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ABSTRACT The mining and exploitation of graph structural information have been the focal points in the
study of complex networks. Traditional structural measures in Network Science focus on the analysis and
modelling of complex networks from the perspective of network structure, such as the centrality measures,
the clustering coefficient, and motifs and graphlets, and they have become basic tools for studying and under-
standing graphs. In comparison, graph neural networks, especially graph convolutional networks (GCNs),
are particularly effective at integrating node features into graph structures via neighbourhood aggregation
and message passing, and have been shown to significantly improve the performances in a variety of learning
tasks. These two classes of methods are, however, typically treated separately with limited references to each
other. In this work, aiming to establish relationships between them, we provide a network science perspective
of GCNs. Our novel taxonomy classifies GCNs from three structural information angles, i.e., the layer-wise
message aggregation scope, the message content, and the overall learning scope. Moreover, as a prerequisite
for reviewingGCNs via a network science perspective, we also summarise traditional structural measures and
propose a new taxonomy for them. Finally and most importantly, we draw connections between traditional
structural approaches and graph convolutional networks, and discuss potential directions for future research.

INDEX TERMS Complex networks, network science, graph convolutional networks, deep learning.

I. INTRODUCTION
Networks or graphs are a general language for modelling
and analysing complex systems that are abstracted as enti-
ties and their connections [1], [2]. In the representation of
networks, domain data is no longer only being a set of
isolated data points but also contains important information
about the relationships among them. The entities are related
to each other according to the structure of the network,
and modelling these relational structures allows us to build
more accurate models of the domain data. Various types of
real-world data can naturally be modelled as networks, such
as social networks representing social actors and their rela-
tionships [3], molecular graphs representing chemical atoms
and their bonds [4], transportation networks representing
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infrastructures and traffic flow [5], control flow graphs rep-
resenting code blocks and their executions [6], etc.

Although networks are very powerful at modelling rela-
tional data, processing them is significantly more difficult,
mainly due to their intricate topological structures. Compared
to other common data formats such as images or text, network
data does not have a starting or an ending point that can
be defined in Euclidean space, nor the essential notion of
spacial locality and proximity. Therefore, understanding and
exploiting graph structure has always been a core theme
in analysing complex networks. Traditional network science
approaches are mostly structure-related heuristics, such as
various types of node centralities [7] for node-level analysis,
common neighbours similarity and its variants [8] for link-
level analysis, and motifs [9] and significance profile [10] for
graph-level analysis. These methods, along with others, have
become the standard tools for analysing graphs and have been
used in all kinds of networks. Certainly, these approaches
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have their limitations. First is their applicability — each is
effective for examining specific properties but falls short of
capturing other structural aspects. Another drawback is that
most heuristic approaches focus on graph structures while
overlooking the rich information that could be contained in
nodes or on edges [11].

Another mainstream class of methods is grounded in deep
learning on graphs, especially the recently emerging and
quickly gaining in popularity graph convolutional networks
(GCNs) [12]. GCNs are generalised from the notion of Con-
volutional Neural Networks (CNNs) [13], redefining them for
non-Euclidean graph data. GCNs ingeniously combine graph
structure and node/edge features via neighbourhood message
aggregation and a structure-based propagation scheme. Being
a rapidly evolving area of research, a large number of graph
convolutional network approaches have emerged in recent
years, aiming to improve its expressivity, scalability, or target-
ing specific tasks or types of networks [14]. However, there
are still many challenges and opportunities in this field. Some
of the key open problems include developing more powerful
and efficient GCN architectures, extending these models to
handle temporal, multi-layered, or other more complex graph
data, and improving the interpretability and transparency of
GCN models.

A. MOTIVATIONS AND RESEARCH QUESTION
Traditional structural measures of Network Science are direct
and efficient tools for analysing and understanding complex
networks, while graph convolutional networks are deep learn-
ing models designed specifically for graph data in order to
address various learning problems. As discussed, the two
classes of methods have their own strengths and weaknesses.
Surprisingly, they are very often treated separately with rel-
atively limited references to each other. Network science
researchers may be sceptical about the lack of explainability
of deep learning approaches, while deep learning researchers
tend to overlook the advance in traditional non-learning
approaches. We believe, however, that with the established
foundations of traditional structural measures in Network
Science, and GCNs emerging as a new powerful class of
methods, there would be great benefits to be realised from
a closer integration and awareness of the two communities.
On the one hand, GCNs gracefully incorporate node fea-
tures, which are largely overlooked in traditional structural
measures, into the structure of graphs, and achieve state-of-
the-art performances in various tasks. On the other hand,
traditional network science notions, being the foundations of
understanding and characterising complex networks, are also
indispensable in studying GCNs. Different types of structural
measures are being exploited in the recent advance of GCNs
as well [15], [16], [17], [18]. Therefore, the main research
question that this survey aims to address is: How can the
structural information captured in traditional network sci-
ence bring insights into the comprehension and advancement
of graph convolutional networks? In order to address this

research question, we aim to link the two classes of methods
together by comprehensively reviewing each of them, propos-
ing new taxonomies and discussing their connections.

B. RESEARCH GAPS
Along with the phenomenal development of GCNs, many
survey articles appeared to summarise and review them.
Some have a broad scope that covers graph representation
learning [19] or graph deep learning [12], [20], [21] in gen-
eral. Some others are focused on specific aspects, such as
the design pipeline or the composition modules of graph
neural networks [22], the dynamic mechanisms [23], or the
learning on limited labelled samples [24]. However, there still
lacks an examination that focuses on how graph structure
information (which is the main focus of traditional network
science approaches), is exploited in graph convolutional net-
works. Thus, in this work, we propose new taxonomies of
GCNs from the perspective of graph local structure, and at
the same time, review the latest works that improve graph
neural networks through exploiting local structural informa-
tion. Specifically, we propose to summarise graph convolu-
tional networks from three structural angles, i.e., the scope of
layer-wise message aggregation, the content of the message
being passed on, and the overall scope of learning on graphs
(Figure 1).

Moreover, a systematic understanding of traditional graph
structural approaches is the prerequisite for thoroughly
reviewing GCNs via a network science perspective. There-
fore, before jumping into the sphere of graph neural networks,
we first summarise and classify non-learning graph structural
measures. The study of graph structures is so ubiquitous that
they often appear in different terms, such as the big family
of centrality measures [7], [25], [26], the popular notion of
motifs [9] and graphlets [27] and the set of subgraph forma-
tion measurements such as the clustering coefficient [28], the
closure coefficient [29], the square clustering coefficient [30],
etc. Existing surveys on structure measurements only cover
one or two sets of those notions, and fail to unite them
from an overarching perspective or to draw connections and
comparisons between them. Therefore, in this work with a
focus on graph structure, we also propose a new taxonomy
that brings all these concepts together. Specifically, we group
existing graph structural measures into five categories: sub-
graph count based measures, subgraph formation based mea-
sures, global path based measures, message passing based
measures, and hybrid measures (Figure 2). More importantly,
through summarising both the traditional structural measures
and the graph convolutional network approaches, we could
draw connections between the two, strengthen the under-
standing and analysis of GCNs and lead to insightful discus-
sions about potential research avenues.

To summarise, three research gaps have been identified:

1) Systematic understanding of traditional graph struc-
tural approaches is necessary to thoroughly review
GCNs from a network science perspective. However,
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FIGURE 1. Taxonomy of graph convolutional networks from structural perspectives.

FIGURE 2. Structural measures on graphs.

current surveys on structure measurements cover only
one or two sets of concepts, failing to unite them under
a comprehensive perspective.

2) Existing survey articles on GCNs cover various aspects
but lack a focus on how graph structure informa-
tion, which is central to traditional network science
approaches, is exploited in graph convolutional net-
works.

3) There is a need to draw connections between traditional
structural measures and graph convolutional network
approaches to enhance the comprehension and evalua-
tion of GCNs, and identify potential research avenues.

Correspondingly, in order to bridge these gaps, the main
contributions of this survey are as follows:

• We propose a new taxonomy that brings together var-
ious types of traditional structure-based approaches.
We make a clearer distinction between the concepts of
local and global, and we first introduce and summarise
the category of subgraph formation based approaches.

• We propose a novel taxonomy of graph convolu-
tional networks, with a focus on the exploitation of
graph structural information. The taxonomy categorises
GCNs from three structural information angles, i.e.,
the layer-wise message aggregation scope, the message
content, and the overall learning scope. We review and
summarise the latest GCN approaches with a structural
focus, and provide a thorough analysis of the time and
space complexities.

• We draw connections between the graph convolutional
networks and the traditional structure-based approaches

and discuss four potential future research avenues in the
joint area.

The rest of this survey is organised as follows: In Section II,
we introduce and compare two pairs of concepts, i.e.,
local and global, and motifs and graphlets. In Section III,
we present the five categories of graph structural measures
and discuss four open problems. In Section IV, we introduce
the novel taxonomy of graph convolutional networks, and
discuss their time and space complexities. In Section V,
we discuss the connections between the traditional structural
measures and the graph convolutional networks, and present
some potential research directions. Finally, we conclude the
article in Section VI.

II. PRELIMINARIES AND BACKGROUND
This section introduces preliminary concepts that are helpful
for understanding the proposed taxonomies.

A. LOCAL VS. GLOBAL
When discussing graph structural measures, we need first
to distinguish what is local and what is global. Previous
works [8], [31], [32], [33] either only focus on where the
measures are defined by dividing them into two or three cate-
gories: (i) the ‘‘local’’, ‘‘micro’’ or ‘‘individual’’ level; (ii) the
‘‘global’’, ‘‘macro’’ or ‘‘aggregate’’ level; and (iii) some-
times at the ‘‘mesoscopic’’, ‘‘quasi-local’’ or ‘‘subnetwork’’
level; or they are defined solely based on the scope of
information involved in their computation. This, however,
leads to some confusion. For example, the betweenness cen-
trality is defined for nodes (at the node-level) but requires
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global information to compute. Should it be termed a local
measure or a global measure? Similarly, the average clus-
tering coefficient is defined at the network-level, but only
needs local information at each node — calculating the local
clustering coefficient at each node, then averaging over all
nodes.

Therefore, we propose the following terms to distinguish
both at what level the measures are defined and the scope of
information that is needed to calculate them:

• Local-level measure is a measurement defined on a
node-level or link-level (the link here also includes the
non-existing or potential link which is often used in a
link prediction task). Thus, it can be further divided into
a node-level measure and a link-level measure.

• Network-level measure is a measurement defined for the
entire network.

• Local structural measure is a measurement whose com-
putation only involves the nearby neighbourhood of a
node, i.e., within a range of k-hop away from a node.
In most cases, k is less than or equal to 4. Many
traditional measures only care about the immediate
neighbourhood around a node, and we name them as
Strict-local structural measures.

• Global structural measure is a measurement that
involves the global information in computation. This
type of measurement often involves the computation of
paths between nodes in the network.

Now, when we revisit the betweenness centrality, it is
both a local-level and a global structural measure. The
average clustering coefficient, on the other hand, is both a
network-level measure and a local structural measure. Notice
that the average clustering coefficient involves the extra step
of averaging over all nodes. Indeed, it is n times the com-
plexity of computing the local clustering coefficient at a
single node. However, any local-level measure can easily
have an extended definition at the network-level through
averaging over all nodes or edges. Moreover, in the practice
of network analysis, local-level measures are often calcu-
lated for the entire network, looping over all nodes or all
edges. Therefore, when defining local or global structural
measures, we choose to exclude this aggregation or averaging
step.

To summarise, we use the terms ‘‘local-level’’ and ‘‘global-
level’’ to distinguishwhere themeasure is defined, andwe use
the terms ‘‘local structural’’ and ‘‘global structural’’ to distin-
guish the scope of information involved in the computation,
before the aggregation/averaging step.

B. MOTIFS VS. GRAPHLETS
Next, we distinguish three similar concepts that are later
used in our taxonomies, i.e., subgraphs, motifs and graphlets.
A subgraph, as the name implies, is a smaller graph whose
node set and edge set are subsets of those of the origi-
nal graph. We then recap the notions of motifs [9] and
graphlets [27] according to the papers that proposed them.

Network motifs [9] are subgraphs that recur much more
frequently in the real network than in an ensemble of ran-
domised networks. They are defined at the network-level,
in order to uncover the basic building blocks of directed
networks across domains. Subgraphs having a p-value less
than 0.01 are deemed as motifs, where p is the probability of
the subgraph appearing more times in randomised networks
than in the real network. The statistical significance of a motif
can also be captured by the Z-score, which is calculated as
follows:

Zi =
(
N real
i − N̄ rand

i

)
/ std

(
N rand
i

)
,

where N real
i is the number of subgraphs of type i in the real

network, and N rand
i is the number of subgraphs of type i in

a randomised network. A natural downside of this approach,
however, is that it needs to generate a large number of random
networks (e.g. 100s or 1000s) using a certain configura-
tion model. The original work only focuses on 3-node and
4-node directed subgraphs, finding that particular subgraphs
such as 3-node feed-forward loop, 3-node feedback loop,
bi-fan, bi-parallel, and 4-node feedback loop are significant
building blocks in several different types of directed networks
(Table 1).

Graphlets [27], are nonisomorphic induced subgraphs
around a focal node. In the original work, it is defined for
undirected networks. A key difference between motifs and
graphlets is that graphlets are defined at node-level. The
term automorphism orbits, or orbits for short, are used to
distinguish different positions of the focal node in a subgraph.
Therefore, when subgraph size is limited to a range of 2 to
5 nodes, there are 73 different orbits on 30 different sub-
graphs. We recap graphlets with the orbits in Figure 3 (in
order to save some space, the majority of 5-node graphlets
are omitted). It is worth mentioning that the idea of counting
induced subgraphs is also extended to the link-level, leading
to the notion of edge orbits [34]. Taking graphlet G1 in
Figure 3 for example, there exist two (node) orbits denoted
‘1’ and ‘2’, respectively. In contrast, there is only one edge
orbit in it since the two edges are structurally equivalent.

To summarise, motifs and graphlets are both small induced
subgraphs, but they are different in the following aspects
(Figure 4): motifs are defined at the network-level while
graphlets are defined at the node-level; motifs are proposed
for directed networks while graphlets are for undirected net-
works; motifs are discovered from comparing real networks
to randomised networks with the same degree sequence while
graphlets are calculated on the network itself; lastly, motifs
contain 3 - 4 nodes while graphlets have 2 -5 nodes. Notice
that most of the analyses stop at 4 or 5 nodes because a
subgraph containing more than 5 nodes would become too
complicated for us to enumerate and interpret all possible
subgraphs or orbits. For example, a 6-node induced subgraph
leads up to 112 different types of subgraphs and 407 different
orbits. Taking link directions into consideration, there are
1, 530, 843 subgraphs and 9, 031, 113 orbits [35].
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TABLE 1. Some 3-node and 4-node motifs in directed networks [9]. Motifs containing bidirectional edges are not included.

FIGURE 3. Graphlets and their orbits [27].

Finally, in order to facilitate the understanding of the sub-
sequent sections, we present Table 2, which consolidates the
notations used throughout the article.

III. GRAPH STRUCTURAL MEASURES
In order to set up the context of reviewing graph convolu-
tional networks from a Network Science perspective, we first
summarise traditional graph structural measures and pro-
pose a novel taxonomy for them, which will later be used
in our categorisation and analysis of GCNs. Specifically,
We divide existing structural measures into five categories
(see Figure 2):

• Subgraph Count Based Approaches. These measures are
defined based on the number of a particular subgraph or
subgraphs.

• Subgraph Formation Based Approaches. In this cate-
gory, the measures are defined by the ratio of the num-
bers of two subgraphs: one contains fewer edges (or
nodes) and is viewed as the formation base of another.

• Global Path Based Approaches. As the name implies,
these measures are based on unbounded paths. They
involve the calculation of shortest paths or all paths
originating from a node to any node in the entire graph.

• Message Passing Based Approaches. Unlike previous
categories, message passing-based approaches utilise
graph structural information in an implicit manner:
every node is initialised with an importance score. Then
iteratively, each node updates its score through aggregat-
ing the scores of its neighbours. Graph Neural Network
approaches (see more in Section IV) can be viewed as
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FIGURE 4. Motifs vs. Graphlets.

TABLE 2. Table of Notations.

transforming this traditional message passing approach
into a learnable process.

• Hybrid Approaches. These measures are simply some
combinations of the previous four categories.

We now explain the logic behind our taxonomy. The first
two categories both cover a local area of the whole network
(within a certain distance from the focal node, or containing
a limited number of nodes and edges). The first category —
subgraph count based approaches — is built from counting
the number of particular local structures. For example, the
number of neighbours, local paths or subgraphs. The sec-
ond category — subgraph formation based approaches —
is uniquely defined based on the ratio of two subgraphs
and thus bears the meaning of measuring the formation of
certain local structures. To have both of them in the taxonomy

instead of combining them into one category is to stress their
differences.

Then, the third category expands its scope to the entire
network. We name it global path based approaches instead of
just global approaches. This is because all global approaches
involve either the calculation of shortest paths or all paths
originating from a node to any other node in the entire graph.
Notice here that a path is also a particular type of subgraph.
However, a local path or bounded path, such as a 2-path
or 3-path, belongs to the category of subgraph count based
measures, whereas a global path or unbounded path is in
this category. We choose to differentiate the third category
from the previous two categories from the perspective of the
covered scope.

Next, the fourth category — message passing based
approaches— is based on the idea of propagating information
along the edges. It is a different form to the abovementioned
three categories because it does not calculate any type of
subgraphs or global paths. Instead, the structure is utilised in
an implicit way. Every node is initialised with an importance
score. Then iteratively, each node updates its score through
aggregating the scores of its neighbours. Although these four
categories are largely different from each other, there are
many approaches that combine them together, which are
naturally put into the fifth category — mixed approaches.

A. SUBGRAPH COUNT BASED APPROACHES
Subgraph count based measures are based on the number of a
particular subgraph or subgraphs.We further divide them into
three subclasses, i.e., measures defined on 1-hop neighbours,
measures defined on k-hop neighbours/local paths, and mea-
sures defined on multi-subgraphs. Figure 5 gives the detailed
categorisation. The colour of the block differentiates where
the approach is defined: grey is on the node-level, blue is on
the link-level, and orange is on the network-level.

1) 1-HOP NEIGHBOURS
As the name implies, the calculations within this category
only require the immediate neighbourhood around a node or
a link.
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FIGURE 5. Subgraph count based measures.

– Degree centrality. Through calculating the number of
nodes directly connected to a node, the degree centrality
is an easy and straightforward way to assess the impor-
tance or influence of the node [36]. In order to render
it within the range of (0,1], it is often normalised by
the size of the network minus one. Mathematically, the
normalised degree centrality of node i is defined as:

2D(i) =
di

n− 1
. (1)

Despite being so simple, the degree centrality has been
widely applied in various domains. For example, in cus-
tomer networks, the degree centrality is used to find
opinion leaders [37], and in biomedical semantic net-
works, it is effective in selecting crucial information for
summarising a disease treatment [38]. Some interest-
ing extensions of the degree centrality include the in-
degree/out-degree centrality in directed networks, the
strength centrality and weighted strength centrality in
weighted networks [39] and the cross-layer degree cen-
trality in multi-layered networks [40].

– h-index/g-index. h-index is proposed to evaluate the
impact of an individual’s research output: A researcher
has an index of h if h of his or her papers have at least
h citations [41]. It is then used as a centrality measure
in networks, and named as lobby index or l-index [42].
The l-index of a node is the largest integer k such that
the node has at least k neighbours with a degree of at
least k . Egghe argued that the influence of highly cited
papers is underplayed in the h-index, and proposed a g-
index to overcome this disadvantage [43]. After ranking
a researcher’s papers according to their citations, the g-
index is defined as the highest rank g such that the top
g papers together have at least g2 citations. From its
definition, the g-index is always greater than or equal
to the h-index. To address the same issue, an e-index is
proposed to complement the h-index for excess citations
[44]. Recently, a local h-index centrality is proposed
to identify influential spreaders by simultaneously con-
sidering the h-index values of the node and its neigh-
bours [45]: 2LH (i) = h(i)+

∑
j∈Ni h(j).

– k-core [46]. Instead of only calculating the number of
1-hop neighbours at one node (as in the degree central-
ity) or at both the node and its neighbours (as in the
h-index), a k-core or coreness takes into account the num-
ber of neighbours at every node. Specifically, the k-core
is defined as a subgraph in which all nodes of a degree
smaller than k have been removed and the remaining
nodes have a degree of at least k . A node located in a
higher k-core is deemed more important than a node
in a lower k-core. The k-core is calculated through the
k-shell decomposition [47] which incrementally (from
1 to k) removes nodes with degree less than k (which in
turn results in lowering the degree of remaining nodes)
until no more nodes need to be removed. Given that
the degree centrality, the h-index and the coreness are
all based on the number of 1-hop neighbours, Lü et al.
further revealed their relationships through proposing
the high-order h-indices [48]. Bae et al. further propose
a neighbourhood coreness that considers both the degree
of a node and the coreness of its neighbours [49]:

2NC (i) =
∑
j∈N (i)

ks(j). (2)

The assumption is that a node having more connections
to the neighbours located in the core of the network is
more influential.

– k-truss/Common neighbours. A k-truss is a subgraph
where every edge is contained in at least k − 2 triangles
[50], [51]. It is found through counting the number of
common neighbours of a pair of nodes that forms an
edge, i.e., the number of triangles that the edge partic-
ipates in. The k-truss is also a (k + 1)-core. Counting
common neighbours around a pair of nodes that have not
formed an edge (a non-edge) is also a basic approach
in a link prediction task [52]. There is a big family of
similar approaches based on the number of neighbours
around non-edges, such as the Adamic-Adar index, the
resource allocation index, the preferential attachment
index, among others [8]. Notice that both k-truss and
Common Neighbours-like approaches are defined at the
link-level. The block colour is therefore blue in Figure 5.
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2) LOCAL PATHS/k-HOP NEIGHBOURS
The group of methods in this category requires the calculation
of local paths or k-hop neighbours.

– k-betweenness centrality [53]. The k-betweenness cen-
trality or bounded-distance betweenness centrality is a
variation of the well-known betweenness centrality that
limits the length of shortest paths to a predefined value
k . Specifically, the k-betweenness centrality of any node
i is calculated by:

2Bk (i) =
∑
s,t∈V

σk (s, t | i)
σk (s, t)

, (3)

where σk (s, t) is the number of shortest paths of length
at most k between a node pair s and t , and σk (s, t | i) is
the number of those paths that pass through node i. The
reason for proposing a bounded-distance betweenness
centrality is that in some networks, long paths are rarely
used for the propagation of influence.

– k-path centrality [54]. Instead of limiting the length of
shortest paths between node pairs, the κ-path centrality
assumes that message traversals are along random sim-
ple paths of length at most k , and proposes to calculate
the sum of the probability that a message originating
from any possible node goes through the focal node. The
κ-path centrality of node i is defined as:

2Pk (i) =
∑
s∈V

σk (s | i)
σk (s)

, (4)

where s are all the possible source nodes, σk (s | i) is
the number of k-paths originating from s and passing
through i, and σk (s) is the overall number of k-paths orig-
inating from s. In order to calculate it more efficiently in
large networks, a randomised approximation algorithm
called RA-κpath is also proposed. [54]

– k-path edge centrality [55]. Moving the κ-path central-
ity definition to link-level, we then have the κ-path edge
centrality. The k-path edge centrality of any given edge
e is defined as the sum of the frequency with which a
message originated from any possible node traverses e,
assuming that the message traversals are along random
simple paths of length at most k:

2Pk (e) =
∑
s∈V

σk (s | e)
σk (s)

. (5)

Quite similar to Equation 5, only here σ κ
s (e) is the num-

ber of κ-paths originating from s that go over the edge
e. The original κ-path edge centrality is very expensive
to compute in large networks with a big k , therefore two
randomised approximations have been further proposed,
i.e., ERW-κpath and WERW-κpath [55].

– Local centrality [56]. Local centrality, sometimes sum-
marised as LocalRank [7] utilises the information within
a node’s 4-hop neighbourhood. Concretely, the local

centrality of node i is defined as:

2LR(i) =
∑
j∈N (i)

Q(j), Q(j) =
∑
k∈N (j)

R(k), (6)

where N (i) and N (j) are the set of 1-hop neighbours of
node i and j, and R(k) is the number of both 1-hop and 2-
hop neighbours of node k . It is said to perform better than
betweenness centrality and almost as well as closeness
centrality to identify influential nodes under the setting
of a SIRmodel, with only a time complexity ofO(n⟨k⟩2).

– Collective influence [57]. Collective influence (CI)
is another interesting method that takes higher-order
neighbourhoods into consideration. The idea is to find
those nodes that will cause the biggest drop in the
‘‘energy function’’ when removed. Specifically, the level
k collective influence of a node i is defined as:

2CI k (i) = (di − 1)
∑
j∈Nk (i)

(dj − 1), (7)

where Nk (i) is k-hop neighbours of a node i. After
applying the collective influence score, the paper finds
that a large number of previously neglected weakly con-
nected nodes (nodes of lower degree) emerge among the
optimal influencers [57].

3) MULTI-SUBGRAPHS
Methods of this category involve the count of multiple differ-
ent subgraphs. They can be at the node level, the link level or
the network level.
– Graphlet degree [27]. As discussed in Section II-B,

graphlets are nonisomorphic induced subgraphs around
a node. Graphlet degree is a 73-dimensional vector
formed by all different orbits in the subgraphs of size
2-5 nodes. The paper discovers that in PPI networks,
nodes grouped together under this measure belong to
the same protein complexes, perform the same bio-
logical functions and have the same tissue expres-
sions. Some interesting extensions of graphlets include
the dynamic graphlets for temporal networks [58],
the directed graphlets for directed networks [59], the
coloured graphlets for heterogeneous networks [60],
and the typed-edge graphlets for edge-labelled net-
works [61].

– Subgraph centrality [62]. Subgraph centrality focuses
on subgraphs captured by closed walks of different
lengths around a given node. For example, when the
walk length is 4, three types of subgraphs are covered,
which are 2-cliques, 2-paths, and 4-cycles. The number
of closed walks of length k around node i can be calcu-
lated from the ith diagonal entry of the k th power of the
adjacency matrix. When the walk becomes unbounded,
the subgraph centrality of node i is calculated by:

2S (i) =
∞∑
k=0

µk (i)
k!

, (8)
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whereµk (i) =
(
Ak
)
ii. It is shown to bemore discrimina-

tive than many popular centrality measures such as the
degree centrality, the betweenness and the eigenvector
centrality.

– Local path index [63]. Extended from common neigh-
bours, the local path index counts both the number of
2-paths and 3-paths between a pair of nodes. The
approach is proposed for link prediction, and therefore
focuses on non-connected node pairs. Concretely, the
local path index of a node pair i and j is defined as:

2LP(i, j) = A2ij + ϵA3ij, (9)

where ϵ is a weigh parameter for 3-paths. The paper
finds out that the local path index remarkably outper-
forms common neighbours and can reach a competitive
accuracy to the Katz index where all paths are consid-
ered. Some other works compare 3-paths approaches
against 2-paths approaches in link prediction and find
out that 3-path approaches perform better in PPI net-
works and food webs [64], [65], [66].

– Potential theory/Quadmotifs index. The potential the-
ory aims to predict links in directed networks. By count-
ing the numbers of 4 different directed 2-paths and
8 different directed 3-paths around a pair of nodes,
the paper finds out that a link has a higher probabil-
ity of appearing if it could generate more bi-fan sub-
graphs [67]. Very similar to the idea of potential theory,
the quad motifs index proposes to count particularly
three types of directed open-quadriad (3-paths) sub-
graphs: two of them are the bases for bi-parallel sub-
graphs and the other one is for bi-fan [68]. Specifically,
the quad motifs index of a pair of nodes i and j is defined
as:

2QM (i, j)=α × sF (i, j)+
(1− α)

2
(sP1(i, j)+ sP2(i, j)) ,

(10)

where sF (i, j) is the contribution from the bi-fan base
while sP1(i, j) and sP2(i, j) are the contributions from two
bi-parallel bases. Together with the local path index, it is
interesting to see that 3-path subgraphs are of particular
importance in link prediction.

– Triad significance profile/Subgraph ratio pro-
file [10]. Extended from network motifs [9], the triad
significance profile (TSP) is constructed from nor-
malised Z scores of 13 different directed 3-node sub-
graphs.

TSP = {SP1, SP2, . . . , SP13}, SPi = Zi/
(
6Z2

i

)1/2
.

(11)

Zi is in turn calculated from comparingwith an ensemble
of randomised networks with the same degree sequence,
i.e., Zi =

(
N real
i − N̄ rand

i

)
/ std

(
N rand
i

)
. Subgraph ratio

profile (SRP), on the other hand, is built from 6 undi-

rected 4-node subgraphs (G3 to G8 in Figure 3):

SRP = {SRP1, SRP2, . . . , SRP6}, SRPi = 1i/
(
61i

2)1/2.
(12)

Unlike TSP, SRP uses the abundance of each sub-
graph relative to random networks, i.e., 1i =
N reali−⟨N randi⟩

N reali+⟨N randi⟩+ε
. Previously seemingly unrelated net-

works are found to belong to several superfamilies with
very similar significance profiles. Notice also that these
two approaches are defined on network-level, not on
node or link-level as we have seen often.

B. SUBGRAPH FORMATION BASED APPROACHES
Subgraph formation based measures view a subgraph being
built from another less complex subgraph, i.e., with one link,
multiple links, or one node less. We further divide them into
three categories according to the size of the subgraph, 3-node,
4-node and 4-node plus (Figure 6). Most of these approaches
are defined at node-level, except that the edge clustering coef-
ficient is at link-level and the interest clustering coefficient is
at network-level.

1) 3-NODE SUBGRAPH
The 3-node subgraph is the simplest yet most important
category in the taxonomy.
– Clustering coefficient [28]. The clustering coefficient

is the first and most influential measure in this category.
It measures the extent to which the neighbours of a
node connect to each other. From a structural formation
perspective, it measures the formation of triangles upon
open-triads (also called wedges). Specifically, the clus-
tering coefficient of node i is defined as the ratio between
the number of triangles containing node i (denoted T (i))
and the number of open triads (denoted OT (i)):

CC (i) =
T (i)
OT (i)

=

1
2

∑
j∈N (i) |N (i) ∩ N (j)|
1
2di (di − 1)

. (13)

Due to its significance and simplicity in definition, the
clustering coefficient has been widely applied in study-
ing complex networks [69], [70], [71] and extended to
directed networks [72], [73], weighted networks [74],
[75], [76] and signed networks [77], [78].

– Closure coefficient [29]. The closure coefficient mea-
sures the formation of triangles from a new perspective,
i.e., with the focal node located at the end of an open-
triad. Different from the ordinary centre node perspec-
tive in clustering coefficient (orbit 2 of G1 in Figure 3,
denoted as G(2)

1 ), the focal node in closure coefficient
serves as the end node of an open triad (orbit type G(1)

1 ).
The closure coefficient of node i is calculated as the
fraction of open triads (OTE (i)), where i serves as the
end node, that actually forms triangles:

CE (i) =
2 · T (i)
OTE (i)

=

∑
j∈N (i) |N (i) ∩ N (j)|∑

j∈N (i)(dj − 1)
. (14)
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FIGURE 6. Subgraph formation based measures.

Despite this subtle difference in definition, the closure
coefficient has very different properties compared to the
clustering coefficient. It has been extended to directed
networks [79], [80] and weighted networks [81].

– Edge clustering coefficient [82]. Defined on link-level,
the edge clustering coefficient (ECC) evaluates to what
extent nodes cluster around the focal edge. From a
structure formation view, it measures the formation of
triangles upon this link. The edge clustering coefficient
of an edge eij is defined as:

Ce(i, j) =
T (i, j)

min
(
di − 1, dj − 1

) , (15)

where T (i, j) is the number of triangles that eij partici-
pates, andmin

(
di − 1, dj − 1

)
is the number of triangles

that edge could possibly form. Based on ECC, a node
centrality measure is then defined as the sum of the edge
clustering coefficients of all edges connected to it, i.e.,
CN (i) =

∑
j∈Ni Ce(i, j). This measure has been proven to

be more efficient for identifying essential proteins than
many other centrality measures.

– Weighted degree centrality [83]. Weighted degree cen-
trality (WDC) is also proposed to identify essential
proteins. Although this name seems to suggest a close
relation to the degree centrality, it is in fact an extension
of the edge clustering coefficient. This approach is dif-
ferent in that it takes into account not only the PPI graph
data but also the gene expression data. Specifically,
a weight of an interaction is calculated as:

Cw(i, j) = Ce(i, j)+ r(i′, j′), (16)

where Ce(i, j) is the edge clustering coefficient from
the graph data, and r(i′, j′) is the Pearson correlation
coefficient calculated from the gene expression data.
Similarly, the weighted degree centrality of a node is
then defined as: 2W (i) =

∑
j∈Ni Cw(i, j). This approach

essentially integrates node features when analysing
networks.

2) 4-NODE SUBGRAPH
4-node subgraphs are much more complicated than the
3-node subgraphs. There are in total 6 different subgraphs and
11 different orbits in 4-node subgraphs (Figure 3).
– Quadrangle coefficients [84]. Many real networks

(such as PPI networks, neural networks and food webs)
are naturally rich in quadrangles. Quadrangle coeffi-
cients, or i-quad coefficient and o-quad coefficient, are

thus proposed to measure the formation of quadrangles
upon open-quadriads (3-paths). As there are two orbits

in an open-quadriad (G(5)
3 and G(4)

3 ), i-quad coefficient
has the focal node at G(5)

3 while o-quad coefficient
has the focal node at G(4)

3 . Specifically, the quadrangle
coefficients of node i are defined as:

CI (i) =
2Q(i)
OQI (i)

, CO(i) =
2Q(i)
OQO(i)

, (17)

where Q(i) is the number of quadrangles; OQI (i) and
OQI (i) are number of open-quadriads with i as the inner
node and outer node respectively. They are found to
be more efficient than 3-node measures in classifying
networks and predicting links.

– Grid coefficients [85]. Grid coefficients, including the
primary grid coefficient and the secondary grid coef-
ficient, also aim to measure the formation of 4-cycles.
The primary grid coefficient measures the formation of
‘‘primary quadrilaterals’’ upon a node and three of its
1-hop neighbours, which is essentially the formation of
chordal cycles (G7) from tailed-triangles (orbit G(11)

6 ).
Concretely, the primary grid coefficient of node i is
defined as:

CGp (i) =
Qp(i)

di(di − 1)(di − 2)/2
, (18)

where Gp(i) is the number of chordal-cycles contain-
ing i and the denominator is the number of possible
chordal-cycles built from a node and its three neigh-
bours. The secondary coefficientmeasures the formation
of ‘‘secondary quadrilaterals’’ from a node, two of its 1-
hop neighbours and one of its 2-hop neighbours:

CGs (i) =
Qs(i)

di,2nddi(di − 1)/2
. (19)

Notice, however, in this definition the 2-hop neighbour
could be at orbit G(4)

3 or at orbit G(20)
10 . The latter essen-

tially involves 5 nodes in total.
– Square clustering coefficient. As triangles (3-cycles)

are absent in bipartite networks, the square clustering
coefficient is proposed to measure the formation of
4-cycles in the context of bipartite networks [30]. What
is unusual about this approach is that it views 4-cycles
being built from node overlapping instead of node con-
nection. Specifically, the square coefficient of node i,
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with a pair of its neighbours m and n, is calculated as:

CS (i|m, n) =
Qimn

(dm − ηimn)(dn − ηimn)+ Qimn
, (20)

where Qimn is the number of 4-cycles containing nodes
i, m, n; and ηimn = 1 + qimn if m and n are not
connected (or ηimn = 2 + qimn if m and n are con-
nected). Zhang et al. [86] later proposed a modified
version of square clustering coefficient: CSZ (i|m, n) =

Qimn
(dm−ηimn)+(dn−ηimn)+Qimn

. With this minor change at the

denominator, 4-cycles are now built from connecting
nodes. It is mainly applied in community detection.

– Interest clustering coefficient [87]. An interest cluster-
ing coefficient is introduced to measure the ‘‘clustering
of interest links’’ in directed social networks. It argues
that the best way of defining a relationship between
two individuals is through common interests, i.e., two
individuals having links towards a common neighbour
will have a higher chance to follow other common neigh-
bours. From a structural view, the interest clustering
coefficient essentially measures the formation of bi-fan
subgraphs (Table 1) upon open bi-fans:

CI =
4 · # bifan

# open-bifan
. (21)

Note that this metric is defined at network-level. The
paper finds out that the interest clustering coefficient of
Twitter is higher than the traditional directed clustering
coefficient, and further proves its usage in a link recom-
mendation task.

3) BEYOND 4-NODE SUBGRAPH
Some approaches are introduced with a variable subgraph
size. In actual usage, however, due to high complexity, they
seldom go beyond the size of 6 nodes.
– Higher-order clustering coefficientsF [88]. Fronczak

et al. propose the higher clustering coefficients to eval-
uate the probabilities that the shortest paths between
any two neighbours of node i equals k , when all paths
passing through node i are neglected. Particularly, a clus-
tering coefficient of order k for node i is calculated as:

CHF (i | k) =
2E(i | k)
di(di − 1)

, (22)

where E(i | k) denotes the number of shortest paths
of length k between i’s neighbours. When k equals 1,
it degrades to the standard clustering coefficient, and
when k equals 2, it measures the formation of 4-cycles.
Note that each pair of neighbours could have multiple
shortest paths of the same length, and only one of them
should be counted so that the value of higher-order
clustering coefficients is bounded by 1.

– Higher-order clustering coefficientY [90]. The
higher-order clustering coefficient proposed byYin et al.
is another generalisation of the traditional clustering

coefficient. It aims to measure the formation of higher-
order cliques. Specifically, a k th-order clustering coeffi-
cient of node i is defined as the probability that a k-clique
plus an edge incident to i (termed as k-wedge) forms a
(k + 1)-clique:

CHY (i | k) =
k · Ck+1(i)
Wk (i)

=
k · Ck+1(i)

(di−k + 1)Ck (i)
, (23)

where Ck+1(i) is the number of (k + 1)-cliques contain-
ing node i, and Wk (i) is the number of k-wedges with i
as the centre node. The properties of higher-order clus-
tering coefficient in random graph and the small-world
model have also been thoroughly investigated [90].

– Higher-order closure coefficient [29]. Higher-order
closure coefficient measures the formation of higher-
order cliques from a different perspective, i.e., the focal
node being the end-node of a k-wedge (instead of the
centre-node). The k th-order closure coefficient of node
i is thus defined as the fraction of end-node based
k-wedges that are closed (a closed k-wedge is a (k + 1)-
clique):

CHE (i | k) =
k · Ck+1(i)
W ′k (i)

=
k · Ck+1(i)∑

j∈N (i) [Ck (j)− (k − 1)Ck (i)]
, (24)

where Ck+1(i) is the number of (k + 1)-cliques contain-
ing node i, andWk (i)′ is the number of k-wedgeswith i as
the end-node. Higher-order closure coefficient is proven
to be useful in finding seeds for personalised PageRank
community detection.

An illustrative summary formost abovementioned approaches
is given in Table 3.

C. GLOBAL PATH BASED APPROACHES
Global path based approaches require structural information
across the whole network in the form of unbounded paths
between nodes. One set of methods is based on the paths from
one node to all other nodes, such as the well known closeness
centrality and Katz index; another set of methods is based on
paths between all node pairs, represented by the betweenness
centrality (Figure 7).

1) ONE-TO-ALL
The approaches of this type involve the paths from one node
to all other nodes. They are also referred to as radial measures.
– Closeness centrality [36]. Being one of the most classic

centralitymeasures, closeness centrality is defined as the
reciprocal of the average shortest path distance from a
focal node i to all other nodes:

2C (i) =
|V | − 1∑

j∈V ,j̸=i d(i, j)
. (25)

Obviously, the original definition is not suitable for
graphs with more than one connected component.
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TABLE 3. Metrics for 3-node and 4-node subgraph formation.

FIGURE 7. Global path based measures.

To address this problem, a modified version of the
closeness centrality is defined as [91]:

2C ′ (i) =
n− 1
|V | − 1

n− 1∑n−1
j=1 d(i, j)

, (26)

where n is the number of nodes in one connected compo-
nent. Due to its intuitiveness in definition, the closeness
centrality keeps being applied and extended in various
fields. Some recent works include the neighbourhood
closeness centrality in predicting essential proteins [92],
and the backward/forward closeness in studying global
value chains [93].

– Katz index [94]. Unlike the closeness centrality that
focuses on shortest paths, Katz centrality of a node

considers all paths reaching other nodes with longer
paths contributing less. Concretely, the Katz centrality
of a node i is calculated as:

2K (i) =
∑
j

∞∑
k=1

βkAk
ij, (27)

where k is a path length and β is an attenuation param-
eter in a range (0, 1

λ ), λ being the largest eigenvalue of
A. Further, the overall matrix M =

∑
∞

k=1(β · A)
k is

an weighted ensemble of all paths. Thus,Mij represents
the weighted sum of paths from i to j in all possible hops.
Note that this definition is naturally suitable in directed
networks and a recent work proposes to generate node
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embedding of a directed graph by performing a singular
value decomposition on the Katz index matrix [95].

– Gravity model [96] /Gravity centrality [97]. Inspired
by Newton’s gravity law formula, a gravity model is
proposed by viewing the degree of a node as its mass
and the shortest path length between two nodes as their
distance:

2G(i) =
∑

j∈V ,j̸=i

di · dj
d(i, j)2

. (28)

In order to make it easier to compute in large networks,
a modified version limits the radius from the entire
network to a certain length. Adopting a similar idea, the
gravity centrality is introduced by regarding the core-
ness of a node as its mass, and the shortest path length
between nodes as their distance:

2′G(i) =
∑
j∈Nk (i)

ks(i) · ks(j)
d(i, j)2

, (29)

where Nk (i) is the neighbourhood of node i within
k-hops, and ks(i) is the coreness of node i. The two
approaches are shown to be effective in identifying influ-
ential spreaders through analyses of the SIR model on
real networks.

– Heatmap centrality [98]. Heatmap centrality measures
the influence of a node by comparing the farness of the
node with the average farness of its neighbours. Farness,
the reciprocal of closeness, is defined as the sum of the
lengths of shortest paths from a node to all other nodes,
i.e., f (i) =

∑
j∈V ,j̸=i d(i, j). Therefore, the heatmap

centrality of node i is quantified as:

2HM (i) = f (i)−

∑
j∈N (i) f (j)

|N (i)|
. (30)

The intuition of this metric is that if a node has a smaller
farness than its neighbours, the probability of informa-
tion passing through it is higher. Note that according
to heatmap centrality, a top-ranked node of influence
should have the most negative value. Although the defi-
nition of heatmap centrality is more related to the close-
ness centrality, it is revealed that it is highly correlated
with the betweenness centrality.

– Reaching centrality [99]. Reaching centrality aims to
rank the influence of a node in directed networks. Intu-
itively, the reaching centrality of node i is quantified
as the proportion of nodes that can be reached by the
node via outgoing edges, i.e., the number of nodes with
a directed distance from i, divided by |V | − 1. Further,
a global reaching centrality is then defined as:

GRC =

∑
i∈V [2

max
R −2R(i)]
|V | − 1

, (31)

where 2max
R is the largest reaching centrality of all

nodes. The meaning of GRC is the difference between
the maximum reaching centrality and the average reach-
ing centrality. Global reaching centrality is used as a

hierarchy measure for directed networks and is shown to
be capable of capturing the degree of hierarchy in both
synthetic and real networks.

2) ALL-TO-ALL
The approaches here involve the count of paths between all
node pairs, and among them the ones that pass through a focal
node or edge. They are also referred to as medial measures.

– Betweenness centrality [100]. Betweenness centrality,
or more precisely, the shortest-path betweenness central-
ity is one of the best-known centrality measures. The
betweenness centrality of node i is quantified as the sum
of the fraction of all-pairs shortest paths going through i:

2B(i) =
∑
s,t∈V

σ (s, t | i)
σ (s, t)

, (32)

where σ (s, t | i) is the number of shortest paths between
node pair s and t that pass through node i, and σ (s, t)
is the number of all shortest paths between s and t . It is

often normalised by (|V |−1)(|V |−2)
2 , in order to be com-

pared in different networks. The betweenness centrality
has also been generalised to directed networks [101] and
weighted networks [102].

– Edge betweenness centrality [103]. With a small mod-
ification on the original betweenness centrality, Girvan
and Newman propose an edge betweenness centrality
in order to detect a community structure in complex
networks. The edge betweenness centrality of an edge
e is quantified as the sum of the fraction of all-pairs
shortest paths passing through e:

2B(e) =
∑
s,t∈V

σ (s, t | e)
σ (s, t)

, (33)

According to the definition, edges which lie between
communities will have large edge betweenness. There-
fore, the underlying communities of the network would
be uncovered by removing edges of high edge between-
ness centrality. It has been widely applied in a com-
munity detection task, and some recent applications
include the study of anti-vaccination sentiment on Face-
book [104] and the analysis of microbial diversity in
marine sediment [105].

– Flow betweenness centrality [106]/ Communicability
betweenness centrality [107]. A major limitation of
the betweenness centrality is that it exclusively focuses
on the shortest paths. In real situations, however, infor-
mation often takes a more circuitous path randomly or
intentionally [108]. The flow betweenness addresses this
issue by considering all paths between nodes. Specif-
ically, the flow betweenness centrality of a node i is
defined as:

2F (i) =
∑
s,t∈V

φ(s, t | i)
φ(s, t)

, (34)

VOLUME 11, 2023 39095



M. Jia et al.: Network Science Perspective of GCNs: A Survey

where φ(s, t | i) is the maximum flow between s and t
that passes through i, and φ(s, t) is the total flow between
s and t . The maximum flow is in turn calculated by
the minimum cut capacity [109]. Having established the
notion of ‘‘capacity ’’ on links, the flow betweenness
centrality is naturally suitable for weighted networks.
Instead of treating each path equally, the communicabil-
ity betweenness centrality proposes to reduce the weight
for longer paths:

2
(n− 1)(n− 2)

∑
s,t∈V

∑
∞

k=0
1
k!µ

k (s, t | i)∑
∞

k=0
1
k!µ

k (s, t)
, (35)

where µk (s, t | i) is the number of paths between s and
t passing i with length k , and µk (s, t) is the number of
paths between s and t with a length k .

– Random-walk betweenness centrality [110]. A random-
walk betweenness centrality, also known as a current-
flow betweenness centrality, is another popular variant
of the betweenness centrality. It models information
spreading in a network analogous to an electrical current
flow in a circuit. Concretely, the current-flow between-
ness centrality of node i is defined as the amount of
current flowing through i, averaged over all node pairs:

2CF (i) =

∑
s,t∈V I (s, t | i)

(1/2)n(n− 1)
, (36)

where I (s, t | i) is the current flowing from s to t that
passes i. The paper then proves that a message spreading
along randomwalks is equivalent to the above definition.

D. MESSAGE PASSING BASED APPROACHES
The above mentioned approaches depend solely on the topo-
logical information of a network, such as the number of
particular subgraphs, the ratio between two subgraphs, the
length of shortest paths, or the number of paths. Message
passing based approaches further consider the information
contained in each node. From a microscopic point of view,
in one iteration, only local information is needed at each
node. It is worth noticing that the popular graph convolutional
network is also based on this idea, i.e, iteratively gathering
information from nearby nodes.
– Eigenvector centrality [111]. The eigenvector central-

ity is another classic centrality measure. The idea is
that a node’s centrality depends on the centralities of its
neighbours:

x(i) = c
∑
j∈N (i)

x(j), (37)

where c is a normalisation constant. The equation is
recursive and computed by starting with a set of initial
influence scores and iterating the computation until it
converges. In a vectorised form, i.e., x⃗ = cAx⃗, x⃗ is found
to converge to the dominant eigenvector of A and c con-
verges to the reciprocal of the dominant eigenvalue of
A. The eigenvector centrality has some problems in very

sparse networks, i.e., the leading eigenvector is localised
around nodes of the highest degree and diminishes the
effectiveness of quantifying nodes’ importance [112].

– Nonbacktracking centrality [113]. The nonbacktrack-
ing centrality is proposed to address the above men-
tioned localisation issue. The same as in the eigenvector
centrality, a node’s centrality is the sum of its neigh-
bours’ centralities, but now the neighbours’ centralities
are calculated without the influence of this node. This
is achieved by using the nonbacktracking matrix [114].
The nonbacktracking matrix B, is a 2m × 2m matrix,
defined on the directed edges of the graph (undirected
edges are converted to bidirectional edges), and ele-
ments Bi→j,k→l = δi,l(1 − δjk ), where δ is the Kro-
necker delta. Then, ej→i of the leading eigenvector of
B gives the centrality of node j ignoring the contri-
bution of i. Finally, the nonbacktracking centrality of
node i is x(i) =

∑
j Ajiej→i. The eigenvalues of the

nonbacktracking matrix are also found to be useful in
a community detection task [115].

– Alpha centrality [116]. When the eigenvector central-
ity is applied in directed networks, a node’s centrality
is determined by those who pointed at it. Thus, the
vector form becomes: x⃗ = 1

λA
T x⃗. The problem is

that nodes with no incoming edges would have zero
centrality value. The alpha centrality proposes to solve
this problem by taking into account the ‘‘external status
characteristics’’. The equation then becomes:

x⃗ = αAT x⃗ + e⃗, (38)

where e⃗ is a vector of the exogenous sources of charac-
teristics and α is a parameter which reflects the relative
importance of a topological structure versus exogenous
factors.

– PageRank [117]. PageRank, a popular variation of the
eigenvector centrality, is proposed to rank the impor-
tance of web pages. Web pages and the links among
them are modelled as a directed network, and a page
should have a high rank if the sum of the ranks of pages
that point to it is high. Specifically, the rank of page i is
calculated as:

r(i) = c
∑
j∈N in

i

r(j)
doutj

, (39)

where N in
i is the set of pages pointing to i (i’s in-

neighbours), and doutj is out-degree of page j. In order to
deal with the ‘‘rank sink’’ problem, where several pages
form a loop without other outgoing links, a source of the
rank is introduced over all pages (also viewed as a ran-
dom jumping factor), denoted as a vector e⃗. Therefore,
the rank of page i becomes: r(i) = c(

∑
j∈N in

i

r(j)
doutj
+e(i)),

and the corresponding vector form is r⃗ = c(AT
+ e⃗ ×

1)r⃗ . The PageRank has also been extended to weighted
networks [118], on nonbacktracking matrix [119], and
applied to many different areas [120].
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FIGURE 8. Message passing based approaches.

– HITS [121]. Unlike the PageRank which focuses on
pages having many incoming links, HITS, abbreviated
from a hyperlink induced topic search, proposes to
distinguish two roles in the hyperlink structure, i.e.,
authorities and hubs. Authorities are reliable informa-
tion sources, and hubs are the websites pointing to
them. Based on the intuition that an authority should be
pointed to by hubs and a hub should point to authorities,
an authority weight and a hub weight of page i are thus
defined in a mutually dependent manner:

a(i) =
∑
j∈N in

i

h(j) h(i) =
∑
j∈N out

i

a(j). (40)

The corresponding vector forms are: a⃗ = AT h⃗, and
h⃗ = Aa⃗. a⃗ and h⃗ are updated iteratively, and it is proven
that a⃗ converges to the leading eigenvector of ATA, and
h⃗ converges to the leading eigenvector of AAT . Based
on HITS, ARC (Automatic Resource Compilation) later
proposes to incorporate textual information around the
link by assigning each link a weight [122], and Co-HITS
proposes to extend the idea to bipartite networks [123].

– LeaderRank [124]. In order to solve the above men-
tioned rank sink problem, the LeaderRank proposes to
add a ground node that connects to other nodes via
bidirectional links. In the beginning, each node other
than the ground node is initialised by one unit of score,
and the ground node is initialised to zero. Then, the same
as the PageRank, at each iteration, the score of node i is
calculated as: s(i)(t) = c

∑
j∈N in

i

s(j)(t−1)

doutj
. After the scores

of all nodes reach a steady state, the score of the ground
node will be distributed evenly to other nodes, and thus
the final score of node i is:

s(i) = s(i)c +
s(g)c

|V |
, (41)

where s(i)c is the steady score of node i, and s(g)c is
the steady score of the ground node. A major advantage
of the LeaderRank is that it has no additional parameter
that needs to be optimised. Some interesting extensions
of the LeaderRank include the weighted LeaderRank
that assigns degree-dependent weights onto links asso-
ciated with the ground node [125] and the adaptive
LeaderRank that introduces H-index into the weighted
mechanism [126].

E. HYBRID APPROACHES
The methods in the fifth and final category are combinations
of previously introduced approaches.

– ClusterRank [127]. Previous studies have shown that
a large clustering coefficient may slow the spreading
process of disease in the entire network [128], [129].
A ClusterRank thus proposes to consider not only the
number of a node’s neighbours, but also the negative
effect of local clustering when identifying influential
nodes. The ClusterRank score of node i is defined as:

2CR(i) = f (ci)
∑
j∈N out

i

(doutj + 1), (42)

where ci =

∑
j∈Nouti

|N out (i)∩N (j)|

douti (douti −1)
is a modified version

of clustering coefficient in directed networks. f (ci) is a
function that is negatively correlatedwith ci, for example
an exponential function f (ci) = 10−ci . Although the
ClusterRank is proposed for directed networks, it can
be easily extended to undirected networks [127] and
weighted networks [130]. Experiments on several real
networks demonstrate that the ClusterRank score out-
performs the PageRank and the LeaderRank while being
more efficient in computation.

– Local structural Centrality [131]. Aiming to eval-
uate the spreading ability of nodes, a local struc-
tural centrality essentially extends the local centrality
(section III-A2) by further considering the connections
between higher-order neighbours. The idea is that a
node has a better spreading ability when its neighbours
are better connected because a neighbour node can be
affected directly by the source node or indirectly by
another neighbour node. The local structural centrality
of node i is defined as:

2LS (i) =
∑
j∈Ni

(α|N 1,2
j | + (1− α)

∑
k∈N 1,2

j

c(k)), (43)

where N 1,2
j is the node set of 1-hop and 2-hop neigh-

bours of node j, and c(k) is the clustering coefficient of
node k .α is a tunable parameter between 0 and 1, balanc-
ing a direct and indirect spreading contribution. Notice
that the part of the clustering coefficient is multiplied in
the ClusterRank when evaluating spreading speed, but
added up here when measuring the spreading ability.

– Local triangle structure centrality [132]. A local tri-
angle structure centrality (LTSC) proposes to include the
triangle proportion of a node, instead of its clustering
coefficient when evaluating a node’s spreading ability.
The triangle proportion is able to indicate the location of
a node, whether it is located in a denser or sparser part of
a network. LTSC partitions the spreading ability into two
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FIGURE 9. Hybrid Approaches.

parts, i.e., inner spreading ability and outer spreading
ability. Specifically, the local triangle structural central-
ity of node i is defined as:

2TS (i) =
∑
j∈Ni

(dj(1+ TP(j))+ (
∑
k∈Nj

dk − dj)), (44)

where TP(j) is the triangle proportion of node j, calcu-
lated by the number of triangles containing j divided by
the total number of triangles in the network. For each
neighbour j of a given node i, the part of dj(1 + TP(j)
is to measure its inner spreading ability, and the part of∑

k∈Nj dk − dj is to measure its outer spreading ability.
Finally, the local triangle structure centrality of node i is
the sum of the spreading abilities of its neighbours.

– Hybrid degree centrality [133]. The spreading prob-
abilities of networks describing diseases, opinions, and
rumours should obviously differ. Most existing central-
ity measures, however, fail to take that into considera-
tion. The performance of centrality measures is sensitive
to the spreading probability. The degree centrality, for
example, works best with modest spreading probabil-
ities, while the local centrality (section III-A2) works
better with higher ones [131]. In order to alleviate the
sensitivity to different spreading probabilities, a hybrid
degree centrality is introduced by integrating the degree
centrality and a modified local centrality. The hybrid
degree centrality of node i is defined as:

2HD(i) = (β − p) · α ·2D(i)+ p ·2′LR(i), (45)

where 2′LR(i) = 2LR(i) − 2
∑

j∈Ni |Nj| is the modified
local centrality, p is the spreading probability, α and β

are two tunable parameters. The part contributed by the
degree centrality is viewed as a near-source influence,
and the part of modified local centrality is a distant
influence.

– HybridRank [134]. A HybridRank proposes to identify
influential spreaders by combining the neighbourhood
coreness centrality (section III-A1) and the eigenvector
centrality. The reason for integrating these twomeasures
is that they both regard a node as influential if the
node is connected to other influential nodes. The hybrid
centrality of node i is defined as:

2HR(i) = 2NC (i)×2E (i), (46)

where 2NC (i) =
∑

j∈Ni ks(j) is the neighbourhood
coreness of i, and 2E (i) is the eigenvector centrality
of node i. The HybridRank algorithm further suggests
that when selecting influential spreaders, the neigh-
bours of selected ones should be neglected in order to

maximise the spreading range. The effectiveness of the
HybridRank has also been tested in real networks using
a SIR model.

– BridgeRank [135]. In order to lower the time complex-
ity of the closeness centrality while keeping comparable
performance, a BridgeRank proposes to compute the
shortest paths to just a few core nodes in the network.
In the BridgeRank algorithm, at first, communities are
identified by the Louvain algorithm [136]. Then, core
nodes are discovered through calculating the between-
ness centralities within each community (one core node
per community). Finally, the BridgeRank centrality of
each node is defined as a filtered closeness centrality to
these core nodes:

2BR(i) =
1∑

j∈C d(i, j)
, (47)

where C is the set of identified core nodes in each
community. The time complexity is therefore reduced
from O(|V |3) to O(|V |log|V |). A modified version that
allows multiple core nodes being selected in a commu-
nity is also introduced [135]. Other community structure
based methods include k-medoid that uses information
transfer probabilities between any node pairs [137], and
the influence maximization algorithm based on label
propagation [138].

– CCPA [139]. A common neighbour and centrality based
parameterised algorithm, or CCPA, is an approach for a
link prediction. It aims to bring together two essential
properties of nodes, i.e., the common neighbours and the
closeness centrality. The similarity score between a pair
of nodes i and j is defined as:

s(i, j) = α · (|Ni ∩ Nj|)+ (1− α) ·
|V |
d(i, j)

. (48)

|Ni ∩ Nj| is obviously the part of common neighbours.
|V |
d(i,j) , reciprocal of the normalised distance between two

nodes, is deemed as the closeness centrality of them,
since it has a similar form as the classic node close-
ness centrality. α ∈ [0, 1] is a user-defined parameter
controlling the weight of the two parts. Experiments on
real-world datasets suggest that the change in perfor-
mance (measured in average AUC) caused by the change
of α is not significant.

F. DISCUSSION AND OUTLOOK
To end this section, we further discuss graph structural mea-
sures in different types of networks and highlight some
research avenues for future studies.We then briefly talk about
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the importance and role of reviewing traditional structural
measures in the following part of the survey on GCNs.

1) DYNAMIC NETWORKS
Most approaches covered in the survey assume that networks
are static or time-independent. Many real-world networks,
however, are in fact dynamic, nodes and edges appearing
and disappearing over time [140], [141]. In telecommunica-
tion networks, the connection between agents is often bursty
and fluctuates across time; in social networks, relationships
among people are typically intermittent and recurrent; in
transportation networks, the frequency of public transport
service is usually higher in rush hours. This extra dimension
of time adds richness and complexity to the graph represen-
tation of a system, necessitating the development of more
advanced approaches that can leverage temporal information.
Many studies have generalised the classic graph structural
measures to dynamic networks, including temporal degree
centrality [142], temporal clustering coefficient [143], tem-
poral closeness and betweenness centrality [144], temporal
eigenvector centrality [145], temporal Katz centrality [143],
temporal motifs [146], [147] and temporal graphlets [58].
Despite the large number of structural measures proposed
for dynamic networks, there are still many open questions to
be tackled. For example, what is the impact of the temporal
network’s structure on the dynamics of processes that occur
on it; how to apply temporal measures in inferring spreading
chains in incomplete temporal networks, etc.

2) MULTILAYER NETWORKS
Sometimes, systems are so complicated that multiple-layered
networks are needed to better represent and study them [148],
[149], [150], [151]. For example, a multilayer social net-
work incorporates both friendship and financial relationships
among individuals; a multilayer brain network contains both
the anatomical brain layer and functional brain layer, and
a multilayer transportation network integrates all sorts of
transportation. Since interlayer connections cause new struc-
tural and dynamic correlations between components, neglect-
ing them or simply aggregating over layers will alter the
original topological properties. Therefore, it is desirable to
develop structural measures taking interlayer relationships
into consideration. Not surprisingly, fundamental single-layer
approaches have been largely generalised to multilayer net-
works, such as multilayer degree, clustering coefficient,
closeness and betweenness centralities, [148], [150], [152],
multilayer motifs and graphlets [153], [154], multilayer
eigenvector, PageRank and HITS centralities [155], [156],
[157]. Some tailor-made approaches for multilayer networks
are also recently introduced, for example, the minimal-layers
power community index [158], and the singular vector of
tensor centrality [159]. The study of multilayer structures,
however, is still in an early stage. There is still much room for
developing new cross-layer structural approaches that better

model inter-layer spreading processes [160] and captures
multiplex dynamics, and controllability [161].

3) NODE/EDGE ATTRIBUTES
Network data, besides the pure topological presence, are
often accompanied by rich information on node attributes
and/or edge attributes, and they are also referred to as labelled
networks or attributed networks. Most structural measures,
as the name suggests, focus solely on capturing the part
of topological properties. Theoretically, message passing
approaches are able to include numeric node attributes, such
as the initial rank and source of rank in the PageRank [117],
or the endogenous and exogenous status in the alpha cen-
trality [116]. In practice though, these features are usually
set to identical values for all nodes, for example, all ones
for the initial rank and 0.15 for the source of rank in the
PageRank. Multidimensional features are not supported in
message passing approaches either. There have also been
attempts to integrate node/edge attributes with other graph
structural measures. For instance, the degree and betweenness
centralities are combined with node attributes in studying
criminal networks [162]; nodes’ attributes are used as a
threshold in LRIC index [163]; and node/edge attributes are
fused into graphlets [164], [165]. We believe there is still
great potential for developing novel structural approaches that
integrate rich information on nodes and/or edges. It is also
worth mentioning that one reason for the popularity of graph
neural networks is that it naturally enables integrating node
attributes and some recent works also propose to take edge
attributes into account in GNNs [166], [167], [168].

Finally, we discuss how the traditional structure-based
approaches are linked to GCNs. The importance and role
of reviewing traditional structural measures in the sur-
vey of GCNs are Multifaceted. First, traditional structural
approaches, the outcome of decades of Network Science
studies, are the precursors and foundations of graph neu-
ral networks. For example, the key idea of neighbourhood
aggregation and message passing in GCNs can trace back
to 1972 when Bonacich proposed the eigenvector central-
ity [169]. Basic network science notions such as the clus-
tering coefficient, motifs and graphlets are utilised in GCNs
as well. Second, the taxonomy of traditional approaches
from the perspective of structure information inspired us to
develop a new taxonomy for GCNs. We will see later how the
taxonomy of GCNs from a layer-wise message aggregation
scope is similar to that of subgraph count based measures
in Section III-A. Third and last, a comprehensive review of
traditional structural measures not only helps in revealing
their connections to GCN approaches but also benefits the
discovery of knowledge gaps. We will see that some GCN
approaches are inspired by the traditional message pass-
ing based approaches, and that many subgraph count based
approaches find their usages in GCNs. However, the connec-
tions between GCNs and subgraph formation based or global
path based approaches are still largely left undiscovered.
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IV. STRUCTURE INFORMATION IN GRAPH
CONVOLUTIONAL NETWORKS
After summarising the traditional Network Science struc-
tural measures, we are set to review the graph convolu-
tional networks from a novel perspective of graph structural
information.

In recent years, graph neural networks, especially graph
convolutional networks, have become one of the most promi-
nent research areas in the study of complex networks.
It extends the traditional convolutional neural networks to
graph data and enables an effective combination of the rich
node features information and graph topological structure.
Graph convolutional networks have been successfully applied
in different types of graph learning tasks, including node
classification, link prediction, graph classification and graph
clustering. Amongst the large family of graph deep learning
approaches [21], [170], we particularly focus on graph convo-
lutional networks mainly for two reasons. First, GCNs have
a wider range of applicability, as they can be applied to all
types of graphs and various learning tasks. This is in contrast
to Graph Recurrent Neural Networks (Graph RNNs [171]),
which are primarily designed for studying dynamic/temporal
graphs or generating graph structures. The convolutional
operation of GCNs is order-invariant, making them suitable
for both static and dynamic graphs [23]. Second, GCNs serve
as the basis for many other graph deep learning approaches,
including graph autoencoders, graph reinforcement learning,
and graph adversarial methods. For example, graph autoen-
coders leverage GCN-based encoders to learn meaningful
embeddings for the nodes or graphs [172]. GCNs are also
used to extract useful features from the graph, which are sub-
sequently used by reinforcement learning algorithms to make
decisions [173]. Furthermore, GCNs enable the development
of more complex and powerful architectures that can tackle
a variety of tasks and challenges in the graph domain and
beyond, such as in natural language generation [174], [175].

There exist several comprehensive surveys on graph neural
networks. Bronstein et al. [20] provide a thorough review
of geometric deep learning, which presents its problems,
difficulties, solutions and applications. Hamilton et al. [19]
develop a unified encoder-decoder framework for graph rep-
resentation learning approaches, bringing together matrix
factorisation-based methods, random-walk-based algorithms
and graph neural networks. Chami et al. [176] later extend
the framework by including more recent advancements in
the area. Zhang et al. [177] propose a comprehensive review
specifically on graph convolutional networks. Zhou et al. [22]
introduce a detailed taxonomy after dividing GNNs into
several modules, including the propagation module, the
sampling module and the pooling module. Wu et al. [12]
propose to divide GNNs into four categories, i.e., recurrent
GNNs, convolutional GNNs, graph autoencoders and spatial-
temporal GNNs.

These reviews, when introducing convolutional neural
networks, usually focus on the domain of convolutional
operations and propose a dichotomy, i.e., the spectral-based

methods and the spatial-based methods. However, the line
between the two is sometimes blurred. For example, GCN
is an approximation of spectral graph convolutions, but it
operates directly on graphs — applying filters acting on the
k-hop neighbourhood of the graph in the spatial domain [20].
Another recent work also proves that spectral convolutional
graph neural networks can be viewed as a particular case of
spatial convolutional neural networks [178].

Different from existing reviews, in this survey we primar-
ily, but not exclusively, focus on how local structure plays
its role in graph convolutional networks. we propose to cat-
egorise GCN approaches from three different perspectives,
which are the layer-wise message aggregation scope, the
message content, and the overall learning scope.

• Layer-wise message aggregation scope. Analogous to
convolutional neural networks, multilayer architecture is
one of the key features in graph convolutional networks.
Taking the vanilla GCN for example, at each layer,
a node gathers information from its 1-hop neighbours.
Then from stacking k layers, the node would convolve
its k th-order neighbourhood. Thereafter, many other
approaches propose to apply different scope at each
layer, including 2-hop neighbourhood, k-hop neigh-
bourhood, local-random-walk neighbourhood, subgraph
neighbourhood, etc. This first structural perspective in
GCN design can be summarised into the following ques-
tion: From where a node aggregates message at each
layer? The detailed taxonomy of GCNs from the per-
spective of layer-wise message aggregation scope and
related approaches are given in Subsection IV-A.

• Message content. Compared to traditional deep learning
models such as CNNs and RNNs, the strength of GCNs
comes from the ingenious integration of graph structure
and node features — node features are passed through
the edges of the graph. In many cases, the feature of
nodes is independent of graph structure, such as numeri-
cal ratings, word vectors generated from sentences, posi-
tional gene sets, immunological signatures, and more.
Meanwhile, there are emerging works that include other
structural information as part of node features, from
the simplest node degree to more complicated distance
or subgraph information [15], [17], [179]. This sec-
ond structural perspective in GCN design can be sum-
marised into the question:What structural information is
included in the node feature when initialising or running
the message passing scheme? The detailed taxonomy
from the message content perspective and the related
approaches are given in Subsection IV-B.

• Learning scope. Traditional graph representation learn-
ing approaches are generally based on matrix factori-
sation, which thus requires the fixed whole graph.
Although the original GCN approach also takes the
whole graph’s adjacency matrix as input, it has soon
been extended to various settings, such as subgraphs,
localised subgraphs, and more. To put in a question
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format, the third structural perspective in a GNN design
is: Where GCNs are trained on? or What is/are the
input graph/graphs in GCNs? The detailed taxonomy
of GCNs from the learning scope perspective and the
related approaches are given in Subsection IV-C.

A. LAYER-WISE MESSAGE SCOPE
To begin with, we discuss in detail the first structural
perspective in a GCN design, i.e., a layer-wise message
scope. By answering the question of where a node aggre-
gates message from at each layer, we divide existing GCN
approaches into four categories, which are 1-hop neigh-
bourhood approaches, k-hop neighbourhood approaches,
local-random-walk neighbourhood approaches, and subgraph
neighbourhood approaches. The taxonomy and representative
approaches are given in Figure 10. The colour of the block
indicates what task the approach is proposed for: grey is the
most common node classification task, orange is a network
classification, and blue is the link prediction task which will
appear later in Section IV-B. Notice that a graph representa-
tion can be readily obtained via graph pooling, so approaches
proposed for a node classification can potentially be applied
in a network classification task. Likewise, some approaches
proposed for the network classification also generate node
representations, making them possible to be used in the node
classification.

1) 1-HOP NEIGHBOURHOOD APPROACHES
Many influential GCN approaches adopt the 1-hop neigh-
bourhood aggregation strategy, where a node’s representation
is iteratively updated through aggregating representations of
its neighbours. One iteration happens at one convolutional
layer, and after stacking multiple layers, the node’s represen-
tation is able to capture a wider range of neighbourhoods.

a: GCN
Motivated by the first-order approximation of localised spec-
tral filters on a graph [180], GCN proposes the following
layer-wise propagation rule operating directly on graphs:

H (l)
= σ

(
ÂH (l−1)W (l)

)
, (49)

where Â = D̃−
1
2 ÃD̃−

1
2 , Ã is adjacency matrix with added

self-connections, and D̃ is degree matrix of Ã. H (l) is the
representations at the l th layer, and W (l) is the learnable
weight matrix at l th layer. σ denotes a nonlinear activation
function such as ReLU. The multiplication of the normalised
self-connection added adjacency matrix Â and the nodes’
representation matrix H represents a normalised sum of
neighbouring nodes’ (and self node’s) representation. From
a microscopic point of view, the representation of node v at
layer l is calculated as:

h(l)v = σ

 ∑
u∈N (v)

1
cvu

h(l−1)u W (l)

 , (50)

where N (v) is the set of node v’s one-hop neighbours (with
added self-loops to each node), cvu =

√
|N (v)|

√
|N (u)| is the

normalisation constant based on the node degree. The loss is
then computed as: L = −

∑
l∈YL

∑F
f=1 Yl lnZlf , where YL

is the set of labelled nodes, Z is the output embedding and
F are the feature maps. Successfully bringing convolutional
operations on graphs, GCN has become one of the most
popular graph representation learning approaches. It is worth
mentioning that the Iterative Classification Algorithm (ICA)
also uses neighbourhood information to train a model [181],
[182]. The model is then used to iteratively update the labels
of nodes in the test set. Obviously, without a multi-layer
convolutional network, the scope of ICA in the training stage
is strictly limited within the immediate neighbourhood.

b: GraphSAGE
Hamilton et al. later proposed the GraphSAGE framework,
which extends the GCN to a more general setting that sup-
ports a mini-batch approach and different aggregation func-
tions [179]. Specifically, the representation of node v at layer l
is given by:

hlN (v)← AGGREGATE l

({
hl−1u ,∀u ∈ N (v)

})
,

hlv← σ
(
Wl
· CONCAT

(
hl−1v ,hlN (v)

))
(51)

The framework thus gives us the flexibility to choose dif-
ferent aggregator functions, such as mean aggregator (equiva-
lent to GCN), LSTM aggregator and pooling aggregator. Fur-
ther, unlike GCN which requires full batch gradient descent,
GraphSAGE enables mini-batch setting and therefore can
also be applied to unseen nodes (also known as inductive
learning). In addition, GraphSAGE proposes to sample a
fixed-size of neighbours around each node in their aggrega-
tion scheme, instead of using all neighbours, which helps to
keep the computational cost of each batch fixed.

c: GIN
AlthoughGCN andGraphSAGE have achieved excellent per-
formances in graph learning tasks, especially in node classifi-
cation tasks, they are unable to distinguish some simple graph
structures due to their limits in the neighbourhood aggre-
gation scheme. Graph Isomorphism Network architecture
(GIN) [183] is proposed to overcome this shortcoming and
is proven to be as powerful as the Weisfeiler-Lehman graph
isomorphism test [184]. Specifically, in order to achieve the
same discriminative power as theWeisfeiler-Lehman test, the
representation of node v at layer l should be as:

h(l)v = φ(l)
(
h(l−1)v , f (l−1)

({
h(l−1)u : u ∈ N (v)

}))
, (52)

where f (l−1) is a function operating on multisets and φ(l) is
an injective function. The choice of multiset on neighbour-
hood information aggregation, instead of mean pooling in
GCN or max pooling in GraphSAGE, enables it to better
preserve neighbourhood structural information. The above
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FIGURE 10. Taxonomy from the Layer-wise Message Aggregation Scope perspective.

representation is then proven to be equivalent to:

h(l)v = MLP(l)

(1+ ϵ(l)
)
· h(l−1)v +

∑
u∈N (v)

h(l−1)u

 , (53)

where ϵ(l) is a scalar representing the importance of the focal
node, and MLP is used to model the composition of the
function f and φ.

d: GAT
Although in the aggregation scheme of the GCN, nodes from
the same neighbourhood are assigned different weights by
introducing the normalisation term (cvu in Equation 50), the
approach lacks the flexibility of introducing other weight
mechanisms. To overcome this shortcoming, GAT proposes
to use a masked self-attentional layer on graphs. ‘‘Masked’’
means that only 1-hop neighbours, rather than all other nodes,
of a given node, are included in the attention scheme. Specifi-
cally, the attention coefficient of an edge evu at layer l is given
by:

α(l)
vu =

exp
(
e(l)vu
)

∑
w∈N (v) exp

(
e(l)vw
) ,

e(l)vu = LeakyReLU
(
a⃗(l)[W(l)h(l)v ∥W

(l)h(l)u ]
)

, (54)

where a(l) is a shared feedforward neural network parame-
terised by a weight vector a⃗, andW(l) is a shared linear trans-
formation of input or hidden features. Then the representation
of node v at layer (l + 1), is obtained through applying the
attention coefficients on v’s neighbour nodes:

h(l+1)v = σ

 ∑
j∈N (i)

α(l)
vuW

(l)h(l)u

 (55)

e: FastGCN
One issue of the GCN’s neighbourhood aggregation scheme
is the quick neighbourhood expansion across layers, which
largely limits its scalability in large and dense graphs.
To address this problem, FastGCN [185] proposes to sample
a fixed number of nodes at each layer while applying neigh-
bourhood aggregation, so the number of involved nodes is
up-bounded by the sample size. Concretely, the representa-
tion of nodes at layer l is given by:

H (l+1)(v, :) = σ

n
s

s∑
j=1

Â
(
v, u(l)j

)
H (l)

(
u(l)j , :

)
W (l)

 ,

(56)

where s is the sample size and n is the total number of nodes
in a graph. Compared to the node-wise sampling strategy
proposed by GraphSAGE, this layer-wise sampling method
further improves the computational efficiency of the model.
For example, in a 2-layer setup, when 10 nodes are sampled
from a node’s neighbourhood, there will be a total of 102 =
100 nodes involved. In contrast, when 10 nodes are sampled
at each layer, the total number of involved nodes is at most
10 ∗ 2 = 20.

f: GraphSNN
A common feature of the above-mentioned approaches is that
each node gathers information from its neighbours, that is to
say treating the neighbourhood as a 1-hop subtree. A recent
work argues that this scheme ignores the rich structure infor-
mation among the neighbour nodes, and therefore proposes
a model named GraphSNN to treat the neighbourhood as a
1-hop subgraph by including the connections among neigh-
bours [186]. Concretely, the work first defines ‘‘structure
coefficients’’ for each node and its neighbours and generate
a weighted adjacency matrix Avu = w (Sv, Svu), where Sv is
1-hop neighbourhood subgraph of node v, and Svu is overlap
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subgraphs of node v and u. w is a function on Sv and Svu
exhibiting properties of local closeness and local denseness,
which is designed as |Evu|

|Vvu|·|Vvu−1|
|Vvu|λ in the paper. λ is a

positive value chosen by users. Then, the representation of
node v at layer l is generated by:

h(l)v = MLP(l)

γ (l−1)(
∑

u∈N (v)

Ãvu + 1)h(l−1)v

+

∑
u∈N (v)

(Ãvu + 1)h(l−1)u

 , (57)

where γ (l−1) is a learnable scalar parameter, and Ãvu is
the normalised weighted adjacency matrix. The part before
h(l−1)v signifies the focal node’s self-importance while the
part

∑
u∈N (v)

(
Ãvu + 1

)
before h(l−1)u is to apply different

weights on different neighbours based on the overlap sub-
graph between the focal node and the neighbour node. From
this perspective, GraphSNN is also an attention-like scheme
that takes the 1-hop subgraph structure into account.

g: DGCNN
In order to apply a GCN on graph-level learning tasks, Deep
Graph Convolutional Neural Network (DGCNN) proposes
to sort and pool the nodes’ representations from multiple
graph convolutional layers, then pass them to a traditional
CNN architecture, i.e., a one-dimensional convolutional layer
followed by dense layers before the final softmax output
layer [187]. As the GCN can be viewed as ‘‘a differentiable
and parameterised generalisation of the 1-dim Weisfeiler-
Lehman algorithm’’ [188], each node’s representation can
be viewed as a ‘‘continuous colour’’ at that layer. The order
of nodes in DGCNN is thus calculated according to the
nodes’ representations, i.e., nodes’ colours, at the graph
convolutional layers (first comparing the representations at
the last layer, then the representations at the second-to-last
layer when some nodes have the same representation, and so
on). Next, in order to fit into the following CNN architecture,
the sorted nodes’ representation needs to be truncated or
extended, which is done by deleting excessive rows or adding
zero rows. This bridge layer between GCN and CNN is also
known as SortPooling.

2) K-HOP NEIGHBOURHOOD APPROACHES
A natural idea to improve the performance of the GCN is
to expand its message aggregation scope at each layer. This
leads us to the second subcategory, i.e., k-hop neighbourhood
approaches.

a: MixHop
The layer-wise message passing scope of the vanilla GCN
is limited to 1-hop neighbours and therefore lacks the abil-
ity to mix latent information from neighbours at different
distances. MixHop is proposed to address this issue through
a higher-order message passing scheme that aggregates

information from further neighbours [189]. Concretely, the
convolutional layer is defined as:

H (i+1)
= σ

(∥∥∥∥
j∈K

ÂjH (i)W (i)
j

)
, (58)

where K is a set of integers representing the scope, and
∥ denotes column-wise concatenation. When K = 1, the
operation degrades to the vanilla GCN. The paper also proves
theoretically that the vanilla GCN cannot recover a 2-hop
delta operator and thus cannot represent a general layer-wise
neighbourhood mixing. In contrast, MixHop is able to learn
a general mixing of information from neighbours at various
distances. Their experiments on a synthetic dataset show that
MixHop performs significantly better than several baselines
on graphs of low levels of homophily.

b: k-hop GNN
A simple example of the limitation of the 1-hop neigh-
bourhood aggregation is that it cannot distinguish regular
graphs of the same size and degree. In order to improve the
expressivity of the vanilla GCN, k-hop GCN also proposes
to take k-hop neighbours into consideration in the layer-wise
aggregation scheme [190]. The general model is presented as:

a(l)v = AGGREGATE(l)
({
h(l−1)u | u ∈ Nk (v)

})
,

h(l)v = MERGE(l)
(
h(l−1)v , a(l)v

)
, (59)

where Nk (v) denotes the k-hop neighbourhood of node v.
Specifically, it adopts an outside-to-inside updating scheme
in the aggregation part: gradually updating neighbouring
nodes from the furthest to the immediate ones. Each neigh-
bour node u at a distance d from the focal node v goes through
two update functions successively:

xu = UPDATE(l)
d,a cross(u,N1(u) ∩ Rd+1(v)),

xu = UPDATE(l)
d,within(u,N1(u) ∩ Rd (v)), (60)

where Rd+1(v) or Rd (v) denote the set of nodes that are
at a distance d + 1 or d from node v. The first func-
tion learns representation from node u’s neighbours that
are (d + 1)-hop away from node v; and the second
function learns from node u’s neighbours that are d-hop
away from node v. The update functions are defined as:
UPDATE(u, S) = MLP1

(
MLP2 (xu)+

∑
w∈S MLP3 (xw)

)
.

Finally, the representation of a node v is calculated as: h(l)v =
UPDATE(l)

0,a cross (v,N1(v)). Although this model can capture
structural information from the k-hop neighbourhood at a
single layer, it requires up to 2k update functions and the
aggregation scheme is much more complicated and computa-
tionally expensive.

c: Adapt
Similar to the FastGCN, Adaptive Sampling GCN (abbre-
viated as Adapt) adopts the layer-wise sampling strategy in
order to accelerate the training of the GCN [191]. Lower
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layer sampling is conditioned on the higher layer. Compared
to node-wise sampling, layer-wise sampling not only has
a fixed number of nodes at each layer but also preserves
the connections between lower-layer neighbours and higher-
layer parent nodes. Furthermore, the approach proposes to
aggregate information from distant nodes via skip connec-
tions, i.e., connecting layer l+1 with layer l−1. Specifically,
the skip-connection representation of node v at layer (l + 1)
is formulated as:

h(l+1)vskip =
∑

s∈V (l−1)

âskip (v, s) h(l−1)s W (l−1)
skip , (61)

where s denotes sampled nodes at layer (l − 1), âskip (v, s) =∑
u∈V (l) â (v, u) â (u, s), and W (l−1)

skip = W (l−1)W (l). The part
of skip-connection is then added to the classic GCN layer
before a nonlinear transformation. Therefore, the overall rep-
resentation of node v is:

h(l+1)v = σ

 ∑
u∈V (l)

â (v, u) h(l)u W
(l)
+ h(l+1)vskip

 . (62)

That is to say, each node gathers information from both its 1-
hop neighbours and 2-hop neighbours. Their experiments on
the Cora dataset show that although skip connection does not
lead to significant improvement in accuracy, it helps to speed
up the convergence.

d: DGP
Aiming to improve the performance of zero-shot learning
tasks on knowledge graphs (directed graphs), Dense Graph
Propagation (DGP) proposes to adopt a two-phase propaga-
tion scheme on two separate connectivity patterns (one hav-
ing nodes connected to their ancestors and the other having
nodes connected to their descendants) [192]. Furthermore,
at each phase, DGP introduces a weighting scheme to include
the contributions from distant nodes. Concretely, the overall
representation is formulated as:

H = σ

(
K∑
k=0

αak Â
a
kσ

(
K∑
k=0

αdk Â
d
kXWd

)
Wa

)
, (63)

where Âak and Âdk denote the normalised adjacency matrices
containing k-hop connections to ancestors and to descen-
dants, respectively. αak and αdk are learnable weights denot-
ing contributions from nodes that are k-hop away from a
given node. We see from the above equation that DGP can
be viewed as consisting of two convolutional layers where
the inner layer aggregates information from 1 to k-hop out-
neighbours, and the outer layer aggregates information from
1 to k-hop in-neighbours.

e: DGCN
Directed Graph Convolutional Networks (DGCN) is another
attempt to extend the GCN to directed graphs [193]. It pro-
poses to expand the receptive field of convolutional opera-
tion by considering the first- and second-order proximities.

Specifically, they first define the notions of second-order in-
degree proximity matrix and second-order out-degree prox-
imity matrix as:

ASin (u, v) =
∑
w

Aw,uAw,v∑
x Aw,x

, ASout (u, v) =
∑
w

Au,wAv,w∑
x Ax,w

.

(64)

The idea is that if two nodes (a given node and its
2-hop neighbour) share many common in-neighbours (or out-
neighbours), they have higher second-order in-degree (or out-
degree) proximity.When capturing first-order proximity, they
choose to make the adjacency matrix symmetric by ignoring
link directions. Then the overall representation at layer l is
formulated as:

H(l)
= Concact

(
σ
(
ÂFH(l−1)2(l−1)

)
,

σ
(
ÂSinH

(l−1)2(l−1)
)

, σ
(
ÂSout H

(l−1)2(l−1)
))

, (65)

where ÂF, ÂSin and ÂSout are normalised first-order proximity
matrix, normalised second-order in-degree proximity matrix
and normalised second-order out-degree proximity matrix,
respectively. Notice that although DGP also considers 2-hop
neighbours in directed graphs when k equals 2, DGCN and
DGP have different definitions of directed 2-hops.

f: SGC
In order to improve the efficiency and scalability of GCN,
Simple Graph Convolution (SGC) proposes to remove the
nonlinear transformation between layers [194]. They argue
that the main advantage of GCN lies in its neighbourhood
aggregation scheme, not the nonlinearity between convolu-
tional layers. After removing all nonlinear activations, the
final output of the SGC model is represented as follows:

Ŷ = softmax
(
Â . . . ÂÂH (0)W (1)W (2) . . .W (L)

)
= softmax

(
ÂLH (0)W

)
, (66)

where Â is the normalised self-connection added adjacency
matrix,H (0) is the input node feature matrix, andW is a single
weight matrix. This output representation thus only requires
learning a single weight matrix, and the term ÂLH (0) can be
computed directly. Note that the meaning of ÂLH (0) is the
sum of features from k-hop neighbouring nodes. Therefore,
the SGCmodel is actually equivalent to a single convolutional
layer where nodes aggregate information from their k-hop
neighbours.

g: PATCHY-SAN [195]
Traditional image-based convolutional networks can be
viewed as traversing a node sequence, i.e., a receptive field
moving from left to right and from top to bottom. In order to
employ the convolutional architecture to graphs where spatial
order is missing, PATCHY-SAN proposes to first impose an
order on nodes according to a certain ranking algorithm, then
construct receptive fields from a fixed number of neighbour
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nodes for each node in a preselected node sequence. Note here
the neighbour nodes are selected by performing a breadth-
first search, so it can go beyond 1-hop neighbours. The
receptive fields, after being normalised, will then be fed into a
one-dimensional convolutional layer and other dense layers.
Comparing this CNN-like approach with the GCN, we see
that it requires an extra procedure to rank nodes, and there
are more hyper parameters to tune, such as the length of node
sequence, the stride and the number of neighbour nodes in the
receptive field.

3) RANDOM-WALK NEIGHBOURHOOD APPROACHES
Instead of defining neighbourhood based on the distance to
the focal node, some GCN approaches adopt a random-walk
based neighbourhood, which might enable them to capture
random processes on certain types of graphs.

a: PinSage
In order to apply GCN to web-scale recommender systems,
PinSage proposes to construct neighbourhoods via ran-
dom walks, also referred to as importance-based neighbour-
hoods [196]. The convolutional operation is similar to that of
GraphSAGE:

hlNr (v)
← γ

({
σ
(
Qlhu

)
| u ∈ Nr (v)

}
, α
)

,

hlv← σ
(
Wl
· CONCAT

(
hl−1v ,hlNr (v)

))
, (67)

whereNr (v) is a random-walk neighbourhood, γ is an aggre-
gation function, hu is a set of embeddings of nodes in the
neighbourhood, α is a set of weights on nodes in the neigh-
bourhood,Ql andWl are learnable model parameters. Specif-
ically, Nr (v) comes from simulating a random walk starting
from the focal node and calculating the L1-normalised count
of visited nodes, then the top T nodes with the highest counts
are selected as the neighbourhood in the layer-wise message
passing. There are two benefits in this neighbourhood defi-
nition: first, the number of nodes involved in the aggregation
is fixed, so the cost of the algorithm is predictable; second,
the normalised visit counts can be directly used as weights
to represent the importance of each node in the neighbour-
hood. PinSage also introduces some strategies to improve the
model’s scalability, such as the producer-consumer minibatch
construction and a MapReduce pipeline. Notice that PinSage
is originally designed for recommender systems which are
bipartite networks.

b: HetGNN
Random-walk-based neighbourhood sampling is also
adopted in GNNs for heterogeneous graphs [197]. In order
to deal with multi-typed nodes in heterogeneous graphs,
HetGNN proposes a 2-step sampling strategy. The first step
is to sample a fixed number of nodes using a random-walk-
with-restart (RWR). In RWR, a walk can go to a neighbour
of the current node or return to the starting node, resulting
thus a set of ‘‘strongly correlated neighbours’’. In the second

step, neighbours are grouped based on their types: for each
node type t , top kt nodes are selected according to the
frequency and treated as the set of t-type neighbours. Then
an embedding for a given type t is obtained after employing
a neural network on the typed neighbourhood:

f t2 (v) = AGG
t
u∈Nt (v) {f1 (u)} , (68)

where Nt (v) is the set of typed neighbours of node v, and f1 is
a Bi-LSTM for heterogeneous content encoding. The final
embedding is generated by combining all typed embeddings
through an attention scheme:

hv = αv,vf1(v)+
∑
t∈T

αv,t f t2 (v), (69)

where αv,v and αv,t indicate the importance of different
embeddings. Notice, however, there is no multi-layer graph
convolution introduced in the original work. It is worth men-
tioning that a path-relevant neighbourhood is also adopted in
heterogeneous graphs, represented by the MatchGNet [198]
and MAGNN [199].

c: GraLSP
Based on the idea that anonymous walks can capture struc-
tures through reconstructing local subgraphs [200], GraLSP
proposes to adopt random anonymous walks into the neigh-
bourhood aggregation scheme [16]. It also combines some
other techniques to enhance the model performance, such as
adaptive receptive radius, attention and channel-wise amplifi-
cation. Specifically, the convolutional layer is formulated as:

a(k)v = MEANwk∈W (i),p∈[1,rwk]

(
λ
(k)
v,wk

(
q(k)v,wk ⊙ h(k−1)wkp

))
,

h(k)v = ReLU
(
W(k)h(k−1)v + U(k)a(k)v

)
, (70)

where wk denotes a walk from the set of random walk
sequence W (i), wkp is the p-th node in walk wk . rwk , λv,wk
and qv,wk denote receptive radius, attention coefficient and
amplification coefficient, respectively. Adaptive radius is
introduced in order to regulate the scope of walks so that
nodes that are too far away in the constructed subgraph are
excluded while nodes in clustered subgraphs are included.
Concretely, it is defined as rwk =

⌊
2l
Cwk

⌋
, where l is walk

length and Cwk is the number of distinct nodes visited by the
walk. Finally, the attention coefficient is introduced to assign
different importance to visited nodes, and the channel-wise
amplification is used to model the selection of node features.

4) SUBGRAPH NEIGHBOURHOOD APPROACHES
In addition to the fixed-hop neighbourhood and random-walk
neighbourhood definition in layer-wise message aggregation,
some approaches view the neighbourhood as k-node tuples or
subgraphs.

a: k-GNN
As the ability of the GCN to distinguish nonisomorphic
graphs is equivalent to that of the 1-dimensional Weisfeiler-
Leman algorithm (1-WL), a k-GNN is proposed to achieve a
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higher expressivity as that of a k-WL [201]. Different from
the vanilla GCN where each node gathers information from
a defined neighbourhood, the k-GNN works on the level of
node tuple. Accordingly, the neighbourhood of a k-tuple is
defined as other k-tuples containing one node that is not in
the focal k-tuple. Specifically, the neighbourhood of k-tuple
s is defined as: Nk (s) =

{
t ∈ [V ]k ||s ∩ t |= k − 1

}
, where

[V ]k is a set of all k-tuples in a given graph. The convolutional
operation at layer l is then defined as:

h(l)(s) = σ

h(l−1)(s) ·W (l)
1 +

∑
u∈Nk (s)

h(l−1)(u) ·W (l)
2

 .

(71)

At the beginning, h(0)(s) is set as hiso(s), which is a one-hot
encoding of the isomorphism type of induced subgraph of s.
To improve the model’s scalability and avoid overfitting,
a more restricted k-tuple neighbourhood LNk (s), named local
neighbourhood, is defined as the tuples in Nk (s) also satisfy-
ing (u, v) ∈ E for u ∈ s\t and v ∈ s\t . In other words, the
non-overlapped nodes in a given k-tuple and a neighbouring
k-tuple needs to be connected so that the neighbouring k-tuple
is a local neighbourhood. Notice that as k-GNN is defined on
the k-tuple level, it is unsuitable for node-level tasks.

b: GRAPE
In order to improve GCN’s ability to discriminate graph
isomorphism, GRAPE proposes to consider specific sub-
graph patterns in its layer-wise neighbourhood aggrega-
tion [18]. First, nodes of a given subgraph pattern are grouped
into different sets according to their egocentric automor-
phic equivalences, abbreviated as the Ego-AE set. For exam-
ple, in a triangle subgraph, the focal node is in one set,
and the other two nodes are in another set. Then, differ-
ent weights are learned for each Ego-AE set. Concretely,
node v’s Ego-AE sets in a given subgraph S are denoted
as:

{
AES,1 (v) , . . . ,AES,i (v) , . . . ,AES,m (v)

}
, where m is

the total number of AE-set. The convolutional operation for
subgraph S is then formulated as:

hlS (v) = MLP

∑
i

βS,i ·
∑

u∈AES,i(v)

hl−1S (u)

 , (72)

where βS,i are learnable weights representing the importance
of each set AES,i. Note that the focal node v also belongs to
an Ego-AE set. The final embedding of node v at layer l is
then achieved through combining embeddings from a set of
different subgraph patterns: hl(v) =

∑
S∈� αlS · h

l
S (v), where

� denotes the set of subgraph patterns, and αlS is learnable
weight on a given subgraph pattern. This way GRAPE is
able to differentiate neighbouring nodes according to their
structural roles captured by Ego-AE. Certainly, the approach
involves an extra step of choosing subgraph patterns.

The approaches covered by the first category are sum-
marised in Table 4.

B. MESSAGE CONTENT
The superior performance of the GCN lies in its ingenious
combination of node attributes and a graph structure with
node attributes used as initial representations and then sub-
sequently propagated on the graph through certain convo-
lutional operations. In contrast, some learning approaches
only exploit structural information, such as thematrix decom-
position based methods [95], [202] and the random walk
based methods [203], [204]. In situations where no node
attributes are provided, a simple structural metric like the
node degree is often used as initial representations in the
GCNs [179]. Another group of approaches further propose to
improve the GCN’s distinguishability through injecting more
complicated structural features into the node representations,
such as the count of graphlets, distance-based information,
etc. The taxonomy and representative approaches are given in
Figure 11.

1) COUNT OF SUBGRAPHS
The number of certain subgraphs or substructures is often
used as a node feature in traditional network studies [27].
Some approaches thus propose to include this type of struc-
tural information as part of a node representation in the
GCN’s message passing scheme.

a: GSN
Graph Substructure Network (GSN) proposes to capture
structural features by counting the appearance of particular
graphlet orbits and include them as part of node features
in the convolutional operation [15]. Specifically, node v’s
representation at layer l is defined as:

hl+1(v) = MLP1
(
hl(v),

∑
u∈N (v)

MLP2
(
ht (v),ht (u), xV (v), xV (u), e(u, v)

) ,

(73)

where xV (v) and xV (u) are structure features of nodes v and u,
respectively. e(u, v) is an edge feature if provided. The struc-
tural feature is a vector containing the counts of node orbits.
For example, if subgraphs 2-path and 3-clique are considered
(G1 and G2 in Figure 4), the counts of three node orbits will
be included in the vector. GSN further introduces a version
based on edge orbits, which is formulated as: hl+1(v) =
MLP1

(
hl(v),

∑
u∈N (v)MLP2

(
ht (v),ht (u), xE (u, v), e(u, v)

))
,

where xE (u, v) denotes the edge structural feature, i.e., a vec-
tor containing the count of edge orbits. The GSN has been
proven to be strictly more powerful than the 1-WL test
when the chosen subgraphs are not star graphs. Certainly, the
choice of subgraphs is the core of this approach, and a larger
subgraph will lead to higher computational complexity in a
preprocessing step.
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TABLE 4. Summary of approaches in the category of layer-wise message aggregation scope.

FIGURE 11. Taxonomy from the message content perspective.

b: F -MPNN
A local graph parameter enabled GNN (F-MPNN) also pro-
poses to include a subgraph count into the GCN [205]. F =
{Pr1, . . . ,P

r
k} is a set of pre-selected subgraph patterns with

r referring to a node. The ‘‘homomorphism count’’ of each
pattern Pri for node v in the original graph G is denoted
as hom(Pri ,G

v), which is actually equivalent to the count
of a given node orbit (see Section II-B). Then a structural
feature vector (hom(Pr1,G

v), . . . , hom(Prk ,G
v)) is added to

the one-hot encoding of node v’s label, serving as v’s initial
feature vector. Concretely, the framework is formulated as:

h(0)v :=
(
xv, hom

(
Pr1,G

v) , . . . , hom (Pkℓ,Gv)) ,

h(l)v := MERGE
(
x(l−1)v ,

AGGREGATE
({{

x(l−1)u | u ∈ N (v)
}}))

, (74)

where xv is the one-hot encoding of node v’s label, MERGE
and AGGREGATE are two MLPs. Since this structural fea-
ture is only applied to enhance the initial feature of nodes,
it can be used as an add-on to any GCN architecture. Similar
to the GSN, the choice of subgraph patterns is the core of
F-MPNN. Cycles of length smaller than 10 and cliques of
size smaller than 5 are used as subgraph patterns in the
experiment.

c: ID-GNN
Identity-aware GNN (ID-GNN) proposes to improve the
expressivity of the GCN through distinguishing the root node
of the extracted computation graphs from other nodes in
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its message passing scheme [206]. It contains two major
steps: the first step, named inductive identity colouring, is to
uniquely colour the root node in its k-hop ego network; then in
the second step, a heterogeneous message passing is applied
to all the extracted ego networks. Specifically, the represen-
tation of any node v in an extracted computation graph Gr
(rooted at node r) is formulated as:

m(l)
u = MSG(l)

1[u=r]

(
h(l−1)u

)
,

h(l)v = AGG(l)
({

m(l)
u , u ∈ N (v)

}
,h(l−1)v

)
. (75)

MSG(l)
1[u=r](·) means that MSG(l)

1 (·) is applied to the root node

while MSG(l)
0 (·) is applied to other nodes. In this way, the

representation of the root node is different from that of other
nodes and will help distinguish other nodes when propagated
to later layers. The approach is inductive since the colouring
is based on the extracted computation graphs instead of the
original graph. Further, in order to avoid the overhead of
extracting ego-networks, ID-GNN-Fast proposes to use the
count of cycles as an augmented node feature. Therefore the
input node feature is built from concatenating the original
node feature and the augmented node feature.

2) DISTANCE INFORMATION
Distance measures such as shortest paths between nodes are
widely used in traditional network studies [207]. Naturally,
some approaches propose to enhance the performance of the
GCN through including distance information in their message
passing scheme or as an additional initial node feature.

a: P-GNN
Position-aware graph neural network (P-GNN) proposes to
let each node aggregate information from several randomly
chosen subsets of nodes, instead of its own 1-hop neigh-
bours [208]. As every node shares the same neighbourhood
in P-GNN, distance information is included to indicate the
relative position of each node to those subsets. Specifically,
given k randomly sampled subsets, Si denoting the ith subset,
the representation of node v at layer l is formulated as:

hlv = AGG(l)
(
Ml−1

i ,∀i ∈ [1, k]
)

,

Ml−1
i = {F(duv, hl−1u , hl−1v ),∀u ∈ Si}. (76)

F is a message computation function accounting for both
distance information and feature information of a pair of
nodes. The output at the last layer is constructed with Mi
being the ith embedding dimension, thus making the final
representation ‘‘position aware’’. Note that the subsets are
resampled at each convolution layer, so that each node can
aggregate information from different sets of nodes at each
layer.

b: DE-GNN
Distance-Encoding GNN (DE-GNN) also proposes to
improve the GCN’s expressivity through adding distance

information [17]. Intuitively, for any given node set S whose
representation is to be learnt, other nodes are encoded with
their distances to each node of S. Formally, DE of node u
with regard to the target node set S is defined as:

ζ (u | S) = AGG({ζ (u | v) | v ∈ S}),

ζ (u | v) = f
((

(M )uv,
(
M2
)
uv

, . . . ,
(
M k
)
uv

, . . .
))

, (77)

whereM = AD−1 is a matrix of landing probabilities through
random walks,f can be a heuristic function or a learnable
neural network. Different distance measures can be captured
by the above equation such as the shortest path distance or
the generalised PageRank score. DE is denoted as DE-|S|
according to the size of set S. For example, DE-2 when |S| =
2. One way of improving the GCN through distance encoding
is to use it as an extra node feature: h(0)v = CONCAT (xv, ζ (v |
S)). Another approach is to use DE-1 in the layer-wise aggre-

gation: h(l+1)v = f1
(
h(l)v ,AGG

({
(f2
(
h(l)u
)

, ζ (u | v))
}
u∈V

))
.

Although DE-GNN adopts minibatch training, the distance
information needs to be computed for every node set and for
all nodes in its extracted L-hop ego-network, leading to a
higher computational cost. Also note that DE-GNN is flexible
for tasks on different levels: DE-1 for node-level tasks, DE-
2 for link prediction tasks and DE-3 for triangle prediction
tasks. To highlight that the DE-GNN is suitable for both
node and link-level tasks, we use two colours in its block in
Figure 11.

3) OTHER APPROACHES
Apart from the count of certain subgraphs and the distance
information, some other information such as the ‘‘local con-
text matrix’’ or even random features are also used to enhance
the performance of the GCN.

a: SMP
In order to improve the GCN’s performances on structure-
related tasks, Structural Message Passing (SMP) proposes to
maintain a ‘‘local context matrix’’ at each node, instead of a
feature vector as in the vanilla GCN. Specifically, each node
is initialised as a one-hot encoding M (0)

i = 1i ∈ R
n×1, and

the additional node feature xi of vi is appended at the ith row:
M (0)
i [i, :] = [1, xi] ∈ R1+cX . Then the local context matrix

of node vi at layer l is formulated as:

M (l)
i = MLP(l−1)1

(
M (l−1)
i ,

AGG
({
MLP(l−1)2

(
M (l−1)
i ,M (l−1)

j , eij
)}

vj∈Ni

))
. (78)

AGG is an aggregation function which is by default a nor-
malised sum aggregator:∑

vj∈Ni MLP
(l−1)
2

(
M (l−1)

i ,M (l−1)
j , eij

)
/davg. In this way,

the jth row in Mi is the representation node vi has of node
vj. Finally, the vector form representation of node vi is
obtained through applying an equivariant neural network for
sets on the rows of its context matrix. Although node ordering
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FIGURE 12. Taxonomy from the learning scope perspective.

is needed when constructing the local context matrix, the
learned representation is proven to be order-invariant when
MLP1, MLP2 and AGG are permutation equivariant. SMP is
shown to excel in various tasks, such as the detection of struc-
tural properties including distance, eccentricity connectivity,
diameter, etc.

b: rGIN
Apart from various types of explicit structural features that
are being added to the GCN, another work (termed rGIN)
proves that the expressive power of the GCN can be enhanced
by just adding random features to each node [209]. Specif-
ically, rGIN first assigns a random value rv to each node
and concatenates it with the original node feature xv, then
performs GIN’s convolutional operations:

h(0)v = MLP(0) (CONCAT (xv, rv)) ,

h(l)v = MLP(l)

(1+ ε(l)
)
h(l−1)v +

∑
u∈N (v)

h(l−1)u

 . (79)

With this simple modification on the initial node feature,
rGIN is proven to be able to distinguish any local structure
with high probability. The idea of injecting random features
into nodes is that the GCN fails to distinguish graphs with
identical node features. For example, a GCN with the node
degree as an input feature cannot distinguish a node in a
3-cycle graph from a node in a 6-cycle graph. rGIN is shown
to perform well on structure-related tasks such as learning
the existence of triangles, learning the local clustering coef-
ficient, and learning the algorithm for the MDS (Minimum
Dominating Set) problem.

C. LEARNING SCOPE
The third structural perspective on GCNs is regarding the
learning scope or the input graph. Whether it is full-batch or
mini-batch training, most GCNs still have the whole graph
as an input, i.e., in an L-layer GCN, each node has the
scope of its L-hop neighbourhood in the original graph.
A higher number of layers leads to a neighbourhood explo-
sion and thus higher computational cost. To address this
issue, many approaches limit the scope to subgraphs or
localised subgraphs while some other methods propose to
run the GCN on particular types of generated graphs. The
taxonomy and related approaches are given in Figure 12.
Again, the block’s colour indicates the task the approach

is proposed for: grey represents a node classification, blue
represents a link prediction, and orange represents a network
classification.

1) SUBGRAPHS
An intuitive idea is to limit the training scope to several
selected subgraphs instead of the original whole graph, so the
neighbourhood is restricted within the sphere of subgraphs no
matter how many layers are stacked.

a: GraphSAINT
In order to enhance the scalability of the GCN, GraphSAINT
proposes to train a GCNmodel iteratively on several sampled
subgraphs. Each sampled subgraph Gs ∈ G is a mini-batch.
The representation of node v in a sampled subgraph Gs is
formulated as:

h(l+1)v =

∑
u∈Nv|Gs

Ãv,u
αu,v

W (l)h(l)u , (80)

where u is v’s neighbour in Gs, and αu,v is a coefficient to
offset the biases from the sampler. Specifically, αu,v is defined
as the probability of edge (u, v) being sampled, divided by
the probability of node v being sampled. Given a set of
pre-sampled subgraphs G, αu,v =

Cu,v
Cv

, where Cu,v and
Cv are the number of times edge (u, v) and node v appear
in G, respectively. Finally, the batch loss is calculated as:
Lbatch = 1

|G|
∑

Gs∈G
∑

v
Lv
λv
, where Lv is the loss on node v in

the GCN’s output layer, and λv is a loss normalisation term
computed by the number of node v appearing in G divided
by the total number of nodes in the original graph. Different
samplers are integratedwithin the framework, such as random
node sampler, random edge sampler and random walk based
sampler. According to the experiment, the randomwalk based
sampler tends to have the best performance.

b: CLUSTER-GCN
Also to address the issue of neighbourhood explosion in large
graphs, a Cluster-GCN proposes to first partition the whole
graph into several clusters according to certain clustering
algorithms, then run the GCN on those clusters. Given c
clusters, the original adjacency matrix A is approximated
as a list of submatrices A11, A11, . . . ,Acc at diagonal. The
representation of nodes at layer l in the t th cluster is thus
formulated as:

H (l)
t = ÂttH

(l−1)
t W (l−1), (81)
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where Âtt is the normalised version of Att . The loss is then
calculated as: Lt = 1

|Vt |

∑
i∈Vt loss

(
yi, h

(L)
i

)
. At each itera-

tion, the model weights are updated based on the loss of the
cluster. This way, no matter how many convolutional layers
are involved, the neighbourhood scope is restricted to one
cluster. In order to offset the bias of clustering algorithms,
a better version of the Cluster-GCN proposes to randomly
form a subgraph with several randomly chosen clusters, then
at each iteration, run GCN on one subgraph. Experiments on
very large datasets show that the Cluster-GCN is able to train
a deeper GCN without time and space overhead and achieves
advanced performance.

c: LGCN
A learnable graph convolutional network (LGCN) proposes
to transform graph data into a grid-like data structure and
apply the traditional convolutional operation on it [210].
As traditional CNN requires a fixed number of ordered units
in the receptive fields, the LGCN proposes to sort features
at each dimension and select the k-largest ones to form
a grid structure. The transformed data is then fed into a
one-dimensional CNN to generate the final representation of
the focal node. Specifically, the nodes’ representation at layer
l is formulated as:

H (l+1)
= c(g(H (l),A, k)), (82)

where k is a hyper parameter, g(·) is the function that performs
k-largest selection to transfer the original graph data into
grid data, and c(·) is a one-dimensional CNN. Furthermore,
as Cluster-GCN and GraphSAINT, the LGCN also proposes
to train the neural network on subgraphs. Each subgraph is
built from randomly selecting a few initial nodes and then
expanding adjacent nodes into it using a breadth-first-search
algorithm. At each training iteration, multiple subgraphs can
be included in a mini-batch. The subgraph training strategy
is shown to be more time and space efficient, with only
negligible loss in performance.

2) LOCAL SUBGRAPHS
Another popular idea to address the computational overhead
is training the GCN on local subgraphs. Note that local sub-
graphs are different from subgraphs in that they are extracted
around each node or link. In contrast, subgraphs, as we have
discussed earlier, have in general a wider range, without
focusing on a node or a link.

a: SEAL
SEAL is a GCN based framework specially designed for
a link prediction task [211]. Motivated by the fact that
many successful link prediction heuristics, such as the com-
mon neighbour, Adamic-Adar and resource allocation, only
involve the 1-hop or 2-hop neighbours around a node pair,
SEAL proposes to train a GCN on the local subgraphs
extracted around each target link. Specifically, the local sub-
graph is the induced graph from each target node pair and

their k-hop neighbours. After having constructed the training
data, it further introduces a node labelling procedure to give
the target node pair special weights as well as to distinguish
the neighbouring nodes in a given local subgraph. Specifi-
cally, it labels each node in the target pair as ‘‘1’’, and assigns
larger labels to other nodes according to their distances to
the target pair. The assigned labels are then concatenated
with other features to construct the feature matrix of the
local subgraph. In the final step, a GCN is trained on the
local subgraphs and their label-enhanced feature matrices.
In the experimental implementation, SEAL chooses to use
DGCNN, a GCNmodel designed for graph classification (see
Section IV-A1), as the default GCN model. Essentially, the
link existence problem in the original graph is modelled as a
graph classification problem on the extracted local subgraphs.

b: G-META
Motivated by the idea that local subgraphs may contain
transferable knowledge that can be adapted to unseen tasks,
G-Meta proposes to leverage local subgraph information in
few-shot graph meta-learning [212]. For the node classifica-
tion task, local subgraphs are constructed as induced graphs
from each node and its k-hop neighbours; and when it comes
to link prediction, local subgraphs are built as in SEAL. Then
a typical GCN is used on these local subgraphs to generate
graph embeddings. At last, a prototypical loss and Model-
Agnostic Meta-Learning (MAML) algorithm are used to
update the GCN’s parameters. Specifically, the prototype tl of
label l is calculated through averaging over subgraph embed-
dings in the support set: tl = 1

Nl

∑
yj=l hj. Then for each local

subgraph Su in both support and query set, a class distribution
vector p is calculated as: pl =

exp(−∥hSu−tl∥)∑
l̂ exp

(
−
∥∥hSu−tl̂∥∥) . Finally, the

cross-entropy loss is formulated as: L(p, y) =
∑

j yj logpj.
Experiments on synthetic and real networks show that local
subgraphs are vital for few-shot graph learning. It is worth
mentioning that the best performance is yielded when 2-hop
neighbours are included.

c: SHADOW-GNN
From the perspective of decoupling the scope (i.e., a receptive
field) and the depth (i.e., a number of layers) of the GCN,
a Shadow-GNN also proposes to adopt local subgraph as
an input [213]. Typically on a full graph, the scope of the
GCN increases with the number of layers — an L-layer GCN
means an L-hop neighbourhood scope. As the GCN model
is also viewed as a form of Laplacian smoothing that mixes
the feature of a node and its neighbours, when the scope
becomes too large, node featuresmay be oversmoothed [214].
To address this problem, the Shadow-GNN proposes to train
the GCN on local subgraphs, so that the scope is bounded by
the range of the local subgraphs, regardless of the number
of layers. In this setting, the depth can be larger than the
scope. It means that nodes in the subgraphs may exchange
informationmultiple times, which could lead to better expres-
sivity. Different subgraph extractors can be selected, such as
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an L-hop neighbourhood extractor or a random-walk-based
extractor. In actual implementation, the scope is set as a 2- or
3-hop neighbourhoodwhile the depth is deeper (3 or 5 layers).

d: NGNN
A nested graph neural network (NGNN) proposes to apply
the local subgraph training strategy on a graph classification
task [215]. The extracted local subgraphs, termed rooted
subgraphs, are also induced subgraphs from each node and its
k-hop neighbours. First, a base GCN is applied on all rooted
subgraphs. Taking root node v for example, at layer l, any
node u in its k-hop rooted subgraph Gkv is formulated as:

h(l)u,Gkv
= UPDATE(l−1)

(
h(l−1)u,Gkv

,

∑
w∈N(u|Gkv)

MSG(l−1)
(
h(l−1)u,Gkv

, h(l−1)w,Gkv
, euw

) . (83)

Then, the final representation of root node v at layer L is
set to be equal to its rooted subgraph representation obtained
from applying a subgraph pooling on all nodes in the sub-
graph: hv = hGkv = POOL1

({
h(L)u,Gkv

| u ∈ Gkv
})

. With the
same base GCN applied on all nodes’ rooted subgraphs, the
representation of each node can be obtained, and the graph
representation can be generated from applying another GCN,
termed outer GCN, on those updated node representations.
To make it simple, the outer GCN can be just a graph pooling
layer: hG = POOL2(hv | v ∈ G). The work theoretically
proves that a proper NGNN can discriminate almost all r-
regular graphs where the vanilla GCN cannot.

e: GNN-AK
GNN-As Kernel (GNN-AK) is another local subgraph based
approach for a graph classification problem [216]. Different
from the NGNN which directly uses the rooted subgraph
embedding to represent each node, the GNN-AK proposes to
construct node representation from concatenating three types
of embedding, i.e., subgraph embedding, centroid embed-
ding, and context embedding. Centroid embedding is sim-
ply the root node representation in its own subgraph, while
context embedding is built from the representation of this
node in other nodes’ rooted subgraphs. It is argued that these
two additional embeddings contain information which is not
captured in the subgraph embedding. Formally, the represen-
tation of node v at layer l is:

h(l)v = CONCAT (h(l)v,centroid, h
(l)
v,subgraph, h

(l)
v,context), (84)

with h(l)v,centroid = hv|Gkv , h
(l)
v,subgraph = POOL1({hi|Gkv | i ∈

Nk (v)}), and h
(l)
v,context = POOL2({hv|Gkj ∀j s.t. v ∈ Nk (j)}).

hv|Gku denotes the representation of node v in node u’s rooted
subgraph. Then, the final graph representation is obtained
from another pooling at the output layer: hG = POOL3({hLv |
v ∈ V }). It is worth mentioning that a subgraph drop strategy
is further introduced to improve the scalability of GNN-AK

so that the number of local subgraphs can be much smaller
than the number of nodes in the original graph.

3) OTHER TYPES OF GRAPHS
Subgraphs or local subgraphs are still part of the original
graphs. In the third subcategory, we see approaches that use
differently constructed graphs, such as the coarsened graph
and the feature graph.

a: DiffPool
Analogous to the idea of spatial pooling in a traditional
CNN, a DiffPool proposes to learn a graph representation
in a hierarchical manner. Nodes at layer l will be collapsed
into higher-level cluster nodes at layer l + 1 via a learned
assignment matrix, and after stacking several hierarchical
layers, the singular node’s embedding at the final layer is
viewed as the representation for the whole graph. Concretely,
node embeddingmatrices Z (l) are learned from aGCN (called
an embeddingGNN), and an assignmentmatrix S(l) is learned
from another GCN, called a pooling GNN:

Z (l)
= GNN (l)

embed(A
(l),X (l)),

S(l) = softmax(GNN (l)
pool(A

(l),X (l))), (85)

where A(l) and X (l) are the coarsened adjacency matrix and
the cluster nodes feature matrix at layer l, respectively. The
dimension of assignment matrix S(l) is nl×nl+1, so that each
role is one of the nl nodes at layer l and each column is one of
the cluster nodes at layer l+1. Then, A(l+1) and X (l+1) which
are used as the next layer’s inputs are generated as:

X (l+1)
= S(l)

T
Z (l), A(l+1) = S(l)

T
A(l)S(l). (86)

The assignment matrix S(L−1) at the penultimate layer is set
to be a vector of 1’s, so that all nodes will collapse into a
single cluster node at the final layer, and the corresponding
node embedding is viewed as the representation for the orig-
inal graph. Note that the number of clusters is a predefined
hyperparameter, which is usually set as a percentage of the
number of nodes at the previous layer.

b: AM-GCN
An Adaptive Multi-channel Graph Conventional Network
(AM-GCN) proposes to not only run the GCN on the original
(topological) graph, but also on a feature graph constructed
from a feature similarity matrix. Specifically, the similarity
matrix is computed using cosine similarity or heat kernel.
Then, edges will be added between each node and k other
nodes of top similarity scores. The generated feature graph
Gf = (Af ,X) is also called the k-nearest neighbour (kNN)
graph. Therefore, the embeddings on the feature graph are
formulated as follows:

H(l)
f = ReLU

(
ÂfH

(l−1)
f W(l)

f

)
, (87)

where Âf is the normalised feature graph adjacency matrix.
Another GCN is used to generate node embeddings on the
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original graph G = (A,X): H(l)
t = ReLU

(
ÂH(l−1)

t W(l)
t

)
.

Further, in order to capture the correlation between a topo-
logical space and a feature space, a common convolutional
module is introduced as: H(l)

ct = ReLU
(
ÂH(l−1)

ct W(l)
c

)
;

H(l)
cf = ReLU

(
ÂfH

(l−1)
cf W(l)

c

)
. Note that the same weight

matrix W(l)
c is shared in H(l)

ct and H(l)
cf . Under this setting,

node features are propagated not only in a topological space
but also in a feature space. The final representation is then
obtained through combining the above four embeddings with

an attention scheme:Z = αt ·H
(L)
t +αf ·H

(L)
f +αc ·(

H(L)
ct +H

(L)
cf

2 ),
where αt , αf and αc are attention vectors.

D. DISCUSSION
1) BEYOND THE THREE PERSPECTIVES
Certainly, with the expanding and continuously evolving
scope of graph learning, the associations between traditional
network science concepts and graph neural networks extend
beyond the abovementioned perspectives. In recent years the
adoption of self-supervised learning on graphs has signifi-
cantly increased across a diverse range of domains [217].
Graph self-supervised learning enables leveraging large
amounts of unlabelled graph data for various downstream
graph learning tasks, enhancing the performance of graph
learning models such as GCNs. Naturally, the inherent graph
structural information can be used in self-supervised pretext
tasks [218]. For example, node structural metrics, such as
node degree, can be used as a self-supervised learning target.
The training loss is calculated as:

Lself (θ,A,X,DU ) =
1
|DU |

∑
v∈DU

(fθ (G)v − dv)2 , (88)

where θ is model parameter, DU is the set of unlabelled
nodes, and fθ (G)v is the predicted degree of v. Then the pretext
task can be integrated into GCNs, through joint training or
two-stage training, where the model is pre-trained on the
pretext task and then fine-tuned on a downstream task using
labelled data. Similarly, the pretext task can be modelled as
a contrastive learning problem [219], such as an edge mask
task, where positive pairs are existing links and negative
pairs are non-existing ones. As an emerging area, graph
self-supervised learning offers vast opportunities for further
exploration and innovation in utilising graph structural infor-
mation.

2) DIFFERENCES BETWEEN LAYER-WISE SCOPE AND
OVERALL LEARNING SCOPE
Here we emphasize the differences between layer-wise scope
and overall learning scope. Layer-wise message aggrega-
tion scope, or a receptive field, is where a node receives
the message from. It can be a 1-hop neighbourhood, k-hop
neighbourhood, random-walk neighbourhood, or subgraph
neighbourhood according to our taxonomy. Although the
receptive field is usually small, distant nodes can exchange
messages after stacking multiple GCN layers, causing the

well-known neighbourhood explosion issue. Obviously, with
a large enough number of layers, a node can exchange infor-
mation with any other node in the entire graph. Overall
learning scope, in contrast, is determined by the input graph,
which can be the entire original graph, extracted subgraphs
or local subgraphs, or coarsened graphs according to our
taxonomy. Taking an extracted local subgraph for example,
no matter how large the receptive field is or how many
layers are stacked, a node can only exchange messages with
other nodes in the same subgraph. This naturally solves the
neighbourhood explosion issue. A large number of layers
on a relatively small subgraph also means that nodes may
exchange information multiple times, which is argued to help
the GCN ‘‘better absorb and embed information’’ [213].

3) TIME AND SPACE COMPLEXITY ANALYSIS
In the discussion about complexity, we focus on how the
different definitions of the neighbourhood in a convolutional
layer influence the cost of computation (corresponding to the
layer-wise message scope taxonomy in Figure 10). The time
and space complexities of each category are listed in Table 5.

First, according to the propagation rule of the vanilla GCN
(Equation 49), which is essentially the multiplication of three
matrices A ∈ R|V |×|V |, H ∈ R|V |×C , and W ∈ RC×C , the
time complexity at each layer isO

(
|V |2C + |V |C2

)
, and thus

the overall complexity is O
(
L
(
|V |2C + |V |C2

))
. Certainly,

when |V | ≫ C , and when the sparsity of adjacency matrix
is exploited (for instance through the compressed sparse
row format), its time complexity is sometimes expressed as
O(L|E|C) [220], [221]. As the GCN’s space complexity is
concerned, we need to store the embeddings of all nodes plus
the weight matrix at each layer, which is O(L|V |C + LC2),
or O(L|V |C) when |V | ≫ C . GraphSAGE illustrates the
same propagation procedure from a microscopic view, with a
fixed number, denoted s, of sampled neighbours involved in
the convolutional operation (Equation 51). The overall time
complexity of GraphSAGE is, therefore: O(L|V |(sC + C2)).
Notice that when s equals |V |, the time complexity of Graph-
SAGE is the same as the vanilla GCN.

Then, when each node aggregates messages from its
higher-order neighbours, denoted h-hop neighbours here, the
propagation rule can be put as: H (l)

= σ
(
ÂhH (l−1)W (l)

)
.

A typical representative is MixHop [189] (refer to
Section IV-A2). Thus, the time complexity at each layer is:
O(|V |2Ch + |V |C2) or O(|V |2Ch) when |V |h ≫ C , and
the space complexity stays unchanged. From a microscopic
view, represented by the approach k-hop GNN [190], the time
complexity of involving h-hop neighbours in convolutional
operation would be O(L|V |(khmaxC +C

2)), or O(L|V |khmaxC)
when khmax ≫ C . Clearly, the time complexities of both
macroscopic and microscopic algorithms grow with h,
and when h equals one, they degrade to the versions of
1-hop neighbourhood algorithms, i.e., the vanilla GCN and
GraphSAGE.
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TABLE 5. Time and space complexity from the perspective of a layer-wise message scope. |V | is the number of nodes in the graph, C are node feature
channels (assuming the number of features is fixed for all layers), L is the number of convolutional layers, s is the number of sampled nodes, h is the
number of hops away from a focal node, kmax is maximum node degree, w is the number of random walks, l is the length of a random walk, v is the
number of visited nodes, and k is the number of nodes in a subgraph.

Thirdly, approaches with neighbourhood defined on ran-
dom walks typically include the following steps (represented
by PinSage [196]): performing w times random walks of
length l, ranking the visited v nodes based on the visited
times, aggregating messages from the top s nodes, and finally
applying weight matrix on node representations. Therefore,
the overall time complexity is termed as:O(L|V |(wl+vlogv+
sC+C2)). Normally, there is no need to record all the random
walks, so the space complexity is still O(L|V |C + LC2).
Comparing the time complexity of PinSage with that of
GraphSAGE, we see that with the extra step of performing
random walks and ranking visited nodes, i.e., the term wl and
the term vlogv, PinSage is more expensive in computation.
In the fourth subcategory, we take k-GNN [201] as an

example to analyse the complexity of having k-node sub-
graphs as neighbours. The approach aims to learn embed-
dings for k-node tuples, and the neighbours of each k-tuple
are defined as other k-tuples containing one node that is not in
the focal k-tuple(refer to Section IV-A4). Each k-tuple aggre-
gates messages from all its k-tuple neighbours, with a time
complexity of O(k|V |C). Therefore, on all

(
|V |
k

)
k-tuples and

L layers, the overall time complexity is: O(L
(
|V |
k

)
(k|V |C +

C2)). To store the embeddings of
(
|V |
k

)
node tuples and the

weight matrices at all layers, it requires O(L
(
|V |
k

)
C + C2))

space. This approach is essentially different from the previous
ones, in that it is to generate embeddings for k-tuples instead
of for each node, resulting in the term

(
|V |
k

)
appearing in both

its time and space complexities. Clearly, its complexity grows
combinatorially with k , and easily surpasses the complexities
of all other algorithms when k is relatively large. In practice,
however, the value of k generally does not exceed 3.

In addition, Table 6 lists the time and space complexities of
approaches that include extra node features in the GNNs (cor-
responding to the message content taxonomy in Figure 11).
First, when the count of graphlets, or more specifically, the
count of node orbits is added to the node features (represented
by the approach GSN [15]), it requires a preprocessing step
to count the number of each node orbit, then performing
the general convolutional operation. The cost of counting
orbits depends on the size of graphlet |S| and the maximum
degree of nodes kmax . Another difference from the vanilla

GCN is that the node feature dimension will increase by the
number of orbits, denoted o. Therefore, its time complexity
is O(|V |k |S|−1max + L(|V |2(C + o) + |V |(C + o)2), and its
space complexity is O

(
L|V |(C + o)+ L(C + o)2

)
. Second,

when distance information is included, as in the approach
P-GNN [208], it requires first calculating the shortest path
distances between all nodes (O(|V |3) in the typical Floyd-
Warshall algorithm), then aggregating message from a num-
ber of anchor sets (T anchor sets and each containing at most
n nodes). Therefore the time complexity would be O(|V |3 +
L|V |(Tn+C2)). Another less expensive version is to calculate
a limited-hop, e.g., h-hop, shortest path distance in the pre-
processing step, whose time complexity is O(|V |khmax). Third
and lastly, when random features are included, represented
by the approach rGIN [209], the impact on time complexity
is mainly due to the increase in feature dimension. This is
because the cost of generating random features is generally
negligible.

We finally discuss the complexity of approaches that have
different learning scopes (corresponding to the taxonomy in
Figure 10). For GCNs running on subgraphs, represented by
the GraphSAINT [222], the cost includes two steps, i.e., the
subgraph sampling and the training. Given the cost of sam-
pling Ts and a set sampled subgraphs G (maximum number
of nodes in sampled subgraphs denoted |Vs|), its complexity
is: O(Ts + |G|L(|Vs|2C + |Vs|C2)). The cost Ts, depending
on the choice of the sampler, is normally less expensive than
the training. The key term is, therefore, |G|L|Vs|2C . When
|Vs| ≪ |V |, subgraph-based approaches significantly reduce
the training cost of the GCNs. Similarly, for GCNs running
on local subgraphs, exemplified by the Shadow-GNN [213],
the two steps are extracting local subgraphs (extraction cost
is denoted as Te, the maximum number of nodes in extracted
local subgraphs is denoted as |Vl |), and training the GCN on
them. Therefore, the time complexity isO(Te+|V |L(|Vl |2C+
|Vl |C2)). Note that local subgraphs are usually extracted at
each node, so the number of extracted subgraphs equals the
number of nodes |V |. Given that |Vl | ≪ |V | (we should also
have |Vl | ≪ |Vs|), local subgraph based GCNs are generally
much faster in training than full graph or subgraph based
GCNs.
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TABLE 6. Time and space complexity from the perspective of a message content. |V | is the number of nodes in the graph, C is node feature channels
(assuming the number of features is fixed for all layers), L is the number of convolutional layers, |S| is the maximum size of a set of graphlets, o is the
number of orbits in graphlets, kmax is maximum node degree, T is the number of anchor sets, n is the maximum number of nodes in an anchor set, and r
is the length of the random feature vector.

TABLE 7. Popular libraries for graph deep learning.

To end this section, we list some popular libraries for graph
neural networks (Table 7). Most of them are in python, except
the last one GraphNeuralNetworks.jl is in Julia.

V. DISCUSSION AND OUTLOOK
After reviewing the traditional structural measures and the
graph convolutional networks, we are set to answer the
research question: How can the structural information cap-
tured in traditional network science bring insights into the
comprehension and advancement of graph convolutional net-
works? In this section, we first briefly discuss the perfor-
mance of GCNs in major learning tasks, then move on to
drawing connections between GCNs and traditional struc-
ture based approaches, and finally introduce four future
directions.

A. GCN’s PERFORMANCE IN LEARNING TASKS
Convolutional Neural Networks have been shown to be state-
of-the-art in various tasks in the area of image processing,
including image classification, object detection, and seman-
tic segmentation [229], [230]. GCNs have also achieved
promising performances in various graph-related tasks. As an
extension of CNNs in graph data, GCNs, since their appear-
ance, have received a lot of attention and are viewed as
state-of-the-art by default. However, there are works show-
ing that simple heuristics from traditional network science
achieve a comparative performance of GCNs [211], [231],
or even beat them in link prediction and network reconstruc-
tion tasks [232]. A recent paper shows that simply feeding
heuristics derived from nodes similarity scores in a logistic

regression model can achieve the best performance in link
prediction among many deep learning approaches, including
GCNs [232]. In addition, Katz index is the top performer in
the network reconstruction task, followed by VGAE which
uses GCN as the graph encoder [233].

Although the majority of GCN approaches focus on
node classification and graph classification tasks, they rarely
include structural heuristic-based methods as baselines in
the experiment. This overlook could hinder a comprehensive
evaluation of the performance of graph convolutional net-
works. Additionally, comparing GCN approaches with tra-
ditional heuristic-based methods could help to better under-
stand the strengths and limitations of GCNs. We believe a
closer integration of graph deep learning approaches and
traditional network science approaches would immensely
benefit both communities, and revealing the connections
between the two classes of methods lays the foundation of
this integration.

B. CONNECTIONS BETWEEN TRADITIONAL NETWORK
SCIENCE APPROACHES AND GCNs
Based on the current literature, the connections between
GCNs and traditional structure based approaches are
observed via the following four aspects. The first aspect
covers the foundations of GCNs in traditional Network Sci-
ence; the second aspect focuses on their similarities in deal-
ing with directed networks; the third and final aspect cover
two typical applications of traditional structural informa-
tion in GCNs: (i) number of graphlets and (ii) distance
information.
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1) MESSAGE PASSING BASED APPROACHES AND GCN
As we have seen in message passing based approaches
(Section III-D), a node’s influential score or centrality is
calculated through iteratively aggregating the scores of its
neighbours until it converges. Taking the eigenvector cen-
trality, for example, the centrality of node i, denoted x(i),
is formulated as:

x(i) = c
∑
j∈N (i)

x(j).

x, a vector of all nodes’ centralities, is found to converge to
the dominant eigenvector of the adjacency matrix A, and c
converges to the reciprocal of the dominant eigenvalue of A.
Interestingly, graph convolutional networks adopt the same

idea of neighbourhood aggregation, and the iteration process
is implemented through the usage of multiple layers. Taking
the vanilla GCN for example, we have the following convo-
lutional operation:

h(l)v = σ

 ∑
u∈N (v)

1
cvu

h(l−1)u W (l)

 .

Comparing the above two expressions, one major difference
is obviously the appearance of weight matrices: in eigenvec-
tor centrality, the influential score is directly calculated from
forward propagation (e.g., a power iteration), while in the
GCN, weight matrices are updated in the backward propa-
gation with the help of labelled samples. Another subtle yet
significant difference is that GCNs allow rich node features
(n-dimensional vector for each node), while traditional mes-
sage passing approaches, such as the eigenvector centrality,
alpha centrality or PageRank, only support using a numeric
value that represents the node’s importance or influence.
These two points are also the main reasons why GCNs have
quickly gained popularity — the learnable setting makes
GCNs suitable for various types of tasks, and the support
of rich node features makes them appropriate for different
types of real-world data. Despite the advancements and pop-
ularity of graph convolutional networks, traditional network
science approaches remain important in the field. They have
a strong theoretical foundation, which can provide insights
into the underlying mechanisms of networked systems. Fur-
thermore, traditional approaches are oftenmore computation-
ally efficient than deep learning approaches, making them
more practical for certain types of tasks or data. Overall,
the continued use and development of traditional network
science approaches alongside newer methods, such as GCNs,
can help to deepen our understanding of complex networked
systems and advance the field as a whole.

2) DEALING WITH LINK DIRECTION
When directions of links are considered, we observe inter-
esting connections between the traditional message passing
approach HITS [121] and the recent graph convolutional
approach DGP [192]. HITS proposes to distinguish two roles
in webpages, i.e., authorities and hubs. Authorities, being

reliable information sources, are pointed by hubs (based on
incoming edges to the node), while hubs, acting as a home
page or library, point to authorities (based on outgoing edges
from the node). An authority score and a hub score are defined
in a mutually dependent way:

a(i) =
∑
j∈N in

i

h(j), h(i) =
∑
j∈N out

i

a(j).

Interestingly, DGP, as a graph convolutional approach,
proposes to distinguish link direction through a two-phase
propagation scheme, i.e., one phase capturing outgoing con-
nections and the other capturing incoming connections (find
more in Section IV-A2):

H = σ

(
K∑
k=0

αak Â
a
kσ

(
K∑
k=0

αdk Â
d
kXWd

)
Wa

)
.

Clearly, the major difference here is that in DGP one type
of connection is stacked on top of another, and therefore
only one representation is learnt, instead of two scores as
in HITS. Besides, k-hop outgoing/incoming connections are
included at once in one convolutional layer. Another GCN
approach that applies exactly the same idea of distinguishing
outgoing edges and incoming edges is Asymmetric GNN,
or AGNN [234]. It proposes a one-way message passing that
only operates on the outgoing or incoming edges of a graph.
Two embeddings are then generated for each node to model
their roles of sending and receiving information. It is also
possible to design a one-way GCN at particular layers, while
still considering both types of edges in other layers, which
could allow the model to focus on different aspects of the
graph structure at different stages of processing.

3) NUMBER OF GRAPHLETS
The number of graphlets, or more specifically, node orbits or
edge orbits are important topological features around individ-
ual nodes or edges (find more in Section II-B). In a traditional
non-learning setting, a vector composed of the counts of a
chosen set of node orbits is used to distinguish the roles of
nodes [27], [61]. Weights of the orbits, when introduced,
are calculated from hand-coded function. In graph convolu-
tional networks, the count of graphlets is added as additional
features in the message passing scheme, as we have seen
in GSN [15], F-MPNN [205], and ID-GNN [206]. Taken
GSN for example, node orbits xV (u), xV (v) are introduced as
follow:

hl+1(v) = MLP1
(
hl(v),

∑
u∈N (v)

MLP2
(
ht (v),ht (u), xV (v), xV (u), e(u, v)

) .

Obviously, in a learning setting, the weights on all types
of features, including the count of graphlets, are learned in
the training stage. Another interesting difference between
non-learning approaches and GCN approaches is that the for-
mer chooses to include all node or edge orbits within a given
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size, while the latter tends to focus on specific substructures
like cycles or cliques. One open problem in using graphlets or
orbits in GCNs is determining which ones to choose. Exist-
ing approaches have focused on using cliques and/or cycles
within a specific range [15], [205], [206], without providing
much rationale for this choice. While these types of graphlets
and orbits are crucial in some contexts, it is likely that other
types could also be exploited to improve the performance of
GCN models. There is still much to be explored in terms of
the utility of different graphlets and orbits in GCN models,
and further research in this area could lead to advances in the
field.

4) DISTANCE INFORMATION
The path related information is largely used in traditional
structural measures, such as in closeness centrality, between-
ness centrality, κ-path centrality, etc. Taking the closeness
centrality, for example, it is defined as the reciprocal of the
average shortest path from the focal node i to all other nodes:

2C (i) =
|V | − 1∑

j∈V ,j̸=i d(i, j)
.

The value of a node’s closeness centrality is directly used to
describe the node’s capacity of spreading information on the
graph. Unsurprisingly, the distance information is also made
of use in graph convolutional networks, as we have seen in
P-GNN [208] and DE-GNN [17]. In P-GNN, for example, the
distance between a node and several anchor sets is included
in the convolutional operation:

hlv = AGG(l)
(
Ml−1

i ,∀i ∈ [1, k]
)

,

Ml−1
i = {F(duv, hl−1u , hl−1v ),∀u ∈ Si}.

In DE-GNN, the distance information between node v and
a target node set S is used as an extra initial node feature:
h(0)v = CONCAT (xv, ζ (v | S)). Recall that this idea of
including extra structural features as additional initial node
features is also found inF-MPNN [205], ID-GNN [206], and
rGIN [209].

C. FUTURE DIRECTIONS
Although recent years have witnessed the great success of
graph convolutional networks in various domains, there are
still many open problems to be solved and a lot of room for
further exploration [20], [21], [22]. Except for the frequently
mentioned directions, such as proposing GCNs for more
complicated types of networks or to further increasing the
expressivity or scalability of GCNs, we would like to point
out four potential directions which combine the traditional
graph analysis approaches and GCN approaches.

1) EXPLORING THE APPLICABILITY OF MORE STRUCTURAL
MEASURES IN GCNs
We have seen appearances of various structural measures in
GCNs, from the simplest node degree [179] to the much
more complicated distance information [208] and graphlet

orbits [15]. However, there are many other traditional struc-
tural measures that have yet to be fully explored in the context
of GCNs. For example, subgraph formation based measures,
such as the clustering coefficient [28] and the closure coeffi-
cient [29], [80], could be incorporated as node-level features
or used to weight the edges of the graph [235]. Global path
based measures, such as the closeness or betweenness cen-
trality measures, can be used to guide the sampling of nodes,
edges or subgraphs when constructing the training set for a
GCN [22]. For example, we could use closeness centrality
to select the nodes that are most influential in the graph and
build subgraphs based on these nodes as the input to the GCN.
It would be interesting to see how these and other structural
measures could be utilised in GCNs to improve performance
on certain tasks or in particular types of networks.

2) IMPROVING THE EXPLAINABILITY OF GCNs / GUIDING
THE CHOICE OF GCNs VIA TRADITIONAL
STRUCTURAL MEASURES
When it comes to the explainability of GCN models,
existing methods, represented by perturbation-based meth-
ods, mostly focus on generating explanations for a trained
GCN [236], [237]. There are, however, still many questions to
be answered, such as how different GCNs perform differently
on different types of networks, and what are the reasons for
these differences. An analysis from a structural information
perspective can provide more insights into how different
GCN models extract and utilise graph structural information,
and how the information may differ across different GCN
models and graph types. This can help to better understand the
strengths and limitations of different GCN models and how
to effectively apply them in different scenarios. Moreover,
in view of the large collection of GCN models and their
composition modules, it is difficult to decide which one to
choose and how to set it up for the targeted dataset and
task [238]. Traditional structural measures could be used as
indices for selecting the appropriate GCN model and the
related modules. For example, for graphs that are rich in
triangles, a particular GCNwould be a better choice, while for
graphs where quadrangles are overrepresented, another GCN
model should be selected.

3) INTEGRATING EDGE FEATURES IN GCNs
While the vanilla GCN primarily focuses on aggregating and
passing information from neighbouring nodes, it is important
to consider the role of edge attributes in many real-world
networks. For example, in consumer review networks, the
ratings of products are often labelled on the edges, and in
social networks, the type and frequency of interactions are
labelled on the edges. Integrating edge features into GCNs
could not only enhance the applicability of the model but
also increase the accuracy and relevance of its predictions.
There are works that naively include edge features in GCN
or propose a tailor-made model to encompass them [15],
[166]. However, there is still much to be learned about the
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utility of traditional edge-level structural measures in GCN
models, such as the edge orbits [34], the edge clustering coef-
ficient [82], the local path index [63], etc. Further research in
this area is likely to yield valuable insights and improvements
to the performance of GCN models.

4) LEVERAGING STRUCTURAL INFORMATION IN
MULTIMODAL LEARNING
As the individual specialised learning domains (such as Nat-
ural Language Processing and Computer Vision) become
increasingly mature, cross-modal learning has begun to
receive a lot of attention, such as multimodal learning
and multimodal content generation [239], [240]. Multi-
modal graphs provide a flexible and expressive framework
to integrate and fuse various data modalities and various
types of relationships [241], [242]. For instance, in an
e-commerce setting, multimodal graphs can be constructed
from user-production interaction graphs, user-user social net-
works, product similarity graphs, user review graphs, etc.,
while incorporating textual and visual information from prod-
uct descriptions and images. Nodes in multimodal graphs can
belong to multiple modalities, encompassing diverse struc-
tural features that capture the unique characteristics of each
modality. Therefore, exploring suitable aggregation schemes
that leverage structural information from multimodal graphs
or developing multimodal-specific graph learning models
could be promising research directions for effectively han-
dling and combining features across multiple modalities.

VI. CONCLUSION
The complexity of graph data mainly comes from its intricate
topological structures.Mining and exploiting graph structural
information have always been one of the focal points in the
study of graphs. A large amount of work in traditional net-
work science proposes various types of structural measures,
especially local structural measures, to characterise and study
complex networks. When more nodes or edges are involved,
such approaches, however, become infeasibly complicated.
Graph convolutional networks, on the other hand, are pro-
posed to automatically extract relevant features from nodes’
neighbourhoods, and in this manner, avoid choosing and
manually calculating structural metrics.

In order to reveal the connections between the two classes
of methods, especially how traditional structural measures
can inform GCNs, in this paper, we first reviewed the tra-
ditional structure-based approaches in Network Science and
proposed a new taxonomy encompassing many seemingly
unrelated concepts from a structural perspective. With this
prerequisite knowledge, we then extend the scope to the
prominent and powerful graph convolutional networks, and
provide a Network Science perspective on them — review
and classify GCNs from three structural angles, which are the
layer-wise message aggregation scope, the message content,
and the overall learning scope. Furthermore, we extensively
discuss the connections between the traditional structural
approaches and the graph convolutional networks and suggest

four future research directions in the joint research area.
We believe that thewell-established foundations of traditional
structure-based approaches in Network Science not only form
the basis for GCNs but also could, and probably should, serve
as a driving force for their future advances.
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