our work. we used the following three different light sources: 

(1) Daylight (about 5900K). 

(2) Tubular fluorescent lamps (about 5000K). 

(3) Soft white incandescent lamps (about 2400K). 

 

 
Figure 4. The color temperature on a linear scale. 

2.4. MOS Obtaining 

A strategy for evaluating image quality is provided in literate [22], which divides images into the 

following categories according to their quality: “Excellent”, “Good”, “Fair”, “Poor” and “Bad”. In our 

experiments, we take an approach to assess the quality of image distortion that convert the image 

quality of five categories (Excellent, Good, Fair, Poor and Bad) into a continuous range of 0 to 10, 

where 0 is the worst level, 10 is the best level and every 2 points is divided into one interval (See in 

Figure 5). Such experimental method also has certain defects that the observer ratings of the judgment 

may be different in different stage. In fact, in many cases, the observer evaluated a distorted image A 

as “Excellent” at begin phase. But he may evaluate quality of another distorted image B that has same 

quality as image A as “Fair” after he evaluated different degrees of distorted images. To reduce such 

deviations and ensure the quality of MOS, multiple observers should participate in the experiment. 

 

 
Figure 5. Grading scale. 

 

In our experiments, 5 volunteers were invited as observers to participate in the image quality 

assessment experiment independently. The experiment is divided into several rounds, and the observer 

will rest for ten minutes before proceeding to the next round of experiments. Each experiment will 

take no more than 30 minutes, and the first 5 minutes were remained for the observer to train. In the 

training procedure, multiple images with different distortion degrees are given, which allows the 

observer to evaluate these distorted images first. At the formal experimental stage, the observer fully 

evaluates the image quality using the software, and gives a score between 0 and 10. This result is not 

recorded immediately, but is filtered after all the scores have been recorded. If there is an abnormal 

score which is more than 3 points behind the mean value of others, the outlier will be removed. 
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In the resulting MOS, the number of images with each score is concentrated between 1500 and 

2500 which varies little. This shows that adjusting the focal length of the camera proportionally during 

image acquisition can effectively affect the quality of the image, which makes the image quality 

distribution relatively uniform. At the same time, the value of the image quality is concentrated in the 

two values of 3 and 7, which form two peaks, it indicating that the observer is more willing to give 3 

instead of 0 for images with bad quality, and 7 instead of 9 or 10 for images with good quality. 

Due to the resolution of the image captured by the smartphone reached 3456×4608, and the 

resolution of the display device used by each of our observers was 1600×900, the lack of resolution 

leads to the loss of part of the image information, which has a great impact on the subjective judgment 

of the observer. Therefore, we designed an auxiliary evaluation software, and the screenshot of this 

software is shown in Figure. 6. The main display area of this software is divided into two parts. The 

left side is the overall display area of the image, and the right side can be used to zoom in, zoom out 

and pan the image, so that the observer can observe the details of different areas of the image. The 

final MOS is shown in Figure. 7. The complete dataset can be downloaded from http://cvbrain.cn. 

 

  
Figure 6. The screenshot of evaluation software. 

 

 
Figure 7. MOS histogram of our dataset 

 

3. Image Quality Assessment Using the Dataset 

In this section, we will select two no-reference quality assessment methods proposed recently to test 

our dataset. The following is a brief introduction of these two methods and experimental process and 

results. 

3.1. Evaluation Metrics 
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We use the Spearman Rank Order Correlation Coefficient (SROCC) and Linear Correlation 

Coefficient (LCC) to evaluate the performance of this method on this dataset [23, 24]. SROCC and 

LCC are two metrics that are often used to evaluate the performance of methods in the field of image 

quality assessment. SROCC assesses how well the relationship between two variables can be 

described using a monotonic function, which is the monotonicity between the predicted value and the 

ground-truth. LCC is the covariance of the two variables divided by the product of their standard 

deviations. Therefore, it can well represent the accuracy of predicted value. 

3.2. Experimental Methods 

RankIQA. Liu et al [25] proposed a no-reference image quality assessment approach that learns from 

rankings. In the case of insufficient training data, the performance of this method is better than that of 

other methods without reference image quality evaluation, and even exceeds that of some methods 

with full reference image. We used the python version of the implementation code provided by the 

author, 80% of our dataset are used for training, and 20% are used for test.  

BIQI. A. K. Moorthy and A. C. Bovik [26] proposed a new two-step framework for no-reference 

image quality assessment based on natural scene statistics (NSS) [27, 28]. Once the training is 

complete, the framework does not require any knowledge of the image disortion Moreover, the 

framework is highly extensible and can be applied to any number of distortions. We used this method 

for cross-dataset [29] testing that LIVE dataset was used for training and our dataset was used for 

testing.  

3.3. Results and Discussion 

Table 2 summarizes the results of RankIQA method on our dataset, LIVE dataset and TID2013 dataset. 

We computed the SROCC and LCC scores on our testing set after training to convergence. This 

process is repeated ten times and the results are averaged, and the SROCC and LCC scores on Live 

and TID2013 dataset are provided from the author’s paper. In this method, RankIQA performed well 

on LIVE and our dataset, the closer the value of LCC and SROCC is to 1, the closer the subjective 

score and the predicted score are similar to previous result, Table 3 shows the SROCC and LCC scores 

of BIQI method obtained by training on LIVE and testing on LIVE and our dataset. From the table we 

can see that the SROCC and LCC in LIVE and our dataset are very similar, which indicates that BIQI 

method has a good adaptability that can learn from arbitrary and non-IQA data. 

Table 2 SROCC and PLCC of RankIQA Method on our dataset, LIVE and TID2013 dataset. 

Evaluation Metrics Our Dataset LIVE TID2013 

SROCC 0.971 0.981 0.780 

LCC 0.942 0.982 0.799 

 

Table 3 SROCC and PLCC of BIQI Method obtained by training on LIVE and testing on LIVE and 

our dataset. 

Evaluation Metrics Our Dataset LIVE  
SROCC 0.824 0.819 

LCC 0.825 0.820 

4. Conclusions 
To address the lack of data sets in mobile phone captured documents, we create a new document 

image data set, which can be used in the field of no-reference image quality evaluation and OCR. 

Compared to some previous image datasets, our dataset has the following innovations: 

(1) With more than 19,943 captured images, the size of dataset is far larger than previous datasets.  

(2) Documents with different materials and books are added as new categories.   
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(3) The condition that the texture on paper is inherently blurred.  

In the field of image quality evaluation, many methods encounter the problem of insufficient 

training data before experiments [25, 30]. Our dataset can mitigate this problem to a large extent. We 

hope that this dataset can be helpful for future work in the field of image quality assessment.  In 

addition, the ground-truth of images can provide researchers a reference to the relative quality of the 

images.  

In the future, we're planning to add more document types, using more smartphones, and inviting 

more volunteers to participate in the experiment.  
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