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On 𝑝-Group Isomorphism: search-to-decision, counting-to-decision, and
nilpotency class reductions via tensors

JOSHUA A. GROCHOW, Departments of Computer Science and Mathematics, University of Colorado Boulder,

USA

YOUMING QIAO, Centre for Quantum Software and Information, University of Technology Sydney, Australia

In this paper we study some classical complexity-theoretic questions regarding Group Isomorphism (GpI). We focus on 𝑝-groups
(groups of prime power order) with odd 𝑝 , which are believed to be a bottleneck case for GpI, and work in the model of matrix groups
over finite fields. Our main results are as follows.

• Although search-to-decision and counting-to-decision reductions have been known for over four decades for Graph Isomor-
phism (GI), they had remained open for GpI, explicitly asked by Arvind & Torán (Bull. EATCS, 2005). Extending methods from
Tensor Isomorphism (Grochow & Qiao, ITCS 2021), we show moderately exponential-time such reductions within 𝑝-groups
of class 2 and exponent 𝑝 .

• Despite the widely held belief that 𝑝-groups of class 2 and exponent 𝑝 are the hardest cases of GpI, there was no reduction to
these groups from any larger class of groups. Again using methods from Tensor Isomorphism (ibid.), we show the first such
reduction, namely from isomorphism testing of 𝑝-groups of “small” class and exponent 𝑝 to those of class two and exponent 𝑝 .

For the first results, our main innovation is to develop linear-algebraic analogues of classical graph coloring gadgets, a key technique
in studying the structural complexity of GI. Unlike the graph coloring gadgets, which support restricting to various subgroups of
the symmetric group, the problems we study require restricting to various subgroups of the general linear group, which entails
significantly different and more complicated gadgets. The analysis of one of our gadgets relies on a classical result from group theory
regarding random generation of classical groups (Kantor & Lubotzky, Geom. Dedicata, 1990). For the nilpotency class reduction, we
combine a runtime analysis of the Lazard correspondence with Tensor Isomorphism-completeness results (Grochow & Qiao, ibid.).

CCS Concepts: • Theory of computation→ Problems, reductions and completeness.
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1 INTRODUCTION

In this paper, we study the algorithmic problem of deciding whether two finite groups are isomorphic, known as
the Group Isomorphism problem (GpI). Different variants of the GpI problem arise, with correspondingly different
complexities, when the groups are given in different ways, e.g. by a generating set of permutations, a generating set of
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2 Joshua A. Grochow and Youming Qiao

matrices, a full multiplication table, or a black box oracle. In its various incarnations, GpI is a fundamental problem in
computational algebra and computational complexity. The generator-enumerator algorithm solves isomorphism in
|𝐺 |log |𝐺 |+𝑂 (1) -time [29, 60]1, and even the current state of the art for general groups—in any of the aforementioned
input models—is still |𝐺 |Θ(log |𝐺 | ) [10, 11, 18, 28, 52, 68, 72]. Nonetheless, over the past 15 years there has been
significant progress on efficient isomorphism tests in various classes of groups: here is an incomplete list of references
[5–7, 13, 14, 16, 33, 34, 50, 51, 65, 67, 68].

When given by multiplication tables, GpI reduces to GI [75], and in the other, more realistic (for computer algebra
systems) and more succinct models, we get a reduction in the other direction [35, 37, 54, 59]. As a result, the techniques
and complexity of GpI are closely bound up with GI. However, since the techniques used in GpI are often independent
of the input model, we are free to focus on the abstract structure of the groups in question, and the choice of input
model is then essentially just a choice of how we measure and report the running time. For example, if GI is in P, then
GpI can be solved in poly( |𝐺 |) time [75]; if GpI for groups given by a generating set of𝑚 matrices of size 𝑛 × 𝑛 over F𝑝
can be solved in 𝑝𝑂 (𝑛+𝑚) time, then GI is in P [59] (see [37] for a simplified reduction).

For GI, a wide variety of algorithmic and structural complexity results are known (see, e.g., [4, 36, 47]). In particular,
there are polynomial-time search-to-decision and counting-to-decision reductions [56], so search, counting, and decision
are all equivalent for GI. (This was an early piece of evidence that GI was not likely to be NP-complete, since for
NP-complete problems, their counting variants are typically #P-complete, hence at least as hard as all of PH [70].) For
GpI, no such reductions are known, even in restricted classes of groups; Arvind and Torán [3, Problem 16] explicitly
asked for such reductions. Additionally, for GI, there are many classes of graphs for which the isomorphism problem
remains GI-complete—such as graphs of diameter 2 and radius 1, directed acyclic graphs, regular graphs, line graphs,
polytopal graphs [75]—but no such analogous results are known for GpI.

In this paper, we make progress on all three of these questions, within the class of groups widely believed to be
hardest cases of GpI, namely the 𝑝-groups of nilpotency class 2 and exponent 𝑝 ; these are groups of order a power of the
prime 𝑝 , such that𝐺 modulo its center is abelian, and such that 𝑔𝑝 = 1 for all 𝑔 ∈ 𝐺 . (Throughout most of this paper we
assume 𝑝 is an odd prime.) For each of our three main results, we now give further motivation before stating it formally.

1.1 Main results

Search-to-decision reductions. The “decision versus search” question is a classical one in complexity theory, having
attracted the attention of researchers since the introduction of NP. Efficient search-to-decision reductions for SAT
and GI are now standard. Valiant first showed the existence of an NP relation for which search does not reduce to
decision in polynomial time [71]. A celebrated result of Bellare and Goldwasser shows that, assuming DTIME(22𝑂 (𝑛) ) ≠
NTIME(22𝑂 (𝑛) ), there exists an NP language for which search does not reduce to decision in polynomial time [9].
However, as usual for such statements based on complexity-theoretic assumptions, the problems constructed by such
a proof are considered somewhat unnatural, and natural problems for which search seems not reducible to decision
are rare. The most famous candidate may be Factoring (with the decision version being Primality)2 and Nash
Eqilibrium [19] (the decision version is trivial).

1Miller [60] attributes this algorithm to Tarjan.
2Here we are thinking of Factoring as the search problem corresponding to the relation { (𝑛,𝑑 ) : 𝑑 is a proper divisor of 𝑛} ⊆ N × N, so that the
existence problem is then precisely Primality.
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Theorem A. Let 𝑝 be an odd prime, and let GpIso2Exp(𝑝) denote the isomorphism problem for 𝑝-groups of class 2 and

exponent 𝑝 in the model of matrix groups over F𝑝 . For groups of order 𝑝𝑛 , there is a search-to-decision reduction for

GpIso2Exp(𝑝) running in time 𝑝𝑂 (𝑛) = poly( |𝐺 |).

We note that this improves over the “brute-force” generator-enumerator technique, which runs in time 𝑝Θ(𝑛2 ) =

|𝐺 |Θ(log |𝐺 | ) .

Remark 1.1. Nearly all our results about groups require 𝑝 to be an odd prime (many of our results on tensors or matrix
spaces should still work when 𝑝 = 2). There are (at least) two crucial differences in the 𝑝 = 2 case for groups. The first
is that for 2-groups, the Baer correspondence no longer works in the form presented here (rather, there is a different
correspondence involving 2-cocycles and quadratic maps rather than bilinear maps). The second issue is that groups
of exponent 2 are all Abelian; the smallest-exponent non-Abelian 2-groups are of exponent 4. If one then translates
between groups and tensors, one would get tensors over the ring Z/4Z. As Z/4Z is no longer a field, compared to our
setting where we get to work over Z/𝑝Z, this introduces significant additional complications. We leave working with
such groups and tensors to future work.

We note that GpIso2Exp(𝑝) seems different from all the problems listed above in terms of search-to-decision
reductions, in the following ways. First, unlike SAT (propositional Boolean satisfiability) and GI, a polynomial-time
search-to-decision reduction has been open for decades, whereas those for SAT and GI are straightforward. Note that a
polynomial-time reduction would need to run in time poly(𝑛, log𝑝), and we find it unlikely that the time complexity of
our reduction can be brought down this far with current techniques. Second, unlike Factoring and Nash Eqilibrium,
whose decision versions are computationally easy (Primality is easily seen to be in RP ∩ coNP, even if the proof
it is in P [1] is quite nontrivial, and the decision version of Nash Eqilibrium has a trivial “yes” answer by Nash’s
Theorem), its decision version also seems to require deeper techniques. Indeed, it is a long-standing open problem to
test isomorphism of 𝑝-groups of class 2 and exponent 𝑝 in time polynomial in the group order, which already can be
exponential in the input size if the input is given by a generating set of matrices.

Counting-to-decision reductions. Counting-to-decision reductions are also of great interest in complexity theory. An
efficient counting-to-decision reduction for GI is also a well-known result [56]. In contrast, for SAT, a polynomial-time
counting-to-decision reduction would imply that PH collapses [70].

Theorem B. For 𝑝 an odd prime, 𝑝 ≥ 𝑛Ω (1) , there is a randomized counting-to-decision reduction for GpIso2Exp(𝑝) for
groups of order 𝑝𝑛 , running in time 𝑝𝑂 (𝑛) = poly( |𝐺 |).

As with Theorem A, this improves the previous-best “brute-force” 𝑝𝑂 (𝑛2 ) = |𝐺 |𝑂 (log |𝐺 | ) .
Also as in the case of search-to-decision, GpIso2Exp(𝑝) seems different from the problems listed above in terms of

reducing counting to decision. First, a polynomial-time counting-to-decision reduction for GpIso2Exp(𝑝) remains open
after 40 years of studying GpI (going back at least to [29, 60]), whereas the reduction for GI was found within the first
decade of the rise of computational complexity theory. Second, unlike SAT, for which there have been no non-trivial
algorithms to reduce exact counting to decision, we show a moderately exponential-time algorithm for GpIso2Exp(𝑝). As
Ryan Williams pointed out to us, asking for the existence of a subexponential-time counting-to-decision reduction for
SAT seems to lead to asking for the relation between the decision [38] and the counting [25] versions of the Exponential
Time Hypothesis.
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4 Joshua A. Grochow and Youming Qiao

Nilpotency class reduction. Unlike the case of Graph Isomorphism, for GpI essentially the only class of groups for
which isomorphism is known to be as hard as the general case are those which are directly indecomposable, that is,
they cannot be written as a direct product 𝐴 × 𝐵 with both 𝐴, 𝐵 nontrivial [45, 73, 74]. However, this result is the group
analogue of saying that isomorphism of connected graphs is GI-complete, so although useful (and much less trivial
than in the case of graphs vs connected graphs), from a structural perspective it is more like a zero-th step.

For a variety of reasons (e.g., [32]), 𝑝-groups of nilpotency class 2 and exponent 𝑝 are widely believed to be the hardest
cases of GpI, but to date there is no known reduction from isomorphism in any larger class of groups to this class. The
Tensor Isomorphism-completeness of testing isomorphism in this class of groups (when given by generating matrices
over F𝑝 ) suggests an additional reason for hardness [35] (see also Section 6.1). Here, we leverage that completeness
result to give a reduction within GpI itself. While it falls short of being GpI-complete (equivalent to GpI), this is the first
such reduction that we are aware of.

To state our result, we need to first recall the definition of nilpotency class. We will give an inductive definition: a
group𝐺 is nilpotent of class 1 if it is abelian, and nilpotent of class 𝑐 > 1 if𝐺/𝑍 (𝐺) (𝐺 modulo its center) is nilpotent of
class 𝑐 −1. Recall that a finite group is nilpotent iff it is the direct product of its Sylow 𝑝-subgroups, so from the comment
above, isomorphism of nilpotent groups is polynomial-time equivalent to isomorphism of 𝑝-groups (for varying 𝑝).

Theorem P. Let 𝑝 be an odd prime. For groups given by generating sets of𝑚 matrices of size 𝑛 × 𝑛 over F𝑝𝑒 , Group
Isomorphism for 𝑝-groups of exponent 𝑝 and class 𝑐 < 𝑝 reduces to Group Isomorphism for 𝑝-groups of exponent 𝑝 and

class 2 in time poly(𝑛,𝑚, 𝑒 log 𝑝).

In fact, because the Lazard correspondence works whenever all subgroups generated by 3 elements have nilpotency
class < 𝑝 , our reduction also works in this more general setting. For example, as a consequence of Thm. P, testing
isomorphism of 5-groups in which every 3-generated subgroup has class 4 (the groups themselves may have larger
class) reduces to testing isomorphism of 5-groups of class 2 in the matrix group model over fields of characteristic 5.

Remark 1.2. Two additional results would suffice to get the analogous result in the Cayley table model. The first is
to compute the Lazard correspondence in the Cayley table model in time poly( |𝐺 |); we thank an anonymous ITCS
reviewer for pointing out that this can be achieved by applying the matrix Lazard correspondence (see Proposition 6.4)
to the left regular representation of the group on itself. The second is to improve the blow-up in the reduction from (Lie)
Algebra Isomorphism to 3TI from [31]. Currently this reduction increases the dimension quadratically, which means
the size of the group becomes |𝐺 |𝑂 (log |𝐺 | ) after the reduction; instead, we would need a reduction that increases the
dimension only linearly.

Remark 1.3. One may also ask whether our theorems can be combined, in order to get search-to-decision and counting-
to-decision reductions for 𝑝-groups of class 𝑐 < 𝑝 instead of only class 2. We believe this should be approachable,
but again the quadratic increase in dimension in reductions, mentioned in the previous remark, gets in the way. The
quadratic increase makes the square-root exponential reductions into ordinary exponential reductions, negating any
gains.
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1.2 Main techniques and proof strategies

All our results are based on the connection with Tensor Isomorphism (TI) [35]. Let Λ(𝑛, F) denote the space of 𝑛 × 𝑛
skew-symmetric (alternating) matrices over F. Then the Baer Correspondence [8] gives an equivalence between{

𝑝-groups of class 2, exponent 𝑝 ,
𝐺/𝑍 (𝐺) � Z𝑛𝑝 , 𝑍 (𝐺) � Z𝑚𝑝

}
←→

{
A ≤ Λ(𝑛, F𝑝 )
dimA =𝑚

}
←→

{Nilpotent F𝑝 -Lie algebras of class
2, 𝐿/𝑍 (𝐿) � F𝑛𝑝 , 𝑍 (𝐿) � F𝑚𝑝

}
in such a way that two such groups are isomorphic iff the corresponding Lie algebras are isomorphic iff the corresponding
matrix spaces A,B ≤ Λ(𝑛, F𝑝 ) are isometric. Here, we say that two such linear subspaces are isometric if there is an
invertible matrix 𝐿 ∈ GL(𝑛, F𝑝 ) such that B = 𝐿𝑡A𝐿 := {𝐿𝑡𝐴𝐿 : 𝐴 ∈ A}. The corresponding computational problem is:

Definition 1.4 (The Alternating Matrix Space Isometry problem).
Input: 𝐴1, . . . , 𝐴𝑚 and 𝐵1, . . . , 𝐵𝑚 , 𝑛 × 𝑛 alternating3 matrices over a field F,
Decide: Is there a 𝐿 ∈ GL(𝑛, F), such that the linear span of {𝐴𝑖 : 𝑖 ∈ [𝑚]} is equal to the linear span of {𝐿𝑡𝐵𝑖𝐿 : 𝑖 ∈ [𝑚]}?

Our search- and counting-to-decision reductions (Thms. A and B) actually follow from analogous results on Al-
ternating Matrix Space Isometry (Thms. A′ and B′), using a constructive version of the Baer Correspondence
communicated to us by James B. Wilson (Lem. 6.2). The viewpoint of alternating matrix spaces made the constructions
much easier to find and reason about.

Our nilpotency class reduction uses a constructive version of the Lazard Correspondence (Prop. 6.4), which generalizes
the Baer correpsondence to nilpotency class 𝑐 < 𝑝 ; the TI-completeness of Lie Algebra Isomorphism for nilpotent Lie
algebras of class 2 (a combination of reductions from [31] and [35]); and finally the aforementioned constructive Baer
Correspondence to go back to 𝑝-groups of class 2.

In the remainder of this section we give more details of the techniques involved.

1.2.1 Linear algebraic coloring gadgets. Our most novel technique is to devise linear algebraic analogues for Alter-
nating Matrix Space Isometry of the graph coloring gadget, a key technique in the structural complexity study of
Graph Isomorphism (see, e. g., [47]). This technique is crucial in the following theorems, used to prove Thms. A and B,
respectively.

Theorem A′. Let 𝑞 be a prime power. There is a search-to-decision reduction for Alternating Matrix Space Isometry
which, given 𝑛 × 𝑛 alternating matrix spacesA,B over F𝑞 of dimension𝑚, computes an isometry between them if they are

isometric, in time 𝑞𝑂̃ (𝑛) or in time 𝑞𝑂 (𝑛+𝑚) . The reduction queries the decision oracle with inputs of dimension at most

𝑂 (𝑛2).

Theorem B′. For 𝑞 a prime power with 𝑞 = 𝑛Ω (1) , there is a randomized counting-to-decision reduction for Alternating
Matrix Space Isometry which, given 𝑛 ×𝑛 alternating matrix spacesA,B over F𝑞 of dimension𝑚, computes the number

of isometries from A to B in time 𝑞𝑂 (𝑛) . The reduction queries the decision oracle with inputs of dimension at most 𝑂 (𝑛2).

Let us first briefly review the graph coloring gadgets. Suppose we have a graph𝐺 = (𝑉 , 𝐸) with the vertices colored,
i. e., there is a map 𝑓 : 𝑉 → {1, . . . , 𝑐} =: [𝑐], where we view [𝑐] as the set of colors. Let 𝑛 = |𝑉 |. Suppose we want to
construct an uncolored graph 𝐺̃ , in which the color information carried by 𝑓 is encoded. One way to achieve this is the
following. (See [47] for other more efficient constructions.) For every 𝑣 ∈ 𝑉 , if 𝑣 ∈ 𝑉 is assigned color 𝑘 ∈ [𝑐], then

3An 𝑛 × 𝑛 matrix𝐴 over F is alternating if for every 𝑣 ∈ F𝑛 , 𝑣𝑡𝐴𝑣 = 0. When F is not of characteristic 2, this is equivalent to being skew-symmetric
𝐴𝑡 = −𝐴.
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6 Joshua A. Grochow and Youming Qiao

attach a “star” of size 𝑘𝑛 to 𝑣 , that is add 𝑘𝑛 new vertices to 𝐺 and attach them all to 𝑣 . We then get a graph 𝐺̃ with
𝑂 (𝑐𝑛2) vertices, and we see that an automorphism of 𝐺̃ , when restricting to 𝑉 , has to map 𝑣 ∈ 𝑉 to another 𝑣 ′ ∈ 𝑉 of
the same color, as degrees need to be preserved under automorphisms.

Such an idea can be carried out in the 3-tensor context as in [31], but with a significant loss of efficiency, which
prevents its use for search- and counting-to-decision reductions and indicates the needs for new techniques. To illustrate
the situation, we consider a toy problem. To ease the presentation, we adopt a perspective on 3-tensors that we hope is
clear on its own; the analogy with the graph case is fairly close, but not immediately obvious, and we present it in full
detail in Sec. 3. Note that by slicing a 3-tensor along one direction, we get a tuple of matrices (see also Section 2); in the
following of this subsection we shall mostly work with matrix tuples.

LetA = (𝐴1, . . . , 𝐴𝑚) ∈ M(𝑛, F)𝑚 be a tuple of matrices, where𝐴𝑖 ’s are linearly independent, and M(𝑛, F) denotes the
space of𝑛×𝑛matrices over F. There are two natural actions onA. The first action is 𝑆 = (𝑠𝑖, 𝑗 ) ∈ GL(𝑚, F) onA by sending
𝐴 𝑗 to

∑
𝑖∈[𝑚] 𝑠𝑖, 𝑗𝐴𝑖 . Denote the resulting matrix tuple by A𝑆 . The second action is (𝐿, 𝑅) ∈ GL(𝑛, F) ×GL(𝑛, F) on A by

sending𝐴 𝑗 to 𝐿𝐴 𝑗𝑅
𝑡 for 𝑗 = 1, . . . ,𝑚. Denote the resultingmatrix tuple by 𝐿A𝑅𝑡 . For two tuplesA,B, and for the purposes

of this illustration, let us define the set of isomorphisms as Iso(A,B) = {𝑆 ∈ GL(𝑚, F) : ∃𝐿, 𝑅 ∈ GL(𝑛, F), 𝐿A𝑅𝑡 = B𝑆 }.
In the counting-to-decision reduction we will need to test isomorphism of such tuples under the action by diagonal

matrices. Let diag(𝑚, F) denote the subgroup of GL(𝑚, F) consisting of diagonal matrices. Our goal then is to construct
Ã = (𝐴̃1, 𝐴̃2, 𝐴̃3) ∈ M(𝑁, F)3 and B̃, such that Iso(Ã, B̃) = Iso(A,B) ∩ diag(3, F). The construction we use, from [31], is
as follows. Let 𝑁 = 23 · 𝑛 = 8𝑛, and let

𝐴̃1 =


𝐴1 0 0 0
0 𝐼𝑛 0 0
0 0 0 0
0 0 0 0

 , 𝐴̃2 =


𝐴2 0 0 0
0 0 0 0
0 0 𝐼2𝑛 0
0 0 0 0

 , 𝐴̃3 =


𝐴3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝐼4𝑛

 , (1)

where 𝐼𝑠 denotes the identity matrix of size 𝑠 , and 0’s denote all-zero matrices of appropriate sizes, and define B̃ similarly.
By [31, Lemma 2.2], we have Iso(Ã, B̃) = Iso(A,B) ∩ diag(3, F). The proof, while not difficult, relies on certain algebraic
machineries like the Krull–Schmidt Theorem for quiver representations. For our purpose, we only point out that a key
in the proof is that Iso(Ã, B̃) ⊆ diag(3, F), which can be easily checked by comparing the ranks of the 𝐴̃𝑖 , 𝐵̃𝑖 .

The preceding gadget construction can be generalized to handle subgroups of GL(𝑛, F) of the form {


𝑆1 0 . . . 0
0 𝑆2 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . 𝑆𝑐


:

𝑆𝑖 ∈ GL(𝑛𝑖 , F) }, where 𝑐 = 𝑂 (log𝑛). We shall refer to this gadget as the Futorny–Grochow–Sergeichuk gadget, or FGS
gadget for short.

However, the FGS gadget cannot be used for search- and counting-to-decision reductions in Thms. A and B. The key
bottleneck is the restriction that 𝑐 = 𝑂 (log𝑛). To check why this is so reveals an interesting distinction between the
combinatorial and the linear algebraic worlds. Recall that in the graph setting, if there are 𝑐 colors, we need stars of
size at most 𝑐𝑛. While in the linear algebraic setting, if there are 𝑐 components, the biggest identity matrix needs to
be of size 2𝑐 · 𝑛 × 2𝑐 · 𝑛. The reason is that we can do non-trivial linear combinations of the matrices 𝐴̃𝑖 , so several
matrices of small ranks might be combined to get a matrix of large rank. Indeed, in Eq. 1, if 𝐴̃3 was accompanied with
𝐼3𝑛 instead of 𝐼4𝑛 , then a non-trivial linear combination of 𝐴̃1 and 𝐴̃2 could be of rank the same as 𝐴̃3, and the argument
that Iso(Ã, B̃) ⊆ diag(𝑚, F) would not go through. That’s why we need such exponential growth as the number of
components grow.
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To address this challenge, we devise two new gadgets, which restrict to the monomial group and the diagonal group,
respectively.

The monomial group of GL(𝑛, F), denoted as Mon(𝑛, F), consists of monomial matrices, i.e. a matrix with exactly
one non-zero entry in each row and each column. We design a gadget that restricts to Mon(𝑛, F), which is the key in
the search-to-decision reduction (Theorem A′).

In the case of F = F𝑞 and 𝑞 = 𝑛Ω (1) , we design a gadget that restricts to diag(𝑛, 𝑞), which is the key in the
counting-to-decision reduction (Theorem B′). The gadget for restricting to monomial groups cannot be used in the
counting-to-decision reduction. Its construction is already delicate, and the analysis is involved, relying on a celebrated
result of Kantor and Lubotzky regarding random generation of classical groups [44].

1.2.2 Constructive Lazard correspondence. In light of the TI-completeness of isomorphism of class 2 𝑝-groups given by
matrices over finite fields of characteristic 𝑝 [35], the key idea here is how to reduce isomorphism for other classes of
groups to some tensor problem. For groups in general this seems quite difficult, as tensors are multilinear and groups are
fundamentally not. But for 𝑝-groups of nilpotency class < 𝑝 , the Lazard correspondence gives an equivalence between
the category of such groups and a corresponding category of Lie algebras (over the same field, nilpotent of the same
class). If we could make this correspondence computationally efficient, we would then be in the fortunate setting in
which Lie Algebra Isomorphism is multilinear, and is in TI [31], so we can then reduce back to isomorphism of class
2 𝑝-groups. We observe (Proposition 6.4) that when the groups are given by matrices in characteristic 𝑝 , the Lazard
correspondence can be efficiently computed using the usual matrix logarithm and exponential.

The restriction to groups of nilpotency class 𝑐 < 𝑝 comes entirely from the Lazard correspondence, which is also
known only to work under this same assumption (see [62] for details, and what can be said when 𝑐 = 𝑝 , but unfortunately
already when 𝑐 = 𝑝 one no longer gets an equivalence up to isomorphism). Despite this restriction, we note that we
know of no prior reductions from any class of groups to 𝑝-groups of class 2.

In Rmk. 1.2 we discuss the ingredients necessary to get the same result for GpI in the Cayley table model, which
seems approachable.

1.3 Organization of the paper

In Section 2 we present preliminaries and notation. In Section 3 we present more details of the analogy with indi-
vidualizing vertices in graphs by attaching stars, using the example of reducing Monomial Code Eqivalence to
Tensor Isomorphism. In Section 4 we present our gadget to restrict to the monomial subgroup, an example use of
this to reduce GI to Alternating Matrix Space Isometry, and Thm. A′. In Section 5 we prove Thm. B′. In Section 6
we present the constructive Baer and Lazard Correspondences, and use them to derive Thms. A and B from Thms. A′

and B′, respectively, as well as proving Thm. P. Finally, in Section 7 we conclude with open questions and discuss the
relationship between this work and the authors’ line of work on Tensor Isomorphism.

2 PRELIMINARIES

Vector spaces. Let F be a field. In this paper we only consider finite-dimensional vector spaces over F. We use F𝑛 to
denote the vector space of length-𝑛 column vectors. The 𝑖th standard basis vector of F𝑛 is denoted ®𝑒𝑖 . Depending on the
context, 0 may denote the zero vector space, a zero vector, or an all-zero matrix. For 𝑆 a set of vectors, we use ⟨𝑆⟩ to
denote the subspace spanned by elements in 𝑆 .
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Font Object Space of objects
𝐴, 𝐵, . . . matrix M(𝑛, F) or M(ℓ × 𝑛, F)
A,B, . . . matrix tuple M(𝑛, F)𝑚 or M(ℓ × 𝑛, F)𝑚
A,B, . . . matrix space [Subspaces of M(𝑛, F) or Λ(𝑛, F)]
A, B, . . . 3-way array T(ℓ × 𝑛 ×𝑚, F)
Table 1. Summary of notation related to 3-way arrays and tensors.

Some groups. The general linear group of degree 𝑛 over a field F is denoted by GL(𝑛, F). The symmetric group of
degree 𝑛 is denoted by S𝑛 . The natural embedding of S𝑛 into GL(𝑛, F) is to represent permutations by permutation
matrices. The subgroup of GL(𝑛, F) consisting of diagonal matrices is called the diagonal subgroup, denoted by diag(𝑛, F).
A monomial matrix is a product of a diagonal and a permutation matrix; equivalently, each row and each column has
exactly one non-zero entry. The collection of monomial matrices forms a subgroup of GL(𝑛, F), which we call the
monomial subgroup and denote by Mon(𝑛, F). It is the semi-direct product diag(𝑛, F) ⋊ 𝑆𝑛 � (F∗)𝑛 ⋊ 𝑆𝑛 .

Nilpotent groups. If 𝐴, 𝐵 are two subsets of a group 𝐺 , then [𝐴, 𝐵] denotes the subgroup generated by all elements
of the form [𝑎, 𝑏] = 𝑎𝑏𝑎−1𝑏−1, for 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵. The lower central series of a group 𝐺 is defined as follows: 𝛾1 (𝐺) = 𝐺 ,
𝛾𝑘+1 (𝐺) = [𝛾𝑘 (𝐺),𝐺]. A group is nilpotent if there is some 𝑐 such that 𝛾𝑐+1 (𝐺) = 1; the smallest such 𝑐 is called the
nilpotency class of 𝐺 , or sometimes just “class” when it is understood from context. A finite group is nilpotent if and
only if it is the product of its Sylow subgroups; in particular, all groups of prime power order are nilpotent.

Matrices. Let M(ℓ ×𝑛, F) be the linear space of ℓ ×𝑛 matrices over F, and M(𝑛, F) := M(𝑛×𝑛, F). Given𝐴 ∈ M(ℓ ×𝑛, F),
𝐴𝑡 denotes the transpose of 𝐴.

A matrix 𝐴 ∈ M(𝑛, F) is alternating, if for any 𝑢 ∈ F𝑛 , 𝑢𝑡𝐴𝑢 = 0. That is, 𝐴 represents an alternating bilinear
form. Note that in characteristic ≠ 2, alternating is the same as skew-symmetric, but in characteristic 2 they differ
(in characteristic 2, skew-symmetric=symmetric). The linear space of 𝑛 × 𝑛 alternating matrices over F is denoted by
Λ(𝑛, F).

The 𝑛 × 𝑛 identity matrix is denoted by 𝐼𝑛 , and when 𝑛 is clear from the context, we may just write 𝐼 . The elementary

matrix 𝐸𝑖, 𝑗 is the matrix with the (𝑖, 𝑗)th entry being 1, and other entries being 0. The (𝑖, 𝑗)-th elementary alternating

matrix is the matrix 𝐸𝑖, 𝑗 − 𝐸 𝑗,𝑖 .

Matrix tuples.We use M(ℓ ×𝑛, F)𝑚 to denote the linear space of𝑚-tuples of ℓ ×𝑛 matrices. Boldface letters like A and
B denote matrix tuples. Let A = (𝐴1, . . . , 𝐴𝑚),B = (𝐵1, . . . , 𝐵𝑚) ∈ M(ℓ × 𝑛, F)𝑚 . Given 𝑃 ∈ M(ℓ, F) and 𝑄 ∈ M(𝑛, F),
𝑃A𝑄 := (𝑃𝐴1𝑄, . . . , 𝑃𝐴𝑚𝑄) ∈ M(ℓ × 𝑛, F)𝑚 . Given 𝑅 = (𝑟𝑖, 𝑗 )𝑖, 𝑗∈[𝑚] ∈ M(𝑚, F), A𝑅 := (𝐴′1, . . . , 𝐴

′
𝑚) ∈ M(ℓ × 𝑛, F)

where 𝐴′
𝑖
=
∑

𝑗∈[𝑚] 𝑟 𝑗,𝑖𝐴 𝑗 .

Remark 2.1. In particular, note that the coefficients in the formula of defining 𝐴′
𝑖
correspond to the entries in the 𝑖th

column of 𝑅. While this choice is immaterial (we could have chosen the opposite convention), all of our later calculations
are consistent with this convention.

Given A,B ∈ M(𝑛 × 𝑛, F)𝑚 , we say that A and B are isometric, if there exists 𝑃 ∈ GL(𝑛, F), such that 𝑃𝑡A𝑃 = B.
Finally, A and B are pseudo-isometric if there exist 𝑃 ∈ GL(𝑛, F) and 𝑅 ∈ GL(𝑚, F), such that 𝑃𝑡A𝑃 = B𝑅 .
Manuscript submitted to ACM
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Matrix spaces. Linear subspaces of M(ℓ × 𝑛, F) are called matrix spaces. Calligraphic letters like A and B denote
matrix spaces. By a slight abuse of notation, for A ∈ M(ℓ × 𝑛, F)𝑚 , we use ⟨A⟩ to denote the subspace spanned by those
matrices in A. For A,B ∈ M(𝑛, F)𝑚 , we say that the spaces ⟨A⟩, ⟨B⟩ are isometric iff the tuples A,B are pseudo-isometric.

3-way arrays. Let T(ℓ × 𝑛 ×𝑚, F) be the linear space of ℓ × 𝑛 ×𝑚 3-way arrays over F. We use the fixed-width
teletypefont for 3-way arrays, like A, B, etc..

Given A ∈ T(ℓ × 𝑛 ×𝑚, F), we can think of A as a 3-dimensional table, where the (𝑖, 𝑗, 𝑘)th entry is denoted as
A(𝑖, 𝑗, 𝑘) ∈ F. We can slice A along one direction and obtain several matrices, which are then called slices. For example,
slicing along the first coordinate, we obtain the horizontal slices, namely ℓ matrices 𝐴1, . . . , 𝐴ℓ ∈ M(𝑛 ×𝑚, F), where
𝐴𝑖 ( 𝑗, 𝑘) = A(𝑖, 𝑗, 𝑘). Similarly, we also obtain the lateral slices by slicing along the second coordinate, and the frontal
slices by slicing along the third coordinate.

We will often represent a 3-way array as a matrix whose entries are vectors. That is, given A ∈ T(ℓ × 𝑛 ×𝑚, F), we
can write

A =



𝑤1,1 𝑤1,2 . . . 𝑤1,𝑛
𝑤2,1 𝑤2,2 . . . 𝑤2,𝑛
.
.
.

. . .
. . .

.

.

.

𝑤ℓ,1 𝑤ℓ,2 . . . 𝑤ℓ,𝑛


,

where𝑤𝑖, 𝑗 ∈ F𝑚 , so that𝑤𝑖, 𝑗 (𝑘) = A(𝑖, 𝑗, 𝑘). Note that, while𝑤𝑖, 𝑗 ∈ F𝑚 are column vectors, in the above representation
of A, we should think of them as along the direction “orthogonal to the paper.” Following [48], we call 𝑤𝑖, 𝑗 the tube
fibers of A. Similarly, we can have the row fibers 𝑣𝑖,𝑘 ∈ F𝑛 such that 𝑣𝑖,𝑘 ( 𝑗) = A(𝑖, 𝑗, 𝑘), and the column fibers 𝑢 𝑗,𝑘 ∈ Fℓ

such that 𝑢 𝑗,𝑘 (𝑖) = A(𝑖, 𝑗, 𝑘).
Given 𝑃 ∈ M(ℓ, F) and 𝑄 ∈ M(𝑛, F), let 𝑃A𝑄 be the ℓ × 𝑛 ×𝑚 3-way array whose 𝑘th frontal slice is 𝑃𝐴𝑘𝑄 . For

𝑅 = (𝑟𝑖, 𝑗 ) ∈ GL(𝑚, F), let A𝑅 be the ℓ × 𝑛 ×𝑚 3-way array whose 𝑘th frontal slice is
∑
𝑘 ′∈[𝑚] 𝑟𝑘 ′,𝑘𝐴𝑘 ′ . Note that these

notations are consistent with the notations for matrix tuples above, when we consider the matrix tupleA = (𝐴1, . . . , 𝐴𝑚)
of frontal slices of A.

3 WARM UP: REDUCINGMONOMIAL CODE EQUIVALENCE TO TENSOR ISOMORPHISM

The purpose of this section is to present a concrete example that illustrates what we mean by a gadget restricting to
monomial subgroups. We also explain why the gadget would be viewed as a linear algebraic analogue of attaching stars
in the graph setting as mentioned in Section 1.2.1.

We will give a reduction here to the Tensor Isomorphism (TI) problem, so we begin by recalling its definition:

Definition 3.1 (The 𝑑-Tensor Isomorphism problem). 𝑑-Tensor Isomorphism over a field F is the problem: given two
𝑑-way arrays A = (𝑎𝑖1,...,𝑖𝑑 ) and B = (𝑏𝑖1,...,𝑖𝑑 ), where 𝑖𝑘 ∈ [𝑛𝑘 ] for 𝑘 ∈ [𝑑], and 𝑎𝑖1,...,𝑖𝑑 , 𝑏𝑖1,...,𝑖𝑑 ∈ F, decide whether
there are 𝑃𝑘 ∈ GL(𝑛𝑘 , F) for 𝑘 ∈ [𝑑], such that for all 𝑖1, . . . , 𝑖𝑑 ,

𝑎𝑖1,...,𝑖𝑑 =
∑︁

𝑗1,..., 𝑗𝑑

𝑏 𝑗1,..., 𝑗𝑑 (𝑃1)𝑖1, 𝑗1 (𝑃2)𝑖2, 𝑗2 · · · (𝑃𝑑 )𝑖𝑑 , 𝑗𝑑 .

Let A be an ℓ × 𝑛 ×𝑚 3-way array, with lateral slices 𝐿1, 𝐿2, . . . , 𝐿𝑛 (each an ℓ ×𝑚 matrix). For any vector 𝑣 ∈ F𝑛 , we
get an associated lateral matrix 𝐿𝑣 , which is a linear combination of the lateral slices as given, namely 𝐿𝑣 :=

∑𝑛
𝑗=1 𝑣 𝑗𝐿𝑗

(note that when 𝑣 = ®𝑒 𝑗 is the 𝑗-th standard basis vector, the associated lateral matrix is indeed 𝐿𝑗 ). By analogy with
adjacency matrices of graphs, 𝐿𝑣 is a natural analogue of the neighborhood of a vertex in a graph. Correspondingly, we
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get a notion of “degree,” which we may define as

degA (𝑣) := rk𝐿𝑣 = rk(
𝑛∑︁
𝑗=1

𝑣 𝑗𝐿𝑗 ) = dim span{𝐿𝑣𝑤 : 𝑤 ∈ F𝑚} = dim span{𝑢𝑡𝐿𝑣 : 𝑢 ∈ Fℓ }.

The last two characterizations are analogous to the fact that the degree of a vertex 𝑣 in a graph 𝐺 may be defined
as the number of “in-neighbors” (nonzero entries the corresponding row of the adjacency matrix) or the number of
“out-neighbors” (nonzero entries in the corresponding column).

To “individualize” 𝑣 , we can enlarge A with a gadget to increase degA (𝑣), as in the graph case. Note that degA (𝑣) ≤
min{ℓ,𝑚} because the lateral matrices are all of size ℓ ×𝑚. For notational simplicity, let us individualize 𝑣 = ®𝑒1 =

(1, 0, . . . , 0)𝑡 . To individualize 𝑣 , we will increase its degree by 𝑑 = min{ℓ,𝑚} + 1 > max𝑣∈F𝑛 degA (𝑣). Extend A to a new
3-way array A𝑣 of size (ℓ + 𝑑) × 𝑛 × (𝑚 + 𝑑); in the “first” ℓ × 𝑛 ×𝑚 “corner”, we will have the original array A, and then
we will append to it an identity matrix in one slice to increase deg(𝑣). More specifically, the lateral slices of A𝑣 will be

𝐿′1 =

[
𝐿1 0
0 𝐼𝑑

]
and 𝐿′𝑗 =

[
𝐿𝑗 0
0 0

]
(for 𝑗 > 1) .

Now we have that degA𝑣 (𝑣) ≥ 𝑑 . This almost does what we want, but now note that any vector 𝑤 = (𝑤1, . . . ,𝑤𝑛)
with 𝑤1 ≠ 0 has degA𝑣 (𝑤) = rk(𝑤1𝐿′1 +

∑
𝑗≥2𝑤 𝑗𝐿𝑗 ) ≥ 𝑑 . We can nonetheless consider this a sort of linear-algebraic

individualization.
Leveraging this trick, we can then individualize an entire basis of F𝑛 simultaneously, so that 𝑑 ≤ deg(𝑣) < 2𝑑 for any

vector 𝑣 in our basis, and deg(𝑣 ′) ≥ 2𝑑 for any nonzero 𝑣 ′ outside the basis (not a scalar multiple of one of the basis
vectors), as we do in the following result. This is also a 3-dimensional analogue of the reduction from GI to CodeEq
[54, 61, 64] (where they use Hamming weight instead of rank).

We now come to the concrete result. Given two𝑑×𝑛matrices𝐴, 𝐵 over F of rank𝑑 , the Monomial Code Eqivalence
problem is to decide whether there exist 𝑄 ∈ GL(𝑑, F) and a monomial matrix 𝑃 ∈ Mon(𝑛, F) ≤ GL(𝑛, F) (product
of a diagonal matrix and a permutation matrix) such that 𝑄𝐴𝑃 = 𝐵. Monomial equivalence of linear codes is a basic
notion in coding theory [12], and Monomial Code Eqivalence was recently studied in the context of post-quantum
cryptography [69].

Mostly for notational convenience, we make use of the following observation in the proof below:

Observation 3.2. Two 3-tensors A, B are isomorphic iff there exists invertible matrices 𝑄, 𝑃, 𝑅 such that 𝑄A𝑃 = B𝑅 .

Proof. With this notation, the definition of tensor isomorphism given above says that A, B are isomorphic iff there
exist invertible 𝑄 ′, 𝑃 ′, 𝑅 such that A = (𝑄 ′B𝑃 ′)𝑅 . Let 𝑄 = (𝑄 ′)−1, 𝑃 = (𝑃 ′)−1. Since the three actions (on the left, on
the right, and in the third direction) commute, we have

A = (𝑄 ′B𝑃 ′)𝑅

𝑄A = (B𝑃 ′)𝑅

𝑄A𝑃 = B𝑅 .

□

Proposition 3.3. Monomial Code Eqivalence reduces to 3-Tensor Isomorphism.

Proof. Without loss of generality we assume 𝑑 > 1, as the problem is easily solvable when 𝑑 = 1. We treat a 𝑑 × 𝑛
matrix 𝐴 as a 3-way array of size 𝑑 × 𝑛 × 1, and then follow the outline proposed above, of individualizing the entire
Manuscript submitted to ACM
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standard basis ®𝑒1, . . . , ®𝑒𝑛 . Since the third direction only has length 1, the maximum degree of any column is 1, so it
suffices to use gadgets of rank 2. More specifically, (see Figure 1) we build a (𝑑 + 2𝑛) ×𝑛 × (1 + 2𝑛) 3-way array A whose
lateral slices are

𝐿𝑗 =



𝑎1, 𝑗 01×2 01×2 · · · 01×2 · · · 01×2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

𝑎𝑑,𝑗 01×2 01×2 · · · 01×2 · · · 01×2
02×1 02×2 02×2 · · · 02×2 · · · 02×2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

02×1 02×2 02×2 · · · 𝐼2 · · · 02×2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

02×1 02×2 02×2 · · · 02×2 · · · 02×2


where the 𝐼2 block is in the 𝑗-th block of size 2 (that is, rows 𝑑 + 2( 𝑗 − 1) + {1, 2} and columns 1 + 2( 𝑗 − 1) + {1, 2}).

It will also be useful to visualize the frontal slices of A, as follows. Here each entry of the “matrix” below is actually a
(1 + 2𝑛)-dimensional vector, “coming out of the page”:

A =



𝑎1,1 𝑎1,2 . . . 𝑎1,𝑛
.
.
.

.

.

.
. . .

.

.

.

𝑎𝑑,1 𝑎𝑑,2 . . . 𝑎𝑑,𝑛

𝑒1,1 0 . . . 0
𝑒1,2 0 . . . 0
0 𝑒2,1 . . . 0
0 𝑒2,2 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . 𝑒𝑛,1
0 0 . . . 𝑒𝑛,2



,

where

𝑎𝑖, 𝑗 =

[
𝑎𝑖, 𝑗

02𝑛×1

]
∈ F1+2𝑛

𝑒𝑖, 𝑗 = ®𝑒1+2(𝑖−1)+𝑗 ∈ F1+2𝑛 for 𝑖 ∈ [𝑛], 𝑗 ∈ [2]

and the frontal slices are

𝐴1 =

[
𝐴

02𝑛×𝑛

]
𝐴1+2(𝑖−1)+𝑗 = 𝐸𝑑+2(𝑖−1)+𝑗,𝑖 for 𝑖 ∈ [𝑛], 𝑗 ∈ [2]

(In A we turn the vectors 𝑎𝑖, 𝑗 and 𝑒𝑖, 𝑗 “on their side” so they become perpendicular to the page. )
We claim that 𝐴 and 𝐵 are monomially equivalent as codes if and only if A and B are isomorphic as 3-tensors.
(⇒) Suppose 𝑄𝐴𝐷𝑃 = 𝐵 where 𝑄 ∈ GL(𝑑, F), 𝐷 ∈ diag(𝑛, F) and 𝑃 ∈ 𝑆𝑛 ≤ GL(𝑛, F). Then by examining the frontal

slices it is not hard to see that for 𝑄 ′ =
[
𝑄 0
0 (𝐷𝑃)−1 ⊗ 𝐼2

]
(where (𝐷𝑃)−1 ⊗ 𝐼2 denotes a 2𝑛 × 2𝑛 block matrix, where

the pattern of the nonzero blocks and the scalars are governed by (𝐷𝑃)−1, and each 2 × 2 block is either zero or
a scalar multiple of 𝐼2) we have 𝑄 ′𝐴1𝐷𝑃 = 𝐵1 and 𝑄 ′𝐴1+2(𝑖−1)+𝑗𝐷𝑃 = 𝐵1+2(𝜋 (𝑖 )−1)+𝑗 , where 𝜋 is the permutation
corresponding to 𝑃 . Thus A and B are isomorphic tensors, via the isomorphism (𝑄 ′, 𝐷𝑃, 𝐼1 ⊕ (𝑃 ⊗ 𝐼2)), where 𝐼1 ⊕ (𝑃 ⊗ 𝐼2)

denotes the block-diagonal matrix
[
1 0
0 𝑃 ⊗ 𝐼2

]
.

(⇐) Suppose there exist 𝑄 ∈ GL(𝑑 + 2𝑛, F), 𝑃 ∈ GL(𝑛, F), and 𝑅 ∈ GL(1 + 2𝑛, F), such that 𝑄A𝑃 = B𝑅 . First, note that
every lateral slice of A is of rank either 2 or 3, and the actions of 𝑄 and 𝑅 do not change the ranks of the lateral slices.
Furthermore, any non-trivial linear combination of more than 1 lateral slice results in a lateral matrix of rank ≥ 4. It
follows that 𝑃 cannot take nontrivial linear combinations of the lateral slices, hence it must be monomial.
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𝐴

𝐼2

𝐼2

Fig. 1. Pictorial representation of the reduction for Proposition 3.3.

Now consider the frontal slices. Note that, as we assume 𝑑 > 1, every frontal slice of 𝑄A𝑃 , except the first one, is

of rank 1. Therefore, 𝑅 must be of the form
[
𝑟1,1 01×(𝑛−1)
®𝑟 ′ 𝑅′

]
where 𝑅′ is (𝑛 − 1) × (𝑛 − 1). Since 𝑅 is invertible, we

must have 𝑟1,1 ≠ 0, and the first frontal slice of B𝑅 contains all the rows of 𝐵 scaled by 𝑟1,1 in its first 𝑑 rows. The first
frontal slice of 𝑄A𝑃 is a matrix that generates, by definition (and since we’ve shown 𝑃 is monomial), a code monomially
equivalent to 𝐴. Since the first frontal slices of 𝑄A𝑃 and B𝑅 are equal, and the latter is just a scalar multiple of 𝐵1, we
have that 𝐴 and 𝐵 are monomially equivalent as codes as well. □

4 SEARCH-TO-DECISION REDUCTION BY RESTRICTING TO MONOMIAL GROUPS

4.1 The gadget restricting to the monomial group

In this section, we present the gadget that restricts to the monomial group in the setting of Alternating Matrix Space
Isometry. To show this, we will need the concept of monomial isometry; see Some Groups above. Recall that a matrix
is monomial if, equivalently, it can be written as 𝐷𝑃 where 𝐷 is a nonsingular diagonal matrix and 𝑃 is a permutation
matrix. We say two matrix spacesA,B are monomially isometric if there is some𝑀 ∈ Mon(𝑛, F) such that𝑀𝑡A𝑀 = B.

Lemma 4.1. Alternating Matrix Space Monomial Isometry reduces to Alternating Matrix Space Isometry.
More specifically, there is a poly(𝑛,𝑚)-time algorithm 𝑟 taking alternating matrix tuples to alternating matrix tuples,

such that for A,B ∈ Λ(𝑛, F)𝑚 , the matrix spaces A = ⟨A⟩ and B = ⟨B⟩ are monomially isometric if and only if the matrix

spaces ⟨𝑟 (A)⟩ and ⟨𝑟 (B)⟩ are isometric.

The gadget used in Lemma 4.1 is essentially applying the gadget in Proposition 3.3 “in two directions.” Still, to prove
the correctness requires some work.
Manuscript submitted to ACM
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Proof. For A = (𝐴1, . . . , 𝐴𝑚) ∈ Λ(𝑛, F)𝑚 , define 𝑟 (A) to be the alternating matrix tuple Ã = (𝐴̃1, . . . , 𝐴̃𝑚+𝑛2 ) ∈
Λ(𝑛 + 𝑛2, F)𝑚+𝑛2 , where

(1) For 𝑘 = 1, . . . ,𝑚, 𝐴̃𝑘 =

[
𝐴𝑘 0
0 0

]
.

(2) For 𝑘 =𝑚 + (𝑖 − 1)𝑛 + 𝑗 , 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛], 𝐴̃𝑘 is the elementary alternating matrix 𝐸𝑖,𝑖𝑛+𝑗 − 𝐸𝑖𝑛+𝑗,𝑖 .

At this point, some readers may wish to look at the large matrix in Equation 2 and/or at Figure 2.
It is clear that 𝑟 can be computed in time 𝑂̃ ((𝑚 + 𝑛2) (𝑛2 + 𝑛)) = poly(𝑛,𝑚). Given alternating matrix tuples A,B, let

A,B be the corresponding matrix spaces they span, and let Ã = ⟨𝑟 (A)⟩ and B̃ = ⟨𝑟 (B)⟩. We claim that A and B are
monomially isometric if and only if Ã and B̃ are isometric.

To prove this, it will help to think of our matrix tuples A, Ã, etc. as (corresponding to) 3-way arrays, and to view
these 3-way arrays from two different directions. Towards this end, write the 3-way array corresponding to A as

A =



0 𝑎1,2 𝑎1,3 . . . 𝑎1,𝑛
−𝑎1,2 0 𝑎2,3 . . . 𝑎2,𝑛
−𝑎1,3 −𝑎2,3 0 . . . 𝑎3,𝑛
.
.
.

. . .
. . .

. . .
.
.
.

−𝑎1,𝑛 −𝑎2,𝑛 −𝑎3,𝑛 . . . 0


,

where 𝑎𝑖, 𝑗 are vectors in F𝑚 (“coming out of the page”), namely 𝑎𝑖, 𝑗 (𝑘) = 𝐴𝑘 (𝑖, 𝑗). The frontal slices of this array are
precisely the matrices 𝐴1, . . . , 𝐴𝑚 .

The 3-way array corresponding to Ã = 𝑟 (A) is then the (𝑛 + 1)𝑛 × (𝑛 + 1)𝑛 × (𝑚 + 𝑛2) array:

Ã =



0 𝑎1,2 𝑎1,3 . . . 𝑎1,𝑛 𝑒1,1 . . . 𝑒1,𝑛 0 . . . 0 . . . 0 . . . 0
−𝑎1,2 0 𝑎2,3 . . . 𝑎2,𝑛 0 . . . 0 𝑒2,1 . . . 𝑒2,𝑛 . . . 0 . . . 0
.
.
.

. . .
. . .

. . .
.
.
.

. . .
. . .

. . .
. . .

. . .
. . . . . .

. . .
. . .

.

.

.

−𝑎1,𝑛 −𝑎2,𝑛 −𝑎3,𝑛 . . . 0 0 . . . 0 0 . . . 0 . . . 𝑒𝑛,1 . . . 𝑒𝑛,𝑛

−𝑒1,1 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .
.
.
. . . .

.

.

.

−𝑒1,𝑛 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

0 −𝑒2,1 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .
.
.
. . . .

.

.

.

0 −𝑒2,𝑛 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .
.
.
. . . .

.

.

.

0 0 0 . . . −𝑒𝑛,1 0 . . . 0 0 . . . 0 . . . 0 . . . 0
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .
.
.
. . . .

.

.

.

0 0 0 . . . −𝑒𝑛,𝑛 0 . . . 0 0 . . . 0 . . . 0 . . . 0



, (2)

where 𝑎𝑖, 𝑗 =
[
𝑎𝑖, 𝑗

0

]
∈ F𝑚+𝑛2 (here think of the vector 𝑎𝑖, 𝑗 as a column vector, not coming out of the page; in the above

array we then lay the column vector 𝑎𝑖, 𝑗 “on its side” so that it is coming out of the page), and 𝑒𝑖, 𝑗 := 𝑒𝑚+(𝑖−1)𝑛+𝑗 ∈ F𝑚+𝑛
2 ,
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which we can equivalently write as
[

0𝑚
𝑒𝑖 ⊗ 𝑒 𝑗

]
, where we think of 𝑒𝑖 ⊗ 𝑒 𝑗 here as a vector of length 𝑛2. Note that all the

nonzero blocks besides upper-left “A” block only have nonzero entries that are strictly further back than the nonzero
entries in the upper-left block.

𝐴
𝐼𝑛

𝐼𝑛

-𝐼𝑛

-𝐼𝑛

Fig. 2. Pictorial representation of the reduction for Lemma 4.1.

The second viewpoint, which we will also use below, is to consider the lateral slices of Ã, or equivalently, to view Ã

from the side. When viewing Ã from the side, we see the (𝑛 + 1)𝑛 × (𝑚 + 𝑛2) × (𝑛 + 1)𝑛 3-way array:

Ã𝑙𝑎𝑡 =



ℓ1,1 ℓ1,2 . . . ℓ1,𝑚 𝑒𝑛+1 . . . 𝑒2𝑛 . . . 0 . . . 0
.
.
.

. . .
. . .

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

. . .
.
.
.

ℓ𝑛,1 ℓ𝑛,2 . . . ℓ𝑛,𝑚 0 . . . 0 . . . 𝑒𝑛2+1 . . . 𝑒𝑛2+𝑛
0 0 . . . 0 −𝑒1 . . . 0 . . . 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
. . . .

.

.

.
. . .

.

.

.

0 0 . . . 0 0 . . . −𝑒1 . . . 0 . . . 0
.
.
.

. . .
. . .

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

. . .
.
.
.

0 0 . . . 0 0 . . . 0 . . . −𝑒𝑛 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
. . . .

.

.

.
. . .

.

.

.

0 0 . . . 0 0 . . . 0 . . . 0 . . . −𝑒𝑛



, (3)

where every ℓ𝑖,𝑘 ∈ F𝑛
2+𝑛 has only the first 𝑛 components being possibly non-zero, namely, ℓ𝑖,𝑘 ( 𝑗) = 𝐴𝑘 (𝑖, 𝑗) for

𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛], 𝑘 ∈ [𝑚] and ℓ𝑖,𝑘 ( 𝑗) = 0 for any 𝑗 > 𝑛.

(Monomial isometry of input implies isometry of output) Suppose there exist 𝑃 ∈ Mon(𝑛, F) such that ⟨𝑃𝑡A𝑃⟩ =
⟨𝐵⟩. This happens if and only if there is an invertible matrix 𝑄 ∈ GL(𝑚, F) such that, for all 𝑖 , 𝑃𝑡𝐴𝑖𝑃 =

∑
𝑗 𝑄 𝑗𝑖𝐵 𝑗 , or,
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using our shorthand notation, 𝑃𝑡A𝑃 = B𝑄 . We can construct 𝑃 ∈ Mon(𝑛 + 𝑛2, F) and 𝑄̃ ∈ GL(𝑚 + 𝑛2, F) such that

𝑃𝑡 Ã𝑃 = B̃𝑄̃ . In fact, we will show that we can take 𝑃 =

[
𝑃 0
0 𝑃 ′

]
where 𝑃 ′ ∈ Mon(𝑛2, F), and 𝑄̃ =

[
𝑄 0
0 𝑄 ′

]
where

𝑄 ′ ∈ Mon(𝑛2, F). It is not hard to see that this form already ensures that the first𝑚 matrices in the vector 𝑃𝑡 Ã𝑃 and
those of B̃𝑄̃ are the same, since when 𝑃, 𝑄̃ are of this form, those first𝑚 matrices are controlled entirely by the 𝑃 (resp.,
𝑄) in the upper-left block of 𝑃 (resp., 𝑄̃).

The remaining question is then how to design appropriate 𝑃 ′ and 𝑄 ′ to take care of the last 𝑛2 matrices in Ã, B̃. This
actually boils down to applying the following simple identity, but “in 3 dimensions:” Let 𝑃 be the permutation matrix
corresponding to 𝜎 ∈ S𝑛 , so that 𝑃𝑒𝑖 = 𝑒𝜎 (𝑖 ) , and 𝑒𝑡𝑖 𝑃 = 𝑒𝑡

𝜎−1 (𝑖 ) . Let 𝐷 = diag(𝛼1, . . . , 𝛼𝑛) be a diagonal matrix. Then

𝑃𝑡𝐷𝑃 = diag(𝛼𝜎−1 (1) , . . . , 𝛼𝜎−1 (𝑛) ) . (4)

To see how Equation 4 helps in our setting, it is easier to focus attention on the lower right 𝑛2 × 𝑛2 sub-array of Ã𝑙𝑎𝑡 ,
namely:

𝑀 = −



𝑒1 . . . 0 . . . 0 . . . 0
.
.
.

. . .
.
.
. . . .

.

.

.
. . .

.

.

.

0 . . . 𝑒1 . . . 0 . . . 0
.
.
.

. . .
.
.
.

. . .
.
.
.

. . .
.
.
.

0 . . . 0 . . . 𝑒𝑛 . . . 0
.
.
.

. . .
.
.
. . . .

.

.

.
. . .

.

.

.

0 . . . 0 . . . 0 . . . 𝑒𝑛



, (5)

The corresponding parts of the corresponding lateral slices of (𝑃𝑡 Ã𝑃)𝑄̃ are then of the form (𝑃 ′𝑡𝑀𝑄 ′)𝑃 . Here the 𝑃
in the “exponent” acts by sending the 𝑒𝑖 entries in𝑀 to 𝛼𝜎 (𝑖 )𝑒𝜎 (𝑖 ) entries, where 𝜎 is the permutation supporting 𝑃
and 𝛼𝑖 is the value of the unique nonzero entry in the 𝑖-th row of 𝑃 . That is, we have

𝑀𝑃 = −



𝛼𝜎 (1)𝑒𝜎 (1) . . . 0 . . . 0 . . . 0
.
.
.

. . .
.
.
. . . .

.

.

.
. . .

.

.

.

0 . . . 𝛼𝜎 (1)𝑒𝜎 (1) . . . 0 . . . 0
.
.
.

. . .
.
.
.

. . .
.
.
.

. . .
.
.
.

0 . . . 0 . . . 𝛼𝜎 (𝑛)𝑒𝜎 (𝑛) . . . 0
.
.
.

. . .
.
.
. . . .

.

.

.
. . .

.

.

.

0 . . . 0 . . . 0 . . . 𝛼𝜎 (𝑛)𝑒𝜎 (𝑛)



,

So setting 𝑃 ′ = 𝜎 ⊗ 𝐼𝑛 , 𝑄 ′ the monomial matrix supported by 𝜎 ⊗ 𝐼𝑛 with scalars being 1/𝛼𝑖 ’s, we have 𝑃 ′𝑡𝑀𝑃𝑄 ′ = 𝑀

by Equation 4.

(Isometry of output implies monomial isometry of input) Suppose there exist 𝑃 ∈ GL(𝑛 + 𝑛2, F) and 𝑄̃ ∈
GL(𝑚 + 𝑛2, F), such that 𝑃𝑡 Ã𝑃 = B̃𝑄̃ . The key feature of these gadgets now comes into play: consider the lateral slices
of Ã, which are the frontal slices of A𝑙𝑎𝑡 (which may be easier to visualize by looking at Equation 3 and Figure 2). The
first 𝑛 lateral slices of Ã and B̃ are of rank ≥ 𝑛 and < 2𝑛, while the other lateral slices are of rank < 𝑛 (in fact, they are
of rank 1; note that without loss of generality we may assume 𝑛 > 1, for the only 1 × 1 alternating matrix space is
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the zero space). Furthermore, left multiplying a lateral slice by 𝑃𝑡 and right multiplying it by 𝑄̃ does not change its
rank. However, the action of 𝑃 here is by 𝑃𝑡 Ã𝑃 , and while the 𝑃𝑡 here corresponds to left multiplication on the lateral
slices (=frontal slices of A𝑙𝑎𝑡 ), the 𝑃 on the right here corresponds to taking linear combinations of the lateral slices. In
other words, just as A𝑙𝑎𝑡 is the “side view” of Ã, (𝑃𝑡A𝑙𝑎𝑡𝑄̃)𝑃 is the side view of (𝑃𝑡 Ã𝑃)𝑄̃ . Taking linear combinations
of the lateral slices could, in principle, alter their rank; we will use the latter possibility to show that 𝑃 must be of a
constrained form.

Write 𝑃 =

[
𝑃1,1 𝑃1,2
𝑃2,1 𝑃2,2

]
where 𝑃1,1 is of size 𝑛 × 𝑛. We first claim that 𝑃1,2 = 0. For if not, then in (A𝑙𝑎𝑡 )𝑃 (the side

view), one of the last 𝑛2 frontal slices receives a nonzero contribution from one of the first 𝑛 frontal slices of A𝑙𝑎𝑡 .
Looking at the form of these slices from Equation 3, we see that any such nonzero combination will have rank ≥ 𝑛,
but this is a contradiction since the corresponding slice in B𝑙𝑎𝑡 has rank 1. Thus 𝑃1,2 = 0, and therefore 𝑃1,1 must be
invertible, since 𝑃 is.

Finally, we claim that 𝑃1,1 has to be a monomial matrix. If not, then some frontal slice of (A𝑙𝑎𝑡 )𝑃 among the first 𝑛
would have a contribution from more than one of these 𝑛 slices. Considering the lower-right 𝑛2 ×𝑛2 sub-matrix of such
a slice, we see that it would have rank exactly 𝑘𝑛 for some 𝑘 ≥ 2, which is again a contradiction since the first 𝑛 slices
of B𝑙𝑎𝑡 all have rank < 2𝑛. It follows that 𝑃𝑡1,1𝐴𝑖𝑃1,1, 𝑖 ∈ [𝑚], are in B, and thus A and B are monomially isometric via
𝑃1,1. □

4.1.1 Application: reducing Graph Isomorphism to Alternating Matrix Space Isometry. An application of the
monomial-restricting gadget is to give an immediate reduction from Graph Isomorphism to Alternating Matrix
Space Isometry. While a reduction between these two problems is already known (cf. [35] for details), we choose to
present it as an illustration of using this gadget.

Proposition 4.2. Graph Isomorphism reduces to Alternating Matrix Space Isometry.

Proof. For a graph 𝐺 = ( [𝑛], 𝐸), let A𝐺 be the alternating matrix tuple A𝐺 = (𝐴1, . . . , 𝐴 |𝐸 | ) with 𝐴𝑒 = 𝐸𝑖, 𝑗 − 𝐸 𝑗,𝑖
where 𝑒 = {𝑖, 𝑗} ∈ 𝐸, and let A𝐺 = ⟨A𝐺 ⟩ be the alternating matrix space spanned by that tuple. If 𝑃 is a permutation
matrix giving an isomorphism between two graphs 𝐺 and 𝐻 , then it is easy to see that 𝑃𝑡A𝐺𝑃 = A𝐻 , and thus the
corresponding matrix spaces are isometric. The converse direction is not clear, though it is recently shown to be
true in [37] with a rather intricate proof. Instead, we will provide a conceptually simpler proof, by showing that this
construction gives a reduction to monomial isometry, and then using Lemma 4.1 to reduce to ordinary Alternating
Matrix Space Isometry.

Let us thus establish that the preceding construction gives a reduction from GI to Alternating Matrix Space
Monomial Isometry. We will show that 𝐺 � 𝐻 if and only if A𝐺 and A𝐻 are monomially isometric. The forward
direction was handled above. For the converse, suppose 𝑃𝑡𝐷𝑡A𝐺𝐷𝑃 = A𝐻 where 𝐷 is diagonal and 𝑃 is a permutation
matrix. We claim that in this case, 𝑃 in fact gives an isomorphism from 𝐺 to 𝐻 . First let us establish that 𝑃 alone
gives an isometry between A𝐺 and A𝐻 . Note that for any diagonal matrix 𝐷 = diag(𝛼1, . . . , 𝛼𝑛) and any elementary
alternating matrix 𝐸𝑖, 𝑗 −𝐸 𝑗,𝑖 , we have𝐷𝑡 (𝐸𝑖, 𝑗 −𝐸 𝑗,𝑖 )𝐷 = 𝛼𝑖𝛼 𝑗 (𝐸𝑖, 𝑗 −𝐸 𝑗,𝑖 ). SinceA𝐺 has a basis of elementary alternating
matrices, the action of 𝐷 on this basis is just to re-scale each basis element, and thus 𝐷𝑡A𝐺𝐷 = A𝐺 . Thus, we have
𝑃𝑡A𝐺𝑃 = A𝐻 .

Finally, note that 𝑃𝑡 (𝐸𝑖, 𝑗 − 𝐸 𝑗,𝑖 )𝑃 = 𝐸𝜋 (𝑖 ),𝜋 ( 𝑗 ) − 𝐸𝜋 ( 𝑗 ),𝜋 (𝑖 ) = 𝐴𝜋 (𝑒 ) , where 𝜋 ∈ S𝑛 is the permutation corresponding
to 𝑃 , and by abuse of notation we write 𝜋 (𝑒) = 𝜋 ({𝑖, 𝑗}) = {𝜋 (𝑖), 𝜋 ( 𝑗)} as well. Since the elementary alternating
matrices are linearly independent, andA𝐻 has a basis of elementary alternating matrices, the only way for 𝐴𝜋 (𝑒 ) to be
Manuscript submitted to ACM
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in A𝐻 is for it to be equal to one of the basis elements (one of the matrices in A𝐻 ) or its negative. Since the edges are
undirected, either of these two possibilities means that 𝜋 (𝑒) must be an edge of 𝐻 . In other words, 𝜋 (𝑒) must be an
edge of 𝐻 . As 𝑃 is invertible, we thus have that 𝑃 gives an isomorphism 𝐺 � 𝐻 . □

4.2 Search-to-decision reduction for Alternating Matrix Space Isometry

Theorem A′. Given an oracle deciding Alternating Matrix Space Isometry, the task of finding an isometry between

two alternating matrix spaces A,B ∈ Λ(𝑛, F𝑞), if it exists, can be solved using at most 𝑞𝑂 (𝑛) oracle queries each of size at

most 𝑂 (𝑛2), and in time either 𝑞𝑂 (𝑛) · 𝑛! = 𝑞𝑂̃ (𝑛) , or 𝑞𝑂 (𝑛+𝑚) , where𝑚 = dimA.

Proof idea. The high level outline here is as follows. We proceed by induction to reduce to monomial isometry.
Monomial isometry can be brute forced in time 𝑛!(𝑞 − 1)𝑛 , and in Prop 4.4 we show how to solve it in 𝑞𝑂 (𝑛+𝑚) time,
giving the stated time bounds.

The induction is along the following lines, reminiscent of the individualization paradigm from Graph Isomorphism.
Suppose we have guessed vectors 𝑣1, . . . , 𝑣𝑖 and a subspace 𝑉𝑖 complementary to ⟨𝑣1, . . . , 𝑣𝑖 ⟩ such that there is an
isometry A → B that sends 𝑒1 ↦→ 𝑣1, . . . , 𝑒𝑖 ↦→ 𝑣𝑖 and ⟨𝑒𝑖+1, . . . , 𝑒𝑛⟩ ↦→ 𝑉𝑖 . Now we want to guess 𝑣𝑖+1 ∈ 𝑉𝑖 and a
complement to 𝑣𝑖+1 in 𝑉𝑖 (that is, 𝑉𝑖 = ⟨𝑣𝑖+1⟩ ⊕ 𝑉𝑖+1) preserving this property. Note there are at most 𝑞dim𝑉𝑖 ≤ 𝑞𝑛

choices for 𝑣𝑖+1 and at most 𝑞dim𝑉𝑖 ≤ 𝑞𝑛 choices for 𝑉𝑖+1 (since it is a codimension-1 subspace of 𝑉𝑖 ). For each such
choice of 𝑣𝑖+1,𝑉𝑖+1, let 𝑃 be an arbitrary map that sends 𝑒1 ↦→ 𝑣1, . . . , 𝑒𝑖 ↦→ 𝑣𝑖 , 𝑒𝑖+1 ↦→ 𝑣𝑖+1, and 𝑃 (⟨𝑒𝑖+2, . . . , 𝑒𝑛⟩) = 𝑉𝑖+1.
Then 𝑣𝑖+1,𝑉𝑖+1 are valid choices iff, after replacing A by 𝑃𝑡A𝑃 , the new A and B are isometric by an isometry that is
monomial in the first 𝑖 coordinates and general linear in the remaining 𝑛 − 𝑖 . To check whether this is indeed the case,
we add gadgets to get 3-way arrays Ã𝑖 , B̃𝑖 such that the latter two are pseudo-isometric iff A and B are isometric by an
isometry that is monomial in the first 𝑖 coordinates. We then feed Ã𝑖 , B̃𝑖 to the decision oracle to check whether this is
the case.

One of the key tricks here is guessing the complementary subspace at the same time we guess 𝑣𝑖+1. If we did not do
that, at some point we would be guessing complementary subspaces of half codimension, of which there are 𝑞Θ(𝑛2 ) ,
which would have negated any asymptotic gain over a brute-force algorithm. □

Proof. We first present the gadget construction. Then based on this gadget, we present the search-to-decision
reduction.

Gadget construction. Let A = (𝐴1, . . . , 𝐴𝑚) be an ordered linear basis ofA, and let A ∈ M(𝑛 ×𝑛 ×𝑚, F𝑞) be the 3-way
array constructed from A, so we can write

A =



0 𝑎1,2 𝑎1,3 . . . 𝑎1,𝑛
−𝑎1,2 0 𝑎2,3 . . . 𝑎2,𝑛
−𝑎1,3 −𝑎2,3 0 . . . 𝑎3,𝑛
.
.
.

. . .
. . .

. . .
.
.
.

−𝑎1,𝑛 −𝑎2,𝑛 −𝑎3,𝑛 . . . 0


,

where 𝑎𝑖, 𝑗 ∈ F𝑚 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 thought of as a vector coming out of the page.
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We first consider a 3-way array Ã𝑖 constructed from A, for any 1 ≤ 𝑖 ≤ 𝑛 − 1, as Ã𝑖 =

0 𝑎1,2 . . . 𝑎1,𝑖 𝑎1,𝑖+1 . . . 𝑎1,𝑛 −𝑒1,1 . . . −𝑒1,2𝑛 0 . . . 0 0 . . . 0 0 . . . 0
−𝑎1,2 0 . . . 𝑎2,𝑖 𝑎2,𝑖+1 . . . 𝑎2,𝑛 0 . . . 0 −𝑒2,1 . . . −𝑒2,2𝑛 0 . . . 0 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

−𝑎1,𝑖 −𝑎2,𝑖 . . . 0 𝑎𝑖,𝑖+1 . . . 𝑎𝑖,𝑛 0 . . . 0 0 . . . 0 −𝑒𝑖,1 . . . −𝑒𝑖,2𝑛 0 . . . 0
−𝑎1,𝑖+1 −𝑎2,𝑖+1 . . . −𝑎𝑖,𝑖+1 0 . . . 𝑎𝑖+1,𝑛 0 . . . 0 0 . . . 0 0 . . . 0 −𝑓1,1 . . . −𝑓1,𝑛

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

−𝑎1,𝑛 −𝑎2,𝑛 . . . −𝑎𝑖,𝑛 −𝑎𝑖+1,𝑛 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 −𝑓𝑛−𝑖,1 . . . −𝑓𝑛−𝑖,𝑛
𝑒1,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

𝑒1,2𝑛 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 𝑒2,1 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

0 𝑒2,2𝑛 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 0 . . . 𝑒𝑖,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

0 0 . . . 𝑒𝑖,2𝑛 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 0 . . . 0 𝑓1,1 . . . 𝑓𝑛−𝑖,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

0 0 . . . 0 𝑓1,𝑛 . . . 𝑓𝑛−𝑖,𝑛 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0



,

where 𝑒 𝑗,𝑘 is the (𝑚 + 2𝑛( 𝑗 − 1) + 𝑘)th standard basis vector, and 𝑓𝑗,𝑘 is the (𝑚 + 2𝑛𝑖 + 𝑛( 𝑗 − 1) + 𝑘)th standard basis
vector. A pictorial description can be seen by combining Figure 2 (for the 𝑒 𝑗,𝑘 ) and [35, Figure 3] (for the 𝑓𝑗,𝑘 ).

We claim the following.

Claim4.3. If there exist invertiblematrices 𝑃 and𝑄 to satisfy (𝑃𝑡 Ã𝑖𝑃)𝑄 = B̃𝑖 , then 𝑃 must be in the form


𝑃1,1 0 0
0 𝑃2,2 0
𝑃3,1 𝑃3,2 𝑃3,3

 ,
where 𝑃1,1 is a monomial matrix of size 𝑖 × 𝑖 , 𝑃2,2 is of size (𝑛 − 𝑖) × (𝑛 − 𝑖), and 𝑃3,3 is of size (2𝑛𝑖 + 𝑛) × (2𝑛𝑖 + 𝑛).

Furthermore, there exist such 𝑃 and 𝑄 if and only if A and B are isometric by a matrix of the form

[
𝑃1,1 0
0 𝑃2,2

]
where

𝑃1,1 is a monomial matrix of size 𝑖 × 𝑖 .

Proof of claim. The idea here is to combine the arguments for the FGS gadget [31] as used in [35], and the
monomial-restricting gadget introduced in Section 4.1. In fact, we will see that these two gadgets can be combined
seamlessly into the above construction, and the claim follows immediately from the aforementioned arguments.
Nonetheless, for completeness, we spell out the details.

Write

𝑃 =


𝑃1,1 𝑃1,2 𝑃1,3
𝑃2,1 𝑃2,2 𝑃2,3
𝑃3,1 𝑃3,2 𝑃3,3


where 𝑃1,1 is 𝑖 × 𝑖 , 𝑃2,2 is (𝑛 − 𝑖) × (𝑛 − 𝑖) and 𝑃3,3 is (2𝑛𝑖 + 𝑛) × (2𝑛𝑖 + 𝑛).

First, we focus on the lateral slices. Note that the lateral slice of (𝑃𝑡A𝑖𝑃)𝑄 are the frontal slices of (𝑃𝑡A𝑙𝑎𝑡
𝑖
𝑄)𝑃 . Thus,

the 𝑃 in the “exponent” here is taking a (monomial) linear combination of the lateral slices. As the ranks of the frontal
Manuscript submitted to ACM
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slices of (𝑃𝑡A𝑙𝑎𝑡
𝑖
𝑄) are the same as the ranks of the frontal slices of Ã𝑙𝑎𝑡

𝑖
(=the lateral slices of Ã𝑖 ), we now consider their

ranks. We have:

• The first 𝑖 lateral slices have rank in [2𝑛, 3𝑛). They are at least rank 2𝑛 because of the identity gadgets in the
lower blocks. There is at most an additional rank 𝑛 − 1 because of the entries in the first 𝑛 rows. Note that this
is 𝑛 − 1 rather than 𝑛 because the tube fibers (coming out of the page) along the diagonal are 0 in the upper-left
𝑛 × 𝑛 sub-array, giving an entire row of zeros in the lateral slice.
• The next 𝑛 − 𝑖 lateral slices have rank in [𝑛, 2𝑛). The lower bound of 𝑛 comes from the identity gadget in the

bottom-most block, and the additional ≤ 𝑛 − 1 comes from the first 𝑛 rows, as in the previous case.
• Of the remaining lateral slices, the first 2𝑛𝑖 of these have rank 1 (coming from the −𝑒𝑖, 𝑗 in the upper-most block),

and the remaining 𝑛 lateral slices have rank exactly 𝑛 − 𝑖 ≤ 𝑛 − 1 (since 𝑖 ≥ 1) coming from the identity gadgets
in the rightmost block of Ã𝑖 . However, all we will need is that these remaining 2𝑛𝑖 + 𝑛 slices have rank in [1, 𝑛).

Next we consider what happens when we take linear combinations of the lateral slices. Recall from above that 𝑃
governs the linear combination of the lateral slices of (𝑃𝑡A𝑙𝑎𝑡

𝑖
𝑄)𝑃 . When we say a linear combination “involves” a slice,

we mean that slice occurs in the linear combination with nonzero coefficient.

• If a linear combination involves 1 or more of the first 𝑖 lateral slices, it has rank at least 2𝑛 because of the identity
block coming from the 𝑒𝑖, 𝑗 . Since the only lateral slices of B𝑖 that have rank ≥ 2𝑛 are the first 𝑖 , this tells us that
𝑃1,2 = 𝑃1,3 = 0. Since 𝑃 is invertible, this further implies that 𝑃1,1 must be invertible.

• If a linear combination involves 2 or more of the first 𝑖 lateral slices, it has rank at least 4𝑛, because of the
identity blocks coming from the 𝑒𝑖, 𝑗 in the description of A𝑖 above. Since there are no lateral slices of rank ≥ 3𝑛
in B𝑖 , this tells us that 𝑃1,1 has at most one nonzero entry per column. Since 𝑃1,1 is invertible by the above, we
have that 𝑃1,1 is a monomial matrix.

• If a linear combination involves at least one of the first 𝑖 lateral slices and at least one of the next 𝑛 − 𝑖 lateral
slices, it has rank at least 3𝑛: 2𝑛 coming from the identity gadget among the 𝑒𝑖, 𝑗 , and another 𝑛 coming from
the identity gadget among the 𝑓𝑖, 𝑗 . These two add because they are identity matrices on disjoint sets of columns
in the lateral slice. Since all lateral slices of B𝑖 have rank strictly less than 3𝑛, this tells us that 𝑃2,1 = 0.

• Finally, because the last 2𝑛𝑖 +𝑛 lateral slices have rank strictly less than 𝑛, but any linear combination involving
at least one of the lateral slices 𝑖 + 1, 𝑖 + 2, . . . , 𝑛 has rank ≥ 𝑛, we have that 𝑃2,3 = 0 as well.

This completes the proof of the first part of the claim.
For the “furthermore,” the (⇒) direction is straightforward: after observing that 𝑃 has to be of the above form, we

can easily verify that
[
𝑃1,1 0
0 𝑃2,2

]
is an isometry from A to B, where 𝑃1,1 is monomial.

For (⇐) direction of the “furthermore,” starting from
[
𝑃1,1 0
0 𝑃2,2

]
and 𝑄1,1 ∈ GL(𝑚, F), we need to design 𝑃3,3 ∈

GL(2𝑛𝑖 +𝑛, F) and𝑄2,2 ∈ GL(2𝑛𝑖 +𝑛(𝑛 − 𝑖), F) such that letting 𝑃 =


𝑃1,1 0 0
0 𝑃2,2 0
0 0 𝑃3,3

 and𝑄 =

[
𝑄1,1 0
0 𝑄2,2

]
, we have

𝑃𝑡 Ã𝑖𝑃 = B̃
𝑄

𝑖
. For this part of the argument, we can treat the 𝑒𝑖, 𝑗 gadgets and the 𝑓𝑖, 𝑗 gadgets independently. That is, we

take 𝑃3,3 =
[
𝑃3,3,1 0
0 𝑃3,3,2

]
and 𝑄2,2 =

[
𝑄2,2,1 0
0 𝑄2,2,2

]
, where 𝑃3,3,1 and 𝑄2,2,1 are 2𝑛𝑖 × 2𝑛𝑖 , 𝑃3,3,2 is 𝑛 × 𝑛 and 𝑄2,2,2 is

𝑛(𝑛 − 𝑖) ×𝑛(𝑛 − 𝑖). Then 𝑃3,3,1 and𝑄2,2,1 are the same as in the “Monomial isometry implies isometry” part of the proof
Manuscript submitted to ACM
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of Lemma 4.1 (where the same “𝑒𝑖, 𝑗 ” gadgets are used), and 𝑃3,3,2 and 𝑄2,2,2 are the matrices that come from the “only
if” direction of [35, Proposition 3.3] (where the same “𝑓𝑖, 𝑗 ” gadgets are used). □

The search-to-decision reduction. Given these preparations, we now present the search-to-decision reduction for
Alternating Matrix Space Isometry. Recall that this requires us to use the decision oracle O to compute an explicit
isometry transformation 𝑃 ∈ GL(𝑛, 𝑞), if A and B are indeed isometric. Think of 𝑃 as sending the standard basis
( ®𝑒1, . . . , ®𝑒𝑛) to another basis (𝑣1, . . . , 𝑣𝑛), where ®𝑒𝑖 and 𝑣𝑖 are in F𝑛𝑞 .

In the first step, we guess 𝑣1, the image of ®𝑒1, and a complement subspace of ⟨𝑣1⟩, at the cost of 𝑞𝑂 (𝑛) . For each
such guess, let 𝑃1 be the matrix which sends ®𝑒1 ↦→ 𝑣1 and sends ⟨ ®𝑒2, . . . , ®𝑒𝑛⟩ to the chosen complementary subspace
arbitrarily. We apply 𝑃1 to A, and still call the resulting 3-way array A in the following. Then construct Ã1 and B̃1,
and feed these two instances to the oracle O. Note that, since 𝑃1,1 (using notation as above) must be monomial, any
equivalence between Ã1 and B̃1 must preserve our choice of 𝑣1 up to scale. Thus, clearly, if A and B are indeed isometric
and we guess the correct image of 𝑒1, then the oracle O will return yes (and conversely).

In the second step, we guess 𝑣2, the image of ®𝑒2, and a complement subspace of ⟨𝑣2⟩ within ⟨ ®𝑒2, . . . , ®𝑒𝑛⟩, at the cost of
𝑞𝑂 (𝑛) . Note here that the previous step guarantees that there is an isometry respecting the direct sum decomposition
⟨𝑣1⟩⊕ ⟨ ®𝑒2, . . . , ®𝑒𝑛⟩, so we need only search for a complement of 𝑣2 within ⟨ ®𝑒2, . . . , ®𝑒𝑛⟩, and not a more general complement
of ⟨𝑣1, 𝑣2⟩ in all of F𝑛𝑞 . This is crucial for the runtime, as at the 𝑛/2 step, the latter strategy would result in searching
through 𝑞Θ(𝑛2 ) possibilities.

For each such guess, we apply the corresponding transformation to A (and again call the resulting 3-way array A).
Then construct Ã2 and B̃2, and feed these two instances to the oracle O. Clearly, if A and B are indeed isometric and
we guess the correct image of ®𝑒2 (and ®𝑒1 from the previous step), then the oracle O will return yes. However, there is a
small caveat here, namely we may guess some image of 𝑒2, such that A and B are actually isometric by some matrix 𝑃

of the form
[
𝑃1,1 0
0 𝑃2,2

]
where 𝑃1,1 is a monomial matrix of size 2 (instead of the more desired diagonal matrix). But

this is fine, as it still ensures 𝑃1,1 to be monomial, which is the key property to keep. This means that our choices of
{𝑣1, 𝑣2} is correct as a set up to scaling, so we proceed.

In general, in the 𝑖th step, we maintain the property thatA and B are isometric by some 𝑃 =

[
𝑃1,1 0
0 𝑃2,2

]
where 𝑃1,1

is a monomial matrix of size (𝑖 − 1) × (𝑖 − 1). We guess 𝑣𝑖 , the image of ®𝑒𝑖 in ⟨ ®𝑒𝑖 , . . . , ®𝑒𝑛⟩, and a complement subspace of
⟨𝑣𝑖 ⟩ within ⟨ ®𝑒𝑖 , . . . , ®𝑒𝑛⟩. This cost is 𝑞𝑂 (𝑛) . For each such guess, we apply the corresponding transformation to A (and
call the resulting 3-way array A). Then construct Ã𝑖 and B̃𝑖 , and feed these two instances to the oracle O. Once we guess

correctly, we ensure that A and B are isometric by 𝑃 =

[
𝑃1,1 0
0 𝑃2,2

]
where 𝑃1,1 is a monomial matrix of size 𝑖 × 𝑖 .

So after the (𝑛 − 1)th step, we know thatA and B are isometric by a monomial transformation. As the number of all
monomial transformations is (𝑞 − 1)𝑛 · 𝑛! ≤ 𝑞𝑛 · 2𝑛 log𝑛 = 𝑞𝑂̃ (𝑛) , we can enumerate all monomial transformations and
check correspondingly. This gives an algorithm in time 𝑞𝑂̃ (𝑛) . By resorting to Prop. 4.4 which solves Alternating
Matrix Space Monomial Isometry in time 𝑞𝑂 (𝑛+𝑚) , we have an algorithm in time 𝑞𝑂 (𝑛+𝑚) .

Note that all the instances we feed into the oracle O are of size 𝑂 (𝑛2). This concludes the proof. □

4.3 A simply-exponential algorithm for monomial isometry of alternating matrix spaces

We now state the algorithm for monomial isometry used in Theorem A′.
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Proposition 4.4. LetA,B ≤ Λ(𝑛, 𝑞) be𝑚-dimensional. Then there exists a 𝑞𝑂 (𝑛+𝑚) -time algorithm that decides whether

A and B are monomially isometric, and if so, computes an explicit monomial isometry.

Proof. Let A,B ≤ Λ(𝑛, 𝑞) be two𝑚-dimensional alternating matrix spaces. Clearly, by incurring a multiplicative
factor of 𝑞𝑛 , we can reduce to the problem of testing whether A and B are permutationally isometric, i.e. whether
there exists a permutation matrix 𝑇 ∈ GL(𝑛, 𝑞), such that 𝑇 𝑡A𝑇 = B. We will solve this problem in time 2𝑂 (𝑛) · 𝑞𝑂 (𝑚) .
This would give an algorithm with total running time 𝑞𝑛 · 2𝑂 (𝑛) · 𝑞𝑂 (𝑚) = 𝑞𝑂 (𝑛+𝑚) . The basic idea of the algorithm
comes from Luks’s dynamic programming technique for Hypergraph Isomorphism [55].

Reducing to a generalized linear code equivalence problem. Suppose A = ⟨𝐴1, . . . , 𝐴𝑚⟩, and B = ⟨𝐵1, . . . , 𝐵𝑚⟩.
Let A and B be the 𝑛×𝑛×𝑚 3-way arrays formed by the given bases ofA and B. The group S𝑛 ×GL(𝑚,𝑞) acts naturally
on the set of such 3-way arrays as follows: (𝜋,𝑄) · A = (𝑃𝜋A𝑃𝑇𝜋 )𝑄 , where 𝑃𝜋 is the permutation matrix corresponding
to 𝜋 . The action of GL(𝑚,𝑞) here corresponds to changing basis within a subspace, and thus one sees that two such
3-way arrays are in the same orbit of this action if and only if the corresponding matrix spaces are permutationally
isometric. For this proof, we introduce the notation PermIsom(A, B) for the coset in S𝑛 × GL(𝑚,𝑞) that sends A to B

under this action.
For 𝑆 ⊆ [𝑛] let A𝑆 denote the 𝑛 × 𝑛 ×𝑚 3-way array that agrees with A on indices (𝑖, 𝑗, 𝑘) whenever both 𝑖 and 𝑗

are in 𝑆 , and is zero outside of this region (in particular, if |𝑆 | = 𝑠 , then the nonzero region in A𝑆 has size 𝑠 × 𝑠 ×𝑚).
Similarly for B𝑆 . For two sets 𝑆,𝑇 ⊆ [𝑛], let PermIsom𝑆→𝑇 (A, B) denote the coset in S𝑛 × GL(𝑚,𝑞) of permutational
isometries (𝜋,𝑄) that send A𝑆 to B𝑇 and such that 𝜋 (𝑆) = 𝑇 .

Our goal is to compute PermIsom(A, B). Note that PermIsom(A, B) = PermIsom[𝑛]→[𝑛] (A, B). We will show how to
compute PermIsom(A, B) by inductively computing PermIsom𝑆→𝑇 (A, B) for all subsets 𝑆,𝑇 ⊆ [𝑛]. (If we wanted, we
could save a factor of 2𝑛 in the runtime by only computing this PermIsom[𝑠 ]→𝑇 for all 𝑠 = 0, . . . , 𝑛 and all subsets 𝑇 ,
but as this is not the dominant term in the runtime, we compute PermIsom𝑆→𝑇 for all subsets 𝑆,𝑇 , which makes the
presentation more symmetric in terms of A and B.)

Our base case is 𝑆 = 𝑇 = ∅. In this case we have that both A𝑆 and B𝑇 are the all-zeros arrays, and since all permutations
map the empty set to itself, we have PermIsom𝑆→𝑇 (A, B) = S𝑛 × GL(𝑚,𝑞).

Now inductively suppose we have computed PermIsom𝑆→𝑇 (A, B) for all sets 𝑆 and 𝑇 of size |𝑆 | = |𝑇 | = 𝑘 − 1 ≥ 0.
We show how to compute the same for all sets of size 𝑘 . Let 𝑆,𝑇 ⊆ [𝑛] be two sets of size 𝑘 . Let 𝑆 = {𝑠1, . . . , 𝑠𝑘 } and
𝑆 ′ = {𝑠1, . . . , 𝑠𝑘−1} = 𝑆\{𝑠𝑘 }. Any (𝜋,𝑄) ∈ PermIsom𝑆→𝑇 (A, B) must send 𝑆 ′ to some 𝑇 ′ ⊂ 𝑇 of size 𝑘 − 1, so we
must have (𝜋,𝑄) ∈ PermIsom𝑆 ′→𝑇 ′ (A, B), which has already been computed. Let 𝑡𝑘 = 𝜋 (𝑠𝑘 ). On the other hand, for
(𝜋,𝑄) ∈ PermIsom𝑆 ′→𝑇 ′ (A, B) to be in PermIsom𝑆→𝑇 (A, B), (𝜋,𝑄) needs to send the 𝑠𝑘 -th horizontal slice of A𝑆 to the
𝑡𝑘 -th horizontal slice of B𝑇 . (The same is required of the lateral slices, but this will follow automatically because frontal
slices are alternating matrices.)

Let 𝐶𝑜𝑑𝑒𝐸𝑞𝑠𝑘 ,𝑡𝑘 (A, B) denote the set of (𝜋,𝑄) that send the 𝑠𝑘 -th horizontal slice of A to the 𝑡𝑘 -th horizontal slice of
B, that is, 𝜋 (𝑠𝑘 ) = 𝑡𝑘 and B(𝑡𝑘 , 𝜋 (𝑖), ℓ) =

∑
ℓ ′ 𝑄ℓ ′,ℓA(𝑠𝑘 , 𝑖, ℓ′) for all 𝑖 ∈ [𝑛], ℓ ∈ [𝑚]. Then the previous paragraph can be

summarized in the following equation

PermIsom𝑆→𝑇 (A, B) =
⋃
𝑡𝑘 ∈𝑇

(
PermIsom𝑆 ′→(𝑇 \{𝑡𝑘 }) (A, B) ∩𝐶𝑜𝑑𝑒𝐸𝑞𝑠𝑘 ,𝑡𝑘 (A𝑆 , B𝑇 )

)
.

If we treat GL(𝑚,𝑞) as a permutation group on 𝑞𝑚 elements, then the entire group S𝑛 × GL(𝑚,𝑞) is a permutation
group on domain size 𝑛𝑞𝑚 . With this view, if we could compute PermIsom𝑆 ′→(𝑇 \{𝑡𝑘 }) (A, B) ∩𝐶𝑜𝑑𝑒𝐸𝑞𝑠𝑘 ,𝑡𝑘 (A𝑆 , B𝑇 ) in
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time 𝑞𝑂 (𝑛+𝑚) , then the above equation can be computed in its entirety in time 𝑞𝑂 (𝑛+𝑚) . Since the number of entries
in the dynamic programming table is 22𝑛 , the total runtime will be 𝑞𝑂 (𝑛+𝑚) , as claimed. The remainder of the proof
shows how to compute PermIsom𝑆 ′→(𝑇 \{𝑡𝑘 }) (A, B) ∩𝐶𝑜𝑑𝑒𝐸𝑞𝑠𝑘 ,𝑡𝑘 (A𝑆 , B𝑇 ) in time 𝑞𝑂 (𝑛+𝑚) .

Solving the generalized linear code equivalence problem. In fact, we will show that the following slightly more
general problem can be solved in the desired time bound.

Problem 4.4, a generalization of Linear Code Eqivalence
Input: Elements 𝜌0, 𝜌1, . . . , 𝜌𝑘 ∈ S𝑛 × GL(𝑚,𝑞), two 𝑛 ×𝑚 matrices 𝐴, 𝐵 over F𝑞 , and two indices
𝑠, 𝑡 ∈ [𝑛]
Output: Let 𝐺 = ⟨𝜌1, . . . , 𝜌𝑘 . The output is the subcoset of S𝑛 × GL(𝑚,𝑞) consisting of pairs
(𝜋,𝑄) ∈ 𝜌0𝐺 such that 𝜋 (𝑠) = 𝑡 and 𝑃𝜋𝐴𝑄 = 𝐵.

Here the subcoset in the output is specified by a single element together with a generating set of the corresponding
subgroup (the same way the subcoset is represented in the input). In the application above, we apply this problem with𝐴
being the 𝑠𝑘 -th slice of A𝑆 ,𝐵 being the 𝑡𝑘 -th slice of B𝑇 , 𝑠 = 𝑠𝑘 , 𝑡 = 𝑡𝑘 , and the subcoset 𝜌0𝐺 = PermIsom𝑆 ′→(𝑇 \{𝑡𝑘 }) (A, B).

We solve Problem 4.4 again by a dynamic programming algorithm as follows. For 𝑅, 𝑅′ ⊆ [𝑛] of size 𝑟 , 𝐴𝑅 denotes
the 𝑛 × 𝑚 matrix that agrees with 𝐴 in rows indexed by 𝑅, and is zero in all other rows; similarly for 𝐵𝑅′ . Let
𝐶𝑜𝑑𝑒𝐸𝑞

𝑠→𝑡,𝜌0𝐺
𝑅→𝑅′ (𝐴, 𝐵) denote the subcoset of 𝜌0𝐺 consisting of those (𝜋,𝑄) such that 𝜋 (𝑠) = 𝑡 , 𝜋 (𝑅) = 𝑅′, and

𝑃𝜋𝐴𝑅𝑄 = 𝐵𝑅′ . Here the information in the superscript is part of the input and will not change throughout the recursion,
whereas the information the subscript will be inducted on.

The base case is 𝑅 = 𝑅′ = ∅, for which we have 𝐶𝑜𝑑𝑒𝐸𝑞𝑠→𝑡,𝜌0𝐺
∅→∅ (𝐴, 𝐵) = {(𝜋,𝑄) ∈ 𝜌0𝐺 : 𝜋 (𝑠) = 𝑡}. As above, if we

view S𝑛 × GL(𝑚,𝑞) as a permutation group on a set of size 𝑛𝑞𝑚 , then this is simply computing an element transporter
inside a subcoset of a permutation group, which can be done in time (𝑛𝑞𝑚)𝑂 (1) [54].

Suppose inductively we have computed𝐶𝑜𝑑𝑒𝐸𝑞𝑠→𝑡,𝜌0𝐺
𝑅→𝑅′ (𝐴, 𝐵) for all sets 𝑅, 𝑅

′ of size 𝑟 − 1 ≥ 0. We will show how to
compute the same for all sets 𝑅, 𝑅′ of size 𝑟 . Fix 𝑟0 ∈ 𝑅. For 𝑟0, 𝑟 ′0 ∈ [𝑛] let 𝑋𝑟0,𝑟 ′0 be the subcoset of S𝑛 that sends 𝑟0 to
𝑟 ′0, and for 𝑢, 𝑣 ∈ F𝑚𝑞 let 𝑌𝑢,𝑣 be the subcoset of GL(𝑚,𝑞) that sends 𝑢 to 𝑣 . By slight abuse of notation, let 𝐴𝑟0 denote
the 𝑟0-th row of 𝐴 and 𝐵𝑟 ′0 denote the 𝑟

′
0-th row of 𝐵.

Then, similar to the reasoning above, we have that any (𝜋,𝑄) we seek must send 𝑟0 to an element of 𝑅′, say 𝑟 ′0, and
we seek the pairs (𝜋,𝑄) ∈ 𝐶𝑜𝑑𝑒𝐸𝑞𝑠→𝑡,𝜌0𝐺

(𝑅\{𝑟0 })→(𝑅′\{𝑟 ′0 })
(𝐴, 𝐵) such that 𝜋 (𝑟0) = 𝑟 ′0 and 𝐴𝑟0𝑄

𝑇 = 𝐵𝑟 ′0
. Taking the union

over all choices of 𝑟 ′0 ∈ 𝑅
′, we thus get the equation:

𝐶𝑜𝑑𝑒𝐸𝑞
𝑠→𝑡,𝜌0𝐺
𝑅→𝑅′ (𝐴, 𝐵) =

⋃
𝑟 ′0∈𝑅′

(
𝐶𝑜𝑑𝑒𝐸𝑞

𝑠→𝑡,𝜌0𝐺
(𝑅\{𝑟0 })→(𝑅′\{𝑟 ′0 })

(𝐴, 𝐵) ∩ (𝑋𝑟0,𝑟 ′0 × 𝑌𝐴𝑟0 ,𝐵𝑟 ′0
)
)
. (6)

Finally, we show how to efficiently compute the intersection in parentheses in the preceding equation. Let 𝜎𝐻 =

𝐶𝑜𝑑𝑒𝐸𝑞
𝑠→𝑡,𝜌0𝐺
(𝑅\{𝑟0 })→(𝑅′\{𝑟 ′0 })

(𝐴, 𝐵). We have that (𝜋,𝑄) ∈ (𝜎𝐻 ) ∩ (𝑋𝑟0,𝑟 ′0 × 𝑌𝐴𝑟0 ,𝐵𝑟 ′0
) iff

𝜋 (𝑟0) = 𝑟 ′0 and 𝐴𝑟0𝑄
𝑇 = 𝐵𝑟 ′0

.

Write 𝜎 = (𝜋0, 𝑄0). Then we have 𝜋 = 𝜋0𝜋 ′ and 𝑄 = 𝑄0𝑄 ′ for some 𝜋 ′ ∈ S𝑛, 𝑄′ ∈ GL(𝑚,𝑞), and the preceding
condition is the same as

𝜋 ′ (𝑟0) = 𝜋−10 (𝑟
′
0) and 𝐴𝑟0 (𝑄

′)𝑇 = 𝐵𝑟 ′0
(𝑄 ′0)

𝑇 . (7)

Since 𝑟0, 𝑟 ′0, 𝜋0, 𝑄0 are all fixed, the subcoset of 𝐻 consisting of (𝜋 ′, 𝑄′) satisfying (7) is a pointwise transporter in
the permutation group 𝐻 ≤ S𝑛 × GL(𝑚,𝑞) acting on a domain of size 𝑛𝑞𝑚 , which can thus be computed in time
Manuscript submitted to ACM
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(𝑛𝑞𝑚)𝑂 (1) . Thus the intersection in parentheses in (6) can be computed in the same time bound. The union of
subcosets can similarly be computed in time (𝑛𝑞𝑚)𝑂 (1) with standard permutation group machinery, and thus all
of (6) can be. Again, the dynamic programming table here has size 22𝑛 , so the total runtime of this procedure is
22𝑛 (𝑛𝑞𝑚)𝑂 (1) = 2𝑂 (𝑛)𝑞𝑂 (𝑚) ≤ 𝑞𝑂 (𝑛+𝑚) , as claimed. This completes the proof. □

5 COUNTING-TO-DECISION REDUCTION BY RESTRICTING TO DIAGONAL GROUPS

In this section, we devise a gadget to achieve the restriction to the group of diagonal matrices, and use it to do the
counting to decision reduction for Alternating Matrix Space Isometry.

5.1 Describing the gadget

Let A ≤ Λ(𝑛, 𝑞) be an alternating matrix space, and let A = (𝐴1, . . . , 𝐴𝑚) ∈ Λ(𝑛, 𝑞)𝑚 be an ordered linear basis of A.
Let A ∈ T(𝑛 × 𝑛 ×𝑚, F𝑞) be the 3-way array constructed from A, i.e. the 𝑖th frontal slice of A is 𝐴𝑖 .

We shall assume 𝑛 is larger than some constant, and 𝑞 = 𝑛Ω (1) throughout the remainder of this section.

The form of the gadget. To describe the gadget, it is easier to view A from the lateral viewpoint. That is, for 𝑖 ∈ [𝑛],
let 𝐶𝑖 = [𝐴1𝑒𝑖 , . . . , 𝐴𝑚𝑒𝑖 ] ∈ M(𝑛 ×𝑚,𝑞). Let C = (𝐶1, . . . ,𝐶𝑛) ∈ M(𝑛 ×𝑚,𝑞)𝑛 . Then construct C′ = (𝐶′1, . . . ,𝐶

′
𝑛),

𝐶′
𝑖
=

[
𝐶𝑖 0
0 𝐺𝑖

]
, where 𝐺𝑖 is of size 6𝑛 × 4𝑛2. For 𝑖 ∈ [𝑛], 𝐺𝑖 =

[
0 . . . 0 𝐻𝑖 0 . . . 0

]
, where 𝐻𝑖 is of size

6𝑛 × 4𝑛 in the 𝑖th block, and 0 denotes an all-zero matrix of size 6𝑛 × 4𝑛. The 𝐻𝑖 will be described below.
After the above step, we obtain a 3-way array C ∈ T(7𝑛 ×𝑛 × (𝑚 + 4𝑛2), F). The frontal slices of C are matrices of size

7𝑛 × 𝑛. To preserve the alternating structure, we need to do the following. Let the first 𝑛 horizontal slices of C them be
B = (𝐵1, . . . , 𝐵𝑛) ∈ M(𝑛 × (𝑚 + 4𝑛2), F). Note that 𝐵𝑖 = [𝐶𝑖 , 0], where 𝐶𝑖 ∈ M(𝑛 ×𝑚, F) was defined in the paragraph

above. Then set B′ = (𝐵′1, . . . , 𝐵
′
𝑛), 𝐵′𝑖 =

[
𝐶𝑖 0
0 −𝐺𝑖

]
, where −𝐺𝑖 is of size 6𝑛 × 4𝑛2 as defined in the above paragraph.

Let 𝐷 be one of the rest 6𝑛 horizontal slices of C. Then we set 𝐷′ =
[
𝐷

0

]
where 0 denotes a size 6𝑛 × (𝑚 + 4𝑛2) all-zero

matrix. After the above operations, we obtain a 3-way array Ã of size 7𝑛 × 7𝑛 × (𝑚 + 4𝑛2), whose frontal slices are
alternating matrices.

To summarise, from the frontal viewpoint of looking at A, 𝐺𝑖 ’s are inserted, vertically, below and behind A. So to
preserve the alternating structure, −𝐺𝑖 ’s also need to be inserted, horizontally, on the right and behind A. We therefore
get Ã, which is of size 7𝑛 × 7𝑛 × (𝑚 + 4𝑛2).

Fact 5.1. Every lateral slice of Ã is of rank ≤ 5𝑛.

Proof. The first 𝑛 lateral slices of Ã are of the following form:𝐶′
𝑖
=

[
𝐶𝑖 0
0 𝐺𝑖

]
, where𝐺𝑖 is of size 6𝑛×4𝑛2. For 𝑖 ∈ [𝑛],

𝐺𝑖 =

[
0 . . . 0 𝐻𝑖 0 . . . 0

]
, where𝐻𝑖 is of size 6𝑛× 4𝑛 in the 𝑖th block. So rank(𝐶′

𝑖
) = rank(𝐶𝑖 ) + rank(𝐺𝑖 ) ≤

𝑛 + 4𝑛 = 5𝑛.

The last 6𝑛 lateral slices of Ã are of the form𝐷𝑖 =

[
0 𝐾𝑖

0 0

]
where𝐾𝑖 is of size𝑛×4𝑛2. So rank(𝐷𝑖 ) = rank(𝐾𝑖 ) ≤ 𝑛. □

Remark 5.2. In the above, we attached 𝐺𝑖 , 𝑖 ∈ [𝑛], to each vertical slice. (And therefore, we attached −𝐺𝑖 to each
horizontal slice.) Sometimes, we may only attach 𝐺𝑖 to the first 𝑘 vertical slices. (And therefore, we only attach −𝐺𝑖 to
the first 𝑘 horizontal slice.) In this case, the resulting Ã is of size 7𝑛 × 7𝑛 × (𝑚 + 4𝑛𝑘).
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Conditions imposed on the 𝐻𝑖 ’s. Of course, the key to the construction above lies in the properties of the 𝐻𝑖 ’s.

Definition 5.3. Let 𝐻1, . . . , 𝐻𝑛 ∈ M(6𝑛 × 4𝑛, 𝑞), and let 𝑉𝑖 ≤ F6𝑛𝑞 be the subspace spanned by the columns of 𝐻𝑖 . We
say that the tuple (𝐻1, . . . , 𝐻𝑛) is rigid, if the following conditions are satisfied.

(1) For any 𝑖 ∈ [𝑛], rk(𝐻𝑖 ) = dim(𝑉𝑖 ) = 4𝑛.
(2) For any 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 , rk( [𝐻𝑖𝐻 𝑗 ]) = dim(𝑉𝑖 ∪𝑉𝑗 ) = 6𝑛.
(3) For any (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6) ∈ [𝑛]6 and ( 𝑗1, 𝑗2, 𝑗3, 𝑗4, 𝑗5, 𝑗6) ∈ [𝑛]6, such that |{𝑖1, . . . 𝑖6} ∪ { 𝑗1, . . . , 𝑗6}| = 12, i.e. 𝑖𝑘

and 𝑗ℓ all different, the coset 𝐶 = {𝑇 ∈ GL(6𝑛, 𝑞) : ∀𝑘 ∈ [6],𝑇 (𝑉𝑖𝑘 ) = 𝑉𝑗𝑘 } is empty. Note that for any 𝑖 ∈ [𝑛],
𝑇 (𝑉𝑖 ) is spanned by the columns of 𝑇𝐻𝑖 .

(4) For any (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6) ∈ [𝑛]6, 𝑖𝑘 all different, the group 𝑆 = {𝑇 ∈ GL(6𝑛, 𝑞) : ∀𝑘 ∈ [6],𝑇 (𝑉𝑖𝑘 ) = 𝑉𝑖𝑘 }
consists of only of scalar matrices.

Remark 5.4. Given 𝐻1, . . . , 𝐻𝑛 ∈ M(6𝑛 × 4𝑛, 𝑞), whether (𝐻1, . . . , 𝐻𝑛) is rigid can be verified in polynomial time as
follows.

Conditions (1) and (2) are easily verified in deterministic polynomial time.
For condition (3), it can be formulated as a linear algebraic problem as follows. Let 𝑋 be a 6𝑛 × 6𝑛 variable matrix, so

its entries are formal variables. Similarly define 𝑌𝑘 , 𝑘 ∈ [6], to be 4𝑛 × 4𝑛 variable matrices. Then the entries of the
matrix 𝑋𝐻𝑖𝑘 are linear forms in the variables in 𝑋 . Similarly, the entries of the matrix 𝐻 𝑗𝑘𝑌𝑘 are linear forms in the
variables in 𝑌𝑘 . Equating 𝑋𝐻𝑖𝑘 = 𝐻 𝑗𝑘𝑌𝑘 , we get 4𝑛 · 6𝑛 linear equations. Solving these linear equations, we get a linear
subspace of F(6𝑛)

2+6· (4𝑛)2
𝑞 . The question is then whether this subspace contains (𝑇, 𝑅1, . . . , 𝑅6) where 𝑇 ∈ GL(6𝑛, 𝑞)

and 𝑅𝑖 ∈ GL(4𝑛, 𝑞). This is an instance of the symbolic determinant identity testing (SDIT) problem, so it admits a
randomized efficient algorithm when 𝑞 = 𝑛Ω (1) .

In fact, this instance of SDIT problem can be solved in deterministic polynomial time. For this let us also check out
condition (4). Here, let 𝑋 and 𝑌𝑖 be from above, and set up the equations 𝑋𝐻𝑖𝑘 = 𝐻𝑖𝑘𝑌𝑘 . Solve the linear equations to
get a subspace of F(6𝑛)

2+6· (4𝑛)2
𝑞 . This subspace turns out to be an algebra under the natural multiplications. Indeed,

if 𝐴𝐻𝑖𝑘 = 𝐻𝑖𝑘𝐵𝑘 and 𝐴′𝐻𝑖𝑘 = 𝐻𝑖𝑘𝐵
′
𝑘
, then 𝐴𝐴′𝐻𝑖𝑘 = 𝐻𝑖𝑘𝐵𝑘𝐵

′
𝑘
. Computing the unit group in a matrix algebra can be

solved by a polynomial-time Las Vegas algorithm by [17]. Given the unit group, whether it consists of only scalar
matrices can be verified easily in deterministic polynomial time.

Then the linear space in condition (3) is a module over the algebra defined in the last paragraph. Because of this
structure, the SDIT problem for such instances can be solved in deterministic polynomial time [15, 20, 40].

5.2 Construction and properties of the gadget

The following three propositions reveal the construction and functions of the gadget described above.
First about the construction. Instead of constructing the above 𝐻𝑖 ’s explicitly in a deterministic way, we shall show

that random choices suffice.

Proposition 5.5. Suppose the entries of 𝐻𝑖 ∈ M(6𝑛 × 4𝑛, 𝑞), 𝑖 ∈ [𝑛], are sampled uniformly and independently at random

from F𝑞 . Then (𝐻1, . . . , 𝐻𝑛) is rigid as defined in Definition 5.3 with probability ≥ 1 − 𝑛𝑂 (1)

𝑞Ω (1) .

Second about the functionality. The following proposition formally explains this.

Proposition 5.6. Suppose A and B are two 3-tensors constructed from ordered bases of𝑚-dimensional alternating matrix

spaces A,B ≤ Λ(𝑛, 𝑞). Let Ã and B̃ be constructed as above, and let Ã and B̃ be the alternating matrix spaces spanned by
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the frontal slices of Ã and B̃, respectively. Then A and B are isometric via a diagonal matrix if and only if Ã and B̃ are

isometric.

Finally we shall use this gadget to achieve a counting-to-decision reduction for AlternatingMatrix Space Isometry.
Formally, we have the following.

Proposition 5.7. Suppose we are givenA,B ≤ Λ(𝑛, 𝑞) and a decision oracle for Alternating Matrix Space Isometry.
Then there exists a Las Vegas randomized algorithm that computes the number of isometries from A to B in time 𝑞𝑂 (𝑛) .

The next three subsections are devoted to the proofs of Propositions 5.5 (Section 5.2.3), 5.6 (Section 5.2.1), and 5.7
(Section 5.2.2). Note that, because the proof of Proposition 5.5 is more complicated compared to the other two, we
postpone it to the last.

Remark 5.8. In fact, we expect that this construction works even for small finite fields. The bottleneck lies in
Proposition 5.5. If the probability 𝑛𝑂 (1)

𝑞Ω (1) could be improved to 𝑛𝑂 (1)

𝑞Ω (𝑛) , then we would be done. We believe it possible to
utilize the structure of invariant subspaces under matrix actions over F𝑞 to achieve this. However, we expect that the
calculations will be tedious and heavy, so we hope to leave this to a future work.

5.2.1 Restricting to the diagonal group. Briefly speaking, conditions 1 and 2 ensure that we first restrict to monomial
matrices. Conditions 3 and 4 prevent non-trivial permutations due to the following. As we assume 𝑛 is larger than some
constant, by Observation 5.9, 𝜎 ∈ S𝑛 either fixes 6 elements in [𝑛], or moves a set of 6 elements to another, disjoint, set
of 6 elements. Condition 3 ensures that the second case could not happen. Condition 4 ensures that in the first case, the
only possible invertible matrices that “preserves” the matrices 𝐺𝑖 for 𝑖 ∈ 𝑃 when multiplying from the left are scalar
matrices.

We now prove Proposition 5.6, and this requires the following observation.

Observation 5.9. Let 𝑛 ≥ 23. Then any permutation 𝜎 ∈ S𝑛 either fixes a set of 6 points 𝑃 ⊆ [𝑛], or moves a set of 6
points 𝑃 ⊆ [𝑛] to another set of 6 points 𝑄 ⊆ [𝑛] such that these two sets are disjoint.

Proof. Suppose 𝜎 fixes at most 5 points. Then there are at least 18 points that are not fixed by 𝜎 . Suppose 𝜎 has 𝑡
non-trivial cycles of length 𝑙1, . . . , 𝑙𝑡 , such that

∑
𝑖 𝑙𝑖 ≥ 18. For a cycle (𝑝1, . . . , 𝑝𝑠 ), we can choose those points with odd

indices, namely 𝑝1, 𝑝3, . . . , 𝑝2· ⌊𝑠/2⌋−1 and put them in 𝑃 , and those points with even indices, namely 𝑝2, 𝑝4, . . . , 𝑝2· ⌊𝑠/2⌋
in 𝑄 . Do this for every cycle, we obtain the desired 𝑃 and 𝑄 . The worst case is when every cycle is of length 3. Since
there are at least 18 points not fixed by 𝜎 , 𝑃 is of size ≥ 6. □

Proof of Proposition 5.6. Recall that we construct such Ã and B̃ from A and B, respectively, using the method in
Section 5.1. Let Ã and B̃ be alternating matrix spaces in Λ(7𝑛, 𝑞), spanned by the frontal slices of Ã and B̃, respectively.

We want to show that Ã and B̃ are isometric if and only if A and B are isometric via diagonal matrices. The
if direction is straightforward. Suppose there exist 𝑃 = diag(𝛼1, . . . , 𝛼𝑛) ∈ diag(𝑛, 𝑞) and 𝑄 ∈ GL(𝑚,𝑞) such that

𝑃𝑡A𝑃 = B𝑄 . Let 𝑃 =

[
𝑃 0
0 𝐼6𝑛

]
∈ GL(7𝑛, 𝑞). Let 𝑄̃ =

[
𝑄 0
0 𝑄 ′

]
∈ GL(𝑚 + 4𝑛2), where 𝑄 ′ = diag(𝛼1𝐼4𝑛, . . . , 𝛼𝑛𝐼4𝑛). Then

it is easy to verify that 𝑃𝑡 Ã𝑃 = B̃𝑄̃ .
Now we turn to the only if direction. If Ã and B̃ are isometric, then there exists 𝑃 ∈ GL(7𝑛, 𝑞) and 𝑄̃ ∈ GL(𝑚 + 4𝑛2, 𝑞),

such that 𝑃𝑡 Ã𝑃 = B̃𝑄̃ . Let 𝑃 =

[
𝑃1,1 𝑃1,2
𝑃2,1 𝑃2,2

]
, where 𝑃1,1 is of size 𝑛×𝑛. It can be checked easily, from the lateral viewpoint,
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that 𝑃1,2 = 0. As if not, then some 𝐻𝑖 would appear in one of the last 6𝑛 lateral slices in Ã𝑃 . This would set this slice to
be of rank ≥ 4𝑛 by condition (1), which contradicts that the corresponding lateral slice of B̃𝑄̃ is of rank ≤ 𝑛. It follows
that 𝑃1,1 ∈ GL(𝑛, 𝑞) and 𝑃2,2 ∈ GL(6𝑛, 𝑞).

We first claim that 𝑃1,1 has to be a monomial matrix. If not, suppose the 𝑃1,1 (𝑖, 𝑗) and 𝑃1,1 (𝑖, 𝑘) are non-zero, 𝑗 ≠ 𝑘 .
Then the 𝑖th lateral slice of Ã𝑃 contains two distinct 𝐻 𝑗 and 𝐻𝑘 as submatrices. By condition (2), this slice is of rank
≥ 6𝑛. On the other hand, each lateral slice of B̃𝑄̃ is of the same rank as B̃ (as 𝑄̃ does not change the ranks of lateral
slices), which by Fact 5.1 is ≤ 5𝑛. This is a contradiction, showing that 𝑃1,1 must be a monomial matrix.

We further claim that 𝑃1,1 has to be a diagonal matrix. If not, then suppose the non-trivial permutation underlying
𝑃1,1 is 𝜎 ∈ S𝑛 . Since we assumed 𝑛 is larger than some constant, by Observation 5.9, one of the following two cases has
to happen.

• ∃{𝑖1, . . . , 𝑖6} ⊆ [𝑛], { 𝑗1, . . . , 𝑗6} ⊆ [𝑛], |{𝑖1, . . . , 𝑖6} ∪ { 𝑗1, . . . , 𝑗6}| = 12, such that 𝜎 (𝑖𝑘 ) = 𝑗𝑘 for 𝑘 ∈ [6]. We
then claim the following.

Claim 5.10. For 𝑃𝑡 Ã𝑃 = B̃𝑄̃ to hold, a necessary condition is that ∀𝑘 ∈ [6], 𝑃2,2𝐻 𝑗𝑘 and 𝐻𝑖𝑘 have the same linear

span.

Proof. To see this, note that the 𝑖𝑘 th lateral slice of 𝑃𝑡 Ã𝑃 is the 𝑗𝑘 th lateral slice of 𝑃𝑡 Ã (up to a scalar multiple).
It is equal to the 𝑖𝑘 th lateral slice of B̃𝑄̃ . Then 𝑃𝑡 acts on the left on the 𝑗𝑘 th lateral slice of Ã. Noting that

𝑃𝑡 =

[
𝑃𝑡1,1 𝑃𝑡2,1
0 𝑃𝑡2,2

]
and the 𝑗𝑘 th lateral slice of Ã is𝐶′

𝑗𝑘
=

[
𝐶 𝑗𝑘 0
0 𝐺 𝑗𝑘

]
, we see that 𝑃𝑡𝐶′

𝑗𝑘
=

[
∗ ∗
0 𝑃𝑡2,2𝐺 𝑗𝑘

]
. (Here,

𝐶𝑖 and𝐺𝑖 are defined in Section 5.1.) On the other hand, we see that the 𝑖𝑘 th lateral slice of B̃𝑄̃ is the 𝑖𝑘 th lateral
slice of B̃ multiplied from the right by 𝑄̃ . Our claim follows then by comparing the last 6𝑛 rows. □

But the condition (3) excludes the existence of such 𝑃2,2, so this cannot happen.
• ∃{𝑖1, . . . , 𝑖6} ⊆ [𝑛], 𝑖𝑘 all different, such that 𝜎 (𝑖𝑘 ) = 𝑖𝑘 . In this case, for 𝑃𝑡 Ã𝑃 = B̃𝑄̃ to hold, by the same

argument as in the proof of Claim 5.10, a necessary condition is that 𝑃2,2𝐻𝑖𝑘 and 𝐻𝑖𝑘 have the same linear span.
Then the condition (4) ensures that 𝑃2,2 = 𝜆𝐼6𝑛 for some 𝜆 ≠ 0 ∈ F in this setting. Then because 𝜎 is non-trivial,
𝜎 moves some 𝑖 ∈ [𝑛] to 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 . By comparing the 𝑗th lateral slice of 𝑃𝑡 Ã and the 𝑖th lateral slice of B̃𝑄̃ ,
𝑃2,2𝐻𝑖 = 𝜆𝐻𝑖 and 𝐻 𝑗 have the same linear span, which is not possible because the condition (2) ensures that 𝐻𝑖

and 𝐻 𝑗 span different subspaces.

We then have shown that 𝑃1,1 must be a diagonal matrix. By comparing the top-left-front sub-tensors of size 𝑛 × 𝑛 ×𝑚
of 𝑃𝑡 Ã𝑃 and B̃𝑄̃ , we arrive at the desired conclusion that A and B are isometric via the diagonal matrix 𝑃1,1. □

Remark 5.11. If we only attach the diagonal restriction gadget to the first 𝑘 slices (see Remark 5.2), then the above

proof can be adapted to show that: Ã and B̃ are isometric, if and only if,A and B are isometric via 𝑃 =

[
𝐷 0
𝐸 𝐹

]
where

𝐷 is a 𝑘 × 𝑘 diagonal matrix.

5.2.2 Using the gadget for counting-to-decision reduction. The strategy follows closely the counting to decision reduction
for graph isomorphism.

We first review the strategy for counting to decision reduction for graph isomorphism [56]. Suppose we are given
two graphs with the vertex set being [𝑛], i.e. 𝐺,𝐻 ⊆

([𝑛]
2
)
. We first use the decision oracle to decide whether 𝐺

and 𝐻 are isomorphic. If not, the number of isomorphisms is 0. If so, we turn to compute the order of Aut(𝐺). Let
𝐴 = Aut(𝐺). For 𝑖 ∈ [𝑛], let 𝐴𝑖 = {𝜎 ∈ 𝐴 : ∀1 ≤ 𝑗 ≤ 𝑖, 𝜎 ( 𝑗) = 𝑗}. Set 𝐴0 = 𝐴. We then have the tower of
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subgroups 𝐴0 ≥ 𝐴1 ≥ · · · ≥ 𝐴𝑛 = {id}. The order of 𝐴0 is then the product of [𝐴𝑖 : 𝐴𝑖+1], the index of 𝐴𝑖+1 in 𝐴𝑖 , for
𝑖 = 0, 1, . . . , 𝑛 − 1. Let 𝐺𝑖 be the graph with the first 𝑖 vertices in 𝐺 individualized. Then Aut(𝐺𝑖 ) � 𝐴𝑖 . To compute
[𝐴𝑖 : 𝐴𝑖+1], we note that it is equal to the size of the orbit of the vertex 𝑖 + 1 under 𝐴𝑖 . For each 𝑗 ≥ 𝑖 + 1, construct
from 𝐺𝑖 two graphs 𝐺 ′

𝑖
and 𝐺 ′′

𝑖
as follows. In 𝐺 ′

𝑖
, individualize 𝑖 + 1, and in 𝐺 ′′

𝑖
, individualize 𝑗 . Then 𝑗 is in the orbit of

𝑖 + 1 under 𝐴𝑖 if and only if 𝐺 ′
𝑖
and 𝐺 ′′

𝑖
are isomorphic. Enumerating over 𝑗 ≥ 𝑖 + 1 gives us the size of the orbit of 𝑖 + 1

under 𝐴𝑖 . This finishes an overview of the idea for counting to decision reduction for graph isomorphism.
We then apply the above strategy to get a counting to decision reduction for alternating matrix space isometry to

prove Proposition 5.7.

Proof of Proposition 5.7. Our goal is to compute the number of isometries from A to B, where A,B ≤ Λ(𝑛, 𝑞)
are of dimension𝑚. First, we use the decision oracle first to decide whetherA and B are isometric. If not, the number of
isometries is 0. If so, we need to caculate the order of the autometry group ofA, Aut(A), that is, the set of self-isometries
A → A as a subgroup of GL(𝑛, 𝑞). To do that, we first randomly sample 𝑛 6𝑛 × 4𝑛 matrices 𝐻1, . . . , 𝐻𝑛 over F𝑞 , and
verify whether they form a rigid matrix tuple using Remark 5.4. Note that this is where the algorithm needs to be a Las
Vegas algorithm.

Let 𝐴 = Aut(A). Recall that 𝑒𝑖 denotes the 𝑖th standard basis vector in F𝑛𝑞 . For 𝑖 ∈ [𝑛], let 𝐴𝑖 = {𝑇 ∈ 𝐴 : ∀1 ≤
𝑗 ≤ 𝑖,𝑇 (𝑒𝑖 ) = 𝜆𝑖𝑒𝑖 , 𝜆𝑖 ≠ 0 ∈ F𝑞}. Note that 𝐴𝑛 = 𝐴 ∩ diag(𝑛, 𝑞). We can calculate the order of 𝐴𝑛 in time 𝑞𝑂 (𝑛)

by brute-force, i.e., enumerating all invertible diagonal matrices. Set 𝐴0 = 𝐴. We then have the tower of subgroups
𝐴0 ≥ 𝐴1 ≥ · · · ≥ 𝐴𝑛 .

To compute the order of 𝐴0, it is enough to compute [𝐴𝑖 : 𝐴𝑖+1]. Note that for 𝑇,𝑇 ′ ∈ 𝐴𝑖 , 𝑇𝐴𝑖+1 = 𝑇 ′𝐴𝑖+1 as left
cosets in 𝐴𝑖 if and only if 𝑇 (𝑒𝑖+1) = 𝜆𝑇 ′ (𝑒𝑖+1) for some 𝜆 ≠ 0 ∈ F𝑞 . So [𝐴𝑖 : 𝐴𝑖+1] is equal to the size of the orbit of
𝑒𝑖+1 under 𝐴𝑖 in the projective space. Let 𝑣 ∈ F𝑛𝑞 . To test whether 𝑣 is in the orbit of 𝑒𝑖+1 under 𝐴𝑖 in the projective
space, we transform A by 𝑃𝑡 · 𝑃 , where 𝑃 ∈ GL(𝑛, 𝑞) sends 𝑒𝑖+1 to 𝑣 and 𝑒 𝑗 to 𝑒 𝑗 for 𝑗 ≠ 𝑖 + 1, to get A′. We then
add the diagonal restriction gadget to the first 𝑖 + 1 lateral slices and the first 𝑖 + 1 horizontal slices of A and A′ (see
Remark 5.2), to obtain Ã and Ã′ respectively. Then feed A and A′ to the decision oracle. By the functionality of the
diagonal restriction gadget (Proposition 5.6 and Remark 5.11), 𝑣 is in the orbit of 𝑒𝑖+1 in the projective space if and only
if Ã and Ã′ are isometric. Enumerating 𝑣 ∈ F𝑛𝑞 up to scalar multiples gives us the size of the orbit of 𝑒𝑖+1 under 𝐴𝑖 in
the projective space. This finishes the description of the algorithm.

A small caveat in the above is that our gadget requires 𝑛 is larger than some constant, so we cannot start from 𝐴0
at the beginning. This issue can be revolved by noting that the order of 𝐴𝑐 , for any constant 𝑐 , can be computed in
time 𝑞𝑂 (𝑛) , by enumerating all possible images of 𝑒1, . . . , 𝑒𝑐 in time 𝑞𝑂 (𝑛) , adding the diagonal restriction gadget, and
utilizing the decision oracle. □

5.2.3 Random 𝐻𝑖 ’s satisfy the requirements when 𝑞 = 𝑛Ω (1) . We now prove Proposition 5.5, and for this we need the
following facts.

Fact 5.12. (1) Given 𝑎𝑖 ∈ R, 0 ≤ 𝑎𝑖 ≤ 1, 𝑖 ∈ [𝑚],∏𝑖∈[𝑚] (1 − 𝑎𝑖 ) ≥ 1 −∑𝑖∈[𝑚] 𝑎𝑖 .

(2) Let𝑚, 𝑁 ∈ N and 1 ≤ 𝑚 ≤ 𝑁 . A random matrix 𝐴 ∈ M(𝑁 ×𝑚,𝑞) is of rank𝑚 with probability ≥ 1 − 2/𝑞𝑁−𝑚+1.
(3) For 𝑑 ≤ N, 0 ≤ 𝑑 ≤ 𝑛, the number of dimension-𝑑 subspaces of F𝑛𝑞 is equal to the Gaussian binomial coefficient(

𝑛

𝑑

)
𝑞

:= (𝑞
𝑛 − 1) · (𝑞𝑛 − 𝑞) · . . . · (𝑞𝑛 − 𝑞𝑑−1)
(𝑞𝑑 − 1) · (𝑞𝑑 − 𝑞) · . . . · (𝑞𝑑 − 𝑞𝑑−1)

.
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(4) The Gaussian binomial coefficient satisfies:

𝑞 (𝑛−𝑑 )𝑑 ≤
(
𝑛

𝑑

)
𝑞

≤ 𝑞 (𝑛−𝑑 )𝑑+𝑑 .

(5) For 𝑑 ∈ N, the number of complement subspaces of a fixed dimension-𝑑 subspace of F𝑛𝑞 is 𝑞𝑑 (𝑛−𝑑 ) .

Proof. (1) is clear. For (2), Pr[rk(𝐴) = 𝑚] = (1 − 1
𝑞𝑁
) · (1 − 𝑞

𝑞𝑁
) · . . . · (1 − 𝑞𝑚−1

𝑞𝑁
). By (1), we have Pr[rk(𝐴) =

𝑚] ≥ 1 −∑𝑁
𝑖=𝑁−𝑚+1

1
𝑞𝑖

= 1 − 1
𝑞𝑁 −𝑚+1

−∑𝑁
𝑖=𝑁−𝑚+2

1
𝑞𝑖
≥ 1 − 2

𝑞𝑁 −𝑚+1
. (3) is classical; see e.g. [22]. For (4), it is because

𝑞𝑛−𝑑 ≤ 𝑞𝑛−𝑞𝑖
𝑞𝑑−𝑞𝑖 ≤ 𝑞

𝑛−𝑑+1. (5) is not hard to derive; see e.g. [23]. □

In the following we will encounter random matrices over F𝑞 as well as random subspaces in F𝑛𝑞 . There is a subtle
point which we want to clarify now. Let𝑚 ≤ 𝑛. Note that there are

(𝑛
𝑚

)
𝑞
subspaces of F𝑛𝑞 of dimension𝑚, and there are

𝑁1 = (𝑞𝑛 − 1) · . . . · (𝑞𝑛 − 𝑞𝑚−1) rank-𝑚 matrices of size 𝑛 ×𝑚. It can be seen easily that each𝑚-dimensional subspace
𝑉 of F𝑛𝑞 has 𝑁2 = (𝑞𝑚 − 1) · . . . · (𝑞𝑚 − 𝑞𝑚−1) many representations as rank-𝑚 matrices of size 𝑛 ×𝑚, i.e. the columns
of the matrix span 𝑉 . It follows that we can work with random rank-𝑚 matrices of size 𝑛 ×𝑚 as if we are working with
random𝑚-dimensional subspaces of F𝑛𝑞 . Such correspondences will be used implicitly for other structures, including
direct sum decompositions.

Now let us get back to our question. We shall show that a random choice of 𝐻𝑖 , 𝑖 ∈ [𝑛], would form a rigid tuple. We
will prove that for conditions 𝑘 = 1, 2, 3,

Pr[random 𝐻𝑖 not satisfy condition 𝑘] ≤ 𝑛𝑂 (1)

𝑞Ω (𝑛)
.

Once these hold, by a union bound, we have

Pr[∃𝑖 ∈ [3], random 𝐻𝑖 not satisfy condition 𝑖] ≤ 𝑛𝑂 (1)

𝑞Ω (𝑛)
.

For condition (4), we will prove that

Pr[random 𝐻𝑖 not satisfy condition 4 | 𝐻𝑖 satisfy conditions 1, 2, 3] ≤ 𝑛
𝑂 (1)

𝑞Ω (1)
.

This then would allow us to conclude that when 𝑞 = 𝑛Ω (1) , random 𝐻𝑖 ’s form a rigid matrix tuple.
We examine the first three conditions one by one.

(1) For condition (1), by Fact 5.12 (2), we have Pr[∃𝑖 ∈ [𝑛], rk(𝐻𝑖 ) < 4𝑛] ≤ 𝑛 · Pr[rk(𝐻𝑖 ) < 4𝑛] ≤ 2𝑛
𝑞2𝑛+1

.
(2) For condition (2), noting that the block matrix (𝐻𝑖𝐻 𝑗 ) is a random 6𝑛 × 8𝑛 matrix over F𝑞 , by Fact 5.12 (2), we

have Pr[∃𝑖 ≠ 𝑗 ∈ [𝑛], rk((𝐻𝑖𝐻 𝑗 )) < 6𝑛] ≤
(𝑛
2
)
· 2
𝑞8𝑛−6𝑛+1

≤ 𝑛2

𝑞2𝑛+1
.

(3) For condition (3), let 𝐼 = (𝐻𝑖1 . . . 𝐻𝑖6 ), and 𝐽 = (𝐻 𝑗1 . . . 𝐻 𝑗6 ). We see that 𝐶 is non-empty if and only if there
exists 𝐿 ∈ GL(6𝑛, 𝑞) and 𝑅𝑘 ∈ GL(4𝑛, 𝑞), 𝑘 ∈ [6], such that 𝐿𝐻𝑖𝑘𝑅𝑘 = 𝐻 𝑗𝑘 . Note that the orbit of 𝐼 under this
group action is of size at most 𝑞 (6𝑛)2+6· (4𝑛)2 = 𝑞132𝑛

2 . Since 𝑖𝑘 and 𝑗ℓ are all different, the probability of 𝐽

belonging to this orbit is ≤ 𝑞132𝑛
2

𝑞144𝑛2
= 1

𝑞12𝑛2
. We then have Pr[∃𝑖𝑘 , 𝑗𝑘 ∈ [𝑛], 𝑘 ∈ [6], 𝑖𝑘 , 𝑗𝑘 all different,𝐶 ≠ ∅] ≤(𝑛

12
) 2
𝑞12𝑛2

≤ 𝑛12

𝑞12𝑛2
.
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We now focus on condition (4). For condition (4), we first assume that the conditions (1) and (2) as above hold. Then
𝑉𝑖 ’s are random 4𝑛-dimensional subspaces of F6𝑛𝑞 . Note that

Pr[∃𝑖𝑘 ∈ [𝑛], 𝑘 ∈ [6], 𝑖𝑘 all different, 𝑆 non-scalar] ≤ 𝑛6 · Pr[𝑆 non-scalar stabilizer for 𝑉1, . . . ,𝑉6] .

So we turn to study Pr[𝑆 non-scalar stabilizer for 𝑉1, . . . ,𝑉6], and will show that it is ≤ 1
𝑞Ω (1) .

Let𝑈1 = 𝑉1 ∩𝑉2,𝑈2 = 𝑉2 ∩𝑉3, and𝑈3 = 𝑉1 ∩𝑉3. Let𝑊1 = 𝑉4 ∩𝑉5,𝑊2 = 𝑉5 ∩𝑉6, and𝑊3 = 𝑉4 ∩𝑉6. Since conditions
(1) and (2) hold, we have dim(𝑈𝑖 ) = dim(𝑊𝑖 ) = 2𝑛. We claim that with probability ≥ 1 − 2/𝑞, F6𝑛𝑞 = 𝑈1 ⊕ 𝑈2 ⊕ 𝑈3, i.e.,
𝑈1 ∪𝑈2 ∪𝑈3 span F6𝑛𝑞 . This can be seen as follows. Since we assumed conditions (1) and (2), this happens if and only if
𝑉1 ∩𝑉2 and 𝑉3 together span F6𝑛𝑞 . Therefore we calculate, using Fact 5.12 (1), (3), and (5), that

Pr[𝑉3 is a complement subspace of 𝑉1 ∩𝑉2]

= 𝑞2𝑛 ·4𝑛/
(
6𝑛
4𝑛

)
𝑞

=
(𝑞6𝑛 − 𝑞2𝑛) (𝑞6𝑛 − 𝑞2𝑛+1) . . . (𝑞6𝑛 − 𝑞6𝑛−1)
(𝑞6𝑛 − 1) (𝑞6𝑛 − 𝑞) . . . (𝑞6𝑛 − 𝑞4𝑛−1)

≥ (𝑞6𝑛 − 𝑞2𝑛) (𝑞6𝑛 − 𝑞2𝑛+1) . . . (𝑞6𝑛 − 𝑞6𝑛−1)
𝑞6𝑛 · 𝑞6𝑛 · · · · · 𝑞6𝑛

= (1 − 1/𝑞4𝑛) (1 − 1/𝑞4𝑛−1) . . . (1 − 1/𝑞)

≥ 1 −
4𝑛∑︁
𝑖=1

1/𝑞𝑖 ≥ 1 − 2/𝑞.

It follows that with probability ≥ 1 − 4/𝑞, we can assume in addition that𝑊𝑖 form a direct sum decomposition of F6𝑛𝑞 .
Therefore, we turn to bound the probability that there exists a non-scalar invertible matrix stabilizing these two

direct sum decompositions of F6𝑛𝑞 . By showing that, under suitable conditions, this probability is at most 1/𝑛Ω (1) , we
conclude that a random choice of subspaces works as our gadget with probability 1 − 1/𝑛Ω (1) , which suffices for a
Las Vegas algorithm. Since 𝑖𝑘 are all different, the two direct sum decompositions𝑈1 ⊕ 𝑈2 ⊕ 𝑈3 and𝑊1 ⊕𝑊2 ⊕𝑊3 are
independent. So we can assume that𝑈𝑖 is spanned by those standard basis vectors ®𝑒2𝑛 (𝑖−1)+1, . . . , ®𝑒2𝑛𝑖 , 𝑖 = 1, 2, 3. The

group that stabilizes this direct sum decomposition𝑈1 ⊕𝑈2 ⊕𝑈3 consists of


𝐷1 0 0
0 𝐷2 0
0 0 𝐷3

 ∈ GL(6𝑛, F𝑞) where 𝐷𝑖 is

of size 2𝑛 × 2𝑛.
The question then becomes to bound the probability for a random𝑊1⊕𝑊2⊕𝑊3 to be stabilized by a non-scalar matrix

of the above form. This can be formulated as the following linear algebraic problem. (Recall the correspondence between
random 𝑚-dimensional subspaces and random rank-𝑚 matrices as discussed at the beginning of the subsection.)

Let𝑊 =


𝑊11 𝑊12 𝑊13
𝑊21 𝑊22 𝑊23
𝑊31 𝑊32 𝑊33

 ∈ GL(6𝑛, 𝑞) be a block matrix where𝑊𝑖 𝑗 is of size 2𝑛 × 2𝑛. Suppose the columns of


𝑊1𝑖
𝑊2𝑖
𝑊3𝑖

 span𝑊𝑖 . Then 𝐷 = diag(𝐷1, 𝐷2, 𝐷3) stabilizes𝑊1 ⊕𝑊2 ⊕𝑊3 if and only if there exists a block diagonal matrix

𝐸 = diag(𝐸1, 𝐸2, 𝐸3), 𝐸𝑖 ∈ GL(2𝑛, 𝑞), such that
𝐷1 0 0
0 𝐷2 0
0 0 𝐷3



𝑊11 𝑊12 𝑊13
𝑊21 𝑊22 𝑊23
𝑊31 𝑊32 𝑊33

 =

𝑊11 𝑊12 𝑊13
𝑊21 𝑊22 𝑊23
𝑊31 𝑊32 𝑊33



𝐸1 0 0
0 𝐸2 0
0 0 𝐸3

 . (8)
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Note that each direct sum decomposition𝑊1 ⊕𝑊2 ⊕𝑊3, dim(𝑊𝑖 ) = 2𝑛, has 6 · |GL(2𝑛, 𝑞) |3 such matrix representations.
(The factor 6 takes care of the orders of the three summands.) So the question becomes to bound the probability for a
random invertible matrix to have a non-scalar 𝐷 and 𝐸 satisfying Equation 8.

First, note that Equation 8 holds if and only if 𝐷𝑖𝑊𝑖, 𝑗 =𝑊𝑖, 𝑗𝐸 𝑗 for 𝑖, 𝑗 ∈ [3].

Claim 5.13. When 𝑞 = Ω(1), we have Pr[∀𝑖, 𝑗 ∈ [3], rk(𝑊𝑖, 𝑗 ) = 2𝑛] ≥ 1 − 20
𝑞 .

Proof. Let us work in the setting when𝑊 is a random matrix, not necessarily invertible. Then Pr[rk(𝑊 ) = 6𝑛] ≥
1 − 2

𝑞 . For any 𝑖, 𝑗 ∈ [3], Pr[rk(𝑊𝑖, 𝑗 ) < 2𝑛] ≤ 2
𝑞 , so Pr[∃𝑖, 𝑗 ∈ [3], rk(𝑊𝑖, 𝑗 ) < 2𝑛] ≤ 18

𝑞 . It follows that Pr[∃𝑖, 𝑗 ∈
[3], rk(𝑊𝑖, 𝑗 ) < 2𝑛 | rk(𝑊 ) = 6𝑛] = Pr[∃𝑖, 𝑗 ∈ [3], rk(𝑊𝑖, 𝑗 ) < 2𝑛 ∧ rk(𝑊 ) = 6𝑛]/Pr[rk(𝑊 ) = 6𝑛] ≤ 18/𝑞

1−2/𝑞 = 18
𝑞−2 ≤

20
𝑞 ,

where the last inequality uses that 𝑞 = Ω(1). □

So we assume that rk(𝑊𝑖, 𝑗 ) = 2𝑛 for all 𝑖, 𝑗 ∈ [3] in the following, with a loss of probability ≤ 20
𝑞 .

For 𝑖 ∈ [3], by 𝐷𝑖𝑊𝑖𝑖 =𝑊𝑖𝑖𝐸𝑖 , we have 𝐷𝑖 =𝑊𝑖𝑖𝐸𝑖𝑊
−1
𝑖𝑖

. For 𝑖 ≠ 𝑗 , by (𝑊𝑗 𝑗𝐸 𝑗𝑊
−1
𝑗 𝑗
)𝑊𝑗𝑖 = 𝐷 𝑗𝑊𝑗𝑖 =𝑊𝑗𝑖𝐸𝑖 , we have

𝐸 𝑗 =𝑊
−1
𝑗 𝑗
𝑊𝑗𝑖𝐸𝑖𝑊

−1
𝑗𝑖
𝑊𝑗 𝑗 . Again for 𝑖 ≠ 𝑗 , we have𝑊𝑖𝑖𝐸𝑖𝑊

−1
𝑖𝑖
𝑊𝑖 𝑗 = 𝐷𝑖𝑊𝑖 𝑗 =𝑊𝑖 𝑗𝐸 𝑗 =𝑊𝑖 𝑗𝑊

−1
𝑗 𝑗
𝑊𝑗𝑖𝐸𝑖𝑊

−1
𝑗𝑖
𝑊𝑗 𝑗 . It follows

that
∀𝑖, 𝑗 ∈ [3], 𝑖 ≠ 𝑗, 𝐸𝑖𝑊

−1
𝑖𝑖 𝑊𝑖 𝑗𝑊

−1
𝑗 𝑗 𝑊𝑗𝑖 =𝑊

−1
𝑖𝑖 𝑊𝑖 𝑗𝑊

−1
𝑗 𝑗 𝑊𝑗𝑖𝐸𝑖 .

In particular, 𝐸3 commutes with 𝑋 =𝑊 −133 𝑊32𝑊 −122 𝑊23 and 𝑌 =𝑊 −133 𝑊31𝑊 −111 𝑊13. Since𝑊𝑖 𝑗 are independent random
invertible matrices, 𝑋 and 𝑌 are independent random invertible matrices. We now resort to the following classical
result.

Theorem 5.14 ([44], cf. also [43, Theorem 3.3] and [26, The paragraph after Theorem 1.1]). Let 𝑋 and 𝑌 be two random

matrices in GL(𝑛, 𝑞). Then the probability of 𝑋 and 𝑌 not generating a group containing SL(𝑛, 𝑞) is ≤ 1
𝑞Ω (𝑛) .

It follows that 𝐸3 belongs to the centralizer of 𝐺 , so 𝐸3 must be a scalar matrix. Then note that 𝐷𝑖 ’s and other 𝐸𝑖 ’s
are all conjugates of 𝐸3. So we have ∀𝑖 ∈ [3], 𝐷𝑖 = 𝐸𝑖 = 𝜆𝐼2𝑛 for some 𝜆 ≠ 0 ∈ F𝑞 .

Summarizing the above, we have

Pr[𝑆 non-scalar for 𝑉1, . . . ,𝑉6]

≤ Pr[𝑆 non-scalar for 𝑉𝑖 ∧ F6𝑛𝑞 = 𝑈1 ⊕ 𝑈2 ⊕ 𝑈3 =𝑊1 ⊕𝑊2 ⊕𝑊3] +
4
𝑞

≤ Pr[𝑆 non-scalar for 𝑉𝑖 | F6𝑛𝑞 = 𝑈1 ⊕ 𝑈2 ⊕ 𝑈3 =𝑊1 ⊕𝑊2 ⊕𝑊3] +
4
𝑞

≤ Pr[𝐷 non-scalar for𝑊 ∧ ∀𝑖, 𝑗 ∈ [3], rk(𝑊𝑖 𝑗 ) = 2𝑛] + 20
𝑞
+ 4
𝑞

≤ Pr[𝐷 non-scalar for𝑊 | ∀𝑖, 𝑗 ∈ [3], rk(𝑊𝑖 𝑗 ) = 2𝑛] + 24
𝑞

≤ 1
𝑞Ω (𝑛)

+ 24
𝑞

≤ 1
𝑞Ω (1)

.

This concludes the proof of Proposition 5.5. □
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6 APPLICATION TO 𝑝-GROUP ISOMORPHISM, USING CONSTRUCTIVE BAER AND LAZARD
CORRESPONDENCES

The applications to 𝑝-Group Isomorphism rely on the following well-known connections between alternating bilinear
maps and Lie algebras on the one hand, and 𝑝-groups of “small” class on the other. We present these connections
here, partly for audiences not from computational group theory, and partly because we will need to address some
computational aspects of these procedures. We begin with some preliminaries.

6.1 Preliminaries

TI-completeness. As the proof of Thm. P in Section 6.3.1 uses a result on TI-completeness from [35], here we recall the
definition of TI; see Definition 3.1 for the 𝑑-Tensor Isomorphism problem.

Definition 6.1 (𝑑TI, TI). For any field F, 𝑑TIF denotes the class of problems that are polynomial-time Turing (Cook)
reducible to 𝑑-Tensor Isomorphism over F. Also let TIF =

⋃
𝑑≥1 𝑑TIF.

The relationship between TI over different fields remains an intriguing open question [35], but here we will only
need TI over F𝑝 . One of the main results of [35] is that TI = 𝑑TI for any fixed 𝑑 ≥ 3.

Algebras and their algorithmic representations. A Lie algebra A consists of a vector space 𝑉 and a bilinear map
[, ] : 𝑉 × 𝑉 → 𝑉 that is alternating ([𝑣, 𝑣] = 0 for all 𝑣 ∈ 𝑉 ; this is equivalent to skew-symmetry [𝑢, 𝑣] = −[𝑣,𝑢]
in characteristic not 2) and satisfies the Jacobi identity [𝑥, [𝑦, 𝑧]] + [𝑧, [𝑥,𝑦]] + [𝑦, [𝑧, 𝑥]] = 0. The Jacobi identity is
essentially the “derivative” of associativity.

After choosing an ordered basis (𝑏1, . . . , 𝑏𝑛) where 𝑏𝑖 ∈ F𝑛 of 𝑉 � F𝑛 , this bilinear map [, ] can be represented by
an 𝑛 × 𝑛 × 𝑛 3-way array A, such that [𝑏𝑖 , 𝑏 𝑗 ] =

∑
𝑘∈[𝑛] A(𝑖, 𝑗, 𝑘)𝑏𝑘 . This is the structure constant representation of A.

Algorithms for Lie algebras have been studied intensively in this model, e. g., [24, 41].
It is also natural to consider matrix spaces that are closed under commutator. More specifically, letA ≤ M(𝑛, F) be a

matrix space. If A is closed under commutator, that is, for any 𝐴, 𝐵 ∈ A, [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 ∈ A, then A is a matrix
Lie algebra with the product being the commutator. (Protip: one way to remember the Jacobi identity is to derive it as
the natural identity among nested commutators of three matrices.) Algorithms for matrix Lie algebras have also been
studied, e. g., [27, 39, 41].

6.2 Constructive Baer Correspondence and Theorems A and B

Let us review Baer’s correspondence [8], which connects alternating bilinear maps with 𝑝-groups of class 2 and
exponent 𝑝 . Let 𝑃 be a 𝑝-group of class 2 and exponent 𝑝 , 𝑝 > 2. Suppose the commutator subgroup [𝑃, 𝑃] � Z𝑚𝑝 and
𝑃/[𝑃, 𝑃] � Z𝑛𝑝 . Then the commutator map [, ] : 𝑃/[𝑃, 𝑃] × 𝑃/[𝑃, 𝑃] → [𝑃, 𝑃] is an alternating bilinear map. Conversely,
let 𝜙 : Z𝑛𝑝 × Z𝑛𝑝 → Z𝑚𝑝 be an alternating bilinear map. Then a 𝑝-group of class 2 and exponent 𝑝 , denoted as 𝑃𝜙 can be
defined as follows. The group elements are from Z𝑛𝑝 × Z𝑚𝑝 , and the group product · is defined as

(𝑢, 𝑣) · (𝑢′, 𝑣 ′) = (𝑢 + 𝑢′, 𝑣 + 𝑣 ′ + 1
2𝜙 (𝑢,𝑢

′)) .

We say that (𝐴, 𝐵) ∈ GL(𝑛, 𝑝) ×GL(𝑚, 𝑝) is a pseudo-autometry of 𝜙 , if 𝜙 (𝑢, 𝑣) = 𝐵𝜙 (𝐴𝑢,𝐴𝑣) for all 𝑢, 𝑣 ∈ Z𝑛𝑝 . Clearly,
there is a one-to-one correspondence between automorphisms of 𝑃𝜙 and pseudo-autometries of 𝜙 .

We then state a lemma which can be viewed as a constructive version of Baer’s correspondence, communicated to us
by James B. Wilson.
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Lemma 6.2 (Constructive version of Baer’s correspondence for matrix groups). Let 𝑝 be an odd prime. Over the finite

field F = F𝑝𝑒 , Alternating Matrix Space Isometry is equivalent to Group Isomorphism for matrix groups over F that

are 𝑝-groups of class 2 and exponent 𝑝 . More precisely, there are functions computable in time poly(𝑛,𝑚, log |F|):

• 𝐺 : Λ(𝑛, F)𝑚 → M(𝑛 +𝑚 + 1, F)𝑛+𝑚 and

• Alt : M(𝑛, F)𝑚 → Λ(𝑚, F)𝑂 (𝑚2 )

such that: (1) for an alternating bilinear map A, the group generated by 𝐺 (A) is the Baer group corresponding to A, (2)
𝐺 and Alt are mutually inverse, in the sense that the group generated by 𝐺 (Alt(𝑀1, . . . , 𝑀𝑚)) is isomorphic to the group

generated by𝑀1, . . . , 𝑀𝑚 , and conversely Alt(𝐺 (A)) is pseudo-isometric to A.

Proof. First, let 𝐺 be a 𝑝-group of class 2 and exponent 𝑝 given by 𝑚 generating matrices of size 𝑛 × 𝑛 over
F. Then from the generating matrices of 𝐺 , we first compute a generating set of [𝐺,𝐺], by just computing all the
commutators of the given generators. We can then remove those redundant elements from this generating set in time
poly(log | [𝐺,𝐺] |, log |F|), using Luks’ result on computing with solvable matrix groups[53]. We then compute a set of
representatives of a non-redundant generating set of𝐺/[𝐺,𝐺], again using Luks’s aforementioned result. From these
data we can compute an alternating bilinear map representing the commutator map of 𝐺 in time poly(𝑛,𝑚, log |F|).

Conversely, let an alternating bilinear map be given by A = (𝐴1, . . . , 𝐴𝑚) ∈ Λ(𝑛, F)𝑚 . From A, for 𝑖 ∈ [𝑛], construct
𝐵𝑖 = [𝐴1𝑒𝑖 , . . . , 𝐴𝑚𝑒𝑖 ] ∈ M(𝑛 ×𝑚, F), where 𝑒𝑖 is the 𝑖th standard basis vector of F𝑛 . That is, the 𝑗 th column of 𝐵𝑖 is the
𝑖th column of 𝐴 𝑗 . Then for 𝑖 ∈ [𝑛], construct

𝐵̃𝑖 =


1 𝑒𝑡

𝑖
0

0 𝐼𝑛 𝐵𝑖

0 0 𝐼𝑚

 ∈ GL(1 + 𝑛 +𝑚, F),
where 𝑒𝑖 ∈ F𝑛 , and for 𝑗 ∈ [𝑚], construct

𝐶 𝑗 =


1 0 𝑒𝑡

𝑗

0 𝐼𝑛 0
0 0 𝐼𝑚

 ∈ GL(1 + 𝑛 +𝑚, F),
where 𝑒 𝑗 ∈ F𝑚 . Let 𝐺 (A) be the tuple consisting of the 𝐵̃𝑖 and the 𝐶 𝑗 , and let Γ be the group they generate. Then it
can be verified easily that, Γ is isomorphic to the Baer group corresponding to the alternating bilinear map defined by
A. In particular, [Γ, Γ] � F𝑚 � Z𝑒𝑚𝑝 (isomorphism of abelian groups), and Γ/[Γ, Γ] � F𝑛 � Z𝑒𝑛𝑝 . This construction can
be done in time poly(𝑛,𝑚, log |F|). □

Given the above lemma, we can present search- and counting-to-decision reductions for testing isomorphism of a
class of 𝑝-groups, proving Theorems A and B.

Proof of Theorem A. The search-to-decision reduction follows from Theorem A′, using the 𝑞𝑂 (𝑛+𝑚) -time al-
gorithm, with the constructive version of Baer’s Correspondence in the model of matrix groups over finite fields
(Lemma 6.2).

In more detail, given Lemma 6.2 we can follow the procedure in the proof of Theorem A′. For the given 𝑝-groups, we
compute their commutator maps. Then whenever we need to feed the decision oracle, we transform from the alternating
bilinear map to a generating set of a 𝑝-group of class 2 and exponent 𝑝 with this bilinear map as the commutator map.
After getting the desired pseudo-isometry for the alternating bilinear maps, we can easily recover an isomorphism
between the originally given 𝑝-groups. □
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Proof of Theorem B. For the counting-to-decision reduction, we basically follow the above routine, but with
a twist, because of the minor distinction between alternating matrix space isometry, and alternating bilinear map
pseudo-isometry. Let us briefly explain this issue. Suppose from an alternating bilinear map 𝜙 : Z𝑛𝑝 × Z𝑛𝑝 → Z𝑚𝑝 we
constructed a 𝑝-group of class 2 and exponent 𝑝 𝑃𝜙 , and there is a 𝑘-to-one correspondence between automorphisms of
𝑃𝜙 and pseudo-autometries of 𝜙 (we explain the value of 𝑘 below). Let (𝐶1, . . . ,𝐶𝑚) ∈ Λ(𝑛, 𝑝) be a matrix representation
of 𝜙 . If 𝐶𝑖 ’s are linearly independent, then for a pseudo-autometry (𝐴, 𝐵) ∈ GL(𝑛, 𝑝) × GL(𝑚, 𝑝), given 𝐴 there exists a
unique 𝐵 that makes (𝐴, 𝐵) a pseudo-autometry. If 𝐶𝑖 ’s are not linearly independent, say the linear span of 𝐶𝑖 ’s is of
dimension𝑚′, then the number of 𝐵 such that (𝐴, 𝐵) is a pseudo-autometry is |GL(𝑚−𝑚′, 𝑝) |. The counting to decision
reduction for Alternating Matrix Space Isometry computes the number of 𝐴 ∈ GL(𝑛, 𝑝) so that there exists some
𝐵 ∈ GL(𝑚, 𝑝) such that (𝐴, 𝐵) is a pseudo-autometry. So it needs to be multiplied by a factor of |GL(𝑚 −𝑚′, 𝑝) |.

Furthermore, there are automorphisms of 𝑃𝜙 that act trivially on both 𝑍 (𝑃𝜙 ) and 𝑃𝜙/𝑍 (𝑃𝜙 ), and hence correspond
to the trivial pseudo-autometry of 𝜙 . Such automorphisms are in bijective correspondence with Hom(Z𝑛𝑝 ,Z𝑚𝑝 ), hence
there are precisely 𝑝𝑛𝑚 of them—this is the factor of 𝑘 mentioned above. For similar reasons, if the 𝐶𝑖 span a space of
dimension𝑚′, we multiply by another factor of 𝑝𝑚′ (𝑚−𝑚′ ) to get the number of automorphisms of 𝑃𝜙 . □

6.3 Constructive Lazard’s correspondence and Thm. P

The Lazard correspondence [49] is a correspondence between certain classes of groups and Lie algebras, which extends
the usual correspondence between Lie groups and Lie algebras (say, over R) to some groups and Lie algebras in positive
characteristic. Here we state just enough to give a sense of it; for further details and exposition we refer to Khukhro’s
book [46] and Naik’s thesis [62]. While Naik’s thesis is quite long, it also includes a reader’s guide, and collects many
results scattered across the literature or well-known to the experts in one place, building the theory from the ground up
and with many examples.

Recall that a Lie ring is an abelian group 𝐿 equipped with a bilinear map [, ], called the Lie bracket, which is (1)
alternating ([𝑥, 𝑥] = 0 for all 𝑥 ∈ 𝐿) and (2) satisfies the Jacobi identity [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥,𝑦]] = 0 for all
𝑥,𝑦, 𝑧 ∈ 𝐿 (in some sense the “derivative” of the associativity equation). Let 𝐿1 = 𝐿, and 𝐿𝑖+1 = [𝐿, 𝐿𝑖 ], which is the
subgroup (of the underlying additive group) generated by all elements of the form [𝑥,𝑦] for 𝑥 ∈ 𝐿,𝑦 ∈ 𝐿𝑖 . Then 𝐿 is
nilpotent if 𝐿𝑐+1 = 0 for some finite 𝑐; the smallest such 𝑐 is the nilpotency class. (Lie algebras are just Lie rings over a
field.)

The correspondence between Lie algebras and Lie groups over R uses the Baker–Campbell–Hausdorff (BCH) formula
to convert between a Lie algebra and a Lie group, so we start there. For non-commuting matrices 𝑋,𝑌 , 𝑒𝑋 𝑒𝑌 ≠ 𝑒𝑋+𝑌

in general (where the matrix exponential here is defined using the power series for 𝑒𝑥 ). Rather, using commutators
[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴, we have

exp(𝑋 ) exp(𝑌 ) = exp
(
𝑋 + 𝑌 + 1

2 [𝑋,𝑌 ] +
1
12 ( [𝑋, [𝑋,𝑌 ]] − [𝑌, [𝑋,𝑌 ]]) −

1
24 [𝑌, [𝑋, [𝑋,𝑌 ]]] + · · ·

)
,

where the remaining terms are iterated commutators that all involve at least 5 𝑋 s and 𝑌 s, and successive terms involve
more and more. The BCH formula is a function of 𝑋,𝑌 , that is given by the infinite summation inside the exponential
on the RHS of the preceding equation. Applying the exponential function to a Lie algebra in characteristic zero yields a
Lie group. The BCH formula can be inverted, giving the correspondence in the other direction.

In a nilpotent Lie algebra, the BCH formula has only finitely many nonzero terms, so issues of convergence disappear
and we may consider applying the correspondence over finite fields or rings; the only remaining obstacle is that the
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denominators appearing in the formula must be units in the ring. It turns out that the correspondence continues to
work in characteristic 𝑝 so long as one does not need to use the 𝑝-th term of the BCH formula (which includes division
by 𝑝), and the latter is avoided whenever a nilpotent group has class strictly less than 𝑝 , or even when all subgroups
generated by at most 3 elements have class strictly less than 𝑝 . While the correspondence does apply more generally,
here we only state the version for finite groups. For any fixed nilpotency class 𝑐 , computing the Lazard correspondence
is efficient in theory; for how to compute it in practice when the groups are given by polycyclic presentations, see [21].

Let Grp𝑝,𝑛,𝑐 denote the set of finite groups of order 𝑝𝑛 and class 𝑐 , and let Lie𝑝,𝑛,𝑐 denote the set of Lie rings of order
𝑝𝑛 and class 𝑐 . We note that for nilpotency class 2, the Baer correspondence is the same as the Lazard correspondence.

Theorem 6.3 (Lazard Correspondence for finite groups [49], see, e. g., [46, Ch. 9 & 10] or [62, Ch. 6]). For any prime

𝑝 and any 1 ≤ 𝑐 < 𝑝 , there are functions log : Grp𝑝,𝑛,𝑐 ↔ Lie𝑝,𝑛,𝑐 : exp such that (1) log and exp are inverses of one

another, (2) two groups 𝐺,𝐻 ∈ Grp𝑝,𝑛,𝑐 are isomorphic if and only if log(𝐺) and log(𝐻 ) are isomorphic, and (3) if 𝐺 has

exponent 𝑝 , then the underlying abelian group of log(𝐺) has exponent 𝑝 . More strongly, log is an isomorphism of categories

Grp𝑝,𝑛,𝑐 � Lie𝑝,𝑛,𝑐 .

Part (3) can be found as a special case of [62, Lemma 6.1.2].
For 𝑝-groups given by𝑑×𝑑 matrices over the finite field F𝑝𝑒 , wewill need one additional fact about the correspondence,

namely that it also results in a Lie algebra of 𝑑 × 𝑑 matrices. (Being able to bound the dimension of the Lie algebra
and work with it in a simple linear-algebraic way seems crucial for our reduction to work efficiently.) In fact, the BCH
correspondence is easier to see for matrix groups using the matrix exponential and matrix logarithm; most of the work
for BCH and Lazard is to get the correspondence to work even without the matrices. In some sense, this is thus the
“original” setting of this correspondence. Though it is surely not new, we could not find a convenient reference for this
fact about matrix groups over finite fields, so we state it formally here.

Proposition 6.4 (cf. [46, Exercise 10.6]). Let 𝐺 ≤ GL(𝑑, F𝑝𝑒 ) be a finite 𝑝-subgroup of exponent 𝑝 , consisting of 𝑑 × 𝑑
matrices over a finite field of characteristic 𝑝 . Then log(𝐺) (from the Lazard correspondence) can be realized as a finite

Lie subalgebra of 𝑑𝑒 × 𝑑𝑒 matrices over F𝑝 . Given a generating set for 𝐺 of𝑚 matrices, a generating set for log(𝐺) can be

constructed in poly(𝑑, 𝑛, 𝑒 log𝑝) time.

Khukhro [46] gives the characteristic zero analogue of this result (minus the straightforward complexity analysis)
for the full group of upper unitriangular matrices as Exercise 10.6. One way to see Proposition 6.4 is to use the
characteristic zero result, apply the fact that these isomorphism are in fact equivalence of categories (and thus hold for
subgroups/subalgebras as well), and note that the same formulae in characteristic zero apply in characteristic 𝑝 so long
as one never needs to divide by 𝑝 . We now sketch the argument.

Proof sketch. First we use the standard embedding of GL(𝑑, F𝑝𝑒 ) into GL(𝑑𝑒, F𝑝 ) (replace each element by an 𝑒 ×𝑒
block which is the left regular representation of F𝑝𝑒 acting on itself as an 𝑒-dimensional F𝑝 -vector space), to realize 𝐺
as a subgroup of GL(𝑑𝑒, F𝑝 ). 𝐺 is conjugate in GL(𝑑𝑒, F𝑝 ) to a group of upper unitriangular matrices (upper triangular
with all 1s on the diagonal); this is a standard fact that can be seen in several ways, for example, by noting that the
group𝑈 of all upper unitriangular matrices in GL(𝑑𝑒, F𝑝 ) is a Sylow 𝑝-subgroup, and applying Sylow’s Theorem. (Note
that we do not need to do this conjugation algorithmically, though it is possible to do so [30, 39, 66]; this is only for
the proof.) Thus we may write every 𝑔 ∈ 𝐺 as 1 + 𝑛, where the sum here is the ordinary sum of matrices, 1 denotes
the identity matrix, and 𝑛 is strictly upper triangular. To see that we can truncate the Taylor series for logarithm
Manuscript submitted to ACM
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before the 𝑝-th term (thus avoiding needing to divide by 𝑝), note that (1 + 𝑛)𝑝 = 1 since 𝐺 is exponent 𝑝 . We have
(1 + 𝑛)𝑝 = 1𝑝 +

(𝑝
1
)
𝑛 +

(𝑝
2
)
𝑛2 + · · · +

( 𝑝
𝑝−1

)
𝑛𝑝−1 + 𝑛𝑝 . Since these are matrices over a field of characteristic 𝑝 , and 𝑝 |

(𝑝
𝑖

)
for all 1 ≤ 𝑖 ≤ 𝑝 − 1, all the intermediate terms vanish and we have that (1 + 𝑛)𝑝 = 1𝑝 + 𝑛𝑝 . Thus 1 = (1 + 𝑛)𝑝 = 1 + 𝑛𝑝 ,
so we get that 𝑛𝑝 = 0. Thus, in the the Taylor series for the logarithm

log(1 + 𝑛) = 𝑛 − 𝑛
2

2 +
𝑛3

3 − · · ·

the last nonzero term is 𝑛𝑝−1/(𝑝 − 1), so we may use this Taylor series even over F𝑝𝑒 .
The main things to check are that the set log(𝐺) := {log(1 + 𝑛) : 1 + 𝑛 ∈ 𝐺} is closed under scalar multiplication,

matrix addition, and matrix commutator [𝑋,𝑌 ] = 𝑋𝑌 − 𝑌𝑋 . Suppose 𝑔1, 𝑔2 are matrices in 𝐺 , and write them as
𝑔𝑖 = 1 + 𝑛𝑖 (𝑖 = 1, 2), as above. We recall that, because 𝑛𝑝

𝑖
= 0 from above, the power series for both log and exp work

to compute the matrix logarithm and exponential over F𝑝𝑒 , respectively, and that the usual rules of logarithms are
satisfied for a single matrix 𝐴: whenever 𝐴 ∈ 𝑀𝑑𝑒 (F𝑝 ) satisfies 𝐴𝑝 = 0, we have log exp𝐴 = 𝐴, exp log(1 +𝐴) = 1 +𝐴,
exp(𝑛𝐴) = (exp𝐴)𝑛 for 𝑛 ∈ Z, and log((1 +𝐴)𝑛) = 𝑛 log(1 +𝐴).

• Scalar multiplication: For 𝛼 ∈ F𝑝 , we show that 𝑛 log(1 + 𝑛1) is in log(𝐺). This is easy to show, as it follows
directly from the rules of logarithms just mentioned: 𝛼 log(1 + 𝑛1) = log((1 + 𝑛1)𝛼 ) where on the right-hand
side we treat 𝛼 as an integer in the range [0, 𝑝 − 1].

• Addition: Let 𝑥𝑖 = log(1+𝑛𝑖 ) for 𝑖 = 1, 2. We want to show that 𝑥1 +𝑥2 is in log(𝐺), or equivalently that exp(𝑥1 +
𝑥2) ∈ 𝐺 . This follows from the first inverse BCH formula ℎ1, which satisfies exp(𝑥1+𝑥2) = ℎ1 (exp(𝑥1), exp(𝑥2))
for 𝑥𝑖 in the free nilpotent-of-class-𝑐 F𝑝𝑒 -Lie algebra, and then we may apply the homomorphism from the
latter algebra to the subalgebra of M𝑛 (F𝑝𝑒 ) generated by the 𝑛𝑖 to see that the same formula works. (We note,
because a reviewer asked, that here we do not need this entire subalgebra to be in {𝑔 − 1 : 𝑔 ∈ 𝐺}; the use of
that subalgebra is just convenient for talking about algebra homomorphisms in the proof. Rather, it suffices that
the preceding equation holds for these particular elements 𝑛𝑖 , which are by definition of the form 𝑔𝑖 − 1 for
some matrices 𝑔𝑖 ∈ 𝐺 .)

• Commutator: [log(1 + 𝑛1), log(1 + 𝑛2)]. A similar argument as in the previous case works, using the second
inverse BCH formula ℎ2, which satisfies exp( [𝑥1, 𝑥2]) = ℎ2 (exp(𝑥1), exp(𝑥2)).

Equivalently, we may note that the derivation of the inverse BCH formula in [46, 62] uses a free nilpotent associative
algebra as an ambient setting in which both the group (or rather, 𝑛 such that 1+𝑛 is in the group) and the corresponding
Lie algebra live; in our case, we may replace the ambient free nilpotent associative algebra with the algebra of 𝑑𝑒 × 𝑑𝑒
strictly upper-triangular matrices over F𝑝 , and all the derivations remain the same, mutatis mutandis. See, for example,
[46, p. 105, “Another remark...”]. □

6.3.1 Class reduction in 𝑝-group isomorphism testing. Proposition 6.4 now allows us to prove Thm. P.

Proof of Thm. P. By the Lazard correspondence (reproduced as Theorem 6.3) two 𝑝-groups of exponent 𝑝 and
class 𝑐 < 𝑝 are isomorphic if and only if their corresponding F𝑝 -Lie algebras are. By Proposition 6.4, we can construct
a generating set for the corresponding F𝑝 -Lie algebra by applying the power series for logarithm to the generating
matrices of 𝐺 . This Lie algebra is thus a subalgebra of 𝑛𝑒 × 𝑛𝑒 matrices over F𝑝 , so we can generate a basis for the
entire Lie algebra (using the linear-algebra version of breadth-first search; its dimension is ≤ (𝑛𝑒)2) and compute its
structure constants in time polynomial in 𝑛,𝑚, and 𝑒 log𝑝 . Then use [31] to reduce isomorphism of Lie algebras to
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3-Tensor Isomorphism, and then use the fact that isomorphism of 𝑝-groups of exponent 𝑝 and class 2 given by a matrix
generating set over F𝑝 is TI-complete [35] to reduce to the latter problem. □

7 CONCLUSION

In this paper, we gave first-of-their-kind results around search-to-decision, counting-to-decision, and reductions to
hard instances in the context of Group Isomorphism. We focused on 𝑝-groups of class 2 (or more generally small class)
and exponent 𝑝 , as these are widely believed to be the hardest cases of GpI. They also have the closest connection with
tensors.

We view this paper as the second in a planned series, focusing on isomorphism problems for tensors, groups,
polynomials, and related structures. Although Graph Isomorphism (GI) is perhaps the most well-studied isomorphism
problem in computational complexity—even going back to Cook’s and Levin’s initial investigations into NP (see [2,
Sec. 1])—it has long been considered to be solvable in practice [57, 58], and Babai’s recent quasi-polynomial-time
breakthrough is one of the theoretical gems of the last several decades [4]. However, several isomorphism problems
for tensors, groups, and polynomials seem to be much harder to solve, both in practice—they’ve been suggested as
difficult enough to support cryptography [42, 63]—and in theory: the best known worst-case upper bounds are barely
improved from brute force (e. g., [52, 68]). As these problems arise in a variety of areas, from multivariate cryptography
and machine learning, to quantum information and computational algebra, getting a better understanding of their
complexity is an important goal with many potential applications.

In the first paper in this series [35], we showed that numerous such isomorphism problems from many research
areas are equivalent under polynomial-time reductions, creating bridges between different disciplines. The Tensor
Isomorphism (TI) problem turns out to occupy a central position among these problems, leading us to define the
complexity class TI, consisting of those problems polynomial-time reducible to the Tensor Isomorphism problem. The
gadgets and TI-completeness result from that first paper in some cases opened the door, and in other cases are used as
subroutines, in the main results of the current paper.

Finally, we list here some additional questions that we find interesting and approachable. One question is whether
our tensor-based methods here can be extended or combined with other methods to get analogous results in wider
classes of groups; for isomorphism algorithms, something along these lines was proposed by Brooksbank, Grochow, Li,
Wilson, & Qiao [13], but there are many interesting open questions in this direction.

Getting the results of this paper to work in the Cayley table model would also be interesting from the complexity-
theoretic perspective; the necessary ingredients are discussed in Remark 1.2.

Lastly, we mention that extending the results of the present paper, [31], and [35] to rings beyond fields would be
very interesting. In particular, working with tensors over Z/𝑝𝑘Z is an important step towards extending the results of
this paper to 𝑝-groups of class 2 without restricting them to exponent 𝑝 . (This is particularly important when 𝑝 = 2, as
groups of exponent 2 are abelian, so the hardest instances of 2-groups, rather than “𝑝-groups of class 2 and exponent 𝑝”
with 𝑝 = 2, are often taken to be 2-groups of class 2 and exponent four.)

It seems conceivable that many of our arguments could extend to tensors over local rings—those with a unique
maximal ideal—as many of our arguments are rank-based, and rank still has nice properties over local rings (e.g.
Nakayama’s Lemma). In particular, if 𝑅 is a ring and 𝔪 a maximal ideal, then 𝑅/𝔪 is a field; in a local ring, there
is a unique maximal ideal, so the field 𝑅/𝔪 is canonically associated to 𝑅, and one can talk cleanly about rank and
dimension of 𝑅-modules considered over the field 𝑅/𝔪. Besides Z/𝑝𝑘Z, another local ring of interest is the ring F[[𝑡]]
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of power series in one variable over a field F; a tensor over F[[𝑡]] is essentially a 1-parameter family of tensors over F,
so studying tensor problems over F[[𝑡]] could have applications to border rank and geometric complexity theory.
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