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In psychiatric and social epidemiology studies, it is common to measure multiple

different outcomes using a comprehensive battery of tests thought to be related to

an underlying construct of interest. In the research that motivates our work,

researchers wanted to assess the impact of in utero alcohol exposure on child

cognition and neuropsychological development, which are evaluated using a range of

different psychometric tests. Statistical analysis of the resulting multiple outcomes

data can be challenging, because the outcomes measured on the same individual are

not independent. Moreover, it is unclear, a priori, which outcomes are impacted by

the exposure under study. While researchers will typically have some hypotheses

about which outcomes are important, a framework is needed to help identify

outcomes that are sensitive to the exposure and to quantify the associated treatment

or exposure effects of interest. We propose such a framework using a modification

of stochastic search variable selection, a popular Bayesian variable selection model

and use it to quantify an overall effect of the exposure on the affected outcomes.

The performance of the method is investigated empirically and an illustration is given

through application using data from our motivating study.
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1 | INTRODUCTION

In psychological and social epidemiology studies, participants are typically assessed using a comprehensive battery of tests or tasks designed to

measure psychological, neurological, or cognitive outcomes that are difficult to measure directly. Analysts then face the challenge of how to best

handle the resulting multiple outcomes. Often, a large number of outcomes are collected, and it can be challenging to decide which outcomes to

include in the analysis. Scientists typically rely on previous studies, in combination with expert knowledge, to select the outcomes on which to

focus. No statistical framework has been available for identifying outcomes that are sensitive to an exposure, nor has such a framework been

developed to quantify the magnitude of effects.

There is a rich literature on statistical methods for the analysis of multiple outcomes data. The simplest approach is to analyze each outcome

separately, but such an analysis requires adjustment for multiple comparisons (Lefkopoulou & Ryan, 1993). Structural equation models (SEMs) can
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also be used to model correlated outcomes by treating the outcomes as manifestations of the latent variables (Budtz-Jørgensen et al., 2002;

Dunson, 2000; Sánchez et al., 2005). However, the regression coefficients characterizing the relationship between the exposure and the latent

factor can be problematic to interpret, and inference is sensitive to model misspecification (Sammel & Ryan, 2002). Meta-analysis is another

popular approach to synthesis of multiple outcomes data, but relatively little work has been carried out for dealing with highly correlated

outcomes in observational settings (Akkaya Hocagil et al., 2022; Berkey et al., 1998; Ryan, 2008; van den Noortgate et al., 2015). Generalized

estimating equations (Lefkopoulou et al., 1989; Liang & Zeger, 1986) have also been used to analyze multiple outcome data, with working

covariance matrices specified to accommodate correlations across outcomes, because the repeated observations on each individual can be viewed

as a special type of clustered data. Generalized linear mixed models offer another framework to model the effect of exposure on multiple

outcomes (Sammel et al., 1999; Thurston et al., 2009). In this paper, we extend the generalized linear modeling approach for the analysis of

multiple outcomes.

A limitation of the available statistical methods for analyzing multiple outcomes data is that researchers must specify the outcomes to be

included in the analysis. As mentioned above, this is usually done using expert knowledge or following some gatekeeping procedure to select the

subset of affected outcomes (see, for example, Turk et al., 2008). However, this can be challenging when outcomes are high dimensional or when

expert knowledge does not provide strong guidance. Moreover, using exploratory data analysis to guide the decision-making increases the risk of

distorting statistical inference due to multiple comparisons. We develop and evaluate a principled statistical approach for identification of relevant

outcomes on which to model the exposure effects, while accounting for the correlation among the outcomes.

We refer to the challenge of identifying which of many observed outcomes are sensitive to an exposure as the outcome selection problem

and show that it can be reframed as a classical variable selection problem. Variable selection is typically carried out to choose a subset of

candidate predictors that together explain most of the variation in a single response variable. The variable selection literature has a long history,

from earlier frequentist approaches such as “best subset” regression, model selection based on Akaike/Bayesian information criterion

(Akaike, 1998; Schwarz, 1978), backward and forward stepwise regression, to the more recent Bayesian methods that involve a wide range of

“slab-and-spike” or shrinkage priors; see Hastie et al. (2020), O'Hara and Sillanpää (2009), and van Erp et al. (2019) for some recent reviews. To

the best of our knowledge, these ideas and approaches have not been adapted to deal with the setting where one aims to select which outcomes

in a large set of candidate outcomes are sensitive to an exposure.

In this paper, we first show how the problem of interest can be reframed as one of variable selection. We adopt a Bayesian approach to

analyze outcomes and identify those that are strongly affected by the exposure. The model is motivated by the popular stochastic search variable

selection (SSVS) method, but we extend the SSVS prior to allow estimation of a mean effect among the sensitive outcomes. A random effects

model is used to account for the correlation among outcomes measured on the same individuals.

The paper is organized as follows: In Section 2, we present the basic model and show how the outcome selection problem can be reframed as

one of variable selection. We also discuss the associated computing approach. In Section 3, we assess the performance of our method in

comparison to other variable selection models based on a simulation study. In Section 4, we use the model and method to analyze data from our

motivating application regarding the effect of in utero alcohol exposure on different measures of child cognition. In Section 5, we present some

conclusions and discussion.

2 | METHODOLOGY

2.1 | Addressing the outcome selection problem

Suppose we observe K continuous outcomes for each of n independent individuals. The outcomes will typically be correlated because they are

measures from the same individual, though they may be of different scales and nature. For example, the outcomes may be measuring different

domains of a person's cognitive function (verbal versus mathematical). Therefore, exposure effects are not expected to be exactly the same across

affected outcomes but vary around a mean level μ, which we identify as the parameter of interest. For each individual, we observe an exposure

value and some other observed predictor variables, which we denote as z. In the application discussed in Section 4, z is a propensity score

computed for each individual to adjust for confounders.

We now show how to express our multiple outcomes data as panel data in long format. Consider a sample of n independent individuals

labeled j¼1,…,n, where each individual has measurements on K outcomes labeled p¼1,…,K. For now, assume there are no missing data and that

all K outcomes have been measured on all n individuals. Now suppose we stack the observations from all n individuals together, giving us a data

set with nK observations in total. Row i of this data set records the observed outcome corresponding to individual j½i� and outcome p½i�.
To represent the multiple outcome problem as a multiple predictors problem, we first define a new set of covariates xk , k¼1,…,K:

xk½i� ¼ exposurej½i�1ðp½i� ¼ kÞ,
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for i¼1,…,nK. The ith value of xk (xk½i�) is the interaction between the exposure level of individual j½i� and a dummy variable indicating whether

the value of the outcome p½i� is k. Including this exposure by outcome interaction term is critical because it allows for a potentially different expo-

sure effect, depending on outcome. An example of the dataframe format and how to map from the multiple outcome format to the stacked format

for n individuals and K¼3 outcome variables is presented in Figure 1. This “trick” of expressing the multiple outcomes problem in terms of

repeated measures has been widely used in the literature, making it straightforward then to analyze multiple outcomes using standard mixed

modeling or GEE software (Lefkopoulou et al., 1989).

We will base our analysis on a linear mixed model, as follows:

y½i� ¼ νp½i� þαj½i� þ
XK

k¼1
βkxk½i�þ γp½i�zj½i� þϵ½i�, ð2:1Þ

for i¼1,…,nK, individual j¼1,…,n and outcome p¼1,…,K. The error terms ϵ½i� are independent and normally distributed, ϵ½i� �Nð0,σ2p½i�Þ and the

random effect αj½i� �Nð0,σ2r Þ accounts for the within-individual correlation and αj ⊥ αj0 for j≠ j0.

The parameters νp and γp are outcome-specific intercepts and coefficients for z, and the coefficients βk represents the exposure effect on

outcome k. In a classical multiple outcomes setting, it is typical to assume that all outcomes are associated in a similar way with the exposure or

treatment of interest, with effects varying around a mean level μ. It is natural to assume

βk �Nðμ,τ2Þ,

for k¼1,…,K, and then assign appropriate priors for μ and τ to estimate the model using a Bayesian estimation procedure. We now want to

generalize this framework to allow for the possibility that not all K outcomes are affected by the exposure. Asking the question of which

outcomes should be included becomes a problem of variable selection, based on the K covariates x1,…,xK . From a modeling perspective, allowing

for some of the outcomes to be unaffected by the exposure simply corresponds to setting βk ¼0 for those variables.

Variable selection methodologies have been extended to deal with random effects; see for example Bondell et al. (2010), Fan and Li (2012),

and Yang et al. (2020). For our model, because we do not need to perform variable selection for the random effects, it is straightforward to use

existing techniques for the independent predictors xk . This means that we can potentially use any of a variety of sparsity priors, such as SSVS

(George & McCulloch, 1993), Bayesian LASSO (Figueiredo, 2003; Park & Casella, 2008), and the horseshoe prior (Carvalho et al., 2009) for

outcome selection. However, because we are interested in selecting the subset of affected outcomes variables and quantifying the mean

exposure effect on these variables, in this study we focus on the use of the SSVS method. We discuss this further in the next section.

2.2 | Stochastic search variable selection

There is a large literature on Bayesian variable selection methods; however, in this paper, we only discuss the “slab and spike” type of priors, as

they are suitable for our problem of identifying sensitive outcomes from a large number of outcomes. Methods that compare models by Bayes

Factor (Kass & Raftery, 1995) or criteria such as DIC (Spiegelhalter et al., 2002) or WAIC (Watanabe & Opper, 2010) require fitting all candidate

models and hence only applicable when comparing a small number of models. Therefore, they are not suitable for the outcome selection problem.

F IGURE 1 Illustration of a data table with n individuals and K¼3 outcome variables.
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Methods involving a “slab and spike” prior can be divided, broadly, into two categories: Methods that specify a prior that approximate the

“slab and spike” shape for the coefficients βk; and methods that use latent indicator variables that indicate whether a covariate is included in the

model. Shrinkage priors such as the Bayesian LASSO (Figueiredo, 2003; Park & Casella, 2008) and the horseshoe prior (Carvalho et al., 2009)

belong to the first category. The implementation of these methods is straightforward and they have had extensive use in recent years. However,

it is not clear how to modify these priors to incorporate a common mean of the nonzero coefficients. Yang et al. (2020) proposed using SSVS for

selection of fixed effects in linear mixed models; however, they also did not consider estimating the mean effect.

The second category of approach defines a latent variable Ik that indicates whether a coefficient βk is nonzero. In the approaches proposed

by Kuo and Mallick (1998) and Dellaportas et al. (2002), a coefficient βk is set to 0 if Ik ¼0. Both methods specify βk ¼ Ikθk and hence require an

appropriate prior for θk . These approaches can be challenging to tune to ensure that the iterates of Ik do not get stuck at 0 or 1. For example,

mixing may be poor for the Kuo and Mallick (1998) approach if the prior for θk is too vague (O'Hara & Sillanpää, 2009). We can assume θk �
Nðμ,τ2Þ with unknown μ and τ, but the model will be hard to fit and we cannot interpret μ as the mean of all βk of which Ik ¼1.

Our method is motivated by the SSVS method (George & McCulloch, 1993), which defines a mixture prior for βk instead: Let Ik be a latent

indicator variable, with Ik ¼1 means covariate k is included in the model, Ik ¼0 means it is not. The indicator affects the prior of βk , so we can

define a joint prior for ðIk ,βkÞ as

pðIk ,βkÞ¼ pðβkjIkÞpðIkÞ:

Conditioning on Ik , the prior of βk is

pðβkjIkÞ¼ ð1� IkÞNð0,g1Þþ IkNð0,τ2Þ:

For our outcome selection framework, we propose to modify the SSVS prior to incorporate the mean exposure effect μ on the sensitive out-

comes. Conditioning on Ik , we now have a mixture prior for βk

pðβkjIkÞ¼ ð1� IkÞNð0,g1Þþ IkNðμ,τ2Þ: ð2:2Þ

To improve the performance of the model, we follow Meuwissen and Goddard (2004) and modify the prior in (2.2) to

pðβkjIkÞ¼ ð1� IkÞNð0,τ2=cÞþ IkNðμ,τ2Þ: ð2:3Þ

The tuning parameter c should be chosen to ensure good separation between the “in” and “out” variables. The standard deviations τ, σk , and

σr are assigned log-normal priors in our simulation study and application.

Note that the posterior mean of Ik will be the posterior probability that outcome k is included in the model; hence, it will be important in

terms of interpreting the results of our model fit. The prior, pðIk ¼1Þ, can simply be a categorical distribution with a fixed probability parameter.

This prior probability may be different across outcomes, based on the experts' knowledge, or fixed at 0.5 so that the prior is non-informative. The

prior probability pðIk ¼1Þ can also be treated as a parameter to be estimated (O'Hara & Sillanpää, 2009). For the examples in this paper, we simply

set a prior probability pðIk ¼1Þ for each k.

For the examples in this paper, an outcome is classified as “relevant” if the posterior mean of the corresponding Ik is greater than 0.5. We

note that the threshold may affect the conclusion on the relevance of each outcome variable but does not change the estimate of the mean effect

μ. Of course, other thresholds could be used. We suggest that it is best to report the posterior probabilities of Ik ¼1 for all k. An alternative

approach is to look at the whole vector I to identify the most frequently sampled subsets of outcomes.

3 | SIMULATION STUDY

3.1 | Setup

In this section, we demonstrate the performance of the method using simulated data. The aim of this simulation study is to assess the

performance of our prior for outcome selection for different effect sizes. In the exercise, we set the number of outcomes to K¼20

and a moderate sample size of n¼100. We examine the performance of the proposed model with different numbers of relevant outcomes

K1 ¼5, 10, 15.

We simulated 10 data sets from the model (2.1) described in Section 2.1. We set the parameters value to generate the data sets as

follows: The intercepts νk values are randomly picked from Nð0,1Þ and standard deviations σ2k are generated from Nð1:5,0:3Þ for k¼1,…,20.

4 of 10 DANG ET AL.
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The coefficients βk corresponding to the relevant outcomes were generated from Nðμ,0:01μ2Þ to ensure that the βk are scattered closely enough

around μ. We used two different values for the mean common effect μ: μ¼�0:1 and μ¼�3.

Given these “true” parameters values, in each simulation, we create a data set by first generate the exogenous variable zj½i� from Nð0,1Þ and
exposurej½i�jzj½i� �1ðzj½i� < 0ÞNð0,0:52Þþð1�1ðzj½i� <0ÞÞNð1,1Þ and then generate the outcome y according to model (2.1).

We then fit model (2.1) using the prior in (2.3) with c¼100 to each of the 10 data sets. We examine both versions of SSVS: Our proposed

model in which μ is a parameter and the standard SSVS prior where μ¼0. The prior probability of Ik is pðIk ¼1Þ¼0:5 for all outcome k. For

comparison, we also fit the model where βk are assumed a hierarchical prior βk �Nðμ,τ2Þ with unknown μ and τ2. We also fit the model that only

uses the correct relevant outcomes, assuming βk �Nðμ,τ2Þ. We call this the “subset model.” The result of the subset model is treated as the

“standard” because it is the model that uses the correct set of outcomes.

The rest of the parameters are assigned fairly flat priors. For example, we use a normal Nð0,100Þ prior for μ, νk and γk . The parameters σr and

σk , k¼1,…,K are assigned log-normalð0,10Þ priors. In all models, τ is assigned a log-normalð0,1Þ prior.
For each simulation, we record the number of outcomes identified as relevant, the number of correctly identified outcomes, the number of

false positives, and the estimated μ. An outcome is classified as “relevant” if the posterior mean of the corresponding Ik is greater than 0.5. The

results presented here represent the average over the 10 simulations for each setting. The SSVS models are fitted using the software JAGS

(Plummer, 2003) and the other models are implemented with STAN (Carpenter et al., 2017).

Note that in this simulation study, the first setting with μ¼�0:1 represents a situation when the effect is weak with small data, so that the

posterior standard deviation is large. In this case, it would be difficult for the model to decide whether a βk is 0 or not. The second setting μ¼�3

mimics the situation in which the effect is stronger, and the selection method is expected to work better.

3.2 | Results

The performance of the SSVS algorithm in detecting the affected outcomes for different μ and K1 is presented in Table 1. The results suggest that

the original and our modified SSVS algorithms have very similar performance, though neither do well in detecting the affected outcomes when μ

is small. This is expected as the overall effect μ is small, so some of the relevant βk would be close to 0. Because here we used uninformative

priors for Ik , the algorithm will keep switching between stage Ik ¼0 and Ik ¼1 for these outcomes. This is similar to the phenomenon observed by

O'Hara and Sillanpää (2009), where the posterior probabilities of Ik are close to 0.5 and some outcomes are classified incorrectly by chance.

TABLE 1 The average number of outcomes correctly identified as relevant and incorrectly chosen as relevant in different settings with data
generated from (2.1). The table shows the results from the original SSVS prior with μ¼0 and our proposed prior where μ is unknown. K1 is the
true number of relevant outcomes. The fourth and fifth columns show the number of outcomes that each model detects as relevant. The next
two columns show the number of relevant outcomes correctly identified by each model. The last two columns show the number of irrelevant
outcomes that were detected as relevant. All numbers are averaged over 10 simulations.

# identified as relevant # correctly identified # incorrectly identified

True μ K1 μ unknown μ¼0 μ unknown μ¼0 μ unknown μ¼0

�0.1 5 4.9 4.4 1.6 1.5 3.3 2.9

10 5.2 5.3 1.9 2.1 3.3 3.2

15 5.1 4.4 4.5 3.5 0.6 0.9

�3 5 5 5 5 5 0 0

10 10 10.1 10 10 0 0.1

15 15 15 15 15 0 0

TABLE 2 The mean squared errors of the models with different effect sizes, in simulated data study. The result is averaged over 10
simulations.

SSVS - μ unknown SSVS - μ¼0 No variable selection

K1 Small μ Large μ Small μ Large μ Small μ Large μ

5 0.012 0.004 0.007 0.007 0.032 0.066

10 0.022 0.017 0.014 0.032 0.036 0.075

15 0.014 0.032 0.011 0.053 0.036 0.073

DANG ET AL. 5 of 10
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Table 2 shows the mean squared errors of estimating the individual coefficient βk :

MSE¼ 1
K

XK

k¼1
ðβ̂k�βkÞ

2
, ð3:1Þ

where we take the estimate β̂k to be the posterior mean of βkjIk ¼1 if the posterior mean of Ik is greater than 0.5; otherwise we set β̂k ¼0. For

both large and small values of μ, the SSVS priors provide more accurate estimates of βk in terms of MSE, compared to the model without variable

selection.

Lastly, Table 3 shows the estimated of μ, averaged over 10 simulations, by different priors. Table 3 shows that our modified SSVS can provide

estimates of μ that are closer to the result from the subset model, especially for large μ. However, when the effect is weak, the model is not able

to estimate μ accurately because it fails to identify the correct set of sensitive outcomes.

The simulation example shows that SSVS priors can provide accurate estimates of the coefficients and accurately identify the affected out-

comes and estimate the mean effect when μ is far from 0. However, it may require more informative priors for Ik and better tuning to capture

small effects accurately. The R code for the study is provided on Github—see https://github.com/khuedung91/BayesianOutcomeSelection/.

4 | EFFECT OF PRENATAL ALCOHOL EXPOSURE ON CHILDREN IN DETROIT, MICHIGAN

In this section, we apply our proposed framework to data collected as part of an investigation of the long-term effect of prenatal alcohol exposure

(PAE) on a child's cognitive and behavioral function. Numerous studies have shown that high levels of PAE can result in a distinct pattern of

craniofacial anomalies, growth restriction, and cognitive and behavioral deficits, a condition known as fetal alcohol syndrome (FAS) (Hoyme et al.,

2005; Hoyme et al., 2016), the most severe of a continuum of fetal alcohol syndrome disorders (FASD) (Carter et al., 2016; Jacobson et al., 2004;

Jacobson et al., 2008; Mattson et al., 2019). Alternatively, some individuals with PAE exhibit cognitive and/or behavioral impairment without the

characteristic craniofacial dysmorphology and/or growth restriction, a disorder known as alcohol-related neurodevelopmental disorder (ARND).

Our data come from a longitudinal study, funded by the US National Institutes of Health and conducted in Detroit, Michigan. In this study,

the mothers were interviewed prenatally about their alcohol consumption during pregnancy, and the children were followed throughout

childhood, many of them up until they were 20 years of age. The study collected a large number of variables reflecting responses on various

neuro-cognitive tests and behavioral outcomes assessed on the children throughout childhood. Each of the administered tests could be classified

as relevant to one of several different domains including cognition, executive function, and behavior, among others. Previous neurocognitive

studies have suggested that the impact of PAE on all of these domains will not be the same, given that alcohol may have a stronger effect on

certain parts of the brain, while other areas may be relatively unaffected or spared, depending on the timing, genetic vulnerability, and ethnic or

racial group of the exposure (Jacobson et al., 2004; Jacobson & Jacobson, 1999; 2002). Recent analyses by our group made use of expert

knowledge to select outcomes for analysis and simply assumed that each had been affected by PAE to some extent (Jacobson et al., 2021).

TABLE 3 Estimates of μ in different settings of the simulated data study in Section 3. The table shows the average of the posterior mean of μ,
averaged over 10 data sets, in different μ and K1. The standard errors are in brackets. The first column is the true μ. The subset model is the
model that used only the correct set of relevant outcomes.

True μ K1 SSVS No selection Subset model

�0.1 5 �0.025 �0.120 �0.209

(0.066) (0.145) (0.143)

10 0.046 0.034 �0.015

(0.069) (0.157) (0.169)

15 �0.026 �0.059 �0.077

(0.091) (0.188) (0.213)

�3 5 �3.281 �0.908 �3.365

(0.040) (0.150) (0.144)

10 �2.949 �1.393 �2.875

(0.098) (0.152) (0.175)

15 �2.678 �2.002 �2.688

(0.115) (0.210) (0.221)
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To illustrate our methodology, in this paper we focus on a set of 14 outcomes collected when the children were approximately 7 years of

age. The first eight outcomes come from the Achenbach Child Behavior Checklist (CBCL) and Teacher's Report Form (TRF) at age

7 (Achenbach, 1991). The CBCL is a checklist completed by the parent and designed to detect emotional and behavioral problems in children and

adolescents, whereas the TRF represents the child's principal teacher's report of the similar. These assessments include the child's internalizing

and externalizing behaviors, and social and attention problems. The remaining six outcomes correspond to the results of various cognitive and

neuro-developmental tests related to IQ assessed on the Wechsler Intelligence Scales for Children–III (Wechsler, 1991), academic achievement in

reading and arithmetic, learning and memory abilities, and executive function. Recent analyses have reported that, of these 14 outcomes, the first

eight are relatively less affected by PAE, whereas the last six are more sensitive to alcohol exposure (Jacobson et al., 2021). After preprocessing,

the data include outcomes from 336 children. PAE is computed based on the mother's average daily dose of absolute alcohol consumed

(in ounces) during pregnancy (AA/day). Because the distribution of alcohol exposure is positively skewed with a minimum level 0, we compute

log(AA/day + 1) and use this as the measure of PAE in the analysis.

4.1 | Model and setup

We fit the model (2.1) with the prior in (2.3) to the data set. To adjust for confounders associated with both alcohol exposure and cognitive

function, we add a propensity score z, which was computed beforehand. For details on the covariates included in the propensity score and how it

was constructed, we refer readers to Akkaya Hocagil et al. (2021). Before running the analysis, we rescaled all outcomes to have mean 0 and

variance 1.

We fit our proposed model with a few different settings. We start with an uninformative prior for the indicator Ik and set pðIk ¼1Þ¼0:5 for

all k. We use the prior in (2.3) with c¼100 for βk where τ is assigned a log-normal ð0,1Þ prior. As a comparison, we also try the prior in (2.2) where

we fix g1 ¼0:22 and a shrinkage prior. For the shrinkage prior, we simply follow Figueiredo (2003) and assign a Laplaceð0,1Þ prior for the βk . We

also attempt the horseshoe prior (Carvalho et al., 2009) for βk but the MCMC has convergence issue and hence the result is not presented here.

To assess how sensitive the result is to the prior probability pðIk ¼1Þ, we also fit the model with a more informative set of pðIk ¼1Þ,

pðIk ¼1Þk¼1:14 ¼ð0:5,0:5,0:2,0:5,0:8,0:8,0:2,0:8,0:5,0:5,0:8,0:8,0:8,0:5Þ:

These prior probabilities were chosen by utilizing expertise knowledge and set the probability of the outcomes that are known to be relevant to

be closer to 1. In practice, more informative priors may help the MCMC to have better mixing.

We also fit the model (2.1) to only those outcomes chosen by our SSVS model with a hierarchical prior β�Nðμ,τ2Þ. We call this model the

“subset” model. Similar to in the simulation study, we will compare the estimates of βk and μ from this reduced model with our approach.

We assigned a normal Nð0,1Þ prior for μ. We found the appropriate prior's parameters by fitting model (2.1) to the data using the R package

lme4. The estimates of βk from lme4 suggested that the average effect on the affected outcomes may be around �1, and therefore we used the

prior that covers this value. For the rest of the parameters, we chose diffuse priors. The prior for σr and σk , k¼1,…,14 is log-normalð0,10Þ. The
prior for νk and γk are normal Nð0,1000Þ and normal Nð0,100Þ, respectively. The SSVS models were fitted using the software JAGS

(Plummer, 2003), running three chains each with 200,000 burn-in and 200,000 samples with thinning ¼10. The other models were implemented

in STAN (Carpenter et al., 2017).

4.2 | Results

The results are presented in Tables 4 and 5. Table 4 shows the mean posterior probability of Ik ¼1. For the Laplace shrinkage prior, we report

whether 0 is outside of the 95% credible intervals of the parameters. The table shows that all SSVS models choose the same set of relevant out-

comes in different settings. The informative prior on pðIkÞ results in different posterior mean of Ik; however, it does not affect the inference on

the outcomes' relevance for most outcome variables. The only exception is CBCL Externalizing at age 7, of which the posterior probability of

being affected is slightly less than 0.5 (0.436 and 0.496) when using a noninformative prior and slightly higher than 0.5 (0.530) when using an

informative prior. These results are also similar to that of the Laplace shrinkage prior; however, this prior shrinks more βk toward 0 than the SSVS

priors.

Table 5 presents the estimates of βk and overall effect μ. The SSVS with informative pðIk ¼1Þ and the subset model suggest a strong negative

effect of PAE on the cognitive outcomes. These findings are consistent with those in Jacobson et al. (2021). The estimate of τ is similar for both

models (0.187 vs. 0.172). On the other hand, the SSVS models with the noninformative prior suggest a weaker effect (�0.324 and �0.303 versus

�0.398). The noninformative prior also results in larger estimates of τ (0.219 and 0.233 vs. 0.187).
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Table 5 shows that all SSVS models produce smaller estimates for the coefficients of the affected outcomes and hence μ, compared with the

subset model. The result here is consistent with our observation in the simulation study in Section 3. However, as shown in Tables 4 and 5, our

proposed model produces very similar estimates of βk compared with the Laplace prior in all settings. Table 5 also indicates that the informative

prior for the indicator Ik produces estimates of βk and μ that are closer to the subset model that only includes the affected outcomes.

TABLE 4 Summary of Ik for different models for Detroit data. For SSVS, the table shows the posterior means of Ik for the different outcomes.
The table highlights in bold the variables selected by the SSVS prior. For the other method, we report whether 0 is outside the 95% credible
interval of the corresponding βk . The CBCL and TRF tests came from (Achenbach, 1991); the IQ tests were based on the Wechsler Intelligence
Test for Children-III (Wechsler, 1991).

pðIk ¼1Þ¼0:5
Informative pðIkÞ

Laplace prior g1 ¼ τ2=100 g1 ¼0:22 g1 ¼0:22

CBCL Social Problem 0 0.286 0.384 0.374

CBCL Attention Problem 0 0.505 0.533 0.576

CBCL Internalizing 0 0.195 0.247 0.057

CBCL Externalizing 0 0.436 0.496 0.530

TRF Social Problem 1 0.856 0.741 0.947

TRF Attention Problem 1 0.873 0.742 0.947

TRF Internalizing 0 0.208 0.267 0.065

TRF Externalizing 1 0.864 0.746 0.947

Verbal IQ 0 0.291 0.393 0.388

Performance IQ 0 0.345 0.432 0.442

Freedom from distractibility 1 0.966 0.809 0.969

Verbal fluency 0 0.670 0.629 0.900

Digit span backwards 1 0.871 0.737 0.945

Story memory 0 0.267 0.360 0.334

TABLE 5 Posterior means of βk and μ based on the Detroit data. For the SSVS methods, we report the mean of βkjIk ¼1 if the posterior mean
of Ik exceeds 0.5 and 0 otherwise.

pðIk ¼1Þ¼0:5
Informative pðIkÞ

Laplace prior g1 ¼ τ2=100 g1 ¼ 0:22 g1 ¼0:22 Subset

CBCL Social Problem �0.090 0.000 0.000 0.000

CBCL Attention Problem �0.230 �0.274 �0.268 �0.339 �0.475

CBCL Internalizing 0.083 0.000 0.000 0.000

CBCL Externalizing �0.195 0.000 0.000 �0.324

TRF Social Problem �0.486 �0.404 �0.412 �0.460 �0.612

TRF Attention Problem �0.464 �0.396 �0.404 �0.451 �0.602

TRF Internalizing 0.064 0.000 0.000 0.000

TRF Externalizing �0.499 �0.407 �0.417 �0.464 �0.617

Verbal IQ �0.112 0.000 0.000 0.000

Performance IQ �0.141 0.000 0.000 0.000

Freedom from distractibility �0.561 �0.447 �0.468 �0.505 �0.622

Verbal fluency �0.327 �0.332 �0.330 �0.388 �0.525

Digit span backwards �0.453 �0.389 �0.400 �0.446 �0.574

Story memory �0.061 0.000 0.000 0.000

μ �0.324 �0.303 �0.398 �0.572

τ 0.219 0.233 0.187 0.172
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5 | CONCLUSION

In this paper, we propose a statistical method for identifying outcomes from a large number of observed variables that are directly affected by an

exposure variable. Our method is an extension of standard Bayesian variable selection models to multiple outcomes data, which also provides an

estimate of the overall effect of the exposure variable in the subset of affected outcomes. We demonstrate the performance and limitations of

our method in a simulation exercise and a real data application.

Our application in modeling the effect of PAE on cognition identified a set of neurodevelopmental tests that are significantly affected by fetal

alcohol exposure. In addition, the model indicates a negative overall effect of PAE on the sensitive outcomes. A limitation of the current model is

that we only use an individual random intercept to capture the correlations among the outcomes. This approach may not be ideal, and we may

consider a more sophisticated correlation structure in future work.

Finally, the proposed framework is shown to be effective in identifying sensitive outcomes in various scenarios. However, it may underesti-

mate the outcome-specific effect size and mean effect when the effects are mild. This is a common issue with variable selection priors; we expect

that the result can be improved by using more informative priors for the indicators Ik .
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