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Abstract. We study the complexity of isomorphism problems for tensors, groups, and polynomials. These4
problems have been studied in multivariate cryptography, machine learning, quantum information, and computational5
group theory. We show that these problems are all polynomial-time equivalent, creating bridges between problems6
traditionally studied in myriad research areas. This prompts us to define the complexity class TI, namely problems7
that reduce to the Tensor Isomorphism (TI) problem in polynomial time. Our main technical result is a polynomial-8
time reduction from d-tensor isomorphism to 3-tensor isomorphism. In the context of quantum information, this result9
gives multipartite-to-tripartite entanglement transformation procedure, that preserves equivalence under stochastic10
local operations and classical communication (SLOCC).11
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1. Introduction. Although Graph Isomorphism (GI) is perhaps the most well-studied iso-15
morphism problem in computational complexity—even going back to Cook’s and Levin’s initial in-16
vestigations into NP (see [3, Sec. 1])—it has long been considered to be solvable in practice [76,77],17
and Babai’s recent quasi-polynomial-time breakthrough is one of the theoretical gems of the last18
several decades [6].19

However, several isomorphism problems for tensors, groups, and polynomials seem to be much20
harder to solve, both in practice—they’ve been suggested as difficult enough to support cryptog-21
raphy [59, 84]—and in theory: the best known worst-case upper bounds are barely improved from22
brute force (e. g., [69,90]). As these problems arise in a variety of areas, from multivariate cryptog-23
raphy and machine learning, to quantum information and computational algebra, getting a better24
understanding of their complexity is an important goal with many potential applications. These25
isomorphism problems are the focus of this paper.26

Our first set of results shows that all these isomorphism problems from many research areas are27
equivalent under polynomial-time reductions, creating bridges between different disciplines. The28
Tensor Isomorphism (TI) problem turns out to occupy a central position among these problems,29
leading us to define the complexity class TI, consisting of those problems polynomial-time reducible30
to the Tensor Isomorphism problem.31

More specifically, we first present a polynomial-time reduction from d-Tensor Isomorphism32
to 3-Tensor Isomorphism. This result may be viewed as corresponding to the k-SAT to 3-SAT33
reduction in the setting of Tensor Isomorphism, but the proof is much more involved. This result34
also has a natural application to quantum information: it gives a procedure that turns multipar-35
tite entanglements to tripartite entanglements while preserving equivalence under stochastic local36
operations and classical communication (SLOCC).37
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2 JOSHUA A. GROCHOW AND YOUMING QIAO

We then demonstrate that various isomorphism problems for polynomials, general algebras,38
groups, and tensors all turn out to be TI-complete. One important reference here is the recent39
work [42], in which they showed that several such problems reduce to 3TI. Our contribution is to40
show that these problems are also 3TI-hard. Another set of related works are [1,2,62] by Agrawal,41
Kayal, and Saxena, who showed some equivalences and reductions between Ring Isomorphism42
(commutative with unit), Cubic Form Equivalence, and isomorphism of commutative, unital,43
associative algebras [1,2,62]. Here we greatly expand these and show a much wider class of problems44
are equivalent (see Thm. 1.4=Thm. B and Fig. 1).45

In a follow-up paper [51], we study search and counting to decision reductions, apply the results46
of the present paper to Group Isomorphism in the matrix group model, and obtain a nilpotency47
class reduction for Group Isomorphism.48

All these results together lay the foundation for an emerging theory of the complexity class TI49
that in some cases parallels, and in some cases deviates from, the complexity theory of the class GI,50
namely the set of problems that are polynomial-time reducible to Graph Isomorphism [64]. From51
the theory perspective, this theory reveals a family of algorithmic problems demonstrating highly52
interesting complexity-theoretic properties. From the practical perspective, this theory could serve53
as a guidance for, and facilitate dialogue among, researchers from diverse research areas including54
cryptography, machine learning, quantum information, and computational algebra. Indeed, some55
of our results already have natural applications to quantum information and computational group56
theory.57

In the remainder of this section we shall present these results in detail, starting from an intro-58
duction of these problems and their origins.59

1.1. Isomorphism testing problems from several areas. Let F be a field. Let GL(n,F)60
denote the general linear group of degree n over F, and M(n,F) the linear space of n× n matrices.61
For a finite field Fq, we may also write GL(n,Fq) and M(n,Fq) as GL(n, q) and M(n, q).62

Multivariate cryptography. In 1996, Patarin [84] proposed identification and signature schemes63
based on a family of problems called “isomorphism of polynomials.” A specific problem, called64
isomorphism of (quadratic) polynomials with two secrets (IP2S), asks the following. Let f⃗ =65
(f1, . . . , fm) and g⃗ = (g1, . . . , gm) be two tuples of homogeneous quadratic polynomials, where66
fi, gj ∈ F[x1, . . . , xn]. Recall an m-tuple of polynomials in n variables can be viewed as a polynomial67

map from Fn to Fm. It is natural to ask whether f⃗ and g⃗ represent the same polynomial map up68
to change of basis, or more specifically, whether there exists P ∈ GL(n,F) and Q ∈ GL(m,F),69

such that Q ◦ f⃗ ◦ P = g⃗. Since then, the IP2S problem, and its variant isomorphism of (quadratic)70
polynomials with one secret (IP1S), have been intensively studied in multivariate cryptography71
(see [13,57] and references therein).72

Machine learning. In machine learning, it is natural to view a sequential data stream as a73
path. This leads to the use of the signature tensor of a path ϕ : [0, 1] → Rn, first introduced by74
Chen [29] to extract features of data. This is the basic idea of the signature tensor method, which75
has been pursued by in a series of works; see [30, 72, 81] and references therein. The algorithmic76
problem of reconstructing the path from the signature tensor is of considerable interest; see, e. g.,77
[73,86]. In this context, the following problem was recently studied by Pfeffer, Seigal, and Sturmfels78
[86], called the Tensor Congruence problem: given two 3-tensors A = (aijk), B = (bijk) ∈79
Fn×n×n, decide whether there exists P ∈ GL(n,F), such that the congruence action of P sends80
A to B. More specifically, this action of P = (pij) sends A = (aijk) to A′ = (a′ijk), where a′ijk =81 ∑

i′,j′,k′ ai′j′k′pi,i′pj,j′pk,k′ .82
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Quantum information. Let H = H1⊗· · ·⊗Hd, where Hi = Cni . Let ρ = |ϕ⟩⟨ϕ| and τ = |ψ⟩⟨ψ|83
be two pure quantum states, where |ϕ⟩, |ψ⟩ ∈ H. In quantum information, a natural question84
is to decide whether ρ can be converted to τ using local operations and classical communication85
statistically (SLOCC), i. e., with non-zero probability [12,36]. It is well-known by [36] that ρ and τ86
are interconvertible via SLOCC if and only if there exist Ti ∈ GL(Hi), such that (T1⊗ . . . Tm)|ϕ⟩ =87
|ψ⟩. Therefore, given pure quantum states ρ and τ , whether ρ and τ are inverconvertible via SLOCC88
can be cast as an isomorphism testing problem, called the d-Tensor Isomorphism problem (see89
Definition 1.1).90

Computational group theory. In computational group theory, a notoriously difficult problem is91
to test isomorphism of finite p-groups, namely groups of prime power order (see, e. g., [82]). Here,92
the groups are represented succinctly, e. g., by generating sets of permutations or matrices over93
finite fields. Indeed, testing isomorphism of p-groups is considered to be a bottleneck to testing94
isomorphism of general groups [8, 28, 49]. Even for p-groups of class 2 and exponent p, current95
methods are still quite limited to instances of small size.96

Theoretical computer science. As already mentioned, Agrawal, Kayal, and Saxena studied iso-97
morphism and automorphism problems of rings, algebras, and polynomials [1, 2, 62], motivated98
by several problems including Primality Testing, Polynomial Factorization, and Graph99
Isomorphism. Later, motivated by cryptographic applications and algebraic complexity, Kayal100
studied the Polynomial Equivalence problems (possibly under affine projections) and solved101
certain important special cases [60,61] (see also [48]). Among these problems, we will be mostly con-102
cerned with the following two. First, the Algebra Isomorphism problem for commutative, unital,103
associative algebras over a field F, asks whether two such algebras, given by structure constants,104
are isomorphic. Second, the Cubic Form Equivalence problem asks whether two homogeneous105
cubic polynomials over F are equivalent under the natural action of the general linear group by106
change of basis on the variables.107

Practical complexity of these problems. The preceding isomorphism testing problems are of108
great interest to researchers from seemingly unrelated areas. Furthermore, they pose considerable109
challenges for practical computations at the present stage. The latter is in sharp contrast to Graph110
Isomorphism, for which very effective practical algorithms have existed for some time [76, 77].111
Indeed, the problems we consider have been proposed to be difficult enough for cryptographic112
purposes [59, 84]. As further evidence of their practical difficulty, current algorithms implemented113
for testing isomorphism of p-groups of class 2 and exponent p can handle groups of dimension 20114
over F13, but absolutely not for groups of dimension 200 over F13, even though in this case the115
input can still be stored in only a few megabytes.1 In [86, arXiv version 1], computations on special116
cases of the Tensor Congruence problem were performed in Macaulay2 [45], but these could117
not go beyond small examples either.118

A note on terminology. Before introducing our results formally, a terminological note is in119
order: we shall call valence-d tensors d-way arrays, and tensors will be understood to be d-way120
arrays considered under a specific group action. The reason for this change of terminology will121
be clearer in the following. We remark that it is not uncommon to see such differences in the122
terminologies around tensors, see, e. g., the preface of [68].123

We follow a natural convention: when F is finite, a fixed algebraic extension of a finite field124
such as Fp, the rationals, or a fixed algebraic extension of the rationals such as Q, we consider the125

1We thank James B. Wilson, who maintains a suite of algorithms for p-group isomorphism testing [24], for
communicating this insight to us from his hands-on experience. We of course maintain responsibility for any possible
misunderstanding, or lack of knowledge regarding the performance of other implemented algorithms.
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usual model of Turing machines; when F is R, C, the p-adic rationals Qp, or other more “exotic”126
fields, we work in the Blum–Shub–Smale model over F.127

1.2. Main results.128

1.2.1. Defining the Tensor Isomorphism complexity class. Given the diversity of the129
isomorphism problems from Sec. 1.1, the first main question addressed in this paper is130

Is there a unifying framework that accommodates the many difficult isomorphism131
testing problems arising in practice?132

Such a framework would help to explain the difficulties from various areas when dealing with these133
isomorphism problems, and facilitate dialogue among researchers from different fields.134

At first sight, this seems quite difficult: these problems concern very different mathematical135
objects, ranging from sets of quadratic equations, to algebras, to finite groups, to tensors, and each136
of them has its own rich theory.137

Despite these obstacles, our first main result shows that those problems in Sec. 1.1 arising in138
many fields—from computational group theory to cryptography to machine learning—are equivalent139
under polynomial-time reductions. In proving the first main result, the d-Tensor Isomorphism140
problem occupies a central position. This leads us to define the complexity class TI, consisting of141
problems reducible to TI, much in vein of the introduction of the Graph Isomorphism complexity142
class GI [64].143

Definition 1.1 (The d-Tensor Isomorphism problem). d-Tensor Isomorphism over a144
field F is the problem: given two d-way arrays A = (ai1,...,id) and B = (bi1,...,id), where ik ∈ [nk] for145
k ∈ [d], and ai1,...,id , bi1,...,id ∈ F, decide whether there are Pk ∈ GL(nk,F) for k ∈ [d], such that for146
all i1, . . . , id,147

(1.1) ai1,...,id =
∑

j1,...,jd

bj1,...,jd(P1)i1,j1(P2)i2,j2 · · · (Pd)id,jd .148

Our first main result resolves an open question well-known to the experts:2149

Theorem 1.2 (=Cor. A). d-Tensor Isomorphism reduces to 3-Tensor Isomorphism in150
time O(nd).151

Thm. 1.2 is also key to the application to quantum information as in Sec. 1.4.152
Thus, while the 2TI problem is easy (it’s just matrix rank), 3TI already captures the complexity153

of dTI for any fixed d. This phenomenon is reminiscent of the transition in hardness from 2 to 3 in154
k-SAT, k-Coloring, k-Matching, and many other NP-complete problems. It is interesting that155
an analogous phenomenon—a transition to some sort of “universality” from 2 to 3—occurs in the156
setting of isomorphism problems, which we believe are not NP-complete over finite fields (indeed,157
they cannot be unless PH collapses).158

Definition 1.3 (TI). For any field F, TIF denotes the class of problems that are polynomial-159
time Turing (Cook) reducible to d-Tensor Isomorphism over F, for some constant d. A problem is160
TIF-complete, if it is in TIF, and d-Tensor Isomorphism over F for any d reduces to this problem.161

By Thm. 1.2, we may take d = 3 without loss of generality. When we write TI without men-162
tioning the field, the result holds for any field.163

2We asked several experts who knew of the question, but we were unable to find a written reference. Interestingly,
Oldenburger [83] worked on what we would call d-Tensor Isomorphism as far back as the 1930s. We would be
grateful for any prior written reference to the question of whether dTI reduces to 3TI.

This manuscript is for review purposes only.



COMPLEXITY OF ISOMORPHISM PROBLEMS FOR GROUPS, TENSORS, AND MORE 5

1.2.2. TI-complete problems. Our second main result shows the wide applicability and164
robustness of the TI class.165

Theorem 1.4 (Informal statement of part of Theorem B). All the problems mentioned in166
Sec. 1.1 are TI-hard: IP2S, Tensor Congruence, Cubic Form Equivalence (over fields of167
characteristic not 2 or 3), Algebra Isomorphism for commutative, unital, associative algebras,168
and Group Isomorphism for p-groups of class 2 and exponent p given by matrix generators (over169
Fpe).170

In combination with the results of [42], we conclude that they are in fact TI-complete.171

Remark 1.5. Our results allow us to mostly answer a question from Saxena’s thesis [91, p. 86].172
Namely, Agrawal & Saxena [1] gave a reduction from Cubic Form Equivalence to Ring Iso-173
morphism for commutative, unital, associative algebras over F, under the assumption that every174
element of F has a cube root in F. For finite fields Fq, the only such fields are those for which175
q = p2e+1 and p ≡ 2 (mod 3), which is asymptotically half of all primes. As explained after the176
proof of [1, Thm. 5], the use of cube roots seems inherent in their reduction, and Saxena asked177
whether such a reduction could be done over arbitrary fields. Using our results in conjunction178
with [42], we get a new such reduction—very different from the previous one [1]—which works over179
any field of characteristic not 2 or 3.180

Here, we would also like to point out that some of the polynomial-time equivalences in Thm. 1.4,181
though perhaps expected by some experts, were not a priori clear. To get a sense for the non-182
obviousness of the equivalences of problems in Theorem 1.4, let us postulate the following hypo-183
thetical question. Recall that two matrices A,B ∈ M(n,F) are called equivalent if there exist184
P,Q ∈ GL(n,F) such that P−1AQ = B, and they are conjugate if there exists P ∈ GL(n,F) such185
that P−1AP = B. Can we reduce testing Matrix Conjugacy to testing Matrix Equivalence?186
Of course since they are both in P there is a trivial reduction; to avoid this, let us consider only187
reductions r which send a matrix A to a matrix r(A) such that A and B are conjugate iff r(A)188
and r(B) are equivalent. Nearly all reductions between isomorphism problems that we are aware189
of have this form (so-called “kernel reductions” [41]; cf. functorial reductions [5]). This turns out190
to be essentially impossible. The reason is that the equivalence class of a matrix is completely de-191
termined by its rank, while the conjugacy class of a matrix is determined by its rational canonical192
form. Among n × n matrices there are only n + 1 equivalence classes, but there are at least |F|n193
rational canonical forms, coming from the choice of minimal polynomial/companion matrix. Even194
when F is a finite field, such a reduction would thus require an exponential increase in dimension,195
and when F is infinite, such a reduction is impossible regardless of running time.196

Nonetheless, for linear spaces of matrices (one form of 3-way arrays; see Sec. 2.2), conjugacy197
testing does indeed reduce to equivalence testing! We say two subspaces A,B ⊆ M(n,F) are198
conjugate if there exists P ∈ GL(n,F) such that PAP−1 = {PAP−1 : A ∈ A} = B, and analogously199
for equivalence. This is in sharp contrast to the case of single matrices. In the above setting, it200
means that there exists a polynomial-time computable map ϕ from M(n,F) to subspaces of M(s,F),201
such that A,B are conjugate up to a scalar if and only if ϕ(A), ϕ(B) ≤ M(s,F) are equivalent as202
matrix spaces. Such a reduction may not be clear at first sight.203

1.2.3. The relation between Tensor Isomorphism and Graph Isomorphism. After204
introducing the TI class, it is natural to compare this class with the corresponding class for Graph205
Isomorphism, GI.206

Already by using known reductions [42,48,71,85], Graph Isomorphism and Permutational207
Code Equivalence reduce to 3-Tensor Isomorphism (see App. B). For the inverse direction,208
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we have the following connection.209

Corollary 1.6. Let A and B be two 3-tensors over Fq, and let n be the sum of the lengths of210
all three sides. To decides whether A and B are isomorphic reduces to solving GI for graphs of size211
qO(n).212

Therefore, if GI is in P, then 3TIFq
can be solved in qO(n) time, where n is the sum of the lengths of213

all three sides. More generally, if GI ∈ TIME(2O(logn)c) then 3TIFq
∈ TIME(qO(nc)). The current214

value of c for GI is 3 [6] (see [53] for the analysis of c); improving c to be less than 2 would improve215
over the current state of the art for both GpI and 3TI.216

In Fig. 1 we summarize the relationships between GI, TI, and many more isomorphism testing217
problems.218

1.3. An overview of proof strategies and techniques.219

1.3.1. The main new technique. Our main new technique, used to show the reduction220
from dTI to 3TI (Thm. 1.2=Thm. A), is a simultaneous generalization of our reduction from 3TI221
to Algebra Isomorphism and the technique Grigoriev used [47] to show that isomorphism in a222
certain restricted class of algebras is equivalent to GI. In brief outline: a 3-way array A specifies223
the structure constants of an algebra with basis x1, . . . , xn via xi · xj :=

∑
k A(i, j, k)xk, and this224

is essentially how we use it in the reduction from 3TI to Algebra Isomorphism. For arbitrary225
d ≥ 3, we would like to similarly use a d-way array A to specify how d-tuples of elements in some226
algebra A multiply. The issue is that for A to be an algebra, our construction must still specify how227
pairs of elements multiply. The basic idea is to let pairs (and triples, and so on, up to (d−2)-tuples)228
multiply “freely” (that is, without additional relations), and then to use A to rewrite any product229
of d − 1 generators as a linear combination of the original generators. While this construction as230
described already gives one direction of the reduction (if A ∼= B, then A ∼= B), the other direction231
is trickier. For that, we modify the construction to an algebra in which short products (less than232
d − 2 generators) do not quite multiply freely, but almost. After the fact, we found out that this233
construction generalizes the one used by Grigoriev [47] to show that GI was equivalent Algebra234
Isomorphism for a certain restricted class of algebras (see Sec. 1.6 for a comparison).235

1.3.2. The proof strategy for Theorem 1.4=B. Let us now explain briefly on the proof236
of Thm. B=Thm. 1.4. The first step is to realize all of these problems in a single unifying view-237
point. That is, all these equivalence relations underlying these isomorphism testing problems can238
be realized as the orbits of certain natural group actions by direct products of general linear groups239
on 3-way arrays. We shall explain this in detail in Sec. 3. Here, we only demonstrate five group240
actions on 3-way arrays, and indicate how those practical problems correspond to some of these241
actions.242

To introduce these five group actions, it is instructive to first examine the more familiar cases243
of matrices. There are three natural group actions on M(n,F): for A ∈ M(n,F), (1) (P,Q) ∈244
GL(n,F)×GL(n,F) sends A to P tAQ, (2) P ∈ GL(n,F) sends A to P−1AP , and (3) P ∈ GL(n,F)245
sends A to P tAP . These three actions endow A with different algebraic/geometric interpretations:246
(1) a linear map from a vector space V to another vector space W , (2) a linear map from V to247
itself, and (3) a bilinear map from V × V to F.248

The five group actions on 3-way arrays referred to above are precisely analogous to the matrix249
setting. For a 3-way array A = (ai,j,k), i, j, k ∈ [n], ai,j,k ∈ F, these actions are (1) (P1, P2, P3) ∈250
GL(n,F) × GL(n,F) × GL(n,F) acts on A according to Equation 1.1 with d = 3; (2) (P1, P2) ∈251
GL(n,F)×GL(n,F) acts on A as (P−t

1 , P1, P2) in (1), where P−t denotes the transpose of the inverse252
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of P ; (3) (P1, P2) ∈ GL(n,F)×GL(n,F) acts on A as (P1, P1, P2) in (1); (4) P ∈ GL(n,F) acts on253
A as (P, P, P ) in (1); and (5) P ∈ GL(n,F) acts on A as (P, P, P−t) in (1).254

These five actions endow various families of 3-way arrays with different algebraic/geometric255
meanings, including 3-tensors, bilinear maps, matrix (associative or Lie) algebras, and trilinear256
forms, a.k.a. non-commutative cubic forms. It is then not difficult to cast each of the problems in257
Thm. 1.4 as (a special case of) the problem of deciding whether two 3-way arrays are in the same258
orbit under one of the five group actions; see Sec. 2.2 for detailed explanations.3259

The first step only provides the context for proving Thm. 1.4. After the first step, we need260
to devise polynomial-time reductions among those isomorphism testing problems for 3-way arrays261
under these five group actions, often with certain restrictions on the 3-way array structures. The262
two basic ideas for these reductions are a gadget construction from [42], and the “embedding”263
technique from [43]. To implement these ideas, however, usually involves detailed and complicated264
computations. For example, in the proof of Theorem 1.4, we use a gadget construction from [42] for265
the reduction from Tensor Isomorphism to IP2S in Section 5. To show that this gadget works266
in our setting, we need a proof strategy that is different from that in [42].267

1.4. An implication to quantum information. Quantum information is the study of268
information-theoretic properties of quantum states and channels, such as entanglement, non-classical269
correlations, and the uses of quantum states and channels for various computational tasks. A pure270
quantum particle takes states in a Hilbert space (=complex vector space, along with an inner prod-271
uct) V ; a pure multi-particle system takes states in the tensor product of the corresponding Hilbert272
spaces V1 ⊗ V2 ⊗ · · · ⊗ Vk.273

A fundamental relation between k-partite quantum states is that of equivalence under stochastic274
local operations and classical communication (SLOCC) [12, 36]. If we imagine each particle is held275
by a different party, a “local operation” is an operation that a single party i can perform on its state276
in Vi. Although the definition of SLOCC involves combining this with classical communication,277
an equivalent definition is that two k-particle states ψ, ϕ ∈ V1 ⊗ · · · ⊗ Vk are SLOCC-equivalent278
if they are in the same orbit under the action of the product of general linear groups GL(V1) ×279
GL(V2) × · · · × GL(Vk) [36].4 Deciding SLOCC equivalence (of un-normalized quantum states) is280
thus precisely the same as TI.281

In this light, we may interpret our Thm. A as saying that SLOCC equivalence classes for k-282
partite entanglement can be simulated by SLOCC equivalence classes of tripartite entanglement.283
This might at first seem surprising, since bipartite entanglement is much better understood than284
tripartite or higher entanglement, so one might naively expect that 4-partite entanglement should285
be more complicated than tripartite, and so on. Our results show that in fact the tripartite case is286
already universal. This may be compared with a recent result in [108], which gives a transformation287
of multipartite states to a set of tripartite or bipartite states, interrelated by a tensor network,288
whereas our reduction produces a single tripartite state.289

1.5. Outlook. In light of Babai’s breakthrough on GI [6], it is natural to consider “what’s290
next?” for isomorphism problems. That is, what isomorphism problems stand as crucial bottlenecks291

3While problems in Thm. 1.4 only use three out of those five actions, the other two actions also lead to problems
that arise naturally, including Matrix Algebra Conjugacy from [26], Matrix Lie Algebra Conjugacy from
[48], and Bilinear Map Isotopism from [21]; see Sec. 2.2 and Sec. 1.6.

4Some authors use the action by the product of special linear groups SL(Vi) instead, but the difference is actually
that physicists typically consider normalized quantum states, which are elements in the corresponding projective space
P(V1 ⊗ · · · ⊗ Vk). Because the difference between SL(Vi) and GL(Vi) is merely scalar matrices, and scalar matrices
act trivially on projective space, the equivalence relation is the same.
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to further improvements on GI, and what isomorphism problems should naturally draw our atten-292
tion for further exploration? Of course, one of the main open questions in the area remains whether293
or not GI is in P. Babai [6, arXiv ver., Sec. 13.2 & 13.4] already lists several isomorphism prob-294
lems for further study, including Group Isomorphism, Permutational Code Equivalence295
(of linear codes), and Permutation Group Conjugacy. The reader may see where these sit in296
Fig. 1.297

Based on the results above, we propose TI as a natural problem to study, both “after” GI, and298
to make further progress on GI itself. In particular, TI stands as a key bottleneck to put GI in299
P, because of the following. First, Babai suggested [6] that Group Isomorphism (GpI) in the300
Cayley table model is a key bottleneck5 to putting GI into P. Second, it has been long believed301
that p-groups of class 2 and exponent p are the hardest cases of GpI (for a number of reasons,302
see, e. g., [10, 54, 96, 106]). Third, by Baer’s correspondence [10], isomorphism for such groups is303
equivalent6 to Alternating Matrix Space Isometry (see Section 2.2). Finally, by our main304
Thm. B, Alternating Matrix Space Isometry over Fpe is TIFpe

-complete.305
This then relates TI over finite fields to the believed-to-be-hardest instances of GpI, which in306

turn, as Babai suggested, is a key bottleneck for further progress on GI. We thus view the study of307
TI as a natural continuation of the study of GI. Furthermore, the main techniques for GI, namely308
the group-theoretic techniques and the combinatorial ones, also have corresponding techniques in309
the TI setting, although they are perhaps more complicated and less efficient than in the setting of310
GI. We explain this in detail in Sec. 1.6.2. Such considerations lead us to believe that TI is harder311
than GI both in theory and in practice, though at present it is not clear to us how to prove this312
formally.313

This theory for TI is far from complete, and many questions remain, largely inspired by the study314
of GI. In Sec. 7, we first discuss on a possible theory of universality for basis-explicit linear structures,315
in analogy with explicit combinatorial structures [109, Section 15]. While not yet complete, this316
is another exciting reason to study Tensor Isomorphism and related problems, and it motivates317
some interesting open questions. Then we pose several natural open problems.318

1.6. More related works and further discussions.319

1.6.1. Further related works. While most of the related works have already been introduced320
before, we collect some of the key ones here for further discussions and comparisons.321

The most closely related work is that of Futorny, Grochow, and Sergeichuk [42]. They show322
that a large family of isomorphism problems on 3-way arrays—including those involving multiple323
3-way arrays simultaneously, or 3-way arrays that are partitioned into blocks, or 3-way arrays where324
some of the blocks or sides are acted on by the same group (e. g., Matrix Space Isometry)—325
all reduce to 3TI. Our work complements theirs in that all our reductions for Thm. B go in the326
opposite direction, reducing 3TI to other problems. Furthermore, the resulting 3-way arrays from327
our reductions for Thm. B usually satisfy certain structural constraints, which allows for versatile328
mathematical interpretations. Some of our other results relate GI and Code Equivalence to329
3TI; the latter problems were not considered in [42]. Thm. A considers d-tensors for any d ≥ 3,330

5Indeed, the current-best upper bounds on these two problems are now quite close: nO(logn) for GpI (originally
due to [39, 78] – Miller attributes this to Tarjan – with improved constants [89, 90, 105]), and nO(log2 n) for GI [6]
(see [53] for calculation of the exponent).

6Specifically, solving Alternating Matrix Space Isometry over Fp in time pO(n+m) is equivalent to testing
isomorphism for p-groups of class 2 and exponent p in time polynomial in the group order, i.e. polynomial time in
the Cayley table model.
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Thm. B†
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Mat. Lie Alg.
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Conj.
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Eq.

Prop. B.3
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Diag. Mat.
Lie Alg.
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Factoring
Integers

[1]
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[88] (over

Q)‡

33
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GI
[70], cf. [71]
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[1, 62]

YY

cf. [48]
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[71, 85]
//

[48]

88

Perm. Code
Eq.

[48]

88

[8]
// Perm. Group
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[10] //
p-Group Iso.
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table)
oo // Group Iso.

(table)

(Classical, cf. [109])

OO

TI-completeTI-complete*†

Fig. 1. Summary of key isomorphism problems. A → B indicates that A reduces to B, i. e., A ≤p
m B. A ⇒ B

indicates a new result. Unattributed arrows indicate A is clearly a special case of B. Note that the definition of
ring used in [1] is commutative, finite, and unital; by “algebra” we mean an algebra (not necessarily associative, let
alone commutative nor unital) over a field. The reductions between Ring Iso. (in the basis representation) and
Degree-d Form Eq. and Unital Associative Algebra Isomorphism are for rings over a field. The equivalences
between Alternating Matrix Space Isometry and p-Group Isomorphism are for matrix spaces over Fpe . Some
TI-complete problems from Thm. B are left out for clarity.

* These results only hold over fields where every element has a dth root. In particular, Degree d Form
Equivalence and Symmetric d-Tensor Isomorphism are TI-complete over fields with d-th roots. A finite field
Fq has this property if and only if d is coprime to q − 1.

† These results only hold over rings where d! is a unit.
‡ Assuming the Generalized Riemann Hypothesis, Rónyai [88] shows a Las Vegas randomized polynomial-time

reduction from factoring square-free integers—probably not much easier than the general case—to isomorphism of
4-dimensional algebras over Q. Despite the additional hypotheses, this is notable as the target of the reduction is
algebras of constant dimension, in contrast to all other reductions in this figure.
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10 JOSHUA A. GROCHOW AND YOUMING QIAO

which were not considered in [42].331
In [1, 2], Agrawal and Saxena considered Cubic Form Equivalence and testing isomor-332

phism of commutative, associative, unital algebras. They showed that GI reduces to Algebra333
Isomorphism; Commutative Algebra Isomorphism reduces to Cubic Form Equivalence;334
and Homogeneous Degree-d Form Equivalence reduces to Algebra Isomorphism assuming335
that the underlying field has dth root for every field element. By combining a reduction from [42],336
Prop. 5.1, and Cor. 6.5, we get a new reduction from Cubic Form Equivalence to Algebra337
Isomorphism that works over any field in which 3! is a unit, which is fields of characteristic 0 or338
p > 3.339

There are several other works which consider related isomorphism problems. Grigoriev [47]340
showed that GI is equivalent to isomorphism of unital, associative algebras A such that the radical341
R(A) squares to zero and A/R(A) is abelian. Interestingly, we show TI-completeness for conjugacy342
of matrix algebras with the same abstract structure (even when A/R(A) is only 1-dimensional).343
Note the latter problem is equivalent to asking whether two representations of A are equivalent up344
to automorphisms of A. The proof of Thm. A uses algebras in which R(A)d = 0 when reducing from345
dTI; it also uses Grigoriev’s result in one step. For isomorphism problems where the group acting346
is a complex torus (C×)d = GL1(C)d, Bürgisser, Doğan, Makam, Walter, and Wigderson [27] solve347
the problem in polynomial time. Their results seem incomparable to ours: they consider arbitrary348
actions of complex tori, whereas we consider only certain actions of direct products of GLn(F) for349
larger n and arbitrary fields F.350

If we ask when two representations of a finitely generated algebra are equivalent (not up to351
automorphisms of A, only up to the usual basis change in the vector space being acted on), Brooks-352
bank and Luks [23] give a polynomial-time algorithm; Chistov, Ivanyos, and Karpinski [31] give an353
alternative polynomial-time algorithm for the same problem over finite fields, or the algebraic or354
real closure of a number field. These algorithms also handle simultaneous conjugacy or equivalence355
of matrix tuples (rather than matrix spaces, as we consider here). A normal form for these problems356
are constructed by [97].357

Brooksbank and Wilson [26] showed a reduction from Associative Algebra Isomorphism358
(when given by structure constants) to Matrix Algebra Conjugacy. Grochow [48], among359
other things, showed that GI and CodeEq reduce to Matrix Lie Algebra Conjugacy, which360
is a special case of Matrix Space Conjugacy.361

In [62], Kayal and Saxena considered testing isomorphism of finite rings when the rings are362
given by structure constants. This problem generalizes testing isomorphism of algebras over finite363
fields. They put this problem in NP∩coAM [62, Thm. 4.1], reduce GI to this problem [62, Thm. 4.4],364
and prove that counting the number of ring automorphism (#RA) is in FPAM∩coAM [62, Thm. 5.1].365
They also present a ZPP reduction from GI to #RA, and show that the decision version of the ring366
automorphism problem is in P.367

1.6.2. Combinatorial and group-theoretic techniques for GI and TI. Comparing with368
Graph Isomorphism also offers one way to see why isomorphism problems for 3-way arrays are369
difficult. Indeed, the techniques for GI face great difficulty when dealing with isomorphism problems370
for multi-way arrays. Recall that most algorithms for GI, including Babai’s [6], are built on two371
families of techniques: group-theoretic, and combinatorial. One of the main differences is that the372
underlying group action for GI is a permutation group acting on a combinatorial structure, whereas373
the underlying group actions for isomorphism problems for 3-way arrays are matrix groups acting374
on (multi)linear structures.375

Already in moving from permutation groups to matrix groups, we find many new computational376
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difficulties that arise naturally in basic subroutines used in isomorphism testing. For example, the377
membership problem for permutation groups is well-known to be efficiently solvable by Sims’s algo-378
rithm [98] (see, e. g., [95] for a textbook treatment), while for matrix groups this was only recently379
shown to be solvable with a number-theoretic oracle over finite fields of odd characteristic [7]. Cor-380
respondingly, when moving from combinatorial structures to (multi)linear algebraic structures, we381
also find severe limitation on the use of most combinatorial techniques, like individualizing a vertex.382
For example, it is quite expensive to enumerate all vectors in a vector space, while it is usually383
considered efficient to go through all elements in a set. Similarly, within a set, any subset has a384
unique complement, whereas within Fn

q , a subspace can have up to qΘ(n2) complements.385
Given all the differences between the combinatorial and linear-algebraic worlds, it may be386

surprising that combinatorial techniques for Graph Isomorphism can nonetheless be useful for387
Group Isomorphism. Indeed, Li and Qiao [69] adapted the individualisation and refinement388
technique, as used by Babai, Erdős and Selkow [9], to tackle Alternating Matrix Space Isom-389
etry over Fq. This algorithm was recently shown [22] to practically improve over the default390
algorithms in Magma [19]. However, this technique, though helpful to improve from the brute-force391

qn
2 · poly(n, log q) time, seems still limited to getting average-case qO(n)-time algorithms.392

1.7. Organization of the paper. In Sec. 2 we present certain preliminaries. In Sec. 3, we393
first present a more detailed version of Thm. 1.4 (Thm. B). For this, we give a detailed introduction394
to more isomorphism problems on 3-way arrays, and their algebraic and geometric interpretations395
in Sec. 2.2. We prove Thm. A in Sec. 4. We then present the proof for Thm. B in Sec. 5 and 6.396
In Sec. 7, we put forward a theory of universality for basis-explicit linear structures, in analogy397
with [109]. We also propose several open problems for further study.398

In Appendix A we give a reduction from Cubic Form Equivalence to Degree-d Form399
Equivalence for any d ≥ 3 (for d > 6 this is easy; for d = 4 it requires some work). In Appendix B400
we present the reductions from Graph Isomorphism and CodeEq to Tensor Isomorphism.401

2. Preliminaries.402

Font Object Space of objects
A,B, . . . matrix M(n,F) or M(ℓ× n,F)
A,B, . . . matrix tuple M(n,F)m or M(ℓ× n,F)m
A,B, . . . matrix space [Subspaces of M(n,F) or Λ(n,F)]
A, B, . . . 3-way array T(ℓ× n×m,F)

Table 1
Summary of notation related to 3-way arrays and tensors.

2.1. Notation, and review of some mathematical notions.403
Vector spaces. Let F be a field. In this paper we only consider finite-dimensional vector spaces404

over F. We use Fn to denote the vector space of length-n column vectors. The ith standard basis405
vector of Fn is denoted as e⃗i. Depending on the context, 0 may denote the zero vector space, a406
zero vector, or an all-zero matrix. Let S be a subset of vectors. We use ⟨S⟩ to denote the subspace407
spanned by elements in S.408

Matrices. Let M(ℓ×n,F) be the linear space of ℓ×nmatrices over F, and M(n,F) := M(n×n,F).409
Given A ∈ M(ℓ× n,F), At denotes the transpose of A.410

A matrix A ∈ M(n,F) is symmetric, if for any u, v ∈ Fn, utAv = vtAu, or equivalently A = At.411
That is, A represents a symmetric bilinear form. A matrix A ∈ M(n,F) is alternating, if for any412
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12 JOSHUA A. GROCHOW AND YOUMING QIAO

u ∈ Fn, utAu = 0. That is, A represents an alternating bilinear form. Note that in characteristic413
̸= 2, alternating is the same as skew-symmetric, but in characteristic 2 they differ (in characteristic414
2, skew-symmetric=symmetric). The linear space of n × n alternating matrices over F is denoted415
by Λ(n,F).416

The n× n identity matrix is denoted by In, and when n is clear from the context, we may just417
write I. The elementary matrix Ei,j is the matrix with the (i, j)th entry being 1, and other entries418
being 0. The (i, j)-th elementary alternating matrix is the matrix Ei,j − Ej,i.419

Some groups. The general linear group of degree n over a field F is denoted by GL(n,F). The420
symmetric group of degree n is denoted by Sn. The natural embedding of Sn into GL(n,F) is to421
represent permutations by permutation matrices. A monomial matrix in M(n,F) is a matrix where422
each row and each column has exactly one non-zero entry. All monomial matrices form a subgroup423
of GL(n,F) which we call the monomial subgroup, denoted by Mon(n,F), which is isomorphic to424
the semi-direct product Fn ⋊ Sn. The subgroup of GL(n,F) consisting diagonal matrices is called425
the diagonal subgroup, denoted by diag(n,F).426

Nilpotent groups. If A,B are two subsets of a group G, then [A,B] denotes the subgroup427
generated by all elements of the form [a, b] = aba−1b−1, for a ∈ A, b ∈ B. The lower central series428
of a group G is defined as follows: γ1(G) = G, γk+1(G) = [γk(G), G]. A group is nilpotent if there is429
some c such that γc+1(G) = 1; the smallest such c is called the nilpotency class of G, or sometimes430
just “class” when it is understood from context. A finite group is nilpotent if and only if it is the431
product of its Sylow subgroups; in particular, all groups of prime power order are nilpotent.432

Matrix tuples. We use M(ℓ × n,F)m to denote the linear space of m-tuples of ℓ × n matrices.433
Boldface letters like A and B denote matrix tuples. Let A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈434
M(ℓ×n,F)m. Given P ∈ M(ℓ,F) and Q ∈ M(n,F), PAQ := (PA1Q, . . . , PAmQ) ∈ M(ℓ,F). Given435
R = (ri,j)i,j∈[m] ∈ M(m,F), AR := (A′

1, . . . , A
′
m) ∈ M(m,F) where A′

i =
∑

j∈[m] rj,iAj .436

Remark 2.1. In particular, note that A′
i corresponds to the entries in the ith column of R.437

While this choice is immaterial (we could have chosen the opposite convention), all of our later438
calculations are consistent with this convention.439

Given A,B ∈ M(ℓ × n,F)m, we say that A and B are equivalent, if there exist P ∈ GL(ℓ,F)440
and Q ∈ GL(n,F), such that PAQ = B. Let A,B ∈ M(n,F)m. Then A and B are conjugate,441
if there exists P ∈ GL(n,F), such that P−1AP = B. And A and B are isometric, if there442
exists P ∈ GL(n,F), such that P tAP = B. Finally, A and B are pseudo-isometric, if there exist443
P ∈ GL(n,F) and R ∈ GL(m,F), such that P tAP = BR.444

Matrix spaces. Linear subspaces of M(ℓ × n,F) are called matrix spaces. Calligraphic letters445
like A and B denote matrix spaces. By a slight abuse of notation, for A ∈ M(ℓ × n,F)m, we use446
⟨A⟩ to denote the subspace spanned by those matrices in A.447

3-way arrays. Let T(ℓ × n ×m,F) be the linear space of ℓ × n ×m 3-way arrays over F. We448
use the fixed-width teletype font for 3-way arrays, like A, B, etc..449

Given A ∈ T(ℓ×n×m,F), we can think of A as a 3-dimensional table, where the (i, j, k)th entry450
is denoted as A(i, j, k) ∈ F. We can slice A along one direction and obtain several matrices, which451
are then called slices. For example, slicing along the first coordinate, we obtain the horizontal slices,452
namely ℓ matrices A1, . . . , Aℓ ∈ M(n ×m,F), where Ai(j, k) = A(i, j, k). Similarly, we also obtain453
the lateral slices by slicing along the second coordinate, and the frontal slices by slicing along the454
third coordinate.455

We will often represent a 3-way array as a matrix whose entries are vectors. That is, given
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A ∈ T(ℓ× n×m,F), we can write

A =


w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
. . . . . .

...
wℓ,1 wℓ,2 . . . wℓ,n

 ,
where wi,j ∈ Fm, so that wi,j(k) = A(i, j, k). Note that, while wi,j ∈ Fm are column vectors, in the456
above representation of A, we should think of them as along the direction “orthogonal to the paper.”457
Following [66], we call wi,j the tube fibers of A. Similarly, we can have the row fibers vi,k ∈ Fn such458
that vi,k(j) = A(i, j, k), and the column fibers uj,k ∈ Fℓ such that uj,k(i) = A(i, j, k).459

Given P ∈ M(ℓ,F) and Q ∈ M(n,F), let PAQ be the ℓ× n×m 3-way array whose kth frontal460
slice is PAkQ. For R = (ri,j) ∈ GL(m,F), let AR be the ℓ× n×m 3-way array whose kth frontal461
slice is

∑
k′∈[m] rk′,kAk′ . Note that these notations are consistent with the notations for matrix462

tuples above, when we consider the matrix tuple A = (A1, . . . , Ak) of frontal slices of A.463
Let A ∈ T(ℓ× n×m,F) be a 3-way array. We say that A is non-degenerate as a 3-tensor if the464

horizontal slices of A are linearly independent, the lateral slices are linearly independent, and the465
frontal slices are linearly independent. Let A = (A1, . . . , Am) ∈ M(ℓ × n,F)m be a matrix tuple466
consisting of the frontal slices of A. Then it is easy to see that the frontal slices of A are linearly467
independent if and only if dim(⟨A⟩) = m. The lateral (resp., horizontal) slices of A are linearly468
independent if and only if the intersection of the right (resp., left) kernels of Ai is zero.469

Observation 2.2. There is a polynomial-time function r that takes 3-way arrays to non-470
degenerate 3-way arrays, and such that A ∼= B as 3-tensors if and only if r(A) ∼= r(B) as 3-tensors.471

Multi-way arrays. For d ≥ 3, we use similar notation to 3-way arrays, which we will not belabor.472
Here we merely observe:473

Observation 2.3. For any d′ ≥ d, d-TI reduces to d′-TI.474

Proof. Given an n1 × · · · × nd d-way array A, we may treat it as a d′-way array Ã of format475
n1 × · · · × nd × 1 × 1 × · · · × 1. If A ∼= B as d-tensors, say via (P1, . . . , Pd), then Ã ∼= B̃ as476
d′-tensors via (P1, . . . , Pd, 1, 1, . . . , 1). Conversely, if Ã ∼= B̃ via (P1, . . . , Pd, αd+1, . . . , αd′), then477
A ∼= B via (αd+1αd+2 · · ·αd′P1, . . . , Pd). That is, all that can “go wrong” under this embedding is478
multiplication by scalars, but those scalars can be absorbed into any one of the Pi.479

Algebras and their algorithmic representations. An algebra A consists of a vector space V and a480
bilinear map ◦ : V ×V → V . This bilinear map defines the product ◦ in this algebra. Note that we481
do not assume A to be unital (having an identity), associative, alternating, nor satisfying the Jacobi482
identity. In the literature, an algebra without such properties is sometimes called a non-associative483
algebra (but also, as usual, associative algebras are a special case of non-associative algebras).484

As in Section 1, after fixing an ordered basis (b1, . . . , bn) where bi ∈ Fn of V ∼= Fn, this bilinear485
map ◦ can be represented by an n×n×n 3-way array A, such that bi ◦ bj =

∑
k∈[n] A(i, j, k)bk. This486

is the structure constant representation of A. Algorithms for associative algebras and Lie algebras487
have been studied intensively in this model, e. g., [33, 58].488

It is also natural to consider matrix spaces that are closed under multiplication or commutator.489
More specifically, let A ⊆ M(n,F) be a matrix space. If A is closed under multiplication, that is, for490
any A,B ∈ A, AB ∈ A, then A is a matrix (associative) algebra with the product being the matrix491
multiplication. If A is closed under commutator, that is, for any A,B ∈ A, [A,B] = AB−BA ∈ A,492
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then A is a matrix Lie algebra with the product being the commutator. Algorithms for matrix493
algebras and matrix Lie algebras have also been studied, e. g., [37, 55,58].494

2.2. Tensor notation, five group actions on 3-way arrays, and the corresponding495
mathematical objects. In Section 1.2, we briefly defined five group actions on 3-way arrays496
with the help of Equation 1.1. However, the formulas for these group actions on 3-way arrays are497
somewhat unwieldy; our experience suggests that they are more easily digested when presented in498
the context of some of the natural interpretations of 3-way arrays as mathematical objects, which499
will also allow us to connect them back to the problems of Section 1.1. In the case of 3-way arrays,500
we will see below several interpretations of the action (1.1).501

3-tensors. A 3-way array A(i, j, k), where i ∈ [ℓ], j ∈ [n], and k ∈ [m], is naturally identified502
as a vector in Fℓ ⊗ Fn ⊗ Fm. Letting e⃗i denote the ith standard basis vector of Fn, a standard503
basis of Fℓ ⊗ Fn ⊗ Fm is {e⃗i ⊗ e⃗j ⊗ e⃗k}. Then A represents the vector

∑
i,j,k A(i, j, k)e⃗i ⊗ e⃗j ⊗ e⃗k in504

Fℓ ⊗Fn ⊗Fm. The natural action (1.1) by GL(ℓ,F)×GL(n,F)×GL(m,F) corresponds to changes505
of basis of the three vector spaces in the tensor product. The problem of deciding whether two506
3-way arrays are the same under this action is called 3-Tensor Isomorphism.7 This problem has507
been studied as far back as the 1930s [83].508

Cubic forms, trilinear forms, and tensor congruence. From a 3-way array A we can also con-509
struct a cubic form (=homogeneous degree 3 polynomial)

∑
i,j,k A(i, j, k)xixjxk, where xi are formal510

variables. If we consider the variables as commuting—or, equivalently, if A is symmetric, meaning it511
is unchanged by permuting its three indices—we get an ordinary cubic form; if we consider them as512
non-commuting, we get a trilinear form (or “non-commutative cubic form”). In either case, the natu-513
ral notion of isomorphism here comes from the action of GL(n,F) on the n variables xi, in which P ∈514
GL(n,F) transforms the preceding form into

∑
ijk A(i, j, k)(

∑
i′ Pii′xi′)(

∑
j′ Pjj′xj′)(

∑
k′ Pkk′xk′).515

In terms of 3-way arrays, we get (P · A)(i′, j′, k′) =
∑

ijk A(i, j, k)Pii′Pjj′Pkk′ . The corresponding516
isomorphism problems are called Cubic Form Equivalence (in the commutative case) and Tri-517
linear Form Equivalence. This is identical to the Tensor Congruence problem from [86]518
(where they worked over R).519

Matrix spaces. Given a 3-way array A, it is natural to consider the linear span of its frontal520
slices, A = ⟨A1, . . . , Am⟩, also called a matrix space. One convenience of this viewpoint is that the521
action of GL(m,F) becomes implicit: it corresponds to change of basis within the matrix space A.522
This allows us to generalize the three natural equivalence relations on matrices to matrix spaces:523
(1) two ℓ×n matrix spaces A and B are equivalent if there exists (P,Q) ∈ GL(ℓ,F)×GL(n,F) such524
that PAQ = B, where PAQ := {PAQ : A ∈ A}; (2) two n × n matrix spaces A,B are conjugate525
if there exists P ∈ GL(n,F) such that PAP−1 = B; and (3) they are isometric if PAP t = B.526
The corresponding decision problems, when A is given by a basis A1, . . . , Ad, are Matrix Space527
Equivalence, Matrix Space Conjugacy, and Matrix Space Isometry, respectively.528

As in the case of isometry of matrices, wherein skew-symmetric and symmetric matrices play a529
special role, the same is true for isometry of matrix spaces. We say a matrix space A is symmetric530
if every matrix A ∈ A is symmetric, and similarly for skew-symmetric or alternating. Symmetric531
Matrix Space Isometry is equivalent to the IP2S problem (discussed in Section 1.1). Alter-532
nating Matrix Space Isometry is another particular case of interest, being in many ways a533
linear-algebraic analogue of GI [69], in addition to its close relation with Group Isomorphism for534

7Some authors call this Tensor Equivalence; we use “Isomorphism” both because this is the natural notion of
isomorphism for such objects, and because we will be considering many different equivalence relations on essentially
the same underlying objects.
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p-groups of class 2 and exponent p, which we discuss below.535
Interesting cases of Matrix Space Conjugacy arise naturally whenever we have an algebra A536

(say, associative or Lie) that is given to us as a subalgebra of the algebra M(n,F) of n×n matrices.537
Two such matrix algebras can be isomorphic as abstract algebras, but the more natural notion of538
“isomorphism of matrix algebras” is that of conjugacy, which respects both the algebra structure539
and the presentation in terms of matrices. This is the linear-algebraic analogue of permutational540
isomorphism (=conjugacy) of permutation groups, and has been studied for matrix Lie algebras541
[48] and associative matrix algebras [26]. (For those who know what a representation is: it also542
turns out to be equivalent to asking whether two representations of an algebra A are equivalent543
up to automorphisms of A, a problem which naturally arises as a subroutine in, e. g., Group544
Isomorphism, where it is often known as Action Compatibility, e. g., [49].)545

Bilinear and quadratic maps. From an ℓ × n × m 3-way array A, we may also construct a546
bilinear map (=system of m bilinear forms) fA : Fℓ × Fn → Fm, sending (u, v) ∈ Fℓ × Fn to547
(utA1v, . . . , u

tAmv)
t, where the Ak are the frontal slices of A. The group action defining Matrix548

Space Equivalence is equivalent to the action of GL(ℓ,F)×GL(n,F)×GL(m,F) on such bilinear549
maps. This problem was recently studied under the name “testing isotopism of bilinear maps”550
in [21], in the context of testing isomorphism of graded algebras.551

If, in the above, we have ℓ = n and we treat the two input spaces as the same, we may552
consider the natural action of GL(n,F)×GL(m,F) on such bilinear maps. Two such bilinear maps553
that are essentially the same up to basis changes in GL(n,F) × GL(m,F) are sometimes called554
pseudo-isometric [25].555

Finite p-groups. When the frontal slices Ak are skew-symmetric, Baer’s correspondence [10]556
gives a bijection between finite p-groups of class 2 and exponent p, that is, in which gp = 1557
for all g and in which [G,G] ≤ Z(G), and their corresponding skew-symmetric bilinear maps558
G/Z(G) × G/Z(G) → [G,G], given by (gZ(G), hZ(G)) 7→ [g, h] = ghg−1h−1. Two such groups559
are isomorphic if and only if their corresponding bilinear maps are pseudo-isometric, if and only if,560
using the matrix space terminology, the matrix spaces they span are isometric.561

Algebras. We may also consider a 3-way array A(i, j, k), i, j, k ∈ [n], as the structure constants562
of an algebra (which need not be associative, commutative, nor unital), say with basis x1, . . . , xn,563
and with multiplication given by xi · xj =

∑
k A(i, j, k)xk, and then extended (bi)linearly. Here564

the natural notion of equivalence comes from the action of GL(n,F) by change of basis on the565
xi. Despite the seeming similarity of this action to that on cubic forms, it turns out to be quite566
different: given P ∈ GL(n,F), let x⃗′ = Px⃗; then we have x′i · x′j = (

∑
i Pi′ixi) · (

∑
j Pj′jxj) =567 ∑

i,j Pi′iPj′jxi · xj =
∑

i,j,k Pi′iPj′jA(i, j, k)xk =
∑

i,j,k Pi′iPj′jA(i, j, k)
∑

k′(P−1)kk′xk′ . Thus A568

becomes (P · A)(i′, j′, k′) =
∑

ijk A(i, j, k)Pi′iPj′j(P
−1)kk′ . The inverse in the third factor here is569

the crucial difference between this case and that of cubic or trilinear forms above, similar to the570
difference between matrix conjugacy and matrix isometry. The corresponding isomorphism problem571
is called Algebra Isomorphism.572

Special cases of Algebra Isomorphism that are of interest include those of unital, associative573
algebras (commutative, e. g., as studied in [1,2,62], and non-commutative, such as group algebras)574
and Lie algebras.575

Summary of the problems. The isomorphism problems of the above structures all have 3-way576
arrays as the underlying object, but are determined by different group actions. It is not hard577
to see that there are essentially five group actions in total: 3-Tensor Isomorphism, Matrix578
Space Conjugacy, Matrix Space Isometry, Trilinear Form Equivalence, and Algebra579
Isomorphism. It turns out that these cover all the natural isomorphism problems on 3-way arrays580
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16 JOSHUA A. GROCHOW AND YOUMING QIAO

in which the group acting is a product of GL(n,F) (where n is the side length of the arrays), which581
we discuss next.582

Tensor notation. To see that aforementioned problems exhaust the distinct isomorphism prob-583
lems coming from change-of-basis on 3-way arrays (without introducing multiple arrays, or block584
structure, or going to subgroups of GL(n,F)), and to keep track of the relation between all the585
above problems, we use standard mathematical notation for spaces of tensors (however, we won’t586
actually need the full abstract definition here; for a formal introduction see, e. g., [68]).587

Much as the three natural equivalence relations on matrices differ by how the groups act on the588
rows and columns, the same is true for tensors, but on the rows, columns, and depths (the “row-like”589
sub-arrays which are “perpendicular to the page”). There are two aspects to the notation: first,590
we keep track of which group is acting where by introducing names U, V,W for the different vector591
spaces involved (this is also the standard basis-free notation, e. g., [68]) and the groups acting on592
them, viz. GL(U),GL(V ),GL(W ), etc. Thus, while it is possible that dimU = dimV and thus593
GL(U) ∼= GL(V ), the notation helps make clear which group is acting where. Second, to take into594
account the contragradient (“inverse”) action, given a vector space V , V ∗ denotes its dual space,595
consisting of the linear functions V → F. GL(V ) acts on V ∗ by sending a linear function ℓ ∈ V ∗596
to the function (g · ℓ)(v) = ℓ(g−1(v)). In this notation, the three different actions on matrices597
correspond to the notations598

U ⊗ V (left-right action) V ⊗ V ∗ (conjugacy) V ⊗ V (isometry).599

When we have a matrix space A ⊆ M(n × m,F) instead of a single matrix A, we introduce600
an additional vector space W , which is naturally isomorphic to A as a vector space. The action601
of GL(W ) on W serves to change basis within the matrix space, while leaving the space itself602
unchanged. In this notation, the problems we mention above are listed in Table 2.603

Notation Name Group Action

U ⊗ V ⊗W
Matrix Space Equivalence

3-Tensor Isomorphism A 7→ gAh−1

V ⊗ V ⊗W
Matrix Space Isometry

Bilinear Map Pseudo-Isometry A 7→ gAgT

V ⊗ V ∗ ⊗W Matrix Space Conjugacy A 7→ gAg−1

V ⊗ V ⊗ V Trilinear Form Equivalence f(x⃗) 7→ f(g−1x⃗)
V ⊗ V ⊗ V ∗ Algebra Isomorphism µ(x⃗, y⃗) 7→ gµ(g−1x⃗, g−1y⃗)

Table 2
The cast of isomorphism problems on 3-way arrays. We show below how this exhausts the possibilities.

To see that the family of problems in Table 2 exhausts the possible isomorphism problems on604
(undecorated) 3-way arrays, we note that in this notation there are some “different-looking” isomor-605
phism problems that are trivially equivalent. The first is re-ordering the spaces: the isomorphism606
problem for V ⊗V ⊗W is trivially equivalent to that for V ⊗W ⊗V , simply by permuting indices,607
viz. A′(i, j, k) = A(i, k, j). The second is about dual vector spaces. Although a vector space V and608
its dual V ∗ are technically different, and the group action differs by an inverse transpose, we can609
choose bases in V and V ∗ so that there is a linear isomorphism V → V ∗ which induces a bijection610
between orbits; for example, the orbits of the action g ·A = gAgt are the same as the orbits of the611
action g · A = g−tAg−1, even though technically the former corresponds to V ⊗ V and the latter612
to V ∗ ⊗ V ∗. This means that if we are considering the isomorphism problem in a tensor space613
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such as V ⊗ V ⊗W , we can dualize each of the vector spaces V,W separately, so long as when614
we do so, we dualize all instances of that vector space. For example, the isomorphism problem in615
V ⊗ V ⊗W is trivially equivalent to that in V ∗ ⊗ V ∗ ⊗W , but is not obviously equivalent to that616
in V ⊗ V ∗ ⊗W (though we will show such a reduction in this paper). As a consequence, when the617
action on all three directions comes from the same group, there are only two choices: V ⊗ V ⊗ V618
and V ⊗V ⊗V ∗; the remaining choices are trivially equivalent to one of these two. Using these, we619
see that the Table 2 in fact covers all possibilities up to these trivial equivalences.620

2.3. On the type of reduction. As these problems arise from several different fields, there621
are various properties one might hope for in the notion of reduction. Most of our reductions satisfy622
all of the following properties; see Remark 2.5 below for details. The details of this section are not623
really needed for the rest of the paper; we include it as we have not found these issues discussed in624
quite this depth, nor something like Definition 2.4 proposed, elsewhere.625

Kernel reductions: there is a function r from objects of one type to objects of the other such626
that A ∼1 B if and only if r(A) ∼2 r(B). See [40, 41] for some discussion on the relation between627
kernel reductions and more general reductions.628

Efficiently computable: the function r as above is computable in polynomial time. In fact,629
we believe, though have not checked fully, that all of our reductions are computable by uniform630
constant-depth (algebraic) circuits; over finite fields and algebraic number fields, we believe they631
are in uniform TC0 (the threshold gates are needed to do some simple arithmetic on the indices).632
That is, there is a small circuit which, given A, i, j, k as input will output the (i, j, k) entry of the633
output.634

Polynomial-size projections (“p-projections”) [101]: each coordinate of the output is either one635
of the input variables or a constant, and the dimension of the output is polynomially bounded by636
the dimension of the input. (In fact, in many cases, the dimension of the output is only linearly637
larger than that of the input.)638

Functorial: For each type of tensor there is naturally a category of such tensors (see [74] for639
generalities on categories). For example, for 3TI, U ⊗ V ⊗ W , the objects of the category are640
three-tensors, and a morphism between A ∈ U ⊗ V ⊗W and B ∈ U ′ ⊗ V ′ ⊗W ′ is given by linear641
maps P : U → U ′, Q : V → V ′, and R : W → W ′ such that (P,Q,R) · A = B. Isomorphism of642
3-tensors is the special case when all three of P,Q,R are invertible. Analogous categories can be643
defined for the other problems we consider, such as V ⊗V ∗⊗W . A functor between two categories644
C,D is a pair of maps (r, r) such that (1) r maps objects of C to objects of D, (2) if f : A → B is645
a morphism in C, then r(f) : r(A) → r(B) is a morphism in D, (3) for any A ∈ C, r(idA) = idr(A),646
and (4) if f : A→ B and g : B → C are morphisms in C, then r(g ◦ f) = r(g) ◦ r(f).647

All our reductions are functorial on the categories in which we only consider isomorphisms;648
it is interesting to ask whether they are also functorial on the entire categories (that is, including649
non-invertible homomorphisms). Furthermore, all our reductions yield another map s such that650
for any isomorphism f ′ : r(A) → r(B), s(f) is an isomorphism A → B, and s(r(f)) = f for any651
isomorphism f : A→ B. If we only consider isomorphisms (and not other homomorphisms), nearly652
all known reductions between isomorphism problems have this form, cf. [5]; an interesting example653
where this isn’t the case is the reduction from 1-Block Conjugacy of shifts of finite type to654
k-Block Conjugacy [92, Thm. 18].655

Containment, in the sense used in the literature on wildness: Briefly speaking, wildness in656
mathematics aims to understand the “complexity”—in a generalized, geometric sense, not neces-657
sarily computational—of classifying orbits under group actions. For example, matrices under the658
conjugation action over algebraically closed fields are classified according to their Jordan normal659

This manuscript is for review purposes only.



18 JOSHUA A. GROCHOW AND YOUMING QIAO

forms (this problem is formally said to be tame), while classifying pairs of matrices under the si-660
multaneous conjugation action is known to be complex (e. g., [97]), and classifying tensors up to661
isomorphism even more complicated still [11]. Wildness is then a notion of completeness or uni-662
versality for a certain kind of classification problem in this theory, under a kind of reduction or663
morphism called containment. It turns out that classifying pairs of matrices problem is wild or664
“complete” for a certain widely occurring kind of classification problem. That is, it captures many665
classification problems for other group actions, or in other words, many classification problems666
reduce to (“are contained in”) this problem.667

There are several definitions of containment in the literature which typically are equivalent when668
restricted to so-called matrix problems. For a few such definitions, see, e. g., [42, Def. 1.2], [97],669
or [99, Def. XIX.1.3]. For those problems in this paper to which the preceding definitions could670
apply, our reductions have the defined property. However, since we are working in a slightly more671
general setting, we would like to suggest the following natural generalization of these notions.672

Definition 2.4. Let ρ : G → Aut(V ) be a rational action of an algebraic group G on an al-673
gebraic variety V , and σ : H → Aut(W ) another such. We say (G,V ) (or the action of G on V ,674
or the classification problem for G-orbits on V ) is algebraically contained in (H,W ) if there is a675
polynomial morphism r : V → W (each coordinate of the output is given by a polynomial in the676
coordinates of the input) that is also a kernel reduction, that is, v, v′ ∈ V are in the same G-orbit677
if and only if r(v), r(v′) ∈W are in the same H-orbit.678

In our case, all our spaces V,W are affine space Fn for some n, and our maps r are in fact of679
degree 1. (It might be interesting to consider whether using higher degree allows for more efficient680
reductions.) We may also require it to be “functorial” or “equivariant,” in the sense that there is681
a homomorphism of algebraic groups r : G → H (simultaneously an algebraic map and a group682
homomorphism) such that683

r(g) · r(v) = r(g · v).684

and a section s : H 99K G, such that s ◦ r = idG and685

h · r(v) = r(v′) =⇒ s(h) ◦ v = v′,686

where the dashed arrow above indicates that s need only be defined on a subset of H, namely, those687
h ∈ H such that there exist v, v′ ∈ V with h · r(v) = r(v′) (but on this subset it should still act like688
a homomorphism, in the sense that s(hh′) = s(h)s(h′)).689

Remark 2.5. We believe all of our reductions satisfy all of the above properties, with the possible690
exceptions that Prop. 5.1 and Prop. 6.1 are only projections and algebraic containments on the set691
of non-degenerate 3-tensors. These reductions still satisfy the other three properties on the set692
of all tensors: They are kernel reductions by construction; non-degeneracy presents no obstacle693
to polynomial-time computation (Observation 2.2); and two tensors are isomorphic iff their non-694
degenerate parts are isomorphic, so they are still functorial. The obstacle to being projections or695
algebraic containments on the set of all 3-tensors here is closely related to the fact that the map696
sending a matrix to its row echelon form (or even just zero-ing out a number of rows so that the697
remaining non-zero rows are linearly independent) is neither a projection nor an algebraic map.698
We would find it interesting if there were reductions for these results satisfying all of the above699
properties for all 3-tensors.700

3. Full statement of main results.701
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Theorem A. For any fixed d ≥ 1, d-Tensor Isomorphism reduces to Algebra Isomor-702
phism.703

Combined with the results of [42], this immediately gives:704

Corollary A. For any fixed d ≥ 1, d-Tensor Isomorphism reduces to 3-Tensor Isomor-705
phism.706

Given the viewpoint of Section 2.2 on the problems from Section 1.1, to show that they are707
equivalent, it is enough to show that the isomorphism problems for 3-way arrays corresponding to708
the five group actions are equivalent, where 3-way arrays may also need to satisfy certain structural709
constraints (e.g., the frontal slices are symmetric or skew-symmetric). This is the content of our710
second main result.711

Theorem B. 3-Tensor Isomorphism reduces to each of the following problems in polynomial712
time.713

1. Group Isomorphism for p-groups exponent p (gp = 1 for all g) and class 2 (G/Z(G) is714
abelian) given by generating matrices over Fpe . Here we consider only 3TIFpe

where p is an715
odd prime.716

2. Matrix Space Isometry, even for alternating or symmetric matrix spaces.717
3. Matrix Space Conjugacy, and even the special cases:718

(a) Matrix Lie Algebra Conjugacy, for solvable Lie algebras L of derived length 2.8719
(b) Associative Matrix Algebra Conjugacy.9720

4. Algebra Isomorphism, and even the special cases:721
(a) Associative Algebra Isomorphism, for algebras that are commutative and unital,722

or for algebras that are commutative and 3-nilpotent (abc = 0 for all a, b, c,∈ A)723
(b) Lie Algebra Isomorphism, for 2-step nilpotent Lie algebras ([u, [v, w]] = 0 ∀u, v, w)724

5. Cubic Form Equivalence and Trilinear Form Equivalence.725
The algebras in (3) are given by a set of matrices which linearly span the algebra, while in (4) they726
are given by structure constants (see “Algebras” in Sec. 2.2).727

Since the main result of [42] reduces the problems in Theorem B to 3-Tensor Isomorphism728
(cf. [42, Rmk. 1.1]), we have:729

Corollary B. Each of the problems listed in Theorem B is TI-complete.10730

Remark 3.1. Here is a brief summary of what is known about the complexity of some of these731
problems. Over a finite field Fq, these problems are in NP∩ coAM. For ℓ×n×m 3-way arrays, the732

brute-force algorithms run in time qO(ℓ2+n2+m2), as GL(n,Fq) can be enumerated in time qΘ(n2).733
Note that polynomial-time in the input size here would be poly(ℓ, n,m, log q). Over any field F,734
these problems are in NPF in the Blum–Shub–Smale model. When the input arrays are over Q and735
we ask for isomorphism over C or R, these problems are in PSPACE using quantifier elimination.736
By Koiran’s celebrated result on Hilbert’s Nullstellensatz, for equivalence over C they are in AM737
assuming the Generalized Riemann Hypothesis [65]. When the input is over Q and we ask for738
equivalence over Q, it is unknown whether these problems are even decidable; classically this is739
studied under Algebra Isomorphism for associative, unital algebras over Q (see, e. g., [2, 87]),740
but by Cor. B, the question of decidability is open for all of these problems.741

8And even further, where L/[L,L] ∼= F.
9Even for algebras A whose Jacobson radical R(A) squares to zero and A/R(A) ∼= F.

10For Cubic Form Equivalence, we only show that it is in TIF when charF > 3 or charF = 0.
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Over finite fields, several of these problems can be solved efficiently when one of the side lengths742
of the array is small. For d-dimensional spaces of n×n matrices, Matrix Space Conjugacy and743
Isometry can be solved in qO(n2) · poly(d, n, log q) time: once we fix an element of GL(n,Fq), the744
isomorphism problem reduces to solving linear systems of equations. Less trivially, Matrix Space745
Conjugacy can be solved in time qO(d2) · poly(d, n, log q) and 3TI for n ×m × d tensors in time746

qO(d2) · poly(d, n,m, log q), since once we fix an element of GL(d,Fq), the isomorphism problem747
either becomes an instance of, or reduces to [57], Module Isomorphism, which admits several748
polynomial-time algorithms [23, 31, 56, 97]. Finally, one can solve Matrix Space Isometry in749

time qO(d2) · poly(d, n, log q): once one fixes an element of GL(d,Fq), there is a rather involved750
algorithm [57], which uses the ∗-algebra technique originated from the study of computing with751
p-groups [25,104].752

Figure 2 below summarizes where the various parts of Thm. B are proven.753

d-Tensor Iso.
U1 ⊗ · · · ⊗ Ud

Thm. A

��

3-Tensor Iso.
U ⊗ V ⊗WProp. 5.1

Lem. 6.8

px

Obs. 2.3

OO

Prop. 6.1

%-Bilinear Map Iso.,
p-Group Iso.
V ⊗ V ⊗W

Prop. 6.3 "*
Prop. 6.3

'/
Cor. 6.5

"*

Matrix Space
Conjugacy
V ⊗ V ∗ ⊗W

Trilinear
Form Equiv.
V ⊗ V ⊗ V

Algebra Iso.
V ⊗ V ⊗ V ∗

Cubic Form
Equiv.

Special case, when 6 is a unit

OO

Commutative
Associative
Algebra Iso.

[1, 2]
oo

Special case

OO

Fig. 2. Reductions for Thm. B. An arrow A → B indicates that A reduces to B, i. e., A ≤p
m B; A ⇒ B

indicates such a reduction that is a new result. For Cor. B, the five tensor problems in the center circle all reduce to
3TI via [42]. For the “V ⊗ V ⊗W ” notation, see Sec. 2.2. The results of [1,2] are only used to show 3TI-hardness
of Cubic Form Equivalence, in combination with Prop. 5.1 and Cor. 6.5.

In a follow-up work [50] we give a more economical reduction from 3TI to Alternating754
Matrix Space Isometry, using a new gadget with only linear instead of quadratic blow-up in755
dimension. This improvement is important for applications to GpI in the Cayley table model, where756
quadratic blow-up in dimension corresponds to increasing the size of the group to |G|Θ(log |G|).757
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4. Main Theorem A: Reducing d-Tensor Isomorphism to 3-Tensor Isomorphism.758

Theorem A. d-Tensor Isomorphism reduces to Algebra Isomorphism. If the input ten-759
sor has size n1×n2×· · ·×nd, then the output algebra has dimension O(d2nd−1) where n = max{ni}.760

Remark 4.1. One cannot do too much better in terms of size of the output, as the following761
argument suggests. Over finite fields, we may count the number of orbits, which provides a rigorous762
lower bound on the size blow-up of any kernel reduction (see, e. g., [41, Sec. 4.2.4]). Over infinite763
fields, if we consider algebraic reductions, they must preserve dimension, so we can make a similar764
(albeit more heuristic) argument by considering the “dimension” of the set of orbits. Here we have765
put “dimension” in quotes because the set of orbits is not a well-behaved topological space (it is766
typically not even T1), but even in this case the same argument should essentially hold. The space767
of n×n×· · ·×n d-tensors has dimension nd, and the group GLn×· · ·×GLn has dimension dn2, so768
the “dimension” of the set of orbits is at least nd − dn2 ∼ nd (d ≥ 3); over Fq, the number of orbits769

is at least qn
d−dn2

. For algebras of dimension N , the space of such algebras is ≤ N3-dimensional,770
so the “dimension” of the set of orbits is at most N3; over Fq, the number of orbits is at most771

qN
3

. Thus we need N3 ≳ nd, whence N ≳ nd/3. In particular this implies that there is no kernel772
reduction from dTI to 3TI that is fixed-parameter tractable with parameter d.773

Proof idea. The idea here is similar to the reduction from 3TI to Algebra Isomorphism (see774
Proposition 6.3): we want to create an algebra A in which all products eventually land in an ideal,775
and multiplication of algebra elements by elements in the ideal is described by the tensor we started776
with. For a 3-tensor this is very natural, as the structure constants of any algebra form a 3-tensor.777
In that case, we use the 3-tensor to specify how to write the product of 2 elements as a linear778
combination (the third factor of the tensor) of basis elements. With a d-tensor for d ≥ 3, we now779
want to use it to describe how to write the product of d−1 elements as a linear combination of basis780
elements. The tricky part here is that in an algebra we must still describe the product of any two781
elements. The idea is to create a set of generators, let them freely generate monomials up to degree782
d − 2, and then when we get a product of d − 1 generators, rewrite it as a linear combination of783
generators according to the given tensor. This idea almost provides one direction of the reduction:784
if two d-tensors A, B are isomorphic, then the corresponding algebras A,B are isomorphic. However,785
there is an issue with implementing this, namely that monomials (in a polynomial ring, or a quotient786
thereof) are commutative, but our tensors A, B need not be symmetric, and moreover, they need787
not even be “square” (have all side lengths equal). In [1, Thm. 5] they reduce Degree-d Form788
Equivalence to Commutative Algebra Isomorphism along similar lines, but there the starting789
objects are themselves commutative, so this was not an issue. In our case, we will get around this790
using a certain noncommutative algebra where the only nonzero products are those which come “in791
the right order.”792

Another potentially tricky aspect of the reduction is the converse: suppose we build our algebras793
A,B as above from two d-tensors, and A,B are isomorphic; how can we guarantee that A and B794
are isomorphic? For this, we would like to be able to identify certain subsets of the algebras as795
characteristic (invariant under any automorphism), so that those characteristic subsets force the796
isomorphism to take a particular form, which we can then massage into an isomorphism between797
the tensors A, B. Our way of doing this is to encode the “degree” structure into the path algebra of a798
graph, as described in the next section. If the graph has no automorphisms, then the path algebra799
has the advantage that for any two vertices i, j, the subset of A spanned by the paths from i to j800
is nearly characteristic in a way we make precise below.801
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4.1. Preliminaries for Theorem A. To make the above proof idea precise, we will need802
a little background on path algebras (a.k.a. quiver algebras) and their quotients. For a textbook803
reference on these algebras, see [4, Ch. II], and for a textbook treatment of Wedderburn–Artin804
theory and the Jacobson radical, see [67]. Aside from the definition of path algebra, most of this805
section will end up being used as a black box; we include it mostly for ease of reference.806

We start with some important, classical results on the structure of associative algebras. The807
Jacobson radical of an associative algebra A, here denoted R(A), is the intersection of all maximal808
right ideals. Equivalently, R(A) = {x ∈ A : every element of 1 + AxA is invertible}. A unital809
algebra A over a field F is semisimple if R(A) = 0; in this case, by Wedderburn’s Theorem (see810
below), A is isomorphic to a direct sum of matrix algebras over finite-degree division rings extending811
F. An algebra A is called separable if it is semisimple over every field extending F, that is, A ⊗F812
K is semisimple for all fields K extending F. Equivalently, A is separable if it is isomorphic to813 ⊕d

i=1 M(di,Fi), where each Fi is a division ring extending F such that the center Z(Fi) is a separable814
field extension of F. Recall that a field extension F ⊆ K is separable if for every α ∈ K, the minimal815
polynomials of α over F has no repeated roots in the algebraic closure F. A field F is perfect if all816
its algebraic extensions are separable; examples of perfect fields include characteristic-0 fields and817
finite fields. In the proof of Theorem A in Section 4.2, there will be a subalgebra for which we need818
separability, and this holds because it is simply a direct sum of copies of F.819

An element a ∈ A is idempotent if a2 = a. Two idempotents e, f are orthogonal if ef = fe =820
0. An idempotent e is primitive if it cannot be written as the sum of two nonzero orthogonal821
idempotents. A complete set of primitive orthogonal idempotents of A is a set {e1, . . . , en} of822
primitive idempotents which are pairwise orthogonal, and such that the set is maximal subject to823
this condition.824

Theorem 4.2 (Wedderburn–Mal’cev, see, e. g., [38]). Let A be an finite-dimensional, associa-825
tive, unital algebra over a field F. Then826

1. A/R(A) ∼=
⊕d

i=1 M(di,Fi) (as algebras), where each Fi is a division ring of finite degree827
over F.828

2. If A/R(A) is separable, then there exists a subalgebra S ⊆ A such that A = S ⊕ R(A) (as829
F-vector spaces).830

3. If T ⊆ A is any separable subalgebra, then there exists r ∈ R(A) such that (1+r)T (1+r)−1 ⊆831
S.832

The last part of the preceding theorem is what we will use to show that the set of paths i → j in833
our graph is “nearly characteristic;” that is, it is not characteristic, but it is characteristic up to834
conjugacy (=inner automorphisms).835

Definition 4.3 (Path algebras). Given a directed multigraph G (possibly with parallel edges836
and self-loops, a.k.a. quiver), its path algebra Path(G) is the algebra of paths in G, where multi-837
plication is given by concatenation of paths when this is well-defined, and zero otherwise. That is,838
Path(G) is generated by {ev : v ∈ V (G)} ∪ {xa : a ∈ E(G)}, where the generators ev are thought of839
as the “path of length 0” at vertex v. The defining relations in Path(G) are that the product of two840
paths is their concatenation if the end of the first equals the start of the second, and zero otherwise.841
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More formally, the relations are:842

evew = δv,wev843

evxa = δv,start(a)xa844

xaev = δv,end(a)xa845

xaxb = 0 if start(b) ̸= end(a),846

where δx,y is the Kronecker delta: it is 1 if x = y and 0 otherwise.847

Note that we are allowed to take formal linear combinations of paths in this algebra, as it is an848
F-algebra (so in particular, it is an F-vector space). The arrow ideal of Path(G) is the two-sided849
ideal generated by the arrows, and has a basis consisting of all paths of length ≥ 1; it is denoted850
RG. Note that the set eiAej is linearly spanned by the paths i→ j in G.851

Lemma 4.4 (See [4, Cor. II.1.11]). If G is finite, connected, and acyclic, then R(Path(G)) is852
the arrow ideal RG, and has a basis consisting of all paths of length ≥ 1, and the set {ev : v ∈ V (G)}853
is a complete set of primitive orthogonal idempotents.854

Corollary 4.5. Let G be a finite, connected, acyclic graph, and I an ideal of Path(G) con-855
tained in RG; let A = Path(G)/I. Then (1) R(A) = RG/I, (2) A/R(A) ∼= F⊕|V (G)|, whence856
A/R(A) is separable, and (3) {ev : v ∈ V (G)} is a complete set of primitive orthogonal idempo-857
tents, where ev is the image of ev under the quotient map Path(G) → Path(G)/I = A.858

Proof. (1) This holds for any ideal contained in the radical of any finite-dimensional associative859
unital algebra [67, Prop. 4.6].860

(2) It is clear that as vector spaces, Path(G) = ⟨e1, . . . , en⟩ ⊕RG (where n = |V (G)|), and the861
span of the ei is easily seen to be an algebra isomorphic to Fn, where the i-th copy of F is spanned by862
π(ei), where π : Path(G) → Path(G)/RG is the natural projection. Thus Path(G)/RG

∼= Fn. Since863
R(A) = RG/I, we have A/R(A) = (Path(G)/I)/(RG/I) ∼= Path(G)/RG

∼= Fn. As a semisimple864
algebra, we thus have that A/R(A) ∼=

⊕
M(1,F), and as F is always a separable extension over865

itself, A/R(A) is separable.866
(3) The property of being a set of primitive orthogonal idempotents is preserved by homomor-867

phisms, so there are only two things to check here: first, that none of the ev is zero modulo I, and868
second, that there are no additional primitive idempotents in A that are mutually orthogonal with869
every ev. To see that none of the ev are zero, note that π : Path(G) → Path(G)/RG factors through870
A; then since π(ev) ̸= 0 for any v (from the previous paragraph), it must be the case that ev ̸= 0871
as well. Finally, we must show this is a complete set of primitive orthogonal idempotents. Suppose872
not; that is, suppose there is some e /∈ {ev : v ∈ V (G)} such that e is a primitive idempotent that is873
orthogonal in A to every ev. First, we claim that e /∈ R(A) = RG/I. For, since G is a finite acyclic874
graph, its arrow ideal RG is nilpotent: there are no paths longer than n − 1 = |V (G)| − 1, so we875
must have Rn

G = 0, whence RG cannot contain any idempotents. Since RG is nilpotent, the same876
must be true of RG/I, whence R(A) = RG/I cannot contain any idempotents, so e cannot be in877
R(A). But then the image of e in A/R(A) is nonzero (since e /∈ R(A)), so e is another primitive878
idempotent orthogonal to every π(ev) in Path(G)/RG = A/R(A). But this is a contradiction, since879
{π(ev)} is already a complete set of primitive orthogonal idempotents for A/R(A).880

Finally, in the course of the proof, we will use the following construction of Grigoriev:881

Theorem 4.6 (Grigoriev [47, Theorem 1]). Graph Isomorphism is equivalent to Algebra882
Isomorphism for algebras A such that the radical squares to zero and A/R(A) is abelian.883
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In our proof, all we will need aside from Grigoriev’s result is to see the construction itself, which884
we recall here in language consistent with ours.885

Construction [47]. Given a graph G, construct an algebra AG as follows: it is generated by886
{ei : i ∈ V (G)}∪{eij : (i, j) ∈ E(G)} subject to the following relations: eiej = δijei, eiekj = δikekj ,887
ekjei = δijekj , eijekl = 0 when j ̸= k, R(AG) is generated by {eij}, and the radical squares to888
zero. It is immediate that this is just Path(G)/R2

G. From any such algebra A, Grigoriev recovers889
a corresponding weighted graph, where the weight on (i, j) is dim eiAej . In our setting we use890
multiple parallel edges rather than weight, but the proof goes through mutatis mutandis.891

4.2. Proof of Theorem A.892

Proof. Let A be an n1×n2×· · ·×nd d-tensor. Let G be the following directed multigraph (see893
Figure 3): it has d vertices, labeled 1, . . . , d, and for i = 1, . . . , d− 1, it has ni parallel arrows from894
vertex i to vertex i+ 1, and nd parallel arrows from 1 to d.895

1 //

x1,1

��
x1,2

  ... //
x1,n1

66

xd,1

EE

...

FF

xd,nd

GG2 //

x2,1

��
x2,2

  ... //
x2,n2

66 3 //

x3,1

��
x3,2

  ... //
x3,n3

44 · · · //

xd−1,1

��
xd−1,2

!!... //
xd−1,nd−1

66 d

Fig. 3. The graph G whose path algebra we take a quotient of to construct the reduction for Theorem A.

Because of the structure of this graph, we can index the generators of Path(G) a little more896
mnemonically than in the preliminaries above: let the generators corresponding to the ni arrows897
from i → (i + 1) be xi,a for a = 1, . . . , ni, and let the generators corresponding to the nd arrows898
1 → d be xd,a for a = 1, . . . , nd. Let A be the quotient of Path(G) by the relations11899

(4.1) x1,i1x2,i2 · · ·xd−1,id−1
=

nd∑
j=1

A(i1, i2, . . . , id−1, j)xd,j900

At the moment, we only have A in terms of generators and relations; however, it will be easy to901
turn it into its basis representation. The key is to bound its dimension, which we do now. Except902
for paths of length d− 1 (because of the nontrivial relations (4.1)), this is just counting the number903
of paths in the graph described above. The only nonzero monomials of degree k + 1 are those of904
the form xi,aixi+1,ai+1xi+2,ai+2 · · ·xi+k,ai+k

. For a given choice of i ∈ {1, . . . , d− 1− k}, there are905

11For those familiar with quiver algebras, we note that this ideal is not admissible, as it is not contained in R2
G. It

can probably be made admissible by inserting new vertices in the middle of each edge 1 → d. However, when we tried
to do that in a naive way, we ran into problems verifying the reduction, as what should be a linear transformation
either ends up being incorrect or ends up being quadratic, either of which caused issues.
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exactly nini+1 · · ·ni+k such monomials, so we have906

dimA = #{ei}+ nd +
∑

k<d−1

d−1−k∑
i=1

#{paths i→ (i+ k)}907

= d+ nd +

d−2∑
k=0

d−1−k∑
i=1

i+k∏
j=i

nj908

≤ 2n+

d−2∑
k=0

d−1−k∑
i=1

nk+1909

≤ O(d2nd−1).910

Note that in the first line we can exactly specify dimA, independent of A itself (depending only911
on its dimensions). For any fixed d, this dimension is polynomial in n. By the linear-algebraic912
analogue of breadth-first search, we may thus list a basis for A and its structure constants with913
respect to that basis.914

We claim that the map A 7→ A is a reduction. Suppose B is another tensor of the same dimension,915
and let B be the associated algebra as above. We claim that A ∼= B as d-tensors if and only if A ∼= B916
as algebras.917

For the only if direction, suppose A ∼= B via (P1, P2, . . . , Pd) ∈ GL(n1,F)× · · · ×GL(nd,F),918
that is919

(4.2) A(i1, . . . , id) =
∑

j1,...,jd

(P1)i1,j1 · · · (Pd)id,jdB(j1, . . . , jd)920

for all i1, . . . , id. Then we claim that the block-diagonal matrix P = diag(P1, P2, . . . , Pd−1, P
−t
d ) ∈921

GL(n,F) (where n =
∑d

i=1 ni), together with mapping ei to ei, induces an isomorphism from A to922
B. Note that P itself is not an isomorphism, as dimA ≈ nd, but P specifies a linear map on the923
generators of A, which we may then extend to all of A.924

First let us see that P indeed gives a well-defined homomorphism A → B. Since P is only925
defined on the generators and is, by definition, extended by distributivity, the only thing to check926
here is that P sends the relations of A into the relations of B. Let y1,1, . . . , y1,n1

, . . . , yd,nd
, e1, . . . , ed927

denote the basis of B as a path algebra (recall Definition 4.3). The map P is defined by P (ei) = ei,928

P (xi,a) =

ni∑
a′=1

(Pi)aa′yi,a′ for i = 1, . . . , d− 1929

and930

P (xd,a) =

nd∑
a′=1

(P−t
d )aa′yd,a′ .931

By left multiplying by P t
d, we may rewrite this last equation as932

yd,a =

nd∑
a′=1

(Pd)a′,aP (xd,a′),933

note the transpose.934
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To check the relations, let us write out the path algebra relations explicitly for our graph, in935
our notation. The generators of A are x1,1, x1,2, . . . , x1,n1 , x2,1, x2,2, . . . , x2,n2 , . . . , xd,nd

, e1, . . . , ed,936
and the relations are (4.1) and the quiver relations:937

eiej = δi,jei938

eixj,a = (δi,j + δi,1δj,d)xj,a939

xj,aei = (δj+1,i + δj,dδi,d)xj,a940

xi,axd,b = 0941

xd,bxi,a = 0 (i < d)942

xi,axj,b = 0 if j ̸= i+ 1943

The relations involving the ei are easy to verify, since they only depend on the first subscript944
of xi,a (resp., yj,b), and P does not alter this subscript.945

For relation xi,axd,b = 0, we have:946

P (xi,axd,b) = P (xi,a)P (xd,b)947

=

(
ni∑

a′=1

(Pi)aa′yi,a′

)(
nd∑

b′=1

(P−t
d )bb′yd,b′

)
948

=

ni∑
a′=1

nd∑
b′=1

(Pi)aa′(P−t
d )bb′yi,a′yd,b′ = 0,949

where the final inequality comes from the defining relations yi,a′yd,b′ = 0 in B.950
The verification for remaining quiver relations is similar, since P does not alter the start and951

end vertices of any arrow (though it may send a single arrow i→ j in A to a linear combination of952
arrows i→ j in B).953

We now verify the relation (4.1). The idea is that the expression (4.1) is block-multilinear, in954
that it is linear in each set of variables {xk,i : 1 ≤ i ≤ nk}, so the action of P on the monomial on955
the left-hand side of (4.1) turns into the multilinear action of the Pi’s, each occuring once, and this956
lets us then apply the assumed isomorphism (4.2). In symbols and more formally, we have957

P (x1,i1x2,i2 · · ·xd−1,id−1
)958

=

n1∑
j1=1

n2∑
j2=1

· · ·
nd−1∑

jd−1=1

(P1)i1,j1(P2)i2,j2 · · · (Pd−1)id−1,jd−1
y1,j1y2,j2 · · · yd−1,jd−1

959

=
∑

j1,j2,··· ,jd−1

(P1)i1,j1(P2)i2,j2 · · · (Pd−1)id−1,jd−1

nd∑
jd=1

B(j1, j2, . . . , jd)yd,jd960

=
∑

j1,··· ,jd−1

(P1)i1,j1(P2)i2,j2 · · · (Pd−1)id−1,jd−1

nd∑
jd=1

B(j1, j2, . . . , jd)

nd∑
id=1

(Pd)id,jdP (xd,id)961

=

nd∑
id=1

 ∑
j1,··· ,jd−1,jd

(P1)i1,j1 · · · (Pd)id,jdB(j1, . . . , jd)

P (xd,id)962

=

nd∑
id=1

A(i1, . . . , id)P (xd,id),963

964
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as desired. Thus the map A → B induced by P is an algebra homomorphism.965
Next, since P is an isomorphism of (d + n)-dimensional vector spaces, the map it induces966

A → B is surjective on the generators of B, whence it is surjective onto all of B. Finally, since967
dimA = dimB < ∞, any linear surjective map A → B is automatically bijective, so this map is968
indeed an isomorphism of algebras.969

For the if direction, suppose that f : A → B is an isomorphism of algebras. Since the970
Jacobson radical is characteristic, we have f(R(A)) = R(B). Then {f(ev) : v ∈ V } is a set971
of primitive orthogonal idempotents in B, and their span T = ⟨f(ev) : v ∈ V ⟩ is a separable972
subalgebra (isomorphic to Fn) such that B = T ⊕ R(B). By the Wedderburn–Mal’cev Theorem973
(Theorem 4.2(3)), there is some r ∈ R(B) such that (1 + r)T (1 + r)−1 = ⟨e1, . . . , en⟩ =: S. Since974
the ei are the only primitive idempotents in S, we must have that (1 + r)f(ei)(1 + r)−1 = eπ(i) for975
all i and some permutation π ∈ Sn.976

Next we will show that this permutation is in fact the identity, so that (1+r)f(ei)(1+r)−1 = ei977
for all i. For this, consider A′ = A/R(A)2 and similarly B′. These are precisely the algebras978
considered by Grigoriev [47] (reproduced as Theorem 4.6 above). Since R(A) is characteristic, so979

is its square, and thus f induces an isomorphism A′ ∼=→ B′. By Theorem 1 of Grigoriev [47], any980
isomorphism A′ → B′ induces an isomorphism of the corresponding graphs, so this isomorphism981
must map ei to ei for each i (since our graph G has no automorphisms). Thus π must be the982
identity, and (1 + r)f(ei)(1 + r)−1 = ei for all i.983

Since conjugation is an automorphism, let f ′ : A → B be c1+r ◦ f , where c1+r(b) = (1+ r)b(1+984
r)−1. By the above, f ′(ei) = ei for all i. Thus f ′(eiAej) = eiBej . (Recall that the set eiAej is985
linearly spanned by the paths i→ j in this graph.) In particular, define Pi to be the restriction of986
f ′ to eiAei+1 for i = 1, . . . , d − 1 and Pd to be the restriction of f ′ to e1Aed. Then we have that987
Pi is a linear bijection from the span of xi,1, . . . , xi,ni

to the span of yi,1, . . . , yi,ni
for all i. Let us988

also use Pi to denote the matrix corresponding to the linear map Pi in the bases {xi,j} and {yi,j}.989
We claim that P = (P1, . . . , Pd−1, P

−t
d ) is a tensor isomorphism A → B, that is,990

A(i1, . . . , id) =
∑

j1,...,jd

(P1)i1,j1 · · · (P−t
d )id,jdB(j1, . . . , jd).991

From the fact that f ′ is an isomorphism, we have992

nd∑
id=1

A(i1, . . . , id)f
′(xd,id) = f ′(x1,i1x2,i2 · · ·xd−1,id−1

)993

nd∑
id=1

A(i1, . . . , id)

nd∑
jd=1

(Pd)id,jdyd,jd = f ′(x1,i1)f
′(x2,i2) · · · f ′(xd−1,id−1

)994

=
∑

j1,...,jd−1

(P1)i1,j1(P2)i2,j2 · · · (Pd−1)id−1,jd−1
y1,j1y2,j2 · · · yd−1,jd−1

995

=
∑

j1,...,jd−1

(P1)i1,j1(P2)i2,j2 · · · (Pd−1)id−1,jd−1

nd∑
jd=1

B(j1, . . . , jd)yd,jd996

For each jd ∈ {1, . . . , nd}, equating the coefficient of yd,jd gives997

nd∑
id=1

A(i1, . . . , id)(Pd)id,jd =
∑

j1,...,jd−1

(P1)i1,j1(P2)i2,j2 · · · (Pd−1)id−1,jd−1
B(j1, . . . , jd)998
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Let A(i1, . . . , id−1,−) be the natural row vector of length nd, and similarly for B(j1, . . . , jd−1,−).999
Then we may rewrite the preceding set of nd equations (one for each choice of jd) in matrix notation1000
as1001

A(i1, . . . , id−1,−) · Pd =
∑

j1,...,jd−1

(P1)i1,j1(P2)i2,j2 · · · (Pd−1)id−1,jd−1
B(j1, . . . , jd−1,−)1002

Right multiplying by P−1
d , we then get1003

A(i1, . . . , id−1,−) =
∑

j1,...,jd−1

(P1)i1,j1(P2)i2,j2 · · · (Pd−1)id−1,jd−1
B(j1, . . . ,−)P−1

d1004

A(i1, . . . , id) =
∑

j1,...,jd−1,jd

(P1)i1,j1(P2)i2,j2 · · · (Pd−1)id−1,jd−1
B(j1, . . . , jd)(P

−1
d )jd,id1005

=
∑

j1,...,jd

(P1)i1,j1(P2)i2,j2 · · · (Pd−1)id−1,jd−1
(P−t

d )id,jdB(j1, . . . , jd),1006

as claimed.1007

5. From 3-Tensor Isomorphism to Matrix Space Isometry. We present a reduction1008
from 3-Tensor Isomorphism to Matrix Space Isometry using the gadgets from [42]. While1009
we use the gadget construction from [42], the proof for correctness is different as we apply that1010
gadget in a setting different from that in [42].1011

The use of gadgets from [42] results in quadratic blow-up in dimension, which is problematic1012
when we want to apply it to groups in the Cayley table model, since then the resulting groups after1013
the reduction have size |G|Θ(log |G|). In a follow-up paper [50], we develop a new more economical1014
gadget that gives us linear blow-up in dimension, which corresponds to the output groups having1015
size |G|O(1).1016

Proposition 5.1. 3-Tensor Isomorphism reduces to Alternating Matrix Space Isom-1017
etry. Symbolically, isomorphism in U ⊗ V ⊗ W reduces to isomorphism in V ′ ⊗ V ′ ⊗ W ′ (or1018

even to
∧2

V ′ ⊗W ), where ℓ = dimU ≤ n = dimV and m = dimW , dimV ′ = ℓ + 7n + 3 and1019
dimW ′ = m+ ℓ(2n+ 1) + n(4n+ 2).1020

Proof. We will exhibit a function r from 3-way arrays to matrix tuples such that two 3-way1021
arrays A, B ∈ T (ℓ × n ×m,F) which are non-degenerate as 3-tensors, are isomorphic as 3-tensors1022
if and only if the matrix spaces ⟨r(A)⟩, ⟨r(B)⟩ are isometric. Note that we can assume our input1023
tensors are non-degenerate by Observation 2.2. The construction is a bit involved, so we will first1024
describe the construction in detail, and then prove the desired statement.1025

The gadget construction.. Given a 3-way array A ∈ T (ℓ × n ×m,F), let A denote the corre-1026
sponding m-tuple of matrices, A ∈ M(ℓ× n)m. The first step is to construct s(A) ∈ Λ(ℓ+ n,F)m,1027

defined by s(A) = (AΛ
1 , . . . , A

Λ
m) where AΛ

i =

[
0 Ai

−At
i 0

]
. Already, note that if A ∼= B, then s(A)1028

and s(B) are pseudo-isometric matrix tuples (equivalently, ⟨s(A)⟩ and ⟨s(B)⟩ are isometric matrix1029
spaces).1030

However, it is not clear whether the converse should hold. Indeed, suppose Ps(A)PT = s(B)Q1031

for some P ∈ GL(ℓ + n,F), Q ∈ GL(m,F). If we write P as a block matrix
[
P11 P12

P21 P22

]
, where1032

P11 ∈ M(ℓ,F) and P22 ∈ M(n,F), then by considering the (1,2) block we get that P11AiP
t
22 −1033

P t
21A

t
iP12 =

∑m
j=1 qijBj for all i = 1, . . . ,m, whereas what we would want is the same equation but1034
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without the P t
21A

t
iP12 term. To remedy this, it would suffice if we could extend the tuple s(A) to1035

r(A) so that any pseudo-isometry (P,Q) between r(A) and r(B) will have P21 = 0.1036
To achieve this, we start from s(A) = AΛ ∈ Λ(n + ℓ,F)m, and construct r(A) ∈ Λ(ℓ + 7n +1037

3,F)m+ℓ(2n+1)+n(4n+2) as follows. Here we write it out symbolically, on the next page is the same1038
thing in matrix format, and in Figure 4 is a picture of the construction. Let s = m + ℓ(2n + 1) +1039
n(4n+ 2). Write r(A) = (Ã1, . . . , Ãs), where Ãi ∈ Λ(ℓ+ 7n+ 3,F) are defined as follows:1040

• For 1 ≤ i ≤ m, Ãi =

[
AΛ

i 0
0 0

]
. Recall that AΛ

i ∈ Λ(ℓ+ n,F).1041

• For the next ℓ(2n+1) slices, that is, m+1 ≤ i ≤ m+ ℓ(2n+1), we can naturally represent1042
i −m by (p, q) where p ∈ [ℓ], q ∈ [2n + 1]. We then let Ãi be the elementary alternating1043
matrix Ep,ℓ+n+q − Eℓ+n+q,p.1044

• For the next n(4n+ 2) slices, that is m+ ℓ(2n+ 1)+ 1 ≤ i ≤ m+ ℓ(n+ 1)+ n(4n+ 2), we1045
can naturally represent i−m− ℓ(n+ 1) by (p, q) where p ∈ [n], q ∈ [4n+ 2]. We then let1046
Ãi be the elementary alternating matrix Eℓ+p,n+ℓ+2n+1+q − En+ℓ+2n+1+q,ℓ+p.1047

We may view the above construction is as follows. Write the frontal view of A as1048

A =

 a′1,1 . . . a′1,n
...

. . .
...

a′ℓ,1 . . . a′ℓ,n

 ,1049

where a′i,j ∈ Fm, which we think of as a column vector, but when place in the above array, we think1050
of it as coming out of the page.1051

Let Ã be the 3-way array whose frontal slices are Ãi, so Ã ∈ T((ℓ + 7n + 3) × (ℓ + 7n + 3) ×
(m+ ℓ(2n+ 1) + n(4n+ 2)),F). Then the frontal view of Ã is

Ã =



0 . . . 0 a1,1 . . . a1,n e1,1 . . . e2n+1,1 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 . . . 0 aℓ,1 . . . aℓ,n e1,ℓ . . . e2n+1,ℓ 0 . . . 0

−a1,1 . . . −aℓ,1 0 . . . 0 0 . . . 0 f1,1 . . . f4n+2,1

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

−a1,n . . . −aℓ,n 0 . . . 0 0 . . . 0 f1,n . . . f4n+2,n

−e1,1 . . . −e1,ℓ 0 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
−e2n+1,1 . . . −e2n+1,ℓ 0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 −f1,1 . . . −f1,n 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 . . . 0 −f4n+2,1 . . . −f4n+2,n 0 . . . 0 0 . . . 0



,

where ai,j =
[
a′i,j
0

]
∈ Fm+ℓ(2n+1)+n(4n+2), ei,j = e⃗m+(j−1)(2n+1)+i, and fi,j = e⃗m+ℓ(2n+1)+(j−1)(4n+2)+i.1052

We now examine the ranks of the lateral slices Li of Ã. We claim:1053

For i... rk(Li)
1 ≤ i ≤ ℓ 2n+ 1 ≤ rk(Li) ≤ 3n+ 1

ℓ+ 1 ≤ i ≤ ℓ+ n 4n+ 2 ≤ rk(Li) ≤ 5n+ 2
ℓ+ n+ 1 ≤ i ≤ ℓ+ n+ 6n+ 3 rk(Li) ≤ n

1054
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ℓ

m

A
I2n+1

ℓ

n −At

n
I2n+1

. . .

I2n+1

I4n+2

. . . I4n+2

. . .

I4n+2

. . .

Fig. 4. Pictorial representation of the reduction for Proposition 5.1.

To see why these hold:1055
• For 1 ≤ i ≤ ℓ, the ith lateral slice Li is block-diagonal with two non-zero blocks. One block1056

is of size n×m, and the other is −I2n+1. Therefore 2n+ 1 ≤ rk(Li) ≤ 3n+ 1.1057
• For ℓ+1 ≤ i ≤ ℓ+n, the ith lateral slice Li is also block-diagonal with two non-zero blocks.1058

One block is of size ℓ ×m, and the other is −I4n+2. Therefore 4n + 2 ≤ rk(Li) ≤ 5n + 2.1059
(Recall that we have assumed ℓ ≤ n.)1060

• For ℓ + n + 1 ≤ i ≤ ℓ + n + 6n + 3, after rearranging the columns, the ith lateral slice Li1061
has one non-zero block which is is Iℓ for the first 2n+ 1 slices, and In for the next 4n+ 21062
slices. Therefore rk(Li) = ℓ or n, and since we have assumed ℓ ≤ n, in either case we have1063
rk(Li) ≤ n.1064

We then consider the ranks of the linear combinations of the lateral slices.1065
• As long as the linear combination involves Li for ℓ + 1 ≤ i ≤ ℓ + n, then the resulting1066

matrix has rank at least 4n+ 2, because of the matrix −I4n+2 in the last 4n+ 2 rows.1067
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• If the linear combination does not involve Li for ℓ+1 ≤ i ≤ ℓ+n, then the resulting matrix1068
has rank at most 4n + 1, because in this case, there are at most ℓ + n + 2n + 1 ≤ 4n + 11069
non-zero rows.1070

• If the linear combination involves Li for 1 ≤ i ≤ ℓ, then the resulting matrix has rank at1071
least 2n+ 1, because of the matrix −I2n+1 in the (ℓ+ n+ 1)th to the (ℓ+ 3n+ 1)th rows.1072

We then prove that A and B are isomorphic as 3-tensors if and only if ⟨r(A)⟩ and ⟨r(B)⟩ are1073
isometric as matrix spaces. At first glance, the only if direction seems the easy one, as one expects1074
to extend a 3-tensor isomorphism between A to B to an isometry between ⟨r(A)⟩ and ⟨r(B)⟩ eas-1075
ily. However, it turns out that this direction becomes somewhat technical because of the gadget1076
introduced. This is handled in the following.1077

For the if direction, suppose P tÃP = B̃Q, for some P ∈ GL(ℓ+ 7n+ 3,F) and Q ∈ GL(m+

ℓ(2n+ 1) + n(4n+ 2),F). Write P as

P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3

, where P1,1 is of size ℓ× ℓ, P2,2 is of size

n×n, and P3,3 is of size (6n+3)×(6n+3). By the discussion on the ranks of the linear combinations

of the lateral slices, we have P2,1 = 0, P1,2 = 0, P1,3 = 0, and P2,3 = 0. So P =

P1,1 0 0
0 P2,2 0
P3,1 P3,2 P3,3

,

where P1,1, P2,2, P3,3 are invertible. Then consider the action of such P on the first m frontal slices

of Ã. The first m frontal slices of Ã are of the form

 0 Ai 0
−At

i 0 0
0 0 0

, where Ai is of size ℓ× n. Then

we haveP t
1,1 0 P t

3,1

0 P t
2,2 P t

3,2

0 0 P t
3,3

 0 Ai 0
−At

i 0 0
0 0 0

P1,1 0 0
0 P2,2 0
P3,1 P3,2 P3,3

 =

 0 P t
1,1AiP2,2 0

−P t
2,2AiP1,1 0 0
0 0 0

 .
From the fact that Q is invertible and P tÃP = B̃Q, by considering the (1, 2) block, we find that1078
every frontal slice of P t

11AP22 lies in ⟨B⟩ (since the gadget does not affect the block-(1,2) position),1079
which gives an isomorphism of tensors, as desired.1080

For the only if direction, suppose A and B are isomorphic as 3-tensors, that is, P tAQ = BR,1081
for some P ∈ GL(ℓ,F), Q ∈ GL(n,F), and R ∈ GL(m,F).1082

We show that there exist U ∈ GL(6n + 3,F) and V ∈ GL(ℓ(2n + 1) + n(4n + 2),F) such that1083
setting1084

Q̃ = diag(P,Q,U) ∈ GL(ℓ+ 7n+ 3,F)
R̃ = diag(R, V ) ∈ GL(m+ ℓ(2n+ 1) + n(4n+ 2),F),

1085

we have1086
Q̃tr(A)Q̃ = r(B)R̃,1087

which will demonstrate that r(A) and r(B) are pseudo-isometric.1088
Since we are claiming that R̃ = diag(R, V ) ∈ GL(m,F)×GL(ℓ(2n+1)+n(4n+2),F) works, and1089

R̃ is block-diagonal, it suffices to consider the first m frontal slices separately from the remaining1090
slices. For the first m frontal slices, we have:1091

Q̃tÃiQ̃ =

P t 0 0
0 Qt 0
0 0 U t

 0 Ai 0
−At

i 0 0
0 0 0

P 0 0
0 Q 0
0 0 U

 =

 0 P tAiQ 0
−QtAt

iP 0 0
0 0 0

 .1092
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It follows from the fact that P tAQ = BR that the first m frontal slices of Q̃tr(A)Q̃ and of r(B)R̃ are1093
the same.1094

We now consider the remaining frontal slices separately. Towards that end, let Ã′ ∈ T((ℓ +1095
7n + 3) × (ℓ + 7n + 3) × (ℓ(2n + 1) + n(4n + 2)),F) be the 3-way array obtained by removing the1096
first m frontal slices from Ã. That is, the ith frontal slice of Ã′ is the (m + i)th frontal slice of Ã.1097
Similarly construct B̃′ from B̃. We are left to show that Ã′ and B̃′ are pseudo-isometric under some1098
Q̃ = diag(P,Q,U) and V . Note that P and Q are from the isomorphism between A and B, while U1099
and V are what we still need to design.1100

We first note that both Ã′ and B̃′ can be viewed as a block 3-way array of size 4× 4× 2, whose1101
two frontal slices are the block matrices1102 

0 0 E 0

0 0 0 0

−E 0 0 0

0 0 0 0

 and


0 0 0 0

0 0 0 F

0 0 0 0

0 −F 0 0

 ,1103

where E is of size ℓ× (2n+1)× ℓ(2n+1), and F is of size n× (4n+2)× n(4n+2). Although these1104
are already identical in A′, B′, the issue here is that P and Q may alter the slices of Ã′ when they1105
act on A, so we need a way to “undo” this action to bring it back to the same slices in B′.1106

We now claim that we may further handle these two block slices—the “E” slices and the1107
“F ”-slices—separately, that is, that we may take U = diag(U1, U2) and V = diag(V1, V2) where1108
U1 ∈ GL(2n+ 1,F), U2 ∈ GL(4n+ 2,F), V1 ∈ GL(ℓ(2n+ 1),F), and V2 ∈ GL(n(4n+ 2),F).1109

To handle E, first note that we have1110 
P t

Rt

U t
1

U t
2




0 0 E 0
0 0 0 0

−Et 0 0 0
0 0 0 0



P

R
U1

U2

 =


0 0 P tEU1 0
0 0 0 0

−U t
1E

tP 0 0 0
0 0 0 0

 ,1111

where E ∈M(ℓ× (2n+ 1),F).1112
Now we examine the lateral slices of E. The ith lateral slice of E (up to a suitable permutation)

is
Li =

[
0 . . . 0 Iℓ 0 . . . 0

]
,

where each 0 is of size ℓ× ℓ, Iℓ is the ith block, and there are 2n+ 1 block matrices in total. The1113
action of P on Li is by left multiplication. So it sends Li to P tLi =

[
0 . . . 0 P t 0 . . . 0

]
.1114

If we set U1 to be the identity and V1 = diag(P t, . . . , P t), where there are (2n+ 1) copies of P t on1115
the diagonal, then we have LiV1 = P tLi, and thus P tEU1 = EV1 .1116

It is easy to check that F can be handled in the same way, where now R,U2, V2 play the roles that1117
P,U1, V1 played before, respectively. This produces the desired U1, U2, V1, and V2, and concludes1118
the proof.1119

Corollary 5.2. 3-Tensor Isomorphism reduces to Symmetric Matrix Space Isometry.1120

Proof. In the proof of Proposition 5.1, we can easily replace AΛ
i with As

i =

[
0 Ai

At
i 0

]
, and the1121

elementary alternating matrices with the elementary symmetric matrices, and the resulting proof1122
goes through mutatis mutandis.1123
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6. Other reductions for the Main Theorem B. In this section, we present other reductions1124
to finish the proof of Theorem B. The reductions here are based on the constructions which may1125
be summarized as “putting the given 3-way array to an appropriate corner of a larger 3-way array.”1126
Such an idea is quite classical in the context of matrix problems and wildness [43]; here we use the1127
same idea for problems on 3-way arrays.1128

6.1. From 3-Tensor Isomorphism to Matrix Space Conjugacy.1129

Proposition 6.1. 3-Tensor Isomorphism reduces to Matrix Space Conjugacy. Symbol-1130
ically, U ⊗ V ⊗W reduces to V ′ ⊗ V ′∗ ⊗W , where dimV ′ = dimU + dimV .1131

Proof. The construction. For a 3-way array A ∈ T(ℓ × n ×m,F), let A = (A1, . . . , Am) ∈1132
M(ℓ × n,F)m be the matrix tuple consisting of frontal slices of A. Construct Ã = (Ã1, . . . , Ãm) ∈1133

M(ℓ+ n,F)m from A, where Ãi =

[
0 Ai

0 0

]
. See Figure 5.1134

A

Ã =

Fig. 5. Pictorial representation of the reduction for Proposition 6.1.

Given two non-degenerate 3-way arrays A, B which we wish to test for isomorphism (we can1135
assume non-degeneracy without loss of generality, see Observation 2.2), we claim that A ∼= B as1136
3-tensors if and only if the matrix spaces ⟨Ã⟩ and ⟨B̃⟩ are conjugate.1137

For the only if direction, since A and B are isomorphic as 3-tensors, there exist P ∈ GL(ℓ,F),1138
Q ∈ GL(n,F), and R ∈ GL(m,F), such that PAQ = BR = (B′

1, . . . , B
′
m) ∈ M(ℓ × n,F)m. Let1139

P̃ =

[
P−1 0
0 Q

]
. Then P̃−1ÃiP̃ =

[
P 0
0 Q−1

]
·
[
0 Ai

0 0

]
·
[
P−1 0
0 Q

]
=

[
0 PAiQ
0 0

]
=

[
0 B′

i

0 0

]
. It1140

follows that, P̃−1ÃP̃ = B̃R, which just says that P̃−1⟨Ã⟩P̃ = ⟨B̃⟩.1141
For the if direction, since ⟨Ã⟩ and ⟨B̃⟩ are conjugate, there exist P̃ ∈ GL(ℓ + n,F), and1142

R̃ ∈ GL(m,F), such that P̃−1ÃP̃ = B̃R̃. Write B̃R̃ := B̃′ = (B̃′
1, . . . , B̃

′
m), where B̃′

i =

[
0 B′

i

0 0

]
,1143

B′
i ∈ M(ℓ × n,F). Let P̃ =

[
P1,1 P1,2

P2,1 P2,2

]
, where P1,1 ∈ M(ℓ,F). Then as ÃP̃ = P̃ B̃′, we have for1144

every i ∈ [m],1145

(6.1)
[
P1,1 P1,2

P2,1 P2,2

] [
0 Ai

0 0

]
=

[
0 P1,1Ai

0 P2,1Ai

]
=

[
B′

iP2,1 B′
iP2,2

0 0

]
=

[
0 B′

i

0 0

] [
P1,1 P1,2

P2,1 P2,2

]
.1146

This in particular implies that for every i ∈ [m], P2,1Ai = 0. In other words, every row of P2,11147
lies in the common left kernel of Ai with i ∈ [m]. Since A is non-degenerate, P2,1 must be the1148
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zero matrix. It follows that P̃ =

[
P1,1 P1,2

0 P2,2

]
∈ GL(ℓ+ n,F), so P1,1 and P2,2 are both invertible1149

matrices. By Equation 6.1, we have P1,1A = BR̃P2,2, where P1,1 ∈ GL(ℓ,F), P2,2 ∈ GL(n,F), and1150

R̃ ∈ GL(m,F), which just says that A and B are isomorphic as 3-tensors.1151

Corollary 6.2. 3-Tensor Isomorphism reduces to1152
1. Matrix Lie Algebra Conjugacy, where L is commutative;1153
2. Associative Matrix Algebra Conjugacy, where A is commutative (and in fact has1154

the property that ab = 0 for all a, b ∈ A; note that A is not unital);1155
3. Matrix Lie Algebra Conjugacy, where L is solvable of derived length 2, and L/[L,L] ∼=1156

F; and,1157
4. Associative Matrix Algebra Conjugacy, where the Jacobson radical R(A) squares1158

to zero, and A/R(A) ∼= F.1159

Proof. We use the notation from the proof of Proposition 6.1. Note that the matrix spaces con-1160

structed there, e. g., Ã, are all subspaces of the (ℓ+n)×(ℓ+n) matrix space U :=

[
0 M(ℓ× n,F)
0 0

]
.1161

For (1) and (2), observe that for any two matrices A,A′ ∈ U , we have AA′ = 0, and thus1162
[A,A′] = AA′−A′A = 0 as well. Thus any matrix subspace of U is both a commutative matrix Lie1163
algebra and a commutative associative matrix algebra with zero product.1164

For (3) and (4), we note that we can alter the construction of Proposition 6.1 by including the1165

matrix M0 =

[
Iℓ 0
0 0

]
in both matrix spaces Ã and B̃ without disrupting the reduction. Indeed, for1166

the forward direction we have that (again, following notation as above)1167

P̃−1

[
Iℓ 0
0 0

]
P̃ =

[
P 0
0 Q−1

] [
Iℓ 0
0 0

] [
P−1 0
0 Q

]
=

[
Iℓ 0
0 0

]
.1168

For the reverse direction, we then have that for B̃′ = B̃R̃, we have B̃′
i =

[
αId B′

i

0 0

]
. Let1169

P̃ =

[
P1,1 P1,2

P2,1 P2,2

]
, where P1,1 ∈ M(ℓ,F). Then as ÃP̃ = P̃ B̃′, we have for every i ∈ [m],1170

(6.2)[
P1,1 P1,2

P2,1 P2,2

] [
0 Ai

0 0

]
=

[
0 P1,1Ai

0 P2,1Ai

]
=

[
αP1,1 +B′

iP2,1 B′
iP2,2

αP2,1 0

]
=

[
αId B′

i

0 0

] [
P1,1 P1,2

P2,1 P2,2

]
.1171

Considering the (2,1) block of this equation, we find that if α ̸= 0, then immediately P2,1 = 0. But1172
even if α = 0, then we are back to the same argument as in Proposition 6.1, namely that by the1173
non-degeneracy of A, we still get P2,1 = 0 by considering the (2,2) block. The remainder of the1174
argument only depended on the (1,2) block of the preceding equation, which is the same as before.1175

Finally, to see the structure of the corresponding algebras, we must consider how our new1176
element M0 interacts with the others. Easy calculations reveal:1177

M2
0 =M0 M0Ãi = Ãi ÃiM0 = 0 [M0, Ãi] =M0Ãi − ÃiM0 = Ãi1178

(3) For the structure of the Lie algebra, we have from the above equations that any commutator1179
is either 0 or lands in U . And since [M0, Ãi] = Ãi, we have that [L,L] is the subspace of U that1180
we started with before including M0. Since everything in that subspace commutes, we get that1181
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[[L,L], [L,L]] = 0, and thus the Lie algebra is solvable of derived length 2. Moreover, L/[L,L] is1182
spanned by the image of M0, whence it is isomorphic to F.1183

(4) Recall that for rings without an identity, the Jacobson radical can be characterized as1184
R(A) = {a ∈ A|(∀b ∈ A)(∃c ∈ A)[c + ba = cba]} [67, p. 63]. Note that the only nontrivial cases1185
to check are those for which b = M0, since otherwise ba = 0 and then we may take c = 0 as1186
well. So we have R(A) = {a ∈ A|(∃c ∈ A)[c +M0a = cM0a]}. But since M0 is a left identity,1187
this latter equation is just c + a = ca. For any a ∈ U , we may take c = −a, since then both1188
sides of the equation are zero, and thus R(A) includes all the matrices in the original space from1189
Proposition 6.1. However, M0 /∈ R(A), for there is no c such that c +M0 = cM0: any element of1190
A can be written αM0 + u for some u ∈ U . Writing c this way, we are trying to solve the equation1191
αM0 + u+M0 = (αM0 + u)M0 = αM0. Thus we conclude u = 0, and then we get that α+ 1 = α,1192
a contradiction. So M0 /∈ R(A), and thus A/R(A) is spanned by the image of M0, whence it is1193
isomorphic to F.1194

6.2. From Matrix Space Isometry to Algebra Isomorphism and Trilinear Form1195
Equivalence.1196

Proposition 6.3. Matrix Space Isometry reduces to Algebra Isomorphism and Trilin-1197
ear Form Equivalence. Symbolically, V ⊗V ⊗W reduces to V ′ ⊗V ′ ⊗V ′∗ and to V ′ ⊗V ′ ⊗V ′,1198
where dimV ′ = dimV + dimW .1199

Proof. The construction. Given a matrix space A by an ordered linear basis A = (A1, . . . , Am),1200
construct the 3-way array A′ ∈ T ((n+m)× (n+m)× (n+m),F) whose frontal slices are:1201

A′
i = 0 (for i ∈ [n]) A′

n+i =

[
Ai 0
0 0

]
(for i ∈ [m]).1202

Let Alg(A′) denote the algebra whose structure constants are defined by A′, and let fA′ denote the1203
trilinear form whose coefficients are given by A′.1204

Given two matrix spaces A,B, we claim that A and B are isometric if and only if Alg(A′) ∼=1205
Alg(B′) (isomorphism of algebras) if and only if fA′ and fA′ are equivalent as trilinear forms. The1206
proofs are broken into the following two lemmas, which then complete the proof of the proposition.1207

Lemma 6.4. Let notation be as above. The matrix spaces A,B are isometric if and only if1208
Alg(A′) and Alg(B′) are isomorphic.1209

Proof. Let A,B be the ordered bases of A,B, respectively. Recall that A,B are isometric if1210
and only if there exist (P,R) ∈ GL(n,F) × GL(m,F) such that P tAP = BR. Also recall that1211
Alg(A′) and Alg(B′) are isomorphic as algebras if and only if there exists P̃ ∈ GL(n +m,F) such1212

that P̃ tA′P̃ = B′P̃ . Since Ai (resp. Bi) form a linear basis of A (resp. B), we have that Ai (resp.1213
Bi) are linearly independent.1214

The only if direction is easy to verify. Given an isometry (P,R) between A and B, let1215

P̃ =

[
P 0
0 R

]
. Let P̃ tA′P̃ = (A′′

1 , . . . , A
′′
n+m). Then for i ∈ [n], A′′

i = 0. For n + 1 ≤ i ≤ n +m,1216

A′′
i =

[
P tAiP 0

0 0

]
. Let B′P̃ = (B′′

1 , . . . , B
′′
n+m). Then for i ∈ [n], B′′

i = 0. For n+ 1 ≤ i ≤ n+m,1217

B′′
i is the (i−n)th matrix in BR, which in turn equals P tAiP by the assumption on P and R. This1218

proves the only if direction.1219

For the if direction, let P̃ =

[
P X
Y R

]
∈ GL(n + m,F) be an algebra isomorphism, where1220
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P is of size n × n. Let P̃A′P̃ t = (A′′
1 , . . . , A

′′
n+m), and B′P̃ = (B′′

1 , . . . , B
′′
n+m). Since for i ∈ [n],1221

A′
i = 0, we have A′′

i = 0 = B′′
i . Therefore Y has to be 0, because Bi’s are linearly independent. It1222

follows that P̃ =

[
P X
0 R

]
, where P and R are invertible. So for 1 ≤ i ≤ m, we have P̃ tA′

i+nP̃ =1223 [
P t 0
Xt Rt

] [
Ai 0
0 0

] [
P X
0 R

]
=

[
P tAiP P tAiX
XtAiP XtAiX

]
. Also the last m matrices in B′P̃ are

[
B′′

i 0
0 0

]
,1224

where B′′
i is the ith matrix in BR. This implies that P ∈ GL(n,F) and R ∈ GL(m,F) together1225

form an isometry between A and B.1226

Corollary 6.5. Matrix Space Isometry reduces to1227
1. Associative Algebra Isomorphism, for algebras that are commutative and unital;1228
2. Associative Algebra Isomorphism, for algebras that are commutative and 3-nilpotent1229

(abc = 0 for all a, b, c ∈ A); and,1230
3. Lie Algebra Isomorphism, for Lie algebras that are 2-step nilpotent ([u, [v, w]] = 0 for1231

all u, v, w ∈ L).1232

Proof. We follow the notation from the proof of Lemma 6.4. We begin by observing that1233
Alg(A′) is a 3-nilpotent algebra, and therefore is automatically associative. Let V ′ = V ⊕W , where1234
dimV = n, dimW = m, and, as a subspace of V ′ ∼= Fn+m, V has a basis given by e1, . . . , en and1235
W has a basis given by en+1, . . . , en+m. Let ◦ denote the product in Alg(A′), so that xi ◦ xj =1236 ∑

k A
′(i, j, k)xk. Note that because the lower m rows and the rightmost m columns of each frontal1237

slice of A′ are zero, we have that w◦x = x◦w = 0 for any w ∈W and any x ∈ V ′. Thus only way to1238
get a nonzero product is of the form v◦v′ where v, v′ ∈ V , and here the product ends up in W , since1239
the only nonzero frontal slices are n+ 1, . . . , n+m. Since any nonzero product ends up in W , and1240
anything in W times anything at all is zero, we have that abc = 0 for all a, b, c ∈ Alg(A′), that is,1241
Alg(A′) is 3-nilpotent. Any 3-nilpotent algebra is automatically associative, since the associativity1242
condition only depends on products of three elements.1243

(1) As is standard, from the algebra A = Alg(A′), we may adjoin a unit by considering A′ =1244
A[e]/(e ◦ x = x ◦ e = x|x ∈ A′). In terms of vector spaces, we have A′ ∼= A ⊕ F, where the new1245
F summand is spanned by the identity e. This standard algebraic construction has the property1246
that two such algebras A,B are isomorphic if and only if their corresponding unit-adjoined algebras1247
A′, B′ are (see, e. g., [35,103]).1248

(2) If instead of general Matrix Space Isometry, we start from Symmetric Matrix Space1249
Isometry (which is also 3TI-complete by Corollary 5.2), then we see that the algebra is commuta-1250
tive, for we then have A′(i, j, k) = A′(j, i, k), which corresponds to xi ◦ xj = xj ◦ xi.1251

(3) By starting from an alternating matrix space A (and noting that Alternating Matrix1252
Space Isometry is still 3TI-complete, by Corollary 5.2), we get that Alg(A′) is alternating, that1253
is, v ◦ v = 0. Since we still have that it is 3-nilpotent, a ◦ b ◦ c = 0, we find that ◦ automatically1254
satisfies the Jacobi identity. An alternating product satisfying the Jacobi identity is, by definition,1255
a Lie bracket (that is, we can define [v, w] := v ◦ w), and thus we get a Lie algebra with structure1256
constants A′. Translating the 3-nilpotency condition a ◦ b ◦ c = 0 into the Lie bracket notation, we1257
get [a, [b, c]] = 0, or in other words that the Lie algebra is nilpotent of class 2.1258

Corollary 6.6. 3-Tensor Isomorphism reduces to Cubic Form Equivalence.1259

Proof. Agrawal and Saxena [2] show that Commutative Algebra Isomorphism reduces to1260
Cubic Form Equivalence. Combine with Corollary 6.5(1).1261

The reduction from V ⊗ V ⊗W to V ′ ⊗ V ′ ⊗ V ′ is achieved by the same construction.1262
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Lemma 6.7. Let A,B,A′, and B′ be as above. Then A and B are pseudo-isometric if and only1263
if A′ and B′ are isomorphic as trilinear forms.1264

Proof. Recall that A and B are pseudo-isometric if there exist P ∈ GL(n,F), R ∈ GL(m,F)1265
such that P tAP = BR. Also recall that A′ and B′ are equivalent as trilinear forms if there exists1266

P̃ ∈ GL(n+m,F) such that P̃ tA′P̃ P̃ = B′. Since Ai (resp. Bi) form a linear basis of A, we have1267
that Ai (resp. Bi) are linearly independent.1268

The only if direction is easy to verify. Given an pseudo-isometry P,R between A and B, let1269

P̃ =

[
P 0
0 R−1

]
. Then it can be verified easily that P̃ is a trilinear form equivalence between A′1270

and B′, following the same approach in the proof of Lemma 6.4.1271

For the if direction, write P̃ =

[
P X
Y R

]
∈ GL(n+m,F) be a trilinear form equivalence be-1272

tween A′ and B′. We first observe that the last m matrices in P̃ tA′P̃ are still linearly independent.1273
Then, because of the first n matrices in B′ are all zero matrices, Y has to be the zero matrix. It1274

follows that P̃ =

[
P X
0 R

]
, where P and R are invertible. Then it can be verified easily that P1275

and R−1 form an pseudo-isometry between A and B, following the same approach in the proof of1276
Lemma 6.4.1277

Finally, to show the connection between Alternating Matrix Space Isometry and iso-1278
morphism testing of p-groups of class 2 and exponent p, we need a lemma which can be viewed1279
as a constructive version of Baer’s correspondence, communicated to us by James B. Wilson, with1280
origins in the work of Brahana [20] and Baer [10] (see [107, Sec. 3]). A proof of this lemma can be1281
found in [51].1282

Lemma 6.8 (Constructive version of Baer’s correspondence for matrix groups). Let p be an1283
odd prime. Over the finite field F = Fpe , Alternating Matrix Space Isometry is equivalent to1284
Group Isomorphism for matrix groups over F that are p-groups of class 2 and exponent p. More1285
precisely, there are functions computable in time poly(n,m, log |F|):1286

• G : Λ(n,F)m → M(n+m+ 1,F)n+m and1287

• Alt : M(n,F)m → Λ(m,F)O(m2)1288
such that: (1) for an alternating bilinear map A, the group generated by G(A) is the Baer group1289
corresponding to A, (2) G and Alt are mutually inverse, in the sense that the group generated by1290
G(Alt(M1, . . . ,Mm)) is isomorphic to the group generated by M1, . . . ,Mm, and conversely Alt(G(A))1291
is pseudo-isometric to A.1292

7. Outlook: universality and open questions.1293

7.1. Towards universality for basis-explicit linear structures. A classic result is that1294
GI is complete for isomorphism problems of explicitly given structures (see, e. g., [109, Section 15]).1295
Here we formally state the linear-algebraic analogue of this result, and observe trivially that the1296
results of [42] already show that 3-Tensor Isomorphism is universal among what we call “basis-1297
explicit” (multi)linear structures of degree 2.1298

First let us recall the statement of the result for GI, so we can develop the appropriate analogue1299
for Tensor Isomorphism. A first-order signature is a list of positive integers (r1, r2, . . . , rk; f1, . . . , fℓ);1300
a model of this signature consists of a set V (colloquially referred to as “vertices”), k relations1301
Ri ⊆ V ri , and ℓ functions Fi : V

fi → V . The numbers ri are thus the arities of the relations1302
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Ri, and the fi are the arities of the functions Fi.12 Two such models (V ;R1, . . . , Rk;F1, . . . , Fℓ)1303
and (V ′;R′

1, . . . , R
′
k;F

′
1, . . . , F

′
ℓ) are isomorphic if there is a bijection φ : V → V ′ that sends Ri1304

to R′
i for all i and Fi to F ′

i for all i. In symbols, φ is an isomorphism if (v1, . . . , vri) ∈ Ri ⇔1305
(φ(v1), . . . , φ(vri)) ∈ R′

i for all i and all v∗ ∈ V , and similarly if φ(Fi(v1, . . . , vfi)) = F ′
i (φ(v1), . . . , φ(vfi))1306

for all i and all v∗ ∈ V . By an “explicitly given structure” or “explicit model” we mean a model1307
where each relation Ri is given by a list of its elements and each function is given by listing all1308
of its input-output pairs. Fixing a signature, the isomorphism problem for that signature is to1309
decide, given two explicit models of that signature, whether they are isomorphic. This isomorphism1310
problem is directly encoded into the isomorphism problem for edge-colored hypergraphs, which can1311
then be reduced to GI using standard gadgets.1312

For example, the signature for directed graphs (possibly with self-loops) is simply σ = (2; )—its1313
models are simply binary relations. If one wants to consider graphs without self-loops, this is a1314
special case of the isomorphism problem for the signature σ, namely, those explicit models in which1315
(v, v) /∈ R1 for any v. Note that a graph without self-loops is never isomorphic to a graph with1316
self-loops, and two directed graphs without self-loops are isomorphic as directed graphs if and only1317
if they are isomorphic as models of the signature σ. In other words, the isomorphism problem1318
for simple directed graphs really is just a special case. The same holds for undirected graphs1319
without self-loops, which are simply models of the signature σ in which (v, v) /∈ R1 and R1 is1320
symmetric. As another example, the signature for finite groups is γ = (1; 1, 2): the first relation R11321
will be a singleton, indicating which element is the identity, the function F1 is the inverse function1322
F1(g) = g−1, and the second function F2 is the group multiplication F2(g, h) = gh. Of course,1323
models of the signature γ can include many non-groups as well, but, as was the case with directed1324
graphs, a group will never be isomorphic to a non-group, and two groups are isomorphic as models1325
of γ iff they are isomorphic as groups.1326

A natural linear-algebraic analogue of the above is as follows. One additional feature we add1327
here for purposes of generality is that we need to account for dual vector spaces. A linear signature1328
is then a list of pairs of nonnegative integers ((r1, r

∗
1), . . . , (rk, r

∗
k); (f1, f

∗
1 ), . . . , (fℓ, f

∗
ℓ )) with the1329

property that ri+ r∗i > 0 and fi+ f∗i > 0 for all i. By the arity of the i-th relation (resp., function)1330
we mean the sum ri + r∗i (resp., fi + f∗i ).1331

Definition 7.1 (Linear signature, basis-explicit). Given a linear signature

σ = ((r1, r
∗
1), . . . , (rk, r

∗
k); (f1, f

∗
1 ), . . . , (fℓ, f

∗
ℓ )),

a linear model for σ over a field F consists of an F-vector space V , and linear subspaces Ri ≤1332
V ⊗ri ⊗ (V ∗)⊗r∗i for 1 ≤ i ≤ k and linear maps Fi : V

⊗fi ⊗ (V ∗)⊗f∗
i → V for 1 ≤ i ≤ ℓ. Two1333

such linear models (V ;R1, . . . , Rk;F1, . . . , Fℓ), (V
′;R′

1, . . . , R
′
k;F

′
1, . . . , F

′
ℓ) are isomorphic if there1334

is a linear bijection φ : V → V ′ that sends Ri to R′
i for all i and Fi to F ′

i for all i (details below).1335
A basis-explicit linear model is given by a basis for each Ri, and, for each element of a basis1336

of the domain of Fi, the value of Fi on that element. Vectors here are written out in their usual1337
dense coordinate representation.1338

In particular, this means that an element of V ⊗r—say, a basis element of R1—is written out1339
as a vector of length (dimV )r. We will only be concerned with finite-dimensional linear models.1340

12Sometimes one also includes constants in the definition, but these can be handled as relations of arity 1. While
we could have done the same for functions, treating a function of arity f as its graph, which is a relation of arity
f + 1, distinguishing between relations and functions will be useful when we come to our linear-algebraic analogue.
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Given φ : V → V ′, let φ⊗ri⊗r∗i denote the linear map φ⊗ri⊗r∗i : V ⊗ri ⊗ (V ∗)⊗r∗i → V ′⊗ri ⊗1341
(V ′∗)⊗r∗i which is defined on basis vectors factor-wise: φ⊗ri⊗r∗i (v1 ⊗ · · · ⊗ vri ⊗ ℓ1 ⊗ · · · ⊗ ℓr∗i ) =1342
φ(v1)⊗· · ·⊗φ(vri)⊗φ∗(ℓ1)⊗· · ·⊗φ∗(ℓr∗i ), and then extended to the whole space by linearity. (Recall1343
that V ∗ = Hom(V,F), so elements of V ∗ are linear maps ℓ : V → F, and thus φ∗(ℓ) := ℓ ◦ φ−1 is a1344
map from V ′ → V → F, i. e., an element of V ′∗, as desired). Similarly, when we say that φ sends Fi1345
to F ′

i , we mean that φ(Fi(v1⊗· · ·⊗vfi ⊗ℓ1⊗· · ·⊗ℓf∗
i
)) = F ′

i (φ
⊗fi⊗f∗

i (v1⊗· · ·⊗vfi ⊗ℓ1⊗· · ·⊗ℓf∗
i
)).1346

Remark 7.2. We use the term “basis-explicit” rather than just “explicit,” because over a finite1347
field, one may also consider a linear model of σ as an explicit model of a different signature (where1348
the different signature additionally encodes the structure of a vector space on V , namely, the addition1349
and scalar multiplication), and then one may talk of a single mathematical object having explicit1350
representations—where everything is listed out—and basis-explicit representations—where things are1351
described in terms of bases. An example of this distinction arises when considering isomorphism of1352
p-groups of class 2: the “explicit” version is when they are given by their full multiplication table1353
(which reduces to GI), while the “basis-explicit” version is when they are given by a generating set1354
of matrices or a polycyclic presentation (which GI reduces to).1355

Theorem 7.3 (Futorny–Grochow–Sergeichuk [42]). Given any linear signature σ where all re-1356
lationship arities are at most 3 and all function arities are at most 2, the isomorphism problem for1357
finite-dimensional basis-explicit linear models of σ reduces to 3-Tensor Isomorphism in polyno-1358
mial time.1359

Because of the equivalence between d-Tensor Isomorphism and 3-Tensor Isomorphism1360
(Theorem A + [42]), we expect the analogous result to hold for arbitrary d. Thus an analogue of1361
the results of [42] for d-tensors would yield the full analogue of the universality result for GI.1362

Open Question 7.4. Is d-Tensor Isomorphism universal for isomorphism problems on d-1363
way arrays? That is, prove the analogue of the results of [42] for d-way arrays for all d ≥ 3.1364

7.2. Other open questions. We start by highlighting two questions about the type of reduc-1365
tions used. First, we wonder whether all the reductions in this paper can be made into p-projections1366
on the set of all tensors, rather than only on the set of non-degenerate tensors; see Remark 2.5.1367
Second, we ask about functoriality, as this has potential connections to the theory of asymptotic1368
spectra [100,102]:1369

Open Question 7.5. Which reductions in this paper can be made functorial on the relevant1370
categories with all homomorphisms, not just isomorphisms? Which categories admit a theory of1371
asymptotic spectra, and do these reductions provide morphisms between the asymptotic spectra?1372

Most of our results hold for arbitrary fields, or arbitrary fields with minor restrictions. However,1373
in all of our reductions, we reduce one problem over F to another problem over the same field F.1374

Open Question 7.6. What is the relationship between TI over different fields? In particular,1375
what is the relationship between TIFp and TIFpe

, between TIFp and TIFq for coprime p, q, or between1376
TIFp

and TIQ?1377

We note that even the relationship between TIFp
and TIFpe

is not particularly clear. For matrix1378
tuples (rather than spaces; equivalently, representations of finitely generated algebras) it is the case1379
that for any extension field K ⊇ F, two matrix tuples over F are F-equivalent (resp., conjugate) if1380
and only if they are K-equivalent [63] (see [34] for a simplified proof). However, for equivalence of1381
tensors this need not be the case. This is closely related to the so-called “problem of forms” for1382
various algebras, namely the existence of algebras that are not isomorphic over F, but which become1383
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isomorphic over an extension field. The problem of forms is why Q-isomorphism of Q-algebras is1384
not known to be decidable, even though C-isomorphism of Q-algebras is in PSPACE.1385

Example 7.7 (Non-isomorphic tensors isomorphic over an extension field). Over R, let M1 =1386
I2 and let M2 = diag(1,−1). Since these two matrices have different signatures, they are not1387
isometric over R; since they have the same rank, they are isometric over C. To turn this into an1388
example of 3-tensors, first we consider the corresponding instance of Matrix Space Isometry1389
given by M1 = ⟨M1⟩ and M2 = ⟨M2⟩. Note that M1 = {λI2 : λ ∈ R}, so the signatures of all1390
matrices in M1 are (2, 0), (0, 0), or (0, 2). Similarly, the signatures appearing in M2 are (1, 1) and1391
(0, 0), so these two matrix spaces are not isometric over R, though they are isometric over C since1392
M1 and M2 are. Finally, apply the reduction from Matrix Space Isometry to 3TI [42] to get1393
two 3-tensors A1, A2. Since the reduction itself is independent of field, if we consider it over R we1394
find that A1 and A2 must not be isomorphic 3-tensors over R, but if we consider the reduction over1395
C we find that they are isomorphic as 3-tensors over C.1396

Similar examples can be constructed over finite fields F of odd characteristic, taking M1 = I21397
and M2 = diag(1, α) where α is a non-square in F (and replacing the role of C with that of1398
K = F[x]/(x2 − α)). Instead of signature, isometry types of matrices over F are characterized1399
by their rank and whether their determinant is a square or not. In this case, since our matrices are1400
even-dimensional diagonal matrices, scaling them multiplies their determinant by a square. Thus1401
every matrix in M1 will have its determinant being a square in F, and every nonzero matrix in M21402
will not, but in K they are all squares.1403

It would also be interesting to study the complexity of other group actions on tensors and how1404
they relate to the problems here. For example, the action of unitary groups U(Cn1)× · · · ×U(Cnd)1405
on Cn1 ⊗· · ·⊗Cnd classifies pure quantum states up to “local unitary operations” (e. g., [32,44,79]).1406
Isomorphism of m-dimensional lattices in n-dimensional space can be seen as the natural action1407
of On(R)×GLm(Z) by left and right multiplication on n×m real matrices. As another example,1408
orbits for several of the natural actions of GLn(Z)×GLm(Z)×GLr(Z) on 3-tensors over Z, even for1409
small values of n,m, r, are the fundamental objects in Bhargava’s groundbreaking work on higher1410
composition laws [15–18]. In analogy with Hilbert’s Tenth Problem, we might expect this problem1411
to be undecidable. We note that while the orthogonal group O(V ) is the stabilizer of a 2-form on1412

V (that is, an element of V ⊗ V ) and SL(V ) is the stabilizer of the induced action on
∧dimV

V (by1413
the determinant)—so gadgets similar to those in this paper might be useful—GLn(Z) is not the1414
stabilizer of any such structure.1415

In Remark 4.1 we observed that any reduction (in the sense of Sec. 2.3) from dTI to 3TI must1416
have a blow-up in dimension which is asymptotically at least nd/3, while our construction uses1417
dimension O(d2nd−1). Using the quiver from Fig. 6 below instead of that in Fig. 3 we can reduce1418
this to O(d2n⌊d/2⌋) for d ≥ 5:1419

Open Question 7.8. Is there a reduction from dTI to 3TI (as in Sec. 2.3) such that the1420
dimension of the output is poly(d) · nd/3(1+o(1))?1421

Finally, in terms of practical algorithms, we wonder how well modern SAT solvers would do on1422
instances of 3-Tensor Isomorphism over F2 (or over other finite fields, encoded into bit-strings).1423
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the notion of SLOCC, and Ryan Williams for pointing out the problem of distinguishing between1427
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Fig. 6. An alternative graph G whose path algebra we take a quotient of to construct a more efficient reduction
than that of Theorem A. Here h = ⌊d/2⌋+2; the reason to add 2 rather than 1 is to avoid introducing any nontrivial
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Appendix A. Reducing Cubic Form Equivalence to Degree-d Form Equivalence.1431

Proposition A.1. Cubic Form Equivalence reduces to Degree-d Form Equivalence,1432
for any d ≥ 3.1433

We suspect that the map f 7→ zd−d′
f would give a reduction from Degree-d′ Form Equiv-1434

alence to Degree-d Form Equivalence for any d′ < d, but our argument relies on a case1435
analysis that is somewhat specific to d′ = 3. For d > 2d′ our same argument works. Our argument1436
might be adaptable to any fixed value of d′ the prover desires for all d ≥ d′, with a consequently1437
more complicated case analysis, but to prove it for all d′ simultaneously seems to require a different1438
argument.1439

Proof. The reduction itself is quite simple: f 7→ zd−3f , where z is a new variable not appearing1440
in f . If A is an equivalence between f and g—that is, f(x) = g(Ax)—then diag(A, 1z) is an1441
equivalence from zd−3f to zd−3g. Conversely, suppose f̃ = zd−3f is equivalent to g̃ = zd−3g via1442
f̃(x) = g̃(Bx). We split the proof into several cases.1443

If d = 3, then z is not present so we already have that f and g are equivalent.1444
If f is not divisible by ℓd−3 for any linear form ℓ, then zd−3 is the unique factor in both1445

zd−3f and zd−3g which is raised do the d − 3 power. Thus any equivalence B between these two1446
must map z to itself, hence has the form1447

B =


∗ . . . ∗ 0
...

. . .
...

...
∗ . . . ∗ 0
∗ . . . ∗ 1

 ,1448

(if we put z last in our basis, and think of the matrix as acting on the left of the column vectors1449
corresponding to the variables). However, since both f and g do not depend on z, it must be the1450
case that whatever contributions z makes to g(Bx), they all cancel. More precisely, all monomials1451
involving z in g(Bx) must cancel, so if we alter B into B̃ that B̃xi never includes z (that is, if we1452
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make the stars in the last row above all zero), then g(B̃x) = g(Bx), hence f(x) = g(B̃x), so f and1453
g are equivalent.1454

The preceding case always applies when d > 6, for then d− 3 > 3, but deg f = 3.1455
If f is divisible by ℓd−3 for some linear form ℓ, then we are left to the following cases:1456
1. d ≤ 6 and f is a product of linear forms;1457
2. d = 4, f is a product of a linear form and an irreducible quadratic form.1458

Case 1: d ≤ 6 and f is a product of linear forms. Let us define rk(f) as the number1459
of linearly independent linear forms appearing in the factorization of f . Since we have supposed1460
zd−3f ∼ zd−3g, by uniqueness of factorization g must be a product of linear forms of the same1461
rank as f . We will use several times the fact that GLn acts transitively on k-tuples of linearly1462
independent vectors for all k ≤ n, and and in order to have rk(f) linearly independent forms, we1463
must have n ≥ rk(f). (Note that when d = 6 we must have rk(f) = 1, since we’ve assumed some1464
ℓd−3 divides f , and similarly when d = 5 we must have f = ℓ21ℓ2.) Let B denote an equivalence1465
such that zd−3f = (Bz)d−3g(Bx).1466

• If rk(f) = 1, then f = αℓ3 for some α ∈ F. Since we have assumed zd−3f ∼ zd−3g, we1467
get that rk(g) = 1, so g also has the form βℓ′3. If B does not send z to a scalar multiple1468
of itself, then as B sends zd−3f to zd−3g, B needs to sent z to ℓ′ and ℓ to z up to scalar1469
multiples. That is, d = 6, B · z = γℓ, and B · ℓ′ = ηz, for some nonzero γ, η ∈ F. Then we1470
have z3αℓ3 = B ·(zd−3g) = β(γη)3z3ℓ3. By transitivity of GLn, there is a matrix B′ ∈ GLn1471
such that B · ℓ′ = ℓ, and we have that (γη)B′ is an equivalence sending g to f , and thus1472
f ∼ g.1473
If B sends z to a scalar multiple of itself, then B · ℓ′ = ηℓ, and we get B · (zd−3g) = βη3ℓ.1474
Letting B′ be as above, we find that ηB′ is an equivalence sending g to f . In either case,1475
we thus that zd−3f ∼ zd−3g ⇔ f ∼ g.1476

• If rk(f) = 2, then f can either be written ℓ21ℓ2 or ℓ1ℓ2ℓ3 such that there are nonzero αi1477
with α1ℓ1 + α2ℓ2 + α3ℓ3 = 0.1478
If f = ℓ21ℓ2, then since zd−3f ∼ zd−3g, we also have g = ℓ′21 ℓ

′
2 by uniqueness of factorization,1479

and since GLn acts transitively on linearly independent pairs, there is always an element1480
sending ℓ1 7→ ℓ′1 and ℓ2 7→ ℓ′2, and thus f ∼ g. (Note that, unlike the rank-1 case, there is1481
no issue with scalars, since scalars can be absorbed into ℓ2.)1482
If f = ℓ1ℓ2ℓ3 satisfying α1ℓ1 + α2ℓ2 + α3ℓ3 = 0 with all αi ̸= 0, then we must have1483
d = 4, for we have assumed that f is divisible by some linear form to the d− 3 power. By1484
uniqueness of factorization, g = ℓ′1ℓ

′
2ℓ

′
3. Let B be an equivalence sending zg to zf . Since z1485

is linearly independent from ℓ1, ℓ2, ℓ3, but ℓ1, ℓ2, ℓ3 satisfy a linear relation with all nonzero1486
coefficients, we must have that B · Span{ℓ′1, ℓ′2, ℓ′3} = Span{ℓ1, ℓ2, ℓ3}. In particular, B1487
must send the x-variables that occur in the ℓ′i to the x-variables (not involving z), so B1488
restricts to a map B′ : Span{xi} → Span{xi} such that B′ · g = f . Thus f ∼ g.1489

• If rk(f) = 3, then f = ℓ1ℓ2ℓ3 with all ℓi linearly independent. If zd−3f ∼ zd−3g, then1490
rk(g) = rk(f) = 3, so g must have the form ℓ′1ℓ

′
2ℓ

′
3 with all ℓ′i linearly independent. Since1491

GLn acts transitively on 3-tuples of linearly independent vectors, we thus have f ∼ g.1492
In all the above cases, we thus get zd−3f ∼ zd−3g iff f ∼ g, as desired.1493

Case 2: d = 4 and f = ℓφ where ℓ is linear and φ is an irreducible quadratic. Then1494
to understand the situation we begin by first doing a change of basis on f to put φ into a form in1495
which its kernel is evident. Note that none of these simplifications are part of the reduction, but1496
rather they are to help us prove that the reduction works. Thinking of φ as given by its matrix Mφ1497
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such that φ(x) = xtMφx, we can always change basis to get Mφ into the form1498 [
M ′ 0
0 0n−r

]
1499

where r = rk(Mφ) = rk(M ′). Since φ does not depend on z, if we think of φ as a quadratic form on1500
{x1, . . . , xn, z}, then the matrices are the same, but larger by one additional zero row and column.1501

Next we will try to simplify ℓ as much as possible while maintaining the (new) form of Mφ =1502
diag(M ′,0). For this we first compute the stabilizer of the new form of Mφ. We can compute the1503
stabilizer as the set of invertible matrices A such that:1504 [

At
11 At

21

At
12 At

22

] [
M ′ 0
0 0n−r+1

] [
A11 A12

A21 A22

]
=

[
M ′ 0
0 0n−r+1

]
.1505

This turns into the following equations on the blocks of X:1506

At
11M

′A11 = M ′ At
12M

′A11 = 0
At

12M
′A12 = 0 At

11M
′A12 = 0

1507

From the first equation and the fact that M ′ is full rank, we find that A11 must be an invertible1508
r× r matrix. From the next equation and the fact that both M and A11 are full rank, we then find1509
that A12 = 0. Thus the stabilizer of Mφ is:1510

S :=

{[
A11 0
A21 A22

]
: At

11M
′A11 =M ′ and A22 is invertible

}
.1511

Now we simplify ℓ. Note that S acts on ℓ as a column vector. Consider ℓ =
∑n

i=1 ℓixi, with1512
ℓi ∈ F; we will say “ℓ contains xi” if and only if ℓi ̸= 0. If ℓ contains some xr+k with k ≥ 1, then1513
by setting A11 = Ir and A21 = 0, we may choose A22 to be any invertible matrix which sends1514
(ℓr+1, . . . , ℓn, ℓn+1) (recall the trailing ℓn+1 for the z coordinate) to (1, 0, . . . , 0), and thus without1515
loss of generality we may assume that ℓ only contains xi with 1 ≤ i ≤ r + 1.1516

Next, note that if ℓ contains some xi for 1 ≤ i ≤ r and xr+1, then we may use the action1517
of S to eliminate the xr+1. Namely, by taking A11 = Ir, A22 = In+1, and A21 = (−ℓr+1/ℓi)E1i.1518
This makes ℓixi in ℓ contribute −ℓr+1 to the xr+1 coordinate, eliminating xr+1. Thus, under the1519
action of S, we need only consider two cases for linear forms under the action of S: a linear form1520
is equivalent to either1521

a. one which contains some xi with 1 ≤ i ≤ r, in which case we can bring it to a form in1522
which it contains no xr+j with j ≥ 1 (and no z), or1523

b. it contains no xi with 1 ≤ i ≤ r, in which case we can use the action of S to bring it to the1524
form ℓ = xr+1.1525

Let us call the corresponding linear forms “type (a)” and “type (b).” Note that the linear form z is1526
of type (b).1527

Now, write f = ℓφ and g = ℓ′φ′, and assume that we have applied the preceding change of1528
basis to bring f to the form specified above. Recall that we are assuming f̃ ∼ g̃, and need to show1529
that f ∼ g. If, after applying the same change of basis to g, we do not have Mφ′ =Mφ, then f ̸∼ g1530

and also f̃ ̸∼ g̃—contrary to our assumption—since φ (resp., φ′) is the unique irreducible quadratic1531
factor of f̃ (resp., g̃). So we may assume that, after this change of basis, φ = φ′, both of which1532
have Mφ = diag(M ′, 0n−r+1) with r = rank(Mφ).1533
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Next, since we are assuming f̃ ∼ g̃, and z itself is of type (b), so it must be the case that the1534
types of ℓ, ℓ′ are the same. Thus we have two cases to consider: either they are both of type (a), or1535
both of type (b).1536

Suppose both ℓ, ℓ′ are of type (a). In this case, the equivalence between f̃ and g̃ cannot1537
send z to ℓ′ and ℓ to z, for both ℓ, ℓ′ are of type (a), whereas z is of type (b). Thus the equivalence1538
between f̃ and g̃ must restrict to an equivalence between f and g (when we ignore z, or set its1539
contribution to the other variables to zero, as in the above case where f was not divisible by ℓd−3).1540

Suppose both ℓ, ℓ′ are of type (b). In this case, it is possible that the equivalence from f̃1541
to g̃ could send z to ℓ′ and ℓ to z (since all three of ℓ, ℓ′, z are in case (b)); however, we will see that1542
in this case, even such a situation will not cause an issue. Without loss of generality, by the change1543
of bases described above, we have f̃ = zxr+1φ and g̃ = zℓ′φ (the same φ), where ℓ′ contains no xi1544
with 1 ≤ i ≤ r. Using elements of S with A11 = Ir, and A21 = 0, we then get an action of GLn−r+11545
(via A22) on linear forms in the variables xr+1, . . . , xn, z. Since ℓ′ is linearly independent from z (in1546
particular, it does not contain z) and the action of GL is transitive on pairs of linearly independent1547
vectors, we may use S to fix φ and z, and send xr+1 to ℓ′, giving the desired equivalence f ∼ g.1548

Appendix B. Relations with Graph Isomorphism and Code Equivalence.1549
We observe then Graph Isomorphism and Code Equivalence reduce to 3-Tensor Iso-1550

morphism. In particular, the class TI contains the classical graph isomorphism class GI.1551
Recall Code Equivalence asks to decide whether two linear codes are the same up to a1552

linear transformation preserving the Hamming weights of codes. Here the linear codes are just1553
subspaces of Fn

q of dimension d, represented by linear bases. Linear transformations preserving1554
the Hamming weights include permutations and monomial transformations. Recall that the latter1555
consists of matrices where every row and every column has exactly one non-zero entry. Indeed,1556
over many fields this is without loss of generality, as Hamming-weight-preserving linear maps are1557
always induced by monomial transformations (first proved over finite fields [75], and more recently1558
over much more general algebraic objects, e. g., [46]). CodeEq has long been studied in the coding1559
theory community; see e.g. [85, 93].1560

For Code Equivalence, we observe that previous results already combine to give:1561

Observation B.1. Code Equivalence (under permutations) reduces to 3-Tensor Isomor-1562
phism.1563

Proof. Code Equivalence reduces to Matrix Lie Algebra Conjugacy [48], a special case1564
of Matrix Space Conjugacy, which in turn reduces to 3TI [42].1565

Since Graph Isomorphism reduces to Code Equivalence [71] (see [80]) and [85] (even over1566
arbitrary fields [48]), by Obs. B.1 and Thm. B, we have the following.1567

Corollary B.2. Graph Isomorphism reduces to Alternating Matrix Space Isometry.1568

Using similar gadgets, in a follow-up paper we in fact show that the more general problem1569
Monomial Code Equivalence—which is perhaps more natural from the viewpoint of coding1570
theory and Hamming distance, see above—also reduces to 3TI.1571

Proposition B.3 (G. & Q., [51, Prop. 7]). Monomial Code Equivalence reduces to 3-1572
Tensor Isomorphism.1573
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