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Airfoil-turbulence interaction noise is a known source of environmental disturbance and

acoustic performance loss in aeroacoustics and hydroacoustics. This noise can be predicted

using semi-analytical models that require input measurements of the incoming turbulent flow

parameters. However, the turbulence parameters are inherently difficult to measure accurately.

These parameters, which include the turbulence kinetic energy and its dissipation rate, have a

stochastic nature. This study aims to investigate how small variations in the measurements of

turbulence parameters affect the uncertainty of the predicted airfoil-turbulence interaction

noise. This is achieved by applying polynomial chaos expansion (PCE) to the semi-analytical

model of Amiet’s theory for airfoil-interaction noise. The validity of the deterministic and

stochastic simulations is ensured by comparisons against available experimental data from

the literature, and Monte Carlo simulations, respectively. Uncertainty quantification is then

performed using a stochastic collocation technique, where the aerodynamic noise is evaluated

at specific collocation points to estimate the coefficients required for PCE. Both the individual

and combined effects of varying the uncertain input turbulence parameters are simulated to

quantify the uncertainty of the output aerodynamic noise. The insights gained from the results

suggest it is important to incorporate the stochastic behavior of the incoming turbulent flow in

operational models for airfoil-turbulence interaction noise predictions.
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Nomenclature

𝑏 = Airfoil semi-chord, m

𝑐 = Airfoil chord, m

𝐶∞ = Speed of sound in air, m·s−1

𝑑 = Airfoil half-span, m

𝑓 = Frequency, s−1

𝑘 = Wavenumber, m−1

𝑘𝑒 = Characteristic wavenumber of energy-containing eddies m−1

𝑘𝑥 = Chordwise wavenumber m−1

𝑘𝑦 = spanwise wavenumber m−1

𝐾𝑦 = spanwise specific wavenumber

𝑢′ = Velocity fluctuation root-mean-square, m·s−1

𝑈 = Free stream air speed, m·s−1

𝑈𝑐 = Convection air speed, m·s−1

𝑀 = Mach number

𝛽 = Compressibility factor

𝜌0 = Airflow density, kg·m−3

𝜔 = Angular frequency, rad·s−1

𝜅 = Turbulence kinetic energy, m2s−2

𝜀 = Turbulence kinetic energy dissipation rate, m2s−3

Λ 𝑓 = Turbulence integral length scale

I. Introduction
Aerodynamic noise is a significant health concern to society, and managing the noise levels produced by aerostructures

is an ongoing engineering issue [1–3]. Generally, industries related to wind farm technologies and aircraft manufacturing

for commercial airline services are the most impacted. These industries must design suitable aerostructures to meet

specific noise regulations. For example, such designs can involve modifications to the leading edge and trailing edge

of the airfoil geometry, which has been shown to assist with noise reduction [4–6]. Validation of these new designs

necessitates accurately predicting the noise radiated to the environment. While significant advancements in predicting

noise levels from airfoil-turbulence interactions are reported in the literature [7], the consistent difficulty is to accurately

measure incoming turbulent flow with the current experimentation and numerical approaches [8]. The accuracy of

predictions compared with real-world specifications can vary significantly due to the stochastic nature of turbulence.
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Understanding the variations in predictions will be integral for future compliance of aerostructures with noise regulations.

Therefore, the application of uncertainty quantification (UQ) is suggested. In the literature, UQ is applied to engineering

systems to deliver insight into the associated input-output relationship [9–18]. However, minimal studies have used

stochastic analysis in the field of aeroacoustics. This is especially important as the modern theory of turbulence now

incorporates the statistics of the driving parameters, the turbulence kinetic energy and dissipation rate [19]. This

refinement to how turbulence is described can significantly change the statistics of turbulent fluctuations, leading to the

well-known phenomenon of intermittency [19, 20]. This implies that prediction models that are based only on mean

parameters of turbulent flow should be re-evaluated and modified.

Turbulence is characterized by a random and chaotic distribution of velocity fluctuations of a broad range of scales.

This distribution lends itself to a statistical representation, with the parameters often represented by quantities such as

turbulence kinetic energy and dissipation rate. For a given flow, these turbulence quantities are typically expressed as

mean values, with these mean values used in the subsequent analysis of turbulence ingestion noise. However, evidence

has shown that both the turbulence kinetic energy and turbulence dissipation rate have random natures themselves,

resulting in the well-known phenomenon of intermittency of turbulence, which strongly influences other statistics of

turbulence flow [21]. When studying the sound produced by airfoil-turbulence interaction, a classical approach pioneered

by Amiet [22] involves decomposing the turbulence distribution of scales into an ensemble of discrete, uncorrelated

wavenumbers. The interaction of these discrete wavenumber fluctuations with the airfoil and the resulting acoustic

radiation is then calculated by combining the gust response of an infinitely thin airfoil with Curle’s analogy [23]. Related

techniques of backscattering correction from Roger and Moreau have also been developed [24]. These techniques have

produced reasonable estimates of the mean far-field sound produced by airfoil-turbulence interaction noise [25]. Due to

the stochastic nature of turbulence, both the turbulence kinetic energy and dissipation rate fluctuate around the mean, and

this may have a significant influence on the generated sound. This necessitates an investigation of the effect of statistical

variation in the turbulence spectrum on airfoil-turbulence interaction noise so that predictions can better represent and

include the stochastic nature involved. Techniques relating to uncertainty analysis can be employed in these situations.

Uncertainty quantification has been used in engineering applications to quantify the effect of small variations in the

inputs on the output uncertainty [9–18]. This is especially important when the sensitivity of measurements can result

in significant changes to the prediction. How the uncertainty of turbulence parameter measurements will impact the

output noise may indicate that the process of designing aerostructures to accommodate noise regulations may need

reconsideration, or the noise regulation itself may need to be changed to accommodate for uncertainty. Various methods

have been devised to understand an input-output relationship by using statistical models to describe uncertainty. Two

common UQ methods include Monte Carlo simulation (MCS) and polynomial chaos expansion (PCE) [26–28]. MCS

is a traditional random sampling method of quantifying uncertainty. PCE is a non-sampling method for quantifying

uncertainty by expressing inputs and outputs as polynomials. These methods are favored in literature due to their relative
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ease of implementation and effectiveness [29]. In aeroacoustics, there have been efforts of UQ applied in trailing edge

noise where uncertainty in the trailing edge noise predictions was examined using MCS and stochastic collocation

(via PCE) [9]. It was found that the stochastic collocation framework is two orders of magnitude more efficient than

MCS in achieving the same accuracy. This is an important advantage that PCE has over traditional sampling methods.

Polynomial chaos expansion and the stochastic collocation framework are more computationally efficient than MCS.

From the trailing edge noise results, it was found that there is significant variance associated with noise predictions. In

another work [30], UQ is applied to the leading edge of an airfoil, with the analysis focused on the force induced by the

airfoil-turbulence interaction. The airfoil was modeled with the finite element method, and the theory of Sears was

used to predict the gust response function. PCE was employed to model the uncertainty of several input parameters to

study the airfoil gust response. These parameters included the turbulence integral length scale, the streamwise velocity

fluctuations, and the damping in the structure. The method allows visualization of the response distribution and informs

future designs of the variations in a structure’s response due to uncertainty of the input parameters. It is inferred from

the literature, which spans a wide range of applications, that UQ is useful, especially in describing physical problems

with statistical behaviors. UQ enables more informed engineering choices based on the sensitivity of prediction models.

The novelty of the present work is in investigating the effect of the uncertainty in turbulence parameters on the

aerodynamic noise generated by the airfoil-turbulence interaction. Aerodynamic noise is modeled by the semi-analytical

approach of Amiet’s theory. With this model, the deterministic prediction of airfoil-turbulence interaction noise is

generated and verified against corresponding results presented by Santana [25]. A stochastic collocation-based technique

is then used to calculate the PCE for the airfoil-turbulence noise. Far-field noise, characterized as a sound pressure level,

is evaluated only at so-called collocation points, and the coefficients for the PCE are estimated based on these responses.

Motivated by K62 [31], the uncertain input parameters of the turbulence flow, which include the kinetic energy and

dissipation rate, are assumed to follow a lognormal probability distribution function (PDF) to capture its statistical

variation. Results are then generated from the PCE, and the effects of the individual and combined uncertain input

parameters from the incoming turbulent flow on the airfoil-turbulence interaction noise are examined. It is demonstrated

from these results that there is a significant influence on the output noise uncertainty from small variations in the input

parameters. To verify the results from PCE, the alternative Monte Carlo simulation approach is employed to generate

corresponding results. The proposed mathematical approach provides an efficient tool for quantifying the uncertainty of

leading edge noise from the variations in turbulence parameters.

The contents of the paper are as follows. In Section II, the analytical scattering model of Amiet’s theory is described,

followed by a discussion on the upwash velocity spectrum, which embeds the turbulence characteristics into the physical

problem, and finally, a description of how uncertainty quantification is employed in the study. Section III demonstrates

results from the PCE and MCS for the individual and combined influence of the turbulence parameters. Finally, in

Section IV, the conclusions of the investigation are summarized.

4



II. Problem statement
This section details the theoretical components necessary to analyze the uncertainty in airfoil-turbulence interaction

noise from the leading edge of an airfoil from the stochastics of the input turbulent flow. First, the scattering model

applied to model the aeroacoustic system of an airfoil-turbulence interaction is described. Second, adjustments to the

upwash velocity spectrum via RDT are discussed to better model the physical interaction of the airfoil and incoming

turbulent flow. And finally, a description of the uncertainty quantification technique applied to extract the output

uncertainty of the noise is presented.

A. Scattering model

Aerodynamic noise, which is the noise produced via pressure fluctuations from flow over structures such as propellers,

airfoils, and airframes, is the main focus of this study, and more specifically, the analysis of the leading edge noise of an

airfoil. An airfoil subject to incoming turbulence flow will develop lift fluctuations over its surface and consequently

radiate noise to the far field as acoustic dipoles. Typically the turbulence flow field is caused by distortions and other

aerodynamic elements upstream of the airfoil. A schematic diagram of the airfoil-turbulence interaction noise system is

shown in Figure 1. The input parameters influencing leading edge noise are turbulence parameters, including turbulence

intensity and turbulence integral length scale. These parameters are measured by experimentation or high-fidelity

computational fluid dynamics (CFD) simulations. Collecting accurate values of these parameters remains a challenging

task due to the sensitive nature of the system. As such, predictions of the radiated noise may significantly vary due

to small variations of turbulence parameters. It is herein recognized that there is an opportunity to better understand

aerodynamic noise by studying the effect of uncertainty of turbulence parameters on predicting output noise. By

quantifying output uncertainty, confidence in predictions made to leading-edge noise production due to airfoil-turbulence

interactions can more reasonably be justified.
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Fig. 1 Noise generation by airfoil-turbulence interaction noise

The leading edge noise is modeled using the analytical scattering model from Amiet’s theory [22]. From this model,

the power spectral density (PSD) of the far-field sound can be calculated with the following [32]:

𝑆𝑝𝑝 (𝑥, 𝑦, 𝑧, 𝜔) =
(
𝜌0𝑧𝑘𝑏

𝜎2
0

)2

𝜋𝑈𝑑

∫ ∞

−∞

sin2 [ (
𝐾𝑦 − 𝑘𝑦

)
𝑑
]

𝜋𝑑
(
𝐾𝑦 − 𝑘𝑦

)2 𝜙𝑤𝑤

(
𝐾𝑥 , 𝑘𝑦

) ��L (
𝑥, 𝑦, 𝑧, 𝐾𝑥 , 𝑘𝑦

) ��2d𝑘𝑦 , (1)

where 𝜌0 is the airflow density, 𝑘 is the acoustic wavenumber, 𝑏 is the airfoil semi-chord, 𝑑 is the airfoil half-span,𝑈 is

the free stream air speed, 𝑘𝑥 is the chordwise wavenumber, 𝑘𝑦 is the spanwise wavenumber, 𝐾𝑦 = 𝑘𝑦/𝜎0 is the spanwise

specific wavenumber, 𝜎0 =

√︃
𝑥2 + 𝛽2 (

𝑦2 + 𝑧2) is the distance between the source (located at the origin) and listener

position (x,y,z) considering convective effects, 𝑀 = 𝑢/𝐶∞, 𝛽 =
√

1 − 𝑀2, 𝑓 = 𝑘𝐶∞/2𝜋, 𝜔 = 2𝜋 𝑓 , 𝜙𝑤𝑤 is the upwash

velocity spectrum, and L is the aeroacoustic transfer function. The aeroacoustic transfer function, L = L1 + L2, is a

sum of contributions from the primary scattering of incoming turbulence at the leading edge (L1) and back-scattering

corrections [24] at the trailing edge (L2) respectively. The reader is advised to follow the derivations in Ref. [33] to

obtain expressions for the aeroacoustic transfer functions. For supercritical gusts 𝛾2 < 0 ⇒ 𝑘̄𝑦 < 𝜇𝛽, the aeroacoustic

transfer functions are defined as [34]

Lsup
1

(
𝑥, 𝑦, 𝑧, 𝑘𝑥 , 𝑘𝑦

)
=

1
𝜋

√︄
2(

𝑘̄𝑥 + 𝛽2𝛾
)
𝜃1
𝐸∗ (2𝜃1) ei𝜃2 , (2)
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Lsup
2

(
𝑥, 𝑦, 𝑧, 𝑘𝑥 , 𝑘𝑦

)
≃ ei𝜃2

𝜋𝜃1

√︃
2𝜋

(
𝑘̄𝑥 + 𝛽2𝛾

){
i
(
1 − e−2i𝜃1

)
+ (1 − i)

[
𝐸∗ (4𝛾) −

√︂
2𝛾
𝜃3

e−2i𝜃1𝐸∗ (2𝜃3)
]}

,

(3)

with 𝜃1 = 𝛾− 𝜇𝑥/𝜎0, 𝜃2 = 𝜇 (𝑀 − 𝑥/𝜎0) −𝜋/4, 𝜃3 = 𝛾+ 𝜇𝑥/𝜎0, 𝛾2 = 𝜇2− 𝑘̄2
𝑦/𝛽2, 𝜇 = 𝑘̄𝑥𝑀/𝛽2 and 𝐸∗ is an expression

containing Fresnel integrals.

𝐸∗ (𝑟) = 𝐶2 (𝑟) − i𝑆2 (𝑟) = 𝐶
(√︂

2
𝜋
𝑟

)
− i𝑆

(√︂
2
𝜋
𝑟

)
, (4)

where 𝐶 (𝑟) =
∫ 𝑟

0 cos
(
𝑡2

)
d𝑡 and 𝑆 (𝑟) =

∫ 𝑟

0 sin
(
𝑡2

)
d𝑡. While for subcritical gusts 𝛾2 > 0 ⇒ 𝑘̄𝑦 ≥ 𝜇𝛽, the following

expressions are derived from Ref. [33] as corrections to Rozenberg’s expressions [35]

Lsub
1

(
𝑥, 𝑦, 𝑧, 𝑘𝑥 , 𝑘𝑦

)
=

1
𝜋
√︁
𝛾′𝛽2 + i𝑘̄𝑥

ei𝜇 (𝑀−𝑥/𝜎) 1
√
𝜃

e−i𝜋/4erf
(√

2i𝜃
)
, (5)

Lsub
2

(
𝑥, 𝑦, 𝑧, 𝑘𝑥 , 𝑘𝑦

)
= − ei𝜇 (𝑀−𝑥/𝜎)

𝜋

√︃
2𝜋

(
𝛾′𝛽2 + i𝑘̄𝑥

) 1
𝛾′ − i𝜇𝑥/𝜎{[

1 − erf
(√︁

4𝛾′
)]

− e−2(𝛾′−i𝜇𝑥/𝜎) +
[√︁

2𝛾′
e−2(𝛾′−i𝜇𝑥/𝜎)√︁
𝛾′ + i𝜇𝑥/𝜎

erf
(√︁

2 (𝛾′ + i𝜇𝑥/𝜎)
)]}

,

(6)

with 𝜃 = −
( 𝜇𝑥
𝜎

+ i𝛾′
)
, 𝛾′2 = −𝛾2, and erf (𝑍) is the complex error function that is related to the Fresnel integrals by

erf (𝑍) = (1 + i) 𝐸∗ (
−i𝑍2) . It is known that the Fresnel integrals can be approximated by rational polynomials [36]

𝐶 (𝑟) ≃ 0.5 + 𝑓 (𝑟) sin
( 𝜋

2
𝑟2

)
− 𝑔 (𝑟) cos

( 𝜋
2
𝑟2

)
, (7)

𝑆 (𝑟) ≃ 0.5 − 𝑓 (𝑟) cos
( 𝜋

2
𝑟2

)
− 𝑔 (𝑟) sin

( 𝜋
2
𝑟2

)
, (8)

for 𝑟 ∈ (0,∞), where 𝑓 (𝑟) = (1 + 0.926𝑟) /
(
2 + 1.792𝑟 + 3.104𝑟2) and 𝑔 (𝑟) = 1/

(
2 + 4.142𝑟 + 3.492𝑟2 + 6.670𝑟3) .

By using this approximation, there is a significant runtime improvement to the numerical simulation. The PSD of the

airfoil-turbulence interaction noise is presented as a sound pressure level (SPL) in the units of dB/Hz [25, 37, 38]

SPL = 10 log10

(
𝑆𝑝𝑝

𝑝2
ref

)
where 𝑝ref = 2 × 10−5 Pa. (9)

The final component of the PSD is the upwash velocity spectrum which is described in the next section.
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B. Upwash velocity spectrum

Isotropic turbulence is commonly modeled using the von Kármán and Liepmann energy spectrum models. Using the

energy spectrum, the upwash velocity spectrum can then be derived. For the Liepmann spectrum, the energy spectrum

is given as [39]

𝐸 (𝑘) = 8
𝜋
𝑢′2Λ 𝑓

Λ4
𝑓
𝑘4(

1 + Λ2
𝑓
𝑘2

)3 , (10)

where 𝑢′ is the velocity fluctuation root-mean-square and Λ 𝑓 is the turbulence integral length scale. The corresponding

upwash velocity spectrum is then found to be

𝜙ww
(
𝑘𝑥 , 𝑘𝑦

)
=

3𝑢′2

4𝜋
Λ2

𝑓

Λ2
𝑓

(
𝑘2
𝑥 + 𝑘2

𝑦

)
[
1 + Λ2

𝑓

(
𝑘2
𝑥 + 𝑘2

𝑦

) ]5/2 . (11)

While the von Kármán spectrum is given as [39]

𝐸 (𝑘) = 55
9

Γ (5/6)
√
𝜋Γ (1/3)

𝑢′2

𝑘𝑒

(𝑘/𝑘𝑒)4[
1 + (𝑘/𝑘𝑒)2]17/6 , (12)

where 𝑘𝑒 is the characteristic wavenumber of energy-containing eddies. The corresponding upwash velocity spectrum is

then found to be

𝜙ww
(
𝑘𝑥 , 𝑘𝑦

)
=

4
9𝜋
𝑢′2

𝑘2
𝑒

𝑘̂2
𝑥 + 𝑘̂2

𝑦(
1 + 𝑘̂2

𝑥 + 𝑘̂2
𝑦

)7/3 . (13)

It is noticed by Hunt [40] that if the turbulent flow is over a boundary, then the energy spectrum will more accurately

follow a proportionality of 𝑘−10/3 due to the rapid distortion theory from Batchelor [41]. At high frequencies, the decay

no longer follows a −5/3 rule but rather a −10/3 asymptote. This modification is applied to the energy spectrum by

exchanging the exponent from 17/6 to 22/6 to account for the anisotropic distorted scenario. When this modification is

applied to the von Kármán spectrum, the upwash velocity spectrum is derived to be

𝜙𝑤𝑤

(
𝑘𝑥 , 𝑘𝑦

)
=

91
36𝜋

𝑢′2

𝑘2
𝑒

𝑘̂2
𝑥 + 𝑘̂2

𝑦(
1 + 𝑘̂2

𝑥 + 𝑘̂2
𝑦

)19/6 , (14)

with 𝑘𝑥 → 𝐾𝑥 = 𝜔/𝑈𝑐 where 𝑈𝑐 = 0.8𝑈, 𝑘̄𝑖 = 𝑘𝑖𝑏 is the normalized wavenumber, 𝜇 = 𝑘̄𝑥𝑀/𝛽2, 𝑘𝑒 =

√
𝜋Γ (5/6) /

(
Λ 𝑓 Γ (1/3)

)
where Γ (𝑟) =

∫ ∞
0 e−𝑡 𝑡𝑟−1d𝑡 is the Gamma function, and 𝑘̂𝑖 = 𝑘𝑖/𝑘𝑒. Implementing

this upwash velocity spectrum into the Eq 1 along with the aeroacoustic transfer functions from Eqs 2, 3, 5, 6 enables

the integral to be evaluated. Next will be implementing the PCE method to the SPL prediction from Amiet’s theory.
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C. Uncertainty quantification

The mean values of the turbulence parameters, 𝑇 = {𝜅, 𝜀} are assumed to be constant and are related to the

experimental measurements of flow quantities as follows

𝜅 =
3
2
𝑢′2, (15)

𝜀 = 0.39
𝜅

3
2

Λ 𝑓

, (16)

𝑘𝑒 = 1.9
𝜀

𝜅
3
2
. (17)

The present study utilizes two-parameter models. Two-parameter PDFs include the lognormal distribution and normal

distribution. The lognormal distribution is expressed as an exponential of the normal distribution

𝑇 = {𝜅, 𝜖} ∼ LN
(
𝑀, 𝑆2

)
or log (𝑇) ∼ N

(
𝑀𝑁 , 𝑆

2
𝑁

)
, (18)

where 𝑀, 𝑆 is the mean and standard deviation of the lognormal distribution, respectively and 𝑀𝑁 , 𝑆𝑁 is the mean and

standard deviation of the normal distribution, respectively. The normal distribution is expressed as

𝑇 = {𝜅, 𝜖} ∼ N
(
𝑀𝑁 , 𝑆

2
𝑁

)
, 𝑓

(
𝑥;𝑀𝑁 , 𝑆

2
𝑁

)
=

1√︃
2𝜋𝑆2

𝑁

e
− (𝑥−𝑀𝑁 )2

2𝑆2
𝑁 , (19)

where 𝑀𝑁 = log
(

𝑀2
√
𝑆2+𝑀2

)
and 𝑆𝑁 =

√︂
log

(
𝑆2

𝑀2 + 1
)
. To introduce variation into the input parameters, a metric known

as the coefficient of variation (CV) where CV = standard deviation / mean, is used to quantify the uncertainty. This

metric is used for distributions that consist of only positive values as in the case of the present study. When the mean is

zero, the metric becomes inadequate for use in uncertainty analysis. In this study, the phenomenon of turbulence is

considered, and therefore, its input parameters are never zero and always positive. The present study focuses on low

variance and limits the CV to 0.15 when applying polynomial chaos expansion and the Monte Carlo method.

1. Polynomial Chaos Expansion

Polynomial chaos expansion is applied to the system to investigate the effect of small input variations on the

output sound pressure level. The sound pressure level is calculated using input turbulence parameters. Experimental

measurements of turbulence flow quantities, turbulence integral length scale
(
Λ 𝑓

)
and turbulence intensity (𝑢′/𝑈), are

transformed into a new set of turbulence parameters (𝑇 = {𝜅, 𝜖}): turbulence kinetic energy (𝜅) and turbulence kinetic

energy dissipation rate (𝜀). Uncertainty is introduced by varying the input turbulence parameters based on a chosen
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probability distribution function (PDF). Input variation can then be summarized as

𝑇 = {𝜅, 𝜖} ∼ PDF (parameter1,parameter2).

Polynomial chaos expansion is utilized to approximate PDFs using a sum of polynomials. The input parameters 𝑇

are formulated as a sum of polynomials

𝑇 =

𝑁∑︁
𝑖=0

𝑡𝑖Ψ𝑖 (𝝃) , (20)

where 𝑡𝑖 are the coefficients, Ψ𝑖 are stochastic basis functions (polynomials), and 𝝃 are random variables. To evaluate

the coefficients 𝑡𝑖 , the following integral is used [10]

𝑡𝑖 =
1
Ψ2
𝑖

∫
Ω

𝑇Ψ𝑖 (𝜉) 𝜌 (𝜉)d𝜉 ,

Ψ2
𝑖 =

∫
𝜒 (𝜉) Ψ (𝜉) 𝜌 (𝜉)d𝜉∫
𝜌 (𝜉) Ψ2 (𝜉)d𝜉

,

(21)

where 𝜌 is the PDF of the random variable. The random variable 𝜉 must be transformed into 𝜒 (𝜉) to reflect the space

of the probability distribution function. For example, assuming the input parameters are normally distributed and a

function of random variables that are also normally distributed with a mean of 0 and standard deviation of 1, the random

variable can be scaled as such

𝜉 ∼ N (0, 1) i.e. 𝜌 (𝜉) = 1
√

2𝜋
e−

𝜉2
2 ,

𝜒 (𝜉) ∼ N (𝑀𝑁 , 𝑆𝑁 ) ,

𝜒 (𝜉) = 𝑆𝑁 𝜉 + 𝑀𝑁 .

(22)

In the present study, the input turbulence parameters are defined as polynomials depending on the chosen PDF. Each

turbulence parameter can be expressed as a sum of polynomials as follows

𝜅 =

∞∑︁
𝑖=0

𝑎𝑖Ψ1,𝑖 (𝜉1) = 𝑎0Ψ1,0 (𝜉1) + 𝑎1Ψ1,1 (𝜉1) + 𝑎2Ψ1,2 (𝜉1) + . . . ,

𝜀 =

∞∑︁
𝑗=0

𝑏 𝑗Ψ2, 𝑗 (𝜉2) = 𝑏0Ψ2,0 (𝜉2) + 𝑏1Ψ2,1 (𝜉2) + 𝑏2Ψ2,2 (𝜉2) + . . . .
(23)

The output SPL is also expressed as a sum of polynomials and is orthogonal to the input polynomials

SPL (𝜔, 𝝃) =
∞∑︁
𝑘=0

𝑐𝑘 (𝜔) Ψ3,𝑘 (𝜉1, 𝜉2) . (24)
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Stochastic basis functions are defined based on the chosen PDF to model input variations. For example, with a normal

distribution as the stochastic model for the inputs, the stochastic basis functions will be the Hermite polynomials

He𝑝 (𝜉) = (−1) 𝑝 e
𝜉2
2

d𝑝

d𝜉 𝑝
e−

𝜉2
2 . (25)

To determine the necessary terms required for the input polynomial expressions, coefficients are evaluated using Eq 21.

Coefficients that are close to the value of zero are neglected. The turbulence input polynomial expressions can be

sufficiently truncated to the first degree.

𝜅 =

1∑︁
𝑖=0

𝑎𝑖He𝑖 (𝜉1) = 𝑎0 + 𝑎1𝜉1 , (26)

𝜀 =

1∑︁
𝑗=0

𝑏 𝑗He 𝑗 (𝜉2) = 𝑏0 + 𝑏1𝜉2. (27)

For the output SPL polynomial, the stochastic basis functions can be calculated using Eq 24 such that the output SPL

can be expressed as

SPL =

9∑︁
𝑘=0

𝑐𝑘 (𝜔) Ψ3,𝑘 (𝜉1, 𝜉2)

= 𝑐0 (1) + 𝑐1 (𝜉1) + 𝑐2 (𝜉2) + 𝑐3

(
𝜉2

1 − 1
)
+ 𝑐4 (𝜉1𝜉2) + 𝑐5

(
𝜉2

2 − 1
)
+

𝑐6

(
𝜉3 − 3𝜉

)
+ 𝑐7

[(
𝜉2 − 1

)
𝜉2

]
+ 𝑐8

[
𝜉1

(
𝜉2

2 − 1
)]

+ 𝑐9

(
𝜉3

2 − 3𝜉2

)
.

(28)

Once the coefficients of the input polynomials are determined, the coefficients of the output SPL polynomial are

calculated using the stochastic collocation method. The collocation points are chosen to be the roots of the polynomial

one order greater than the output polynomial including zero if zero is not already included in the roots. Each turbulence

parameter will be set to the corresponding value in each pair of collocation points 𝝃 = {𝜉1, 𝜉2}. In the study, as indicated

in Eq 28, third-degree truncation is used for the output polynomial to ensure a converged solution. As such, the roots of

the fourth order Hermite polynomial, {−1.65,−0.52, 0, 0.52, 1.65}, are chosen to be the collocation points as shown in

Table 1.
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Table 1 Collocation points for PCE output coefficients calculation

1st run (𝝃1) 𝜉1,1 = −1.65 𝜉1,2 = −1.65

2nd run (𝝃2) 𝜉2,1 = −1.65 𝜉2,2 = −0.52

𝑖th run (𝝃𝒊) 𝜉𝑖,1 = . . . 𝜉𝑖,2 = . . .

25th run (𝝃25) 𝜉25,1 = 1.65 𝜉25,2 = 1.65

With these turbulence parameter values, the output SPL is calculated at the collocation points



SPL1

SPL2

...

SPL25


=



Ψ3,0 (𝝃1) Ψ3,1 (𝝃1) Ψ3,2 (𝝃1) . . . Ψ3,9 (𝝃1)

Ψ3,0 (𝝃2) Ψ3,1 (𝝃2) Ψ3,2 (𝝃2) . . . Ψ3,9 (𝝃2)
... . . .

. . .

Ψ3,0 (𝝃25) Ψ3,1 (𝝃25) Ψ3,2 (𝝃25) . . . Ψ3,9 (𝝃25)





𝑐0

𝑐1

...

𝑐9


. (29)

Solving the matrix equation for the coefficients of the output polynomial allows the output SPL to be defined as a

function of the random variables (See Eq 24). If the input parameters are assumed to be lognormal, a transformation to

the normal distribution is required to employ polynomial chaos expansion. A lognormal variable is the exponential of

a normal variable (See Eq 18). Taking the exponential of the sampled transformed input parameters will result in a

lognormally distributed variable. To contrast this method, a random sampling approach of the Monte Carlo method will

also be applied.

2. Random sampling

The Monte Carlo process is a random sampling procedure in which the uncertain input parameters are sampled

iteratively from a probability distribution function (PDF) that describes the prescribed stochastic behavior, which

includes the mean and variance. The mean of the input parameters 𝑇 are described by experimental values, which are

taken from literature [25]. Variances of the input parameters are then prescribed, and in this case, small values are

considered (i.e., CV < 1). Additionally, a prescribed PDF is imposed to describe the statistics of the input parameters. In

this study, it is mentioned that the log-normal PDF is motivated to be a suitable candidate for describing the stochastics as

mentioned in Kolmogorov’s work [31]. The MCS process commences by sampling a very large number of occurrences

based on the PDFs. Within each iteration, the output is evaluated. A schematic diagram of this process is illustrated in

Figure 2.
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Fig. 2 Schematic of Monte Carlo simulation
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III. Results
This section presents results generated from the procedures outlined in the previous Section II. To evaluate the PSD

from Eq 1, the integral must be truncated to a sufficient range of spanwise wavenumbers 𝑘𝑦 . Therefore in the first part

of this section, the cutoff wavenumber necessary to evaluate the integral is estimated by displaying various color maps

that represent components of the integrand. Following this are the uncertainty quantification results that are generated

using PCE and MCS under various comparisons.

The specifications of the numerical simulation are summarized in Table 2. Turbulence parameters, integral length

scale and RMS velocity are obtained from experimental measurements in Santana’s work [25]. In Santana’s experimental

facility, a coarse turbulence generation grid was placed upstream of a NACA-0012 airfoil with 0.1 m chord and 0.2 m

span and zero angle-of-attack [25]. Measurements were obtained from a flow speed of 30 m·s−1 and 6.35 mm upstream

from the leading edge of the airfoil. The numerical simulation assumes the same setup and flow conditions. Thus the

experimental values of the turbulence flow parameters are chosen to define the mean values.

Table 2 Specifications of the numerical setup

Parameter Units Value

Turbulence integral length scale Λ 𝑓 - 0.0108

Velocity fluctuation root-mean-square 𝑢′ m·s−1 1.9751

Free stream air speed𝑈∞ m·s−1 30

Airflow density 𝜌0 kg·m−3 1.225

Speed of sound in air 𝐶∞ m·s−1 343

Airfoil semi-chord 𝑏 m 0.05

Airfoil semi-span 𝑑 m 0.1

The present numerical simulation implements uncertainty quantification by employing Monte Carlo simulation and

polynomial chaos expansion to the preliminary results. A convergence study is performed for MCS to determine the

number of iterations required for random sampling. The input variations required at which the output SPL uncertainty is

consistent when performing various runs are found to be at n = 10000 simulations. Experimental values taken from

Santana’s study are used to define the mean values of the turbulence parameters, 𝑇 = {𝜅, 𝜀} and the standard deviation

is defined by a CV value. The values of the inputs are varied based on the chosen PDFs. For each iteration, the values

For 𝑘𝑒 and the velocity fluctuation RMS 𝑢′ are evaluated to generate an upwash velocity spectrum. Small changes in the

upwash velocity spectrum due to variations in the input will alter the output SPL. After 𝑛 iterations, the output will

display 𝑛 SPL plots and is presented such that the uncertainty can be examined.
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A. Cutoff wavenumber estimation

For the numerical evaluation of the integral in Eq 1, a criterion for determining the maximum spanwise wavenumber

is required. This is achieved by investigating the integrand, which consists of the modified von Kármán upwash spectrum

and aeroacoustic transfer function. Figure 3a shows the map for the modified von Kármán spectrum. It is observed that

the values of 𝜙𝑤𝑤

(
𝑘𝑥 , 𝑘𝑦

)
are negligible for 𝑘𝑥 , 𝑘𝑦 > 1000 m−1. Figure 3b shows the color map for the remaining term

of the integrand, which includes the following aeroacoustic transfer function

𝐻 = 𝜋𝑈𝑑

(
𝜌0𝑧𝑘𝑏

𝜎2
0

)2
sin2 [ (

𝐾𝑦 − 𝑘𝑦
)
𝑑
]

𝜋𝑑
(
𝐾𝑦 − 𝑘𝑦

)2 |L (𝑥, 𝑦, 𝑧) |2 . (30)

A listener position of (0, 0, 1 m) is chosen. There is a significant contribution from the subcritical gusts up to 𝐾𝑥 = 104.

The integrand is then investigated by taking the product of these two functions and normalizing it over each maximum

value per 𝐾𝑥 in Figure 3c. The Graham’s parameter
(
Θ = 𝑀𝐾𝑥/

(
𝛽𝑘𝑦

) )
is also introduced, where less than or greater

than unity corresponds to subcritical and supercritical gusts respectively [42]. For a listener position of (0, 0, 1 m), it

is demonstrated that the cut-off spanwise wavenumber is observed to be approximately 𝑘𝑐𝑜𝑦 ≈ 100 m−1. Beyond this

spanwise wavenumber, there is an insignificant contribution from both the subcritical and supercritical gusts. Therefore,

it is advised that the integral be evaluated to approximately 1.5𝑘𝑐𝑜𝑦 = 150 m−1. The factor of 1.5 is used to ensure that

the error of the integral calculation due to the wavenumber domain truncation is minimal.
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(a)

(b)

(c)

Fig. 3 Color maps of the (a) von Kármán spectrum (modified under RDT) 𝜙𝑤𝑤 (dB, reference 1 m2s−2Hz−1), (b) 𝐻 (dB,
reference 1 kg2m−2s−1), and (c) integrand obtained by the product of (a) and (b), normalized by the maximum value at each
convective wavenumber (dB, reference 1 Pa2Hz−1). The dashed lines in (b) and (c) correspond to Graham’s parameter,
showing critical gusts (Θ = 1), which separates subcritical gusts (Θ < 1) from supercritical gusts (Θ > 1).
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B. Uncertainty Quantification results

The lognormal distribution and normal distribution are used as two-parameter models for small input variations.

Figure 4 presents the output noise levels when describing the input variations using the lognormal distribution, and each

turbulence parameter is varied independently while keeping the other at a certain value. The output SPL is determined

to converge at third-degree truncation with first-degree truncated input polynomials. From the plots, the turbulence

kinetic energy dissipation rate is shown to have a lesser influence on the uncertainty of the output noise levels than

the turbulence kinetic energy. Increasing the value of CV for 𝜀 from 0.05 to 0.15 results in relatively lower output

uncertainty, and for both turbulence parameters, increasing CV results in significant uncertainty introduced to the output

noise levels. Figure 5 compares the output generated using a lognormal and normal PDF for the turbulence parameters.

Both turbulence parameters are varied simultaneously to observe the effect of the combined uncertainty. The output SPL

for normally sampled input parameters is determined to converge at fifth-degree truncation. The results are generally

more spread than those generated from a lognormal distribution. Since the normal distribution extends from (−∞,∞),

it is fundamentally an inaccurate description of the variation in the input turbulence parameters, which are strictly

positive. The present study attempts to model input uncertainty under a normal PDF by discarding negative values.

When performing multiple runs, using the normal distribution for input variation resulted in less consistent results. More

terms are required for the output SPL polynomial to generate an appropriate uncertainty analysis. Using lognormal

distribution to model input variation is a more appropriate model for describing the input variation for generating the

output uncertainty.

Uncertainty of the output is further explored in Figures 6- 9 using the lognormal distribution for input parameters.

The standard deviation of the output SPL is presented in Figure 6. For each turbulence parameter, the CV is set to

0.05, 0.10, and 0.15 while keeping the other parameter certain (CV = 0). The standard deviation of the output SPL

is plotted against the Helmholtz number using MCS and PCE. Both UQ methods agree on the standard deviation

of the output SPL. The standard deviation increases when a greater CV for the input parameters is used, consistent

with the results in Figure 4. The minimum standard deviation correlates to the smallest spread of values in Figure 4.

The standard deviation of the output SPL from turbulence kinetic energy variations is greater than turbulence kinetic

energy dissipation rate variations. The relationship between the coefficient of variations between the output and input

is also investigated. Results generated from variations in turbulence kinetic energy only, turbulence kinetic energy

dissipation rate only, and both turbulence kinetic energy and turbulence kinetic energy dissipation rate are presented in

Figure 7 for two Helmholtz values, 𝑘𝑐 = 0.5 and 5, approximately at the two peaks of the mean output SPL. There is

a linear relationship presented in the three scenarios where increasing the CV of input is directly proportional to the

CV of the output SPL. From the results generated on output SPL uncertainty, there is evidence suggesting significant

uncertainty introduced at the output from small input variations. In Figure 8. the probability density functions for the

two Helmholtz numbers are estimated. The plots correlate to the distribution of SPL values shown in Figure 4. There is
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a greater spread of values for varying the turbulence kinetic energy at 𝑘𝑐 = 0.5 compared to varying the turbulence

kinetic energy dissipation rate. The probability density function for the variations in turbulence kinetic energy is flatter

and spread across a broader range of SPL values. In contrast, the probability density function for the turbulence kinetic

energy dissipation rate is sharply peaked at the mean SPL. At the higher Helmholtz number 𝑘𝑐 = 5, the probability

density functions are similar, and there is an insignificant difference between variations in each turbulence parameter.

Finally, Figure 9 shows the mean, minimum and maximum predicted SPLs generated by the airfoil under uncertain

input parameters at different directions. These directivity plots are presented for two Helmholtz numbers, 𝑘𝑐 = 0.5 and

5 and for combined uncertainties with three different CVs. The envelope of the stochastic response is constructed by

calculating the minimum and maximum of all the responses computed by the PCE approach for samples generated by

the MCS. It can be seen that the MCS samples are located between the minimum and maximum of the realizations

obtained using the PCE method. At low frequencies, the mean value of the predicted SPL is very close to the upper

envelope. Moreover, for a given frequency, there is similar uncertainty distribution along the directivity pattern.
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Fig. 4 Output noise uncertainty using lognormal distribution for input variations (n=10000 simulations). A turbulence
parameter (𝜅 = Left, 𝜀 = Right) is varied at a CV = 0.05 (Top), 0.10 (Middle), and 0.15 (Bottom) while keeping the other
parameter certain. Maximum and minimum values from PCE ( ); Present mean values from PCE ( ); Present mean
values from MCS ( ); Present simulated values from MCS ( ); Experimental values (*).
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Fig. 5 Comparison of output noise uncertainty using lognormal distribution (Left) and normal distribution (Right) for
input variations (n=10000 simulations). Both turbulence parameters are varied at CV = 0.05 (Top), 0.10 (Middle), and 0.15
(Bottom). Maximum and minimum values from PCE ( ); Present mean values from PCE ( ); Present mean values
from MCS ( ); Present simulated values from MCS ( ); Experimental values (*).
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Fig. 6 Standard deviation of the output SPL generated for lognormally distributed input variations (n=10000 simulations)
using PCE ( ) and MCS ( ). A turbulence parameter (𝜅 = Left, 𝜀 = Right) is varied at a CV = 0.05 (Top), 0.10
(Middle), and 0.15 (Bottom) while keeping the other parameter certain.
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Fig. 7 Relationship between the coefficient of variation of the output and the coefficient of variation of the inputs (Top = 𝜅
only; Middle = 𝜀 only; Bottom = 𝜅 and 𝜀) using PCE ( ) and MCS ( ).
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Fig. 9 Directivity patterns in the 𝑥 − 𝑧 plane, 1 m from the origin, at two different frequencies kc = 0.5 (Left), 5 (Right)
using lognormal distribution for input variations (n=10000 simulations). Both turbulence parameters are varied at CV = 0.05
(Top), 0.10 (Middle), and 0.15 (Bottom). Maximum and minimum values from PCE ( ); Present mean values from PCE
( ); Present mean values from MCS ( ); Present simulated values from MCS ( ).
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It is also worth noting that the computational runtime of PCE is significantly shorter than the runtime for MCS.

There is almost negligible runtime difference between the two methods for a low number of iterations 𝑛 << 1000, but

PCE becomes more efficient for the converged number of iterations (𝑛 = 10000). For PCE, only the collocation points

must be evaluated to generate the output polynomial, which then can be utilized efficiently for uncertainty analysis. The

reason for this difference is due to the protocol of MCS: the output is sampled 𝑛 times to introduce uncertainty, and this

leads to a two-orders-of-magnitude runtime difference between PCE and MCS.

IV. Conclusions
The airfoil-turbulence interaction noise from the leading edge of an airfoil is modeled by Amiet’s theory with

modifications to the von Kármán upwash velocity spectrum using RDT to better describe the interaction with a turbulent

flow. Initially, preliminary results were generated to verify the numerical simulation against Santana’s results [25].

Uncertainty quantification was then applied to the numerical simulation, and the variations in uncertain input parameters

including the turbulence kinetic energy and its dissipation rate were modeled under various probability distribution

functions. PCE was applied to the airfoil-turbulence system, and the uncertainty was compared with results generated

from MCS. The uncertainty of the output SPL was further examined regarding variations in standard deviation,

CV, probability density functions and directivities. It was found that the lognormal distribution provides the most

reasonable and consistent results compared to the normal distribution. The results suggest that there is significant

output uncertainty introduced by small variations of the input turbulence parameters. The estimated probability density

functions demonstrate that the turbulence kinetic energy can be more uncertain than the turbulence kinetic energy

dissipation rate. The PCE method is also recognized to be more computationally efficient compared to MCS. For the

numerical simulations, it is observed that there is a factor of two orders of magnitude of time saved in runtime for

𝑛 = 10000 iterations.

Future works can advance this investigation by implementing physically realistic turbulence flow via high-fidelity

CFD. The turbulence parameters have been assumed to be independent for stochastic modeling. However, this is likely

not the case as the two properties, turbulence kinetic energy and turbulence kinetic energy dissipation rate, are related.

The uncertainty analysis can be improved by using a joint distribution and a spatial correlation between turbulence

parameters.
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