
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works. 



Efficient Radius-bounded Community Search in Geo-social 
Networks

Journal: Transactions on Knowledge and Data Engineering

Manuscript ID TKDE-2020-10-1186

Manuscript Type: Regular

Keywords: K-core, Geo-social Network, Community search, Diversification

 

Transactions on Knowledge and Data Engineering



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 1

Efficient Radius-bounded Community Search in
Geo-social Networks

Kai Wang, Shuting Wang, Xin Cao, Wenjie Zhang, and Lu Qin

Abstract—Driven by real-life applications in geo-social networks, we study the problem of computing radius-bounded k-cores
(RB-k-cores) that aims to find communities satisfying both social and spatial constraints. In particular, the model k-core (i.e., the
subgraph where each vertex has at least k neighbors) is used to ensure the social cohesiveness, and a radius-bounded circle is used
to restrict the locations of users in an RB-k-core. We explore several algorithmic paradigms to compute RB-k-cores, including a
triple-vertex-based paradigm, a binary-vertex-based paradigm, and a paradigm utilizing the concept of rotating circles. The
rotating-circle-based paradigm is further enhanced by several pruning techniques to achieve better efficiency. In addition, to find
representative RB-k-cores, we study the diversified radius-bounded k-core search problem, which finds t RB-k-cores to cover the most
number of vertices. We first propose a baseline algorithm that identifies the distinctive RB-k-cores after finding all the RB-k-cores.
Beyond this, we design algorithms that can efficiently maintain the top-t candidate RB-k-cores and also achieve a guaranteed
approximation ratio. Experimental studies on both real and synthetic datasets demonstrate that our proposed techniques can efficiently
compute (diversified) RB-k-cores. Moreover, our techniques can be used to compute the minimum-circle-bounded k-core and
significantly outperform the existing techniques.

Index Terms—K-core, Geo-social network, Community search, Diversification

F

1 INTRODUCTION

With the wide availability of wireless communication tech-
niques and GPS-equipped mobile devices (e.g., smart-
phones and tablets), people can now easily access the in-
ternet. This leads to the emergence of geo-social networks,
such as Twitter and Foursquare, where social networks
are combined with users’ geo-spatial information. Conse-
quently, retrieving subgraphs with high cohesiveness in
geo-spatial social networks has become a popular research
topic recently [14], [42], [44].

In this paper, we study the problem of efficiently com-
puting radius-bounded cohesive subgraphs in a geo-spatial
social network G (or abbreviated as a geo-social network).
That is, given a vertex q in G and a radius r, find all cohesive
subgraphs g of G such that g contains q and all vertices in
g fall into a circle with the radius r. There are many types
of cohesive subgraph models in the literature such as k-
core [32], k-truss [8] and clique [25]. While our proposed
framework generally works for various cohesive subgraphs,
in this paper, we present our work restricted to a specific
cohesive subgraph k-core [32] where each vertex has at least
k neighbors.
Applications. The problem of computing radius-bounded k-

cores, namely RB-k-cores, has many real real-life applica-
tions. On social platforms like Facebook and Twitter, per-
sonalized event recommendation is an essential part. For ex-

• Kai Wang, Xin Cao, and Wenjie Zhang are with the Univer-

sity of New South Wales, Australia. E-mail: kai.wang@unsw.edu.au,

xin.cao@unsw.edu.au, zhangw@cse.unsw.edu.au.

• Shuting Wang is with Zhejiang Gongshang University, China. Email:

wangshuting@zjgsu.edu.cn.

• Lu Qin is with the University of Technology Sydney, Australia. Email:

lu.qin@uts.edu.au.

ample, “Events for you” is a valuable Facebook component
that recommends events to users based on their locations
and social connection. Nevertheless, the current technology
cannot provide a service of Events-For-You based on users’
arbitrary requests. For example, the Events-For-You based
on Leo’s following request cannot be accommodated by the
current technology. In this example, Leo wants to hold a
party (an Events-For-You activity) to play board games (e.g.,
Monopoly, Uno, and Risk) by gathering a group of people
who are not living far away (say, bounded by a circle with
a radius r) and each of whom has many friends in the
group (say, at least k friends). Figure 1 shows a geo-social
network where vertices represent users, edges represent
friendships, and locations represent the home locations of
users. If we set r = 3 and k = 3, there are two RB-k-cores
recommended to Leo as illustrated by the shadow area, i.e.,
{Leo, Ken, Jim, Adam} and {Leo, Bill, Frank, Bob, Lee}. This
is a typical example of computing RB-k-cores. In addition,
when users propose query requests, there may exist a large
number of RB-k-cores that satisfy the query constraints. In
these circumstances, the system only needs to recommend
representative communities with rich information to users.

Moreover, as studied in [14], [27], people with close
social relationships tend to purchase in places that are also
close. For this application, the locations of users represent
places in a geo-social network. To boost sales figures, adver-
tisement messages can be sent to the RB-k-core of customers.
For instance, if we want to promote an item A, the system
can advertise A to the RB-k-core members (customers) using
the query point (customers) who purchased A.
Existing Studies. Several studies over community retrieval
exist in geo-social networks, but they are all different from
our problem. In the literature, various models including k-
core [32], k-truss [8], and clique [25] have been studied to

Page 2 of 27Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 2

Adam

Leo

Paul

Roy

Ken

Taylor

Bob

Frank

John

Mark

Jim

Bill

Lee

2km

Figure 1: A geo-social network

retrieve cohesive subgraphs without considering the spatial
information of users. Thus, these models are not applicable
to compute RB-k-cores. For example, in Figure 1, Mark will
be added into the community formed by {Leo, Ken, Adam,
Jim} if we use the model k-core for k = 3 though Mark
is far away from the other users. On the other hand, [16],
[38] find a group of spatial objects without considering the
network information, and thus they also cannot solve our
problem RB-k-cores. In Figure 1, Roy will be added into the
community formed by {Leo, Ken, Jim, Adam} using spatial
information (bounded by a circle) only, but the network
connections between Roy and the other people are fragile.

The most closely related works can be found in [14],
[42], [44], which consider both social constraint (network
structure) and spatial constraint in retrieving communities.
In particular, they all use k-core to ensure the social (struc-
ture) cohesiveness of communities in a network. Zhang
et al. [42] study the community detection problem, which
uses pairwise similarity (distance) between each pair of
vertices to ensure the spatial cohesiveness of communities
while computing the maximum k-core or all maximal k-
cores. As studied in [36], our problem is inherently different
from the problem in [42]; that is, the generated results are
very different. Moreover, our problem RB-k-cores is PTIME,
while the problem in [42] is NP-hard. Zhu et al. in [44]
study the problem of finding the maximum k-core in a given
rectangle containing a query vertex. They also study the
problem of finding the k-core with exact (or no less than)
c vertices such that the longest distance from these vertices
to q is minimized. These problems in [44] are also different
from ours. Fang et al. in [14] study the problem of comput-
ing the k-core containing the query vertex covered by the
smallest circle. While the problem in [14] is different from
our problem RB-k-cores, as a byproduct, our techniques can
be applied to the problem in [14] and can achieve a speed-up
around twice.
Challenges. The main challenge of efficiently computing
RB-k-cores is threefold.

1) The location of the radius-bounded circle of a RB-k-core
is unknown. Therefore, it is a challenge to enumerate
such circles efficiently.

2) In the process of finding all the RB-k-cores, it is cost-
prohibitive to construct and verify the candidate sub-
graphs individually. Therefore, it is important to reuse
intermediate computation results and explore possible
cost-sharing, which is challenging.

3) Given a query request, there may exist many RB-k-cores

in the result set. Thus, when users only want to retrieve
the representative RB-k-cores rather than all of them,
it is also challenging to identify such distinctive RB-k-
cores with rich information efficiently.

Contributions. We first explore three paradigms to retrieve
all the RB-k-cores in this paper. The first paradigm is triple-
vertex-based algorithm (TriV) inspired by [14]. It proposes
to firstly generate all candidate circles containing q, secondly
check the corresponding radius to verify the given radius
bound, and then compute the maximum k-core for the
vertices in each candidate circle. To avoid generating too
many candidate circles or missing results, TriV generates all
the candidate circles by enumerating all the triple-vertex-
and binary-vertex-combinations.

To reduce the number of candidate circles, we further
propose the binary-vertex-based algorithm (BinV). In BinV,
we effectively use the given parameter r and only generate
the circles with a radius r such that the circle arc passes a
pair of vertices in G (for every pair). Generally, for each
pair of vertices, we have at most two such circles. This
guarantees to generate O(n2) candidate circles and reduces
O(n3) candidate circles in TriV to O(n2).

We can observe that there are many reusable intermedi-
ate computation results in the process of finding RB-k-cores.
The third paradigm is to share computation costs among the
computation of RB-k-cores. To effectively share the compu-
tation, we design the rotating-circle-based algorithm (RotC)
so that the computation in BinV can be shared among the
“adjacent” circles. Specifically, we fix a vertex u for each
vertex in G then check the remaining vertices v such that
for each pair u and v, we use BinV to generate the two
circles with radius r (maybe degenerate to one if r is half
of the distance between u and v). Then, we will share the
computation among the adjacent circles.

To find distinctive RB-k-cores, we study the diversified
RB-k-core search problem to find t representative RB-k-
cores that cover the most number of vertices. This prob-
lem can be recognized as the max k-cover problem [15],
which is NP-hard. A simple greedy solution DivBS is that
after obtaining all the RB-k-cores, we run t iterations and
identify the RB-k-core, which covers the maximum number
of uncovered vertices for each iteration. Although DivBS
can have a good approximation ratio, the main drawback
of DivBS is that it needs to compute all the RB-k-cores
firstly, which isolate the computation of RB-k-cores and the
finding of diversified top-t RB-k-cores. Towards this issue,
we propose the DivRotC+ algorithm that maintains the
top-t candidates in the RB-k-core computing process and
achieves a guaranteed approximation ratio. Also, several
useful pruning techniques are deployed into DivRotC+ to
enhance the performance further.

Our principal contributions are summarized as follows.
• We propose the RB-k-core model and develop a novel

paradigm to compute RB-k-cores to share computations
among different RB-k-cores.

• We propose several new optimization techniques that
speed up the computation of finding all the RB-k-cores.

• We propose efficient algorithms along with several ded-
icated pruning techniques to find distinctive RB-k-cores
with rich information.

Page 3 of 27 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 3

• Extending our algorithms to the problem in [14] can
achieve a speed-up around twice.

• We conduct comprehensive experiments on real geo-
social networks to evaluate our algorithms.

Organization. The rest of the paper is organized as follows.
Section 2 presents the preliminaries. Section 3 introduces our
techniques to solve the RB-k-core search problem. The study
of the diversified RB-k-core search problem is presented in
Section 4. Section 5 reports experimental results. Section 6
reviews the related work. Section 7 concludes the paper.

2 PROBLEM DEFINITION

In this section, we formally introduce fundamental concepts
and definitions. Mathematical notations used throughout
this paper are summarized in Table 1.

Table 1: The summary of notations
Notation Definition

G a geo-social graph
G

r
k, B a RB-k-core
u, v vertices in the geo-social graph

degG(v) the degree of vertex v in G

NG(v) the set of neighbors of vertex v in G

d(u, v) the Euclidean distance between u and v

O(c, �) a circle centered at c with radius �

g(c,↵) a square centered at c with side length ↵

X,S a set of vertices
G(S) an induced subgraph of S
R the result RB-k-core set
D a set of diversified RB-k-cores

Our problem is defined over a geo-social graph G(V,E),
where V (G) denotes the vertex set, and E(G) denotes the
edge set. The vertices represent the social network users
and the edges represent their relationships in geo-social
networks. Each vertex v 2 V (G) has a location (v.x, v.y)
which denotes the position of v along x- and y-axis in a two-
dimensional space and the vertices are static in our problem.
The Euclidean distance between u and v is denoted as
d(u, v). We denote the set of neighbors of each vertex v
in G by NG(v) = {u 2 V (G) | (v, u) 2 E(G)} and the
degree of vertex v by degG(v) = |NG(v)|. We denote a circle
centered at c with radius � as O(c, �). Given a set of vertices
S ✓ V (G), we use G(S) to denote an induced subgraph of
G formed from S such that G(S) = (S, {(u, v) 2 E(G) |
u, v 2 S}).

Before formally defining the problem, we first introduce
the following critical concepts to describe the social con-
straint and the spatial constraint.
Definition 1 (k-Core). Given a graph G and a positive

integer k, the k-core of G denoted as Hk is the max-
imal subgraph of G, where degHk(v) � k, for each
v 2 V (Hk).

Based on the k-core concept, we ensure the social con-
straint by restricting the minimal degree of vertices in a
RB-k-core. Note that our proposed solutions can be easily
adapted to other cohesive structure concepts (e.g., k-truss
[8], clique [25]), which can be used to define the social
constraint from different perspectives.
Definition 2 (Minimum Covering Circle (MCC)). Given a

set of vertices S, the minimum covering circle of S is
the circle, which encloses all the vertices v 2 S with

the smallest radius. We call the vertices which lie on the
boundary of an MCC the boundary vertices.

After introducing k-core and MCC, we are ready to
define the RB-k-core as follows.
Definition 3 (Radius-Bounded k-Core). Given a geo-social

graph G(V,E), a vertex q 2 V (G), a positive integer k
and a query radius r, a subgraph of G denoted by Gr

k

is a Radius-Bounded k-Core, if it satisfies the following
constraints:

1) Connectivity constraint. Gr

k
✓ G is connected and

contains q;
2) Social constraint. 8v 2 V (Gr

k
), degGr

k
(v) � k;

3) Spatial constraint. The MCC of V (Gr

k
) has a radius

r0  r;
4) Maximality constraint. There exists no other super-

graph G0r
k
� Gr

k
satisfying (1), (2), and (3).

Problem Statement (RB-k-core Search) Given a geo-social
graph G(V,E), a vertex q 2 V (G), a positive integer k, and
a query radius r, our RB-k-core search problem aims to return
all the RB-k-cores in G.

We then define coverage as follows.
Definition 4 (Coverage). Given a set of RB-k-cores D =

{B1, B2, ...} in G, the coverage of D denoted by cov(D)
is the set of vertices covered by the RB-k-cores in D, i.e.,
cov(D) =

S
B2D V (B).

Problem Statement (Diversified top-t RB-k-core Search)

Given a geo-social graph G(V,E), a vertex q 2 V (G),
positive integers k and t, and a query radius r, our diversified

top-t RB-k-core search problem (or short as diversified RB-k-
core search problem) aims to return a set D of RB-k-cores in
G, such that (1) each B 2 D is a RB-k-core, (2) |D|  t, and
(3) |cov(D)| is maximized. The set D contains the diversified
top-t RB-k-cores.

Note that the diversified RB-k-core search problem is
NP-hard since it can be recognized as the max k-cover
problem [15] after obtaining all the RB-k-cores.
Remark. According to the spatial constraint in Definition
3, apparently, if the distance between a vertex v and the
query vertex q is larger than 2r, v cannot be included in
any RB-k-cores. We call such vertices faraway vertices, and
we can first remove all these vertices from G. We can also
safely remove all the vertices that are not in the k-core of G
containing q because of the social constraint in Definition 3.
We use Gk to denote a connected subgraph of G which is a
k-core containing q and for each vertex v in Gk, d(q, v)  2r.
We use n = |V (Gk)| to represent the number of vertices and
m = |E(Gk)| to represent the number of edges of Gk in the
following sections. Note that we use Euclidean distance to
measure the proximity between two users in this paper, and
it can be easily replaced by other measurements (e.g., the
geographical distance).
Example 1. Consider a geo-social graph G in Figure 2(a).

Suppose Q is the query vertex, given k = 2 and r =
1, to solve the RB-k-core search problem, we want to
find all RB-k-cores from this geo-social graph. We can
safely remove vertex A because d(A,Q) > 2r = 2 and
vertex I because I is not in the 2-core of G. Then we
can obtain the candidate geo-social subgraph Gk which
is shown in Figure 2(b). As a result, we can find two

Page 4 of 27Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 4

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

B

C

D
H

F

Q
J

E

A

I

(a) Original graph G

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

B
C

D

H

F

Q
J

E S2

S1

(b) Candidate graph Gk

Figure 2: An example of the geo-social graph

RB-k-cores G(S1) and G(S2), where S1 = {Q,C, J} and
S2 = {Q,D,E, F}. Furthermore, given t = 1, the result
of the diversified top-t RB-k-core search problem is S2.

3 RB-k-CORE SEARCH

In this section, we introduce our algorithms to solve the RB-
k-core search problem.

3.1 The Triple-Vertex-Based Algorithm
Firstly we introduce the triple-vertex-based algorithm (TriV)
which is designed based on the Exact algorithm in [14]. TriV
lies on the following lemma.
Lemma 1. [12] Given a set S(|S| � 2) of vertices, the MCC

of S can be determined by two or three vertices in S
which lie on the boundary of the circle. If two vertices
determine it, then the line segment connecting these two
vertices must be the circle’s diameter. If three vertices
determine it, then the triangle consisting of those three
vertices is not obtuse.

By Lemma 1, the MCC of a RB-k-core should have two
or three vertices lying on its boundary, which are called
boundary vertices. Thus, we can enumerate all candidate
triple-vertex-combinations and binary-vertex-combinations,
then check whether the subgraph enclosed by the circle
fixed by the enumerated boundary vertices is a RB-k-core.
The details of TriV can be found in [36].
Complexity Analysis. The time complexity of TriV is O(n3 ·
m). This is because in TriV, we need to verify O(n3) can-
didate triple-vertex-combinations and O(n2) binary-vertex-
combinations. For each combination, we need O(m) time
cost to verify the existence of the k-core. Thus, the total time
cost of TriV is bounded by O(n3 ·m).

3.2 The Binary-Vertex-Based Algorithm
The major issue of TriV is that we need to verify O(n3+n2)
candidate subgraphs based on all triple-vertex- and binary-
vertex-combinations. Here we introduce a binary-vertex-
based algorithm that only needs to verify O(n2) candidate
subgraphs to solve the RB-k-core search problem.

Based on the definition of RB-k-core, given a query
radius r, an obvious observation is that for each RB-k-core
in a geo-social graph G, it should be enclosed in at least one
circle with radius r. A straightforward approach to finding
all RB-k-cores verifies all the circles with radius r in the two-
dimensional space. Obviously, there are too many circles
with radius r sharing the same RB-k-core in this approach.
In other words, for each RB-k-core, we need to ensure that

there is at least one circle with radius r enclosing it is
checked. This can decrease the number of candidate circles
significantly. Firstly, we define the binary-vertex-bounded
circle as below.
Definition 5 (Binary-Vertex-Bounded Circle). Given two

vertices u and v, we call all circles having u and v lying
on the boundary the binary-vertex-bounded circles. A
set of binary-vertex-bounded circles with radius r which
takes u and v as bounded vertices is denoted as Wr(u, v).

Lemma 2. [17] Given two vertices u and v and a radius r
(r � d(u, v)), we have:

|Wr(u, v)| =
(
1, iff. d(u, v) = 2r,

2, iff. d(u, v) < 2r.
(1)

Lemma 3. [36] Given a geo-social graph G(V,E), a vertex
q 2 V (G), a positive integer k, and a query radius r,
for each RB-k-core Gr

k
, all the vertices in V (Gr

k
) should

be enclosed in at least one binary-vertex-bounded circle
with radius r which takes u and v as the boundary
vertices where u, v 2 V (Gk).

By Lemma 2, two vertices can bound one/two circles
with a given radius r. Based on Lemma 3, we can get
all the RB-k-cores in G by verifying all the binary-vertex-
bounded circles bounded by vertices in V (G) with radius r.
Hence, a more efficient algorithm BinV can be designed by
verifying O(n2) candidate subgraphs constructed from the
corresponding binary-vertex-bounded circles, rather than
O(n3 + n2) candidate subgraphs as in TriV. The details of
BinV can be found in [36].
Complexity Analysis. The time complexity of BinV is
O(n2 · m). This is because, in BinV, we need to verify all
the binary-vertex-bounded circles generated from candidate
binary-vertex-combinations, which needs O(n2 ·m) time in
total.

3.3 The Rotating-Circle-Based Algorithms
Although the BinV algorithm improves TriV a lot by re-
ducing the number of candidate subgraphs, it is still not
efficient enough. Reviewing the process of BinV, we can
observe that the corresponding candidate subgraph is con-
structed and verified individually for each binary-vertex-
combination. There are O(n2) candidate graphs that need to
be constructed, and each of the verification processes takes
O(m) time. This motivates us to develop a better algorithm
to reduce these candidate subgraphs’ construction and ver-
ification costs.

In this section, we first present the rotating-circle-based
algorithm (RotC), which improves the BinV algorithm by
exploring possible cost-sharing in the subgraph construction
and verification process. Next, we employ non-trivial prun-
ing techniques to improve the RotC algorithm and propose
the optimized rotating-circle-based algorithm (RotC+).

3.3.1 The Algorithm RotC

Reviewing Lemma 3, we can find all the RB-k-cores in G
by verifying all the candidate subgraphs constructed from
corresponding binary-vertex-bounded circles. Considering
Example 1, Figure 3(a) is a screenshot of all the binary-
vertex-bounded circles which take F as one of the boundary

Page 5 of 27 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 5

0

1

2

3

4

1 2 3 4 5 6 7

F

Q

DE O1

O4 O2
O3

O5

(a) Circle rotating process

F
c1

c2c3c4
c5

(b) Using F as pole

0

1

2

3

4

1 2 3 4 5 6 7

D

Q

F

E

O2
O3

(c) Rotating from O2 to O3

0

1

2

3

4

1 2 3 4 5 6 7

F

Q

DE

Oleave(c4,r)
Oenter(c1,r)

(d) Entering & leaving circles

Figure 3: An example of Rotating-Circle-Based Algorithms (using vertex F as the pole)

vertices. In the BinV algorithm, we need to verify the
candidate graphs enclosed by these binary-vertex-bounded
circles one by one. Now we consider putting these binary-
vertex-bounded circles into a polar coordinate system using
F as the pole, and sorting these binary-vertex-bounded
circles according to their centers’ polar angles. Figure 3(b)
shows the centers of binary-vertex-bounded circles in the
polar coordinate system, and we can obtain a list of sorted
circles L = {O1, O2, O3, O4, O5}. Specifically, in Figure 3(c),
O2 and O3 are two adjacent binary-vertex-bounded circles.
We denote the vertex sets which O2 and O3 enclosed as
X2 and X3, respectively. We can observe that for these two
induced subgraphs G(X2) and G(X3) where their binary-
vertex-bounded circles are adjacent to each other, V (G(X2))
is only one vertex (q) different from V (G(X3)). Based on
this observation, we devise a novel algorithm that shares
the construction and verification cost for these candidate
subgraphs.

In the construction step, we can construct the candidate
graphs incrementally after sorting all the binary-vertex-
bounded circles. In the verification process, the degree of
vertices is easy to maintain dynamically because the dif-
ference of enclosed vertices between adjacent binary-vertex-
bounded circles is only one vertex. We can divide the binary-
vertex-bounded circles into two groups, entering circles and
leaving circles. An entering circle denoted as Oenter(c, �)
is a circle which brings a new vertex in, and a leaving
circle Oleave(c, �) is a circle which takes an existing vertex
out. For example in Figure 3(d), Oenter(c1, r) is an entering
circles which brings vertex D in and Oleave(c4, r) is a
leaving circle which takes D out of the candidate graph.
So for an entering circle, we can avoid recomputing the
degree of enclosed vertices when checking the k-core in a
binary-vertex-bounded circle. For a leaving circle, we can
maintain the degree of vertices and avoid the computation
of checking the k-core because there cannot exist a new k-
core while a vertex leaves. The detailed rotating-circle-based
algorithm (RotC) is shown in Algorithm 1.

In RotC, we first run the core decomposition algorithm
and obtain the k-core Gk of G containing q after removing
all the faraway vertices in V (G) (line 2). After that, for each
vertex v in V (Gk), we set it as the pole in a polar coordinate
system P . For each pole v, we generate a candidate vertex
set Y = {u 2 V (Gk) | d(u, v)  2r}. Then we combine v
with other candidate vertices in Y and construct the corre-
sponding binary-vertex-bounded circles based on Lemma 3.
We also record whether it is an entering circle or a leaving

Algorithm 1: RotC

Input: G(V,E): the input graph; q: the query vertex;
k, r : constraint parameters

Output: R: a set of RB-k-cores
1 initialize R ;
2 Gk  the k-core of G containing q after removing

faraway vertices
3 foreach node v 2 V (Gk) do

4 C  ;
5 foreach node u 2 V (Gk) do

6 if u 6= v ^ d(u, v)  2r then

7 compute Wr(u, v) using {u, v} and r

8 put circles in Wr(u, v) into C

9 sort C in ascending order of centers’ polar angles
10 foreach O(c, r) 2 C do

11 X  a set of vertices enclosed in O(c, r)
12 maintain the degree of vertices in X

13 if O(c, r) is an entering circle then

14 construct G(X) from X

15 if exists a G
r
k in G(X) then

16 R.update(Gr
k)

17 return R

circle for each binary-vertex-bounded circle. After that, we
sort all the binary-vertex-bounded circles in ascending order
of their centers’ polar angles in P (line 8). Then, for each
binary-vertex-bounded circle O(c, r), we compute a set X
that contains all the vertices enclosed in O and maintain
the degrees of these vertices (lines 9-12). Note that we only
need to insert/remove different vertices between O and its
precedent binary-vertex-bounded circle, and the degrees of
vertices in X can be updated correspondingly. If O(c, r) is
an entering circle, we construct a candidate graph G(X),
which is a subgraph of Gk induced by X (lines 13-14). After
that, we verify whether there exists a k-core containing q
in G(X). Because the degrees of vertices in X is already
maintained, in the cases such as degG(X)(q) < k, we can
skip running a core decomposition to verify the existence
of k-core in G(X). Otherwise, if a k-core exists and it
satisfies the maximality property, we put the k-core into
the result set R (lines 15-16). Finally, we get all the RB-k-
cores in R. As shown in [36], the time complexity of RotC
is O(n2 · (log n+m0)), where m0  m and is much smaller
than m in practice.

3.3.2 The Algorithm RotC+

We continue to introduce the optimized rotating-circle-
based algorithm (RotC+), which improves RotC signifi-
cantly by utilizing novel pruning techniques, including

Page 6 of 27Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 6

grouping-based pre-process and the in-process pruning
rules.
The Pre-Process Pruning. Firstly, we introduce the
grouping-based pre-process pruning technique to partition
the vertices into groups and filter out unpromising can-
didate vertices. The pruning technique is based on the
following lemma.
Lemma 4. Given a geo-social graph G(V,E), a vertex q 2

V (G), a positive integer k and a query radius r, for each
RB-k-core Gr

k
in G, the center point c of the MCC O(c, �)

of V (Gr

k
) should satisfy d(c, q)  r.

Proof. By Definition 3, for a RB-k-core Gr

k
, the MCC O(c, �)

of Gr

k
should enclose q and satisfy �  r. Hence we have

d(c, q)  r and complete the proof. ⌅

q
rg(c,τ) τ

(a) Grouping O(q, r), ⌧ = 2

α

g(c,α)
r+ 2

2
α

O(c, r+ 2
2
α)

O(c’, r)

(b) Verifying a group g(c,↵)

Figure 4: An example of grouping-based pre-process

Lemma 4 illustrates that all the centers of MCCs of RB-k-
cores are in the circle O(q, r). Apparently, the circle O(q, r)
can be partitioned into four groups which are squares with
size r ⇥ r. Similarly, the group with size r ⇥ r can also be
partitioned into 4 smaller groups with size r

2 ⇥ r

2 . Hence,
given a grouping parameter ⌧ , as shown in Figure 4(a), we
can partition the circle from 4 groups with size r ⇥ r to
4
⌃
r

⌧

⌥2 groups with size ⌧ ⇥ ⌧ iteratively. In each iteration,
we halve the group size and prune the groups which do not
need further verification. For example, in Figure 4(a), if we
set ⌧ = r

2 , the pre-process will run 2 iterations in total and
in each iteration, we need to verify at most 4 and 16 groups
with size = r and r

2 , respectively.
We proceed to present the verification process of a given

group of vertices denoted as g(c,↵), where c is the center
point and ↵ is the side length. As shown in Figure 4(b),
because the longest distance between c and the other points
in g(c,↵) is

p
2
2 ↵, we can use the circle O(c, r +

p
2
2 ↵) to

enclose all the circles with radius r and centered at a point in
g(c,↵). In other words, for each circle O(c0, r) which centers
at g(c,↵) as shown in Figure 4(b), O(c, r+

p
2
2 ↵) can enclose

it. Then, we can construct an induced subgraph G(X) of
G using X which contains all the vertices enclosed in the
circle O(c, r +

p
2
2 ↵).If there exists no k-core containing q in

G(X), we can prune the whole group g(c,↵). Otherwise, if
the MCC O(c0,↵0) of the k-core G(X)

k
containing q has the

radius ↵0  r, we can mark G(X)
k

as a candidate result
and prune the whole group g(c,↵), because G(X)

k
is the

only result that can be found using the vertices in g(c,↵).
Otherwise, if the MCC O(c0,↵0) of G(X)

k
has the radius

↵0 > r, the RB-k-cores obtained from g(c,↵) are subsets of
G(X)

k
. Thus, we add the vertices in G(X)

k
into a candidate

vertex set and do further check for the group g(c,↵). The
details of the pre-processing is shown in Algorithm 2.

Algorithm 2: GROUPING-BASED PRE-PROCESS

Input: G(V,E): the input graph; q: the query vertex;
k, r: constraint parameters; ⌧ : grouping
parameter; R: candidate result set

Output: Gk: a graph
1 ↵ r; Y  g(q, 2r)
2 Gk  the k-core of G containing q after removing

faraway vertices
3 while ↵ � ⌧ do

4 foreach group g(c, 2↵) 2 Y do

5 partition g(c, 2↵) into four groups with size
↵⇥ ↵ and put then into Yc

6 Y  ;;S  ;
7 foreach group g(c,↵) 2 Yc do

8 construct graph G(X) using X which contains
vertices enclosed in O(c, r +

p
2
2 ↵)

9 if exists a G
r
k in G(X) then

10 R.update(Gr
k)

11 else if exists a k-core G(X)k in G(X) then

12 Y .insert(g)
13 put vertices in V (G(X)k) into S

14 foreach node v 2 V (Gk) do

15 if v /2 S then

16 remove vertex v from V (Gk)
17 ↵ = ↵/2
18 return Gk

In-Process Pruning Techniques. During finding RB-k-cores
from Gk, we introduce two in-process pruning rules to push
the efficiency boundary further.
Pruning Rule 1: Overall Checking. Reviewing the process of
the RotC algorithm, we choose a vertex v from V (Gk)
as the pole and generate a candidate vertex set S =
{u 2 V (Gk) | d(u, v)  2r}. Then we construct an induced
subgraph G(S) using vertices in S and compute the k-core
G(S)k of G(S) containing q. If G(S)k does not exist or
the vertices in V (G(S)k) are all enclosed in the MCC of
a candidate RB-k-core in R, we can prune the pole v.
Pruning Rule 2: Circle Filtering. In the RotC algorithm, after
choosing the pole v and corresponding candidate vertices,
we combine v with all candidate vertices and generate the
binary-vertex-bounded circles.

Firstly, we can prune all the circles which exclude the
query vertex q. After that, because there is only one vertex
difference between two adjacent circles, we can compute
the vertex difference between a circle and its precedent.
We divide the circles into two groups, the entering circles
and leaving circles, respectively. For each entering circle, we
record the vertex it brings in, and for each leaving circle, we
record the vertex it moves out. For the group of entering
circles, we sort them in ascending order of their centers’
polar angles and put them into a list Lenter . Then for each
entering circle Oenter in Lenter , we compute a vertex set
V(Oenter) which contains all the vertices bringing from the
entering circles that appear before Oenter in Lenter . This can
be done by incrementally adding the vertices bringing from
the first entering circle to the last entering circle, and the
time complexity is O(Lenter). It is obvious that the number
of vertices in V(Oenter) monotonously increases with the
index of Oenter in Lenter . Thus, we can use binary search
to find the first entering circle O0

enter
in Lenter such that

we can construct a k-core from V(O0
enter

) containing q.

Page 7 of 27 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 7

Algorithm 3: DivBS

Input: G(V,E): the input graph; q: the query vertex;
k, t, r: constraint parameters; ⌧ : grouping
parameter

Output: D: a set of diversified RB-k-cores
1 R RotC+(G, q, k, r, ⌧)
2 initialize D  ;
3 initialize V

⇤  ;
4 foreach B 2 R do

5 V
⇤  V

⇤ [ V (B)
6 for i = 1 ... t do

7 covmax  0
8 B

⇤  ;
9 foreach B 2 R do

10 if |B \ V
⇤| > covmax then

11 B
⇤  B

12 covmax  |B \ V
⇤|

13 V
⇤  V

⇤\V (B⇤)
14 D  D [B

⇤

15 return D

The circles appearing before O0
enter

can be safely discarded
because they cannot contain a RB-k-core. Similarly, we sort
in descending order of their centers’ polar angles for all the
leaving circles and put them into Lleave. In the same way,
we can find the first leaving circle O0

leave
such that we can

construct a k-core from V(O0
leave

) containing q and discard
all the circles before O0

leave
in Lleave. In this way, we can

reduce the number of binary-vertex-bounded circles, which
need to be verified in the next stage.

The details of RotC+ with the above pruning techniques
can be found in [36]. Note that the time complexity of RotC+

is O(
⌃
r

⌧

⌥2 ·m ·(log(
⌃
r

⌧

⌥
)+1)+ |F | ·m+ |F1| · log |F1| ·(|F1|+

m) + |F1| · |F2| ·m0), where F denotes the candidate vertex
set after pre-process pruning (|F |  n), F1 is the vertex
set obtained from F after the overall checking, F2 is the
set of circles that need to be verified (|F2|  n), and m0 is
the average time cost of verifying the existence of a k-core
(m0  m) [36].

4 DIVERSIFIED RB-k-CORE SEARCH

In the above section, we study how to find all the RB-k-cores
efficiently. However, in many real-world applications, we
only need to retrieve representative RB-k-cores for analysis.
Motivated by this, we study how to solve the diversified
(top-t) RB-k-core search problem in this section.

4.1 A Baseline Algorithm

As presented in Section 3.3, The algorithms RotC, and
RotC+ can find all the RB-k-cores efficiently. Based on these
algorithms, an algorithm DivBS to solve the diversified
RB-k-core search problem can be naturally devised. Firstly,
DivBS obtains all the RB-k-cores using the RotC+ algorithm,
and then the diversified RB-k-core search problem becomes
the max k-cover problem, which can be solved using a
greedy approach with a guaranteed approximation ratio
[15].

The details of the DivBS algorithm are shown in Al-
gorithm 3. Firstly, the DivBS algorithm runs the algorithm

RotC+ to get the result set R, which contains all the RB-k-
cores. After that, it processes each RB-k-core in R and puts
the vertices in RB-k-core into V ⇤. Note that V ⇤ contains all
the different vertices covered by the RB-k-cores in R (lines
4-5). Then, DivBS runs t iterations, and for each iteration,
we get the RB-k-core B⇤ which covers the most number
of uncovered vertices (lines 6-14). After running lines 6 -
14, D is an approximate result of the set of diversified top-
t RB-k-cores. Note that, the DivBS algorithm achieves the
same approximation ratio (i.e., (1 � 1/e) ⇡ 0.632) as the
best possible polynomial-time approximation algorithm for
the max k-cover problem [15].
Time Complexity of DivBS. Firstly, DivBS needs O(TRotC+)
time to get all the RB-k-cores where TRotC+ is the time
complexity of RotC+. After that, DivBS needs O(t ·P

B2R |V (B)| · cov(R)) time to get the diversified top-t
RB-k-cores. This is because DivBS need to run t iterations
and in each iteration, we need to compute covmax using
O(

P
B2R |V (B)|·cov(R)) time. Totally, the time complexity

of DivBS is O(TRotC+ + t ·
P

B2R |V (B)| · cov(R)).

4.2 Maintenance-Based Solutions
Motivation. Although DivBS achieves a good approxima-
tion ratio, it isolates the RB-k-core finding process from
the diversified top-t RB-k-core search process. Thus, DivBS
cannot have much pruning ability when finding the RB-k-
core, and it keeps all the RB-k-cores in memory. Motivated
by the above observations, we devise new algorithms that
can maintain the diversified top-t candidates with the fol-
lowing advantages. Firstly, the new algorithms only need to
maintain t candidate RB-k-cores in D rather than keeping all
the RB-k-cores in the memory and checking for the diversi-
fication. Secondly, they have a higher pruning ability than
DivBS. As the diversification checking process is integrated
into finding RB-k-cores, we can develop pruning techniques
to early terminate unpromising processing and reduce the
searching space. Thirdly, the new algorithms can achieve
a bounded approximation ratio of 0.25, as shown in the
algorithm analysis.

4.2.1 The Algorithm DivRotC+

Before introducing the new algorithm, we first define the
private-vertex-coverage of a RB-k-core.
Definition 6 (Private-Vertex-Coverage). Given a set of RB-k-

cores D = {B1, B2, ...} in G, the private-vertex-coverage
of each B 2 D denoted by pvcov(B) is the set of vertices
in B that are not covered by the other RB-k-cores in D,
i.e., pvcov(B,D) = V (B)\cov(D\B).

Based on the definition of private-vertex-coverage, we
can have the following definition of Min-cover RB-k-core.
Definition 7 (Min-Cover RB-k-core). Given a set of RB-

k-cores D = {B1, B2, ...} in G, the min-cover RB-
k-core of D, denoted by Bmin(D), is the RB-k-core
B 2 D with the smallest pvcov(B,D), i.e., Bmin(D) =
argmin

B2D |pvcov(B,D)|.
With the definition of Min-cover RB-k-core, we propose

the DivRotC+ algorithm. DivRotC+ is based on RotC+, and
a new result updating function is used on RotC+ to ensure
only t RB-k-cores are maintained in D. We show the details

Page 8 of 27Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 8

of DivRotC+ in Algorithm 4. We first initialize the result
set D and run the grouping-based pre-process (lines 1-
2). In the grouping-based pre-processing, the updating of
R is replaced with the updating of D. In addition, since
candidate RB-k-cores can be retrieved in this process, we
replace the update process in line 10 with a new updat-
ing function DivUpdate. After that, for each vertex v in
V (Gk), we set it as the pole in a polar coordinate system
P (line 3). For each pole v, we generate candidate binary-
vertex-bounded circles and corresponding candidate graphs
following the same framework as RotC+ (lines 4-21). For
each candidate subgraph, if there exists a RB-k-core Gr

k
in

it, we run the function DivUpdate(Gr

k
,D) to check whether

D can be updated (lines 22-24). In the function DivUpdate,
we directly insert Gr

k
into D if |D| < t. Otherwise, we

generate D0 by replacing Bmin(D) with Gr

k
. If Gr

k
meets

the condition that |pvcov(Gr

k
,D0)| > �, we replace D with

D0. Here � is the updating threshold which is equal to
|pvcov(Bmin(D),D)|+ cov(D)

t
. Finally, we get a set of RB-k-

cores in D.
Threshold maintenance for early termination. Deriving
from the candidate updating condition, we can have the
following lemma.
Lemma 5. Given a geo-social graph G(V,E), a subgraph G0

of G, and a set of t candidate RB-k-cores in D, there is
no RB-k-core in G0 can be included in D by Algorithm
DivRotC+ if |V (G0)|  �.

Proof. According to the candidate update process in Al-
gorithm 4 lines 27-33, a RB-k-core Gr

k
can be included in

D if the private-vertex-coverage after replacing Bmin(D)
with Gr

k
is increased by more than cov(D)

t
. Since adding

Gr

k
increases the private-vertex-coverage by at most |Gr

k
|,

we can get that if Gr

k
2 V (G0), the private-vertex-coverage

cannot be increased by more than |V (G0)|. Thus, this lemma
holds. ⌅

According to lemma 5, we can maintain the threshold �
each time we update the candidate RB-k-cores in D. After
that, a candidate subgraph in the finding process can be
pruned directly if the size of it is less than �. In Algorithm
4, the early termination checking according to the threshold
can be applied in the following stages: 1) checking the size
of G(X) in line 8 in the grouping-based pre-process (i.e.,
Algorithm 2); 2) checking the size of G(X) in line 12; 3)
checking the number of vertices in X in line 19. Note that
the number of vertices in X can be dynamically maintained
since there is at most one vertex is included/excluded
between adjacent circles.
Analysis of DivRotC+

. We first show the theoretical guar-
antee of the result of Algorithm 4, and then the time com-
plexity of Algorithm 4.
Theoretical guarantee of the result. Suppose D is the result
provided by Algorithm 4 and D⇤ is the set of optimal diver-
sified top-t RB-k-cores. We have |cov(D)| � 0.25⇥|cov(D⇤)|.
This can be easily extended by the theoretical result shown
in [4] which analyses an online approximate algorithm for
maximum k-coverage problem.
Time complexity. The time complexity of DivRotC+ is
O(TRotC+ +

P
B2R (|V (B)|+ |V (Bmax)|)). Here, TRotC+ is

the time complexity of RotC+, R is the set of all the RB-
k-cores, and Bmax denotes the RB-k-core with the largest

Algorithm 4: DivRotC+

Input: G(V,E): the input graph; q: the query vertex;
k, r: constraint parameters; ⌧ : grouping
parameter

Output: D: a set of RB-k-cores
1 initialize D  ;
2 Gk  PreProcess(G, q, k, r, ⌧,D), replace R with D,

update D using function DivUpdate in line 10, early
terminate the processing of X if |X|  �

3 foreach node v 2 V (Gk) do

4 C  ;; X  ;
5 foreach node u 2 V (Gk) do

6 if u 6= v ^ d(u, v)  2r then

7 put u into X

8 compute Wr(u, v) using {u, v} and r

9 put circles in Wr(u, v) into C

10 if OverallChecking(X) = false then

11 continue
12 if |D| > t ^ |X|  � then

13 continue
14 sort C in ascending order of centers’ polar angles
15 employ circle filtering to C

16 foreach O(c, r) 2 C do

17 X  a set of vertices enclosed in O(c, r)
18 maintain the degree of vertices in X

19 if |D| > t ^ |X|  � then

20 continue
21 if O(c, r) is an entering circle then

22 construct G(X) from X

23 if exists a G
r
k in G(X) then

24 DivUpdate(G
r
k, D)

25 return D
26

27 DivUpdate(G
r
k, D)

28 if |D| < t then

29 D  D [G
r
k

30 else

31 D0  (D\Bmin(D)) [G
r
k

32 if |pvcov(Gr
k,D0)| > |pvcov(Bmin(D),D)|+ cov(D)

t
then

33 D  D0

number of vertices in R. Note that, the second term is the
time complexity of candidate updating. For each B 2 R, we
need to compute the private-vertex-coverage after replacing
Bmin(D) with B which needs O(|V (B)|+ |V (Bmax)|) time.

4.2.2 The Algorithm AdvDivRotC+

Following the framework of DivRotC+, here we pro-
pose optimization techniques to improve the efficiency of
DivRotC+. Specifically, we first propose a tighter upper
bound for the private-vertex-coverage of candidate sub-
graphs. Secondly, we explore the effect of the processing
order of poles.
A tighter upper bound. In Lemma 5, we use |V (G0)| as
the upper bound of the private-vertex-coverage increasing.
Although |V (G0)| is a correct upper bound, it cannot reflect
the number of private vertices in the possible RB-k-cores
in the candidate subgraph G0 and may not be very tight.
In order to obtain a tighter upper bound, we maintain
a O(n) hash table J , which contains all the vertices in
D\Bmin(D). When we need to check a candidate subgraph
G0, we obtain the upper bound of the number of uncovered
vertices provided by G0 by computing |V (G0)\V (J)|. Then,

Page 9 of 27 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 9

we can early terminate the checking if |V (G0)\V (J)|  �.
Note that the value |V (G0)\V (J)| can be easily computed in
O(V (G0)) time, and it can also be dynamically maintained
when processing the circles in line 15 in Algorithm 4.
The processing order of poles. Apart from the above
bound, we can also consider the processing order of poles.
This is because a result set with large private-vertex-
coverage can increase the chance to prune the unpromising
candidate subgraphs. We rank the candidate poles accord-
ing to the following equation and choose the pole with the
highest rank in each iteration.

rank(v) = ↵(v) +
|V (G⇤)\V (J)|

|V (Gk)|
(2)

Here, we use ↵(v) to ensure that we first process the pole
which is not in the candidate result set. We set ↵(v) = 0 if
the vertex v is contained in a RB-k-core in the current result
set D. Otherwise, we set ↵(v) = 1. Secondly, we prefer
the pole which may expand more vertices which are not
covered by the RB-k-cores in the current result set. We use
G⇤ to estimate this term. For each u 2 V (G⇤), it should
satisfy the following constraints: 1) u is a neighbor of v; 2)
d(u, v)  r; Thus, we compute the second term of rank(v)
by |V (G⇤)\V (J)|

|V (Gk)| . Here, Gk is the candidate subgraph after
running the pre-processing and J is the set of vertices in
D\Bmin(D). Note that, for each vertex v, ↵(v) can be ob-
tained in O(cov(D)) time. G⇤ can be obtained in O(degG(v))
time and we can compute |V (G⇤)\V (J)|

|V (Gk)| in O(G⇤) time.
The AdvDivRotC+

algorithm. Utilizing the above strate-
gies, we propose the AdvDivRotC+ algorithm as shown
in Algorithm 5. We first initialize the result set D and
run the grouping-based pre-processing (lines 1-2). In the
grouping-based pre-processing, comparing with DivRotC+,
we use advanced early termination condition after line 8
in Algorithm 2. After that, for each vertex v in V (Gk)
with the highest rank(v), we set it as the pole in a polar
coordinate system P (line 3). The rank value is computed
according to Equation 2. For each pole v, we first get
all the candidate vertices and check whether we can skip
the process of v. Then, we generate candidate binary-
vertex-bounded circles and corresponding candidate sub-
graphs following the same framework as DivRotC+. For
each candidate subgraph, if it satisfies the upper bound
checking and there exists a RB-k-core Gr

k
in it, we run the

function AdvDivUpdate(Gr

k
,D) to check whether D can

be updated. In the function AdvDivUpdate, we directly
insert Gr

k
into D if |D| < t. Otherwise, we generate D0 by

replacing Bmin(D) with Gr

k
. If Gr

k
meets the condition that

|pvcov(Gr

k
,D0)| > |pvcov(Bmin(D),D)|+ cov(D)

t
, we replace

D with D0. Finally, we get a set of RB-k-cores in D.

5 EXPERIMENTS

In this section, we report the evaluation of the effectiveness
of our model and the efficiency of our algorithms.

5.1 Experimental Settings
Algorithms. In the experimental study, we implement and
evaluate four algorithms to solve the RB-k-core search prob-
lem: the triple-vertex-based algorithm TriV in Section 3.1,

Algorithm 5: AdvDivRotC+

Input: G(V,E): the input graph; q: the query vertex;
k, r: constraint parameters; ⌧ : grouping
parameter

Output: D: a set of RB-k-cores
1 initialize D  ;
2 Gk  PreProcess(G, q, k, r, ⌧,D), replace R with D,

early terminate the processing of X if
|D| > t ^X\V (J)  �, update D using function
AdvDivUpdate in line 10

3 foreach node v 2 V (Gk) with the highest rank do

4 C  ;; S  ;; J  ;; � = 0
5 run Algorithm 5 lines 5-24, replace the condition

(|D| > t ^X  �) with (|D| > t ^X\V (J)  �) in
lines 12 and 19;

6 return D
7

8 AdvDivUpdate(G
r
k, D)

9 if |D| < t then

10 D  D [G
r
k

11 else

12 D0  (D\Bmin(D)) [G
r
k

13 if |pvcov(Gr
k,D0)| > |pvcov(Bmin(D),D)|+ cov(D)

t
then

14 D  D0

15 �  |pvcov(Bmin(D),D)|+ cov(D)
t

16 J  V (D\Bmin(D))

the binary-vertex-based algorithm BinV in Section 3.2, the
rotating-circle-based algorithm RotC in Section 3.3, and the
optimized rotating-circle-based algorithm RotC+ in Section
3.3. We also extend our RotC+ algorithm to solve the
SAC (spatial-aware community) search problem proposed
in [14]. We also evaluate the algorithms DivBS, DivRotC+

and AdvDivRotC+ to solve the diversified top-t RB-k-core
search problem in Section 4.

The algorithms are implemented in C++, and the exper-
iments are run on a Linux server with Intel Xeon E5-2687W
(3.4GHz, 8 Cores) processor and 64GB main memory. We
randomly select 200 query vertices and report the average
result for these queries. We terminate an algorithm if the
running time is more than three hours.

Table 2: Summary of Datasets

Dataset |V | |E| davg

Brightkite 51,406 197,167 7.67
Gowalla 107,092 456,830 8.53

Flickr 214,698 2,096,306 19.5
Foursquare 2,127,093 8,640,352 8.12
Synthetic 4,000,000 40,000,000 20

Datasets. We use four real datasets in our experi-
ments including Brightkite, Gowalla, Flickr, and
Foursquare. In the four datasets, we consider each user
associated with a geo-location coordinate (latitude and lon-
gitude) as a vertex and the friendship between two users
as an edge. Helmert transformation [37] is adopted to
transform geo-location coordinates of vertices to Cartesian
coordinates.

We also conduct experiments on a synthetic dataset
Synthetic. We first generate a non-spatial graph using a

Page 10 of 27Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 10

well-known graph generator GTGraph 1. The degrees of the
vertices in the graph follow a power-law distribution, as
often used in the study of social networks. After generat-
ing the graph, we randomly generate the locations of the
vertices in a square of side 300km.
Parameters. The experiments are conducted using different
settings on 4 parameters: k (the minimum degree), r (the
maximal radius), ⌧ (the parameter used in the pre-process
of RotC+), and n (the percentage of vertices). We vary k
from 4 to 16 and set 4 as the default value. We vary r from
1km to 40km and set r to 5km by default. When varying
the graph size, we randomly sample 20% to 100% vertices
of the original graphs and construct the induced subgraphs
using these vertices. The parameter n is varied from 20% to
100%, representing the percentage of the vertices we use in
each dataset. The parameter ⌧ is varied from r to r

16 which
controls the number of iterations of the pre-processing in
RotC+. We vary t, which is a parameter used to control the
number of diversified top-t RB-k-cores from 1 to 9 and set 5
as the default value.

5.2 Effectiveness Evaluation
In this section, we show the effectiveness of our RB-k-core
model and the diversified RB-k-core model.

(a) Case study on Gowalla
(q=1396, k=3, r=0.76km)

(b) Case study on Flickr
(q=111419, k=3, r=1.67km)

Figure 5: Case studies

Case study. We present two case studies to show the result
of RB-k-core search on Gowalla and Flickr in Figure 5(a)
and Figure 5(b), respectively. The query vertices are marked
by question mark symbols. Under setting q=1396, k = 4
and r = 0.76km on Gowalla, we can get two RB-k-cores
containing q as shown in Figure 5(a). We mark the vertices
and the MCC of these two RB-k-cores in black color and grey
color, respectively. We can see that, the social constraint and
the spatial constraint both contribute to the construction of
these two RB-k-cores. For example, if the social constraint is
ignored, the black vertices enclosed by the grey circle will be
included in the grey RB-k-core. On the other hand, all the
vertices in Figure 5(a) will be united into one community
if the radius constraint is not being considered. Figure 5(b)
shows the result of RB-k-core search on Flickr using q
= 111419, k = 3 and r = 1.67km contains two retrieved
communities. Using the same q and k, the SAC search
(i.e., a similar model in [14]) will provide the communities
with black color as shown in Figure 5(a) and Figure 5(b).
The radiuses of the black circles are 0.74km and 1.67km

1. http://www.cse.psu.edu/⇠kxm85/software/GTgraph/

in Figure 5(a) and Figure 5(b), respectively. Compared to
the SAC search, in Figure 5(a), our RB-k-core search can
give users more options by slightly increasing the minimum
radius (i.e., from 0.74km to 0.76km) for the same q and k. In
Figure 5(b), the RB-k-core search is able to provide users
more than one selection for the same q, k, and minimum r.
Effectiveness of the diversified RB-k-core model. Here, we
show the effectiveness of the diversified RB-k-core search by
comparing the total coverage of the result sets provided by
RotC+, DivBS, DivRotC+, and AdvDivRotC+. We vary the
parameter t, which controls the number of different RB-k-
cores returned by the algorithms.

200

300

400

500

1 3 5 7 9

C
ov

er
ag

e 

t

RotC+
DivBS
DivRotC+

AdvDivRotC+

(a) Gowalla, varying t

7

8

9

10

11

1 3 5 7 9

C
ov

er
ag

e 
(x

 1
03 )

t

RotC+
DivBS
DivRotC+

AdvDivRotC+

(b) Foursquare, varying t

Figure 6: Evaluate the total coverage

We can see that in Figure 6, the total coverage increases
when t increases for all the algorithms DivBS, DivRotC+,
and AdvDivRotC+. This is obvious since the number of RB-
k-cores in the result sets increases when t increases. We can
also observe that the coverages of the algorithms DivBS,
DivRotC+, and AdvDivRotC+ are only slightly smaller than
the RotC+ algorithm, especially when t > 1. This validates
the effectiveness of our diversified RB-k-core model. In
addition, the total coverage of AdvDivRotC+ is smaller than
DivBS. This is because AdvDivRotC+ maintains only top-t
RB-k-cores in the computation and is more efficient.

5.3 Efficiency Evaluation of the algorithms to solve the
RB-k-core search problem
In this section, we first evaluate the efficiency of the pro-
posed four algorithms to solve the RB-k-core search problem
on all the datasets. Then we evaluate the effect of k and
the scalability of the proposed algorithm. After that, the
parameter ⌧ used in the RotC+ algorithm is evaluated.
Finally, we extend our RotC+ algorithm to solve the SAC
search problem [14] and compare the performance.

10-1

100

101

102

103

INF

Brightkite Gowalla Flickr Foursquare Synthetic

Ti
m

e 
C

os
t (

se
c)

Datasets

TriV BinV RotC RotC+

Figure 7: Performance on different datasets

Evaluating the performance of all algorithms on different

datasets. In Figure 7, we show the performance of our RB-k-
core search algorithms on five datasets. We set k as default
and r to 1km, 5km, 10km, 20km, 40km on Brightkite,

Page 11 of 27 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://www.cse.psu.edu/~kxm85/software/GTgraph/


IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 11

Gowalla, Flickr, Foursquare and Synthetic, respec-
tively. In the meantime, we keep the other parameters
fixed to default values. We can observe that BinV is more
efficient than TriV on Brightkite, Gowalla, and Flickr.
The algorithms RotC and RotC+ using the rotating circle
strategy are more efficient than TriV and BinV on the three
datasets because RotC and RotC+ can compute the RB-k-
cores in an incremental manner, which significantly reduces
the computation cost. On Foursquare and Synthetic,
we can see that only RotC+ can return the results within the
time limit. Foursquare is much larger than the first three
datasets, which means many more candidate vertices to be
processed. On Synthetic, the vertices are more densely
distributed over the space than the other datasets, and thus
the candidate circles contain more vertices. In summary,
as shown in Figure 7, our RotC+ algorithm significantly
outperforms the other three algorithms on all datasets.

10-1

100

101

102

103

104

4 7 10 13 16

Ti
m

e 
C

os
t (

se
c)

k

TriV
BinV
RotC
RotC+

(a) Gowalla, varying k

100

101

102

103

INF

4 7 10 13 16

Ti
m

e 
C

os
t (

se
c)

k

TriV
BinV
RotC
RotC+

(b) Foursquare, varying k

Figure 8: Effect of k

Evaluating the effect of k. Figure 8 evaluates the effect of
k for four algorithms on Gowalla and Foursquare. We
vary k from 4 to 16 and fix the other parameters as default
values. In Figure 8(a), we can observe that the time cost
of all four algorithms drops when k increases because of
the number of vertices in the k-core of the original graph
(selected as candidate vertices) decreases. Similar trends can
be observed in Figure 8(b). As expected, RotC and RotC+

significantly outperform TriV and BinV on both datasets due
to the usage of the rotating circle technique. For example, on
both datasets, RotC is about one order of magnitude faster
than TriV and BinV, and RotC+ is at least two orders of
magnitude faster than TriV and BinV.

10-2

10-1

100

101

102

103

20% 40% 60% 80% 100%

Ti
m

e 
C

os
t (

se
c)

n

TriV
BinV
RotC
RotC+

(a) Gowalla, varying n

10-1

100

101

102

103

INF

20% 40% 60% 80% 100%

Ti
m

e 
C

os
t (

se
c)

n

TriV
BinV
RotC
RotC+

(b) Foursquare, varying n

Figure 9: Effect of graph size

Scalability. (1) Evaluating the effect of graph size. Figure 9
shows the scalability of four algorithms by varying the
graph size from 20% to 100% in all datasets. We can observe
that, on Gowalla, all these four algorithms are scalable and
their running time increases as the percentage of vertices
increases. As shown in Figure 9(b), on Foursquare, TriV

and BinV can only finish within the time limit when n=20%,
while RotC and RotC+ have similar trends as in Figure 9(a).
As discussed before, RotC+ is more efficient than the other

three algorithms.

10-2

10-1

100

101

102

103

INF

1 5 10 20 40

Ti
m

e 
C

os
t (

se
c)

r

TriV
BinV
RotC
RotC+

(a) Gowalla, varying r

100

101

102

103

INF

1 5 10 20 40

Ti
m

e 
C

os
t (

se
c)

r

TriV
BinV
RotC
RotC+

(b) Foursquare, varying r

Figure 10: Effect of r

(2) Evaluating the effect of r. Figure 10 illustrates the effect
of r on Gowalla and Foursquare. We vary r from 1km
to 40km and fix the other parameters as default values. In
Figures 10(a) and 10(b), the time cost increases as r becomes
larger because the number of vertices in circle O(q, 2r)
grows when r increases. We can also see that, on Gowalla,
both RotC and RotC+ are several orders of magnitude faster
than TriV and BinV. On Foursquare, TriV and BinV can
only compute the result when r = 1km and RotC can get the
results when r is no more than 10km within reasonable time.
As expected, the RotC+ algorithm significantly outperforms
the other three algorithms on Foursquare, and the time
cost is stable when r is large on both datasets.

10-1

100

101

102

103

INF

r r/2 r/4 r/8 r/16

Ti
m

e 
C

os
t (

se
c)

τ

r=1
r=5
r=10
r=20
r=40

(a) Gowalla, varying ⌧

10-1

100

101

102

103

104

INF

r r/2 r/4 r/8 r/16

Ti
m

e 
C

os
t (

se
c)

τ

r=1
r=5

r=10
r=20

r=40

(b) Foursquare, varying ⌧

Figure 11: Effect of ⌧

s
Evaluating the effect of ⌧ . Figure 11 illustrates the effect
of ⌧ , which is a parameter used in the grouping-based
pre-processing in RotC+. Because the value of ⌧ is related
to r, we set r to 1km, 5km, 10km, 20km, and 40km on
both Gowalla and Foursquare. As discussed before, as
⌧ increases, the time cost of pre-processing increases, and
the number of candidate vertices decreases. We can observe
that the running time is not very sensitive to ⌧ when ⌧ is
relatively large on the two datasets. The time cost starts to
increase from ⌧ = r

4 in most cases because the number of
vertices that can be pruned increases slowly, and the time
cost of pre-processing begins to dominate the cost of RotC+.
Hence we set ⌧ = r

4 in our experiments on all datasets.
Extend to solve the SAC search problem [14]. As discussed
before, the SAC search problem can be solved by slightly
modifying our RotC+ algorithm using the binary search.
In Figure 12, we study the performance of the SAC-RotC+

algorithm, which is extended from RotC+ to solve the SAC
search problem, and we compare its performance with the
state-of-the-art exact algorithm SAC-Exact+ proposed in

Page 12 of 27Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 12

101

102

103

104

10-6 10-5 10-4 10-3 10-2

Ti
m

e 
C

os
t (

se
c)

ε

SAC-RotC+

SAC-Exact+

(a) Gowalla, varying ✏

400

800

1200

1600

10-6 10-5 10-4 10-3 10-2

Ti
m

e 
C

os
t (

se
c)

ε

SAC-RotC+

SAC-Exact+

(b) Foursquare, varying ✏

Figure 12: Extend to solve SAC search problem

[14]. Fang et al. [14] implemented the SAC-Exact+ algorithm
in JAVA, while we implement the SAC-Exact+ algorithm in
C++ for the fairness of comparison.

The SAC-Exact+ algorithm includes two phases. Firstly,
it conducts the quad-tree-based vertex pruning phase,
which can reduce the number of potential vertices. Next,
it conducts a triple-vertex-based algorithm, which is similar
to the TriV algorithm in this paper. In the RB-k-core search
problem, we have analyzed that the triple-vertex-based al-
gorithm is time-consuming, and it can be improved by the
rotating circle strategy to compute the result incrementally.
We can do the same thing in the SAC search problem. In our
SAC-RotC+ algorithm, we also conduct the vertex pruning
phase, but we adopt the rotating-circle-based algorithm in
the second phase. Note that the in-process pruning tech-
nique in RotC+ can also be applied in SAC-RotC+, but the
pre-process pruning technique cannot be used because of
the model difference.

We vary the parameter ✏, which controls the number
of iterations in the vertex pruning phase, and the number
of iterations decreases with an increase of ✏. From Figure
12(a) and Figure 12(b), we can observe that the time cost
of SAC-RotC+ and SAC-Exact+ is almost the same when
✏ is very small because the cost of processing the vertex
pruning phase dominates the cost in the second phase. On
Foursquare, SAC-RotC+ outperforms SAC-Exact+ when
✏ is larger than 10�3. Also, on Gowalla, SAC-RotC+ is
about one order of magnitude faster than SAC-Exact+ when
✏ is larger than 10�4. This is because our SAC-RotC+ al-
gorithm obtains the result incrementally and significantly
outperforms the triple-vertex-based algorithm in the second
phase, which incurs the dominating time cost as ✏ gets large.
Comparing the two algorithms’ minimal time cost on both
datasets, we can conclude that SAC-RotC+ can achieve a
speed-up around twice.

5.4 Efficiency Evaluation of the algorithms to solve the
diversified RB-k-core search problem
In this section, we evaluate the efficiency of the proposed
algorithms (i.e., DivBS, DivRotC+, and AdvDivRotC+) to
solve the diversified top-t RB-k-core search problem under
different settings of parameters. Firstly, we evaluate the
effect of t. Then, we evaluate the effect of k. We also evaluate
the scalability (i.e., the effect of graph size and the effect of
r) of these algorithms.
Evaluating the effect of t in diversified RB-k-core search.

In Figure 13, we evaluate the effect of t for the three
diversified algorithms on Gowalla and Foursquare. We
vary t from 1 to 9 and fix the other parameters as default

(a) Gowalla, varying t (b) Foursquare, varying t

Figure 13: Diversified RB-k-core search - effect of t

values. We can observe that when t = 1, the algorithms
DivRotC+ and AdvDivRotC+ are much faster than DivBS
on both datasets. This is because these two algorithms only
need to maintain one RB-k-core in the result set, while
DivBS needs to maintain all the RB-k-cores. When t � 3,
the time cost of all the algorithms slightly increases when
t increases. As expected, AdvDivRotC+ outperforms DivBS
and DivRotC+ on both datasets because it only maintains
top-t RB-k-cores with advanced pruning strategies.

(a) Gowalla, varying k (b) Foursquare, varying k

Figure 14: Diversified RB-k-core search - effect of k

Evaluating the effect of k in diversified RB-k-core search.

In Figure 14, we evaluate the effect of k for the algo-
rithms DivBS, DivRotC+ and AdvDivRotC+ on Gowalla
and Foursquare. We vary k from 4 to 16 and fix the other
parameters as default values. We can observe that the time
cost of all these algorithms drops when k increases. This is
because the number of candidate vertices is reduced with an
increase of k. Also, as an advanced solution, AdvDivRotC+

outperforms DivRotC+ and DivBS on both datasets.

(a) Gowalla, varying n (b) Foursquare, varying n

Figure 15: Diversified RB-k-core search - effect of graph size

Scalability. (1) Evaluating the effect of graph size in diversified

RB-k-core search. Figure 15 shows the scalability of four al-
gorithms by varying n from 20% to 100% in all datasets. We
can observe that, on both datasets, our advanced algorithm
AdvDivRotC+ is scalable and its computation cost increases
when the percentage of vertices increases. As discussed
before, AdvDivRotC+ is more efficient than the other two
algorithms.

Page 13 of 27 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 13

(a) Gowalla, varying r (b) Foursquare, varying r

Figure 16: Diversified RB-k-core search - effect of r

(2) Evaluating the effect of r in diversified RB-k-core search. Fig-
ure 16 shows the effect of r on Gowalla and Foursquare.
We vary r from 1km to 40km and fix the other parame-
ters as default values. In Figures 16(a) and 16(b), the time
cost of these three algorithm increase as r increases and
AdvDivRotC+ is much faster than DivBS and DivRotC+

when r is large. For instance, in Figure 16(b), AdvDivRotC+

is more than three times faster than DivBS and DivRotC+

when r = 40km.

6 RELATED WORK
Community retrieval has been widely studied and used in
many applications such as location-aware marketing [27],
influence analysis [22], and event recommendation [24].
Community retrieval considering social connections. Prior
works study various models such as k-core [21], [26], [32],
k-truss [8], [19], [31], [35], [43], and clique [25] to retrieve
communities based on users’ social connections. Based on
k-core, [5], [9], [33] study algorithms for k-core community
search. Based on k-truss, Huang et al. [20] study the closest
model and the triangle-connected model for community
search are studied in [2], [18]. In [40], Yuan et al. propose
algorithms to solve the densest clique percolation commu-
nity search problem. However, the geo-locations of users are
not considered in the above works.
Community retrieval considering spatial locations. In
spatial databases, several works study the group objects
retrieval problem based on users’ spatial locations such as
[16], [30], [38] and [11]. Guo et al. [16] study the spatial
keyword query which retrieves a group of objects close to
each other and cover a set of keywords together. Wu et
al. [38] adapt the densest subgraph model to the spatial
community search problem on dual networks. The work [30]
proposes localitySeach which retrieves top-k sets of spatial
web objects by integrating spatial distance, textual rele-
vance, and a “co-locality” measure into one ranking func-
tion. The work [11] focuses on context-aware search over
social media data. It analyses the data-centric challenges
in temporal, spatial, and spatio-temporal contexts. These
proposals do not consider the social connections of users,
and thus they are different from our problem.
Community retrieval considering both social connections

and spatial locations. On geo-social networks, recently,
some works study the community retrieval problem [7],
[14], [38], [42], [44] considering both the spatial and social
features. The works [7], [42] mainly focus on analyzing and
understanding the complexity networks rather than online
community search. The most closely related work of radius-
bounded k-core computation is that Zhu et al. study finding
a community within a given rectangle in [44]. Their study

is different from our work because what we consider is
restricting the size of community spatially instead of within
a given rectangle. Fang et al. [14] propose both exact and
approximate algorithms to find a community covered by
the smallest circle for a given query vertex. In their work,
the radius of a circle is not given by users and only one
community covered by the smallest circle is returned to
users, and thus it cannot provide more options for users
as done by our work.
Diversified top-t search. In the literature, many works [1],
[3], [6], [10], [13], [23], [28], [29], [34], [39], [41] study to find
diversified top-t answers according to a specific problem. In
these works, Yuan et al. [39] aim to find diversified top-k
cliques. [1], [3] studied diversified top-t document retrieval.
Lin et al. [23] focus on the t most representative skyline
problem. The diversified top-t graph pattern matching prob-
lem is studied in [13]. The diversified (k, r)-core search
problem is studied in [41]. However, since the problems and
models are different, none of them can be directly used to
solve the diversified top-t RB-k-core search problem.

7 CONCLUSION

In this paper, we study the RB-k-core search problem.
We propose a triple-vertex-based algorithm and a binary-
vertex-based algorithm as benchmark algorithms to find
all the RB-k-cores. We propose a rotating-circle-based algo-
rithm which can find possible cost sharing opportunities.
The rotating-circle-based algorithm is further enhanced by
critical pruning techniques. In addition, we study the di-
versified RB-k-core search problem which aims to find rep-
resentative RB-k-cores with rich information. We conduct
extensive experiments on both real and synthetic datasets
and the experimental result shows that our rotating-circle-
based algorithm significantly outperforms the benchmark
algorithms.

REFERENCES

[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying
search results. In Proceedings of the second ACM international

conference on web search and data mining, pages 5–14. ACM, 2009.
[2] E. Akbas and P. Zhao. Truss-based community search: a truss-

equivalence based indexing approach. PVLDB, 10(11):1298–1309,
2017.

[3] A. Angel and N. Koudas. Efficient diversity-aware search. In
SIGMOD, pages 781–792. ACM, 2011.

[4] G. Ausiello, N. Boria, A. Giannakos, G. Lucarelli, and V. T. Paschos.
Online maximum k-coverage. Discrete Applied Mathematics, 160(13-
14):1901–1913, 2012.

[5] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo. Efficient and
effective community search. Data mining and knowledge discovery,
29(5):1406–1433, 2015.

[6] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification, mono-
tone submodular functions and dynamic updates. In Proceedings

of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles

of Database Systems, pages 155–166. ACM, 2012.
[7] Y. Chen, J. Xu, and M. Xu. Finding community structure in

spatially constrained complex networks. IJGIS, 29(6):889–911,
2015.

[8] J. Cohen. Trusses: Cohesive subgraphs for social network analysis.
NSATR, 16, 2008.

[9] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local serach of commu-
nities in large graphs. In SIGMOD, pages 991–1002, 2014.

[10] T. Deng and W. Fan. On the complexity of query result diversifi-
cation. PVLDB, 6(8):577–588, 2013.

Page 14 of 27Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, OCTOBER 2020 14

[11] L. R. Derczynski, B. Yang, and C. S. Jensen. Towards context-aware
search and analysis on social media data. In Proceedings of the 16th

international conference on extending database technology, pages 137–
142. ACM, 2013.

[12] J. Elzinga and D. W. Hearn. Geometrical solutions for some
minimax location problems. Transportation Science, 6(4):379–394,
1972.

[13] W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern
matching. PVLDB, 6(13):1510–1521, 2013.

[14] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective community
search over large spatial graphs. PVLDB, 10(6):709–720, 2017.

[15] U. Feige. A threshold of ln n for approximating set cover. JACM,
45(4):634–652, 1998.

[16] T. Guo, X. Cao, and G. Cong. Efficient algorithms for answering
the m-closest keywords query. In SIGMOD, pages 405–418. ACM,
2015.

[17] R. Hartshorne. Geometry: Euclid and beyond. Springer Science &
Business Media, 2013.

[18] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-
truss community in large and dynamic graphs. In SIGMOD, pages
1311–1322, 2014.

[19] X. Huang and L. V. Lakshmanan. Attribute-driven community
search. PVLDB, 10(9):949–960, 2017.

[20] X. Huang, L. V. Lakshmanan, J. X. Yu, and H. Cheng. Approximate
closest community search in networks. PVLDB, 9(4):276–287, 2015.

[21] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo. K-core
decomposition of large networks on a single pc. PVLDB, 9(1):13–
23, 2015.

[22] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse. Identification of influential spreaders in
complex networks. arXiv, 2010.

[23] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k
most representative skyline operator. In ICDE, pages 86–95. IEEE,
2007.

[24] X. Liu, Q. He, Y. Tian, W.-C. Lee, J. McPherson, and J. Han. Event-
based social networks: linking the online and offline social worlds.
In SIGKDD, pages 1032–1040. ACM, 2012.

[25] R. D. Luce and A. D. Perry. A method of matrix analysis of group
structure. Psychometrika, 14(2):95–116, 1949.

[26] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering
and graph coloring algorithms. JACM, 30(3):417–427, 1983.

[27] D. McKenzie-Mohr. Fostering sustainable behavior: An introduction

to community-based social marketing. New society publishers, 2011.
[28] E. Minack, W. Siberski, and W. Nejdl. Incremental diversification

for very large sets: a streaming-based approach. In SIGIR, pages
585–594. ACM, 2011.

[29] L. Qin, J. X. Yu, and L. Chang. Diversifying top-k results. PVLDB,
5(11):1124–1135, 2012.

[30] Q. Qu, S. Liu, B. Yang, and C. S. Jensen. Efficient top-k spatial lo-
cality search for co-located spatial web objects. In MDM, volume 1,
pages 269–278. IEEE, 2014.

[31] K. Saito, T. Yamada, and K. Kazama. Extracting communities from
complex networks by the k-dense method. IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences,
91(11):3304–3311, 2008.

[32] S. B. Seidman. Network structure and minimum degree. Social

networks, 5(3):269–287, 1983.
[33] M. Sozio and A. Gionis. The community-search problem and how

to plan a succesful cocktail party. In SIGKDD, pages 939–948, 2010.
[34] M. R. Vieira, H. L. Razente, M. C. Barioni, M. Hadjieleftheriou,

D. Srivastava, C. Traina, and V. J. Tsotras. On query result
diversification. In ICDE, pages 1163–1174. IEEE, 2011.

[35] J. Wang and J. Cheng. Truss decomposition in massive networks.
PVLDB, 5(9):812–823, 2012.

[36] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin. Efficient com-
puting of radius-bounded k-cores. In 2018 IEEE 34th International

Conference on Data Engineering (ICDE), pages 233–244. IEEE, 2018.
[37] G. Watson. Computing helmert transformations. JCAM,

197(2):387–394, 2006.
[38] Y. Wu, R. Jin, X. Zhu, and X. Zhang. Finding dense and connected

subgraphs in dual networks. In ICDE, pages 915–926. IEEE, 2015.
[39] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified top-k

clique search. VLDBJ, 25(2):171–196, 2016.
[40] L. Yuan, L. Qin, W. Zhang, L. Chang, and J. Yang. Index-based

densest clique percolation community search in networks. TKDE,
30(5):922–935, 2017.

[41] F. Zhang, X. Lin, Y. Zhang, L. Qin, and W. Zhang. Efficient com-
munity discovery with user engagement and similarity. VLDBJ,
pages 1–26, 2019.

[42] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. When engage-
ment meets similarity: efficient (k, r)-core computation on social
networks. PVLDB, 10(10):998–1009, 2017.

[43] Y. Zhang and S. Parthasarathy. Extracting analyzing and visu-
alizing triangle k-core motifs within networks. In ICDE, pages
1049–1060. IEEE, 2012.

[44] Q. Zhu, H. Hu, C. Xu, J. Xu, and W.-C. Lee. Geo-social group
queries with minimum acquaintance constraints. VLDBJ, pages
1–19, 2014.

Kai Wang received the BEng degree in Com-
puter Science from Zhejiang University in 2016,
and the PhD degree in Computer Science from
the University of New South Wales in 2020. He
is currently a research associate in the School
of Computer Science and Engineering, Univer-
sity of New South Wales. His research inter-
ests lie in big data analytics, especially for the
graph/network and spatial data.

Shuting Wang is currently working at Zhejiang
Gongshang University. She is also conducting
research as a volunteer researcher at the East
China Normal University in data science Lab.
She received Bachelor degree in 2014 from
Jiangxi Normal university and Research-Master
degree in 2017 from Zhejiang Gongshang Uni-
versity.

Xin Cao is currently a senior lecturer in the
School of Computer Science and Engineer-
ing (CSE) at The University of New South
Wales (UNSW). His research interests include
Databases, Data Mining, and Artificail Intel-
ligence. He received the Ph.D. degree from
Nanyang Technological University (NTU), Singa-
pore, in 2014.

Wenjie Zhang received the PhD degree in com-
puter science and engineering from the Univer-
sity of New South Wales, in 2010. She is cur-
rently an associate professor and ARC DECRA
(Australian Research Council Discovery Early
Career Researcher Award) fellow in the School
of Computer Science and Engineering, the Uni-
versity of New South Wales, Australia. Her re-
search interests lie in big data management and
processing.

Lu Qin received the BEng degree from the De-
partment of Computer Science and Technology,
Renmin University of China, in 2006, and the
PhD degree from the Department of Systems
Engineering and Engineering Management, Chi-
nese University of Hong Kong, in 2010. He is
currently an associate professor with the Centre
for Artificial Intelligence, University of Technol-
ogy, Sydney. His research interests include big
graph analytics and graph query processing.

Page 15 of 27 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


	IEEE
	Efficient Radius-Bounded Community Search in Geo-Social Networks

