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Abstract: Reliable and timely crop-yield prediction and crop mapping are crucial for food security
and decision making in the food industry and in agro-environmental management. The global
coverage, rich spectral and spatial information and repetitive nature of remote sensing (RS) data
have made them effective tools for mapping crop extent and predicting yield before harvesting.
Advanced machine-learning methods, particularly deep learning (DL), can accurately represent the
complex features essential for crop mapping and yield predictions by accounting for the nonlinear
relationships between variables. The DL algorithm has attained remarkable success in different fields
of RS and its use in crop monitoring is also increasing. Although a few reviews cover the use of DL
techniques in broader RS and agricultural applications, only a small number of references are made to
RS-based crop-mapping and yield-prediction studies. A few recently conducted reviews attempted
to provide overviews of the applications of DL in crop-yield prediction. However, they did not cover
crop mapping and did not consider some of the critical attributes that reveal the essential issues in
the field. This study is one of the first in the literature to provide a thorough systematic review of
the important scientific works related to state-of-the-art DL techniques and RS in crop mapping and
yield estimation. This review systematically identified 90 papers from databases of peer-reviewed
scientific publications and comprehensively reviewed the aspects related to the employed platforms,
sensors, input features, architectures, frameworks, training data, spatial distributions of study sites,
output scales, evaluation metrics and performances. The review suggests that multiple DL-based
solutions using different RS data and DL architectures have been developed in recent years, thereby
providing reliable solutions for crop mapping and yield prediction. However, challenges related
to scarce training data, the development of effective, efficient and generalisable models and the
transparency of predictions should be addressed to implement these solutions at scale for diverse
locations and crops.

Keywords: crop monitoring; crop classification; yield prediction; deep learning; convolutional neural
network (CNN); recurrent neural network (RNN)

1. Introduction

The global population is proliferating and the demand for food is also increasing.
Food production needs to be increased by 50% compared with 2013 to meet the need of
approximately 9.1 billion people in 2050 [1]. Sustainable agricultural management has
become an essential issue to address this challenge. Reliable and timely information on crop
type and yield, along with their spatial components, play an important role in sustainable
agricultural-resource management [2]. The accurate mapping of heterogeneous agricultural
landscapes is an integral part of agricultural management. Crop maps are useful for
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precision agriculture, the monitoring of farming activities, the preparation of crop statistics
and the study of the impact of environmental factors on crops [3,4]. Regional-scale crop-
yield-prediction models also use crop maps to select data. Furthermore, the accuracy of
crop production depends on the accuracy of crop maps. The prediction of crop yield before
harvest provides an early warning for food security and supports decision making related
to the import and export of food [5,6]. This information is also helpful for the agricultural
industry to determine crop pricing, insurance pricing and stock planning [7–9]. Identifying
areas with low productivity and applying interventions, such as site-specific fertilisation
or insecticides to increase productivity, can also be achieved with yield prediction [10,11].
Together, crop mapping and crop-yield prediction provide a complete picture of crop
production and its spatial distribution. Thus, crop mapping and crop-yield prediction are
essential in ensuring food security, for supply-chain management in agribusiness and in
adapting crop-management practices.

Remote-sensing data captured by satellites, aeroplanes or unmanned aerial vehicles
(UAVs) provide a comprehensive snapshot of our environment. The global coverage,
repetitive nature, multispectral information and increasing spatial, spectral and tempo-
ral resolution of RS data make them tools for monitoring crops at local, regional and
global scales. Many researchers have used RS for crop monitoring, including crop-type
classification and yield prediction [12–14].

Classically, process-based crop and statistical models have been used for crop-yield
prediction. The process-based crop model [15–17] attempts to simulate physical processes
in crop growth and yield formation. Remote sensing (RS) data have been assimilated into
crop models to provide accurate information about crop-state variables and input parameters,
so that a model can be applied for yield prediction at the regional scale [18–22]. Statistical
models determine the empirical relations between the yield predictor and yield using available
data. One of the initial applications of RS for crop-yield prediction was the use of regression
analysis [23]. For crop mapping, pixel-based [24,25] or object-based [26] supervised and
unsupervised classification methods have been primarily used over the years. The process-
based crop models require extensive local data and are time-consuming to run at large
scales [20,27,28]. Meanwhile, traditional statistical models cannot capture complex nonlinear
interactions amongst variables. Recently, machine learning (ML) algorithms, such as random
forest (RF) [29], decision tree (DT) [30] and support vector machines (SVM) [31], have also
been successfully applied for crop mapping [32–34] and crop-yield estimation [35–38]. The
ML methods can account for the nonlinear relation between variables, but their performance
relies significantly on the appropriate representation of the input data [39]. Thus, the method
requires domain knowledge to handcraft optimal features [40–42]. Handcrafted features also
often disregard a large amount of valuable data [43].

Deep learning is a ML method that can not only map features onto outputs but also
learns appropriate features itself, thereby avoiding the need for feature engineering [39].
Deep learning is a reapplication of neural networks, in which multiple layers of neural
networks are used for predictions based on available data [44]. Recently, DL has gained
immense popularity in many research and business sectors, including in agricultural
applications and RS-image processing [45–47]. The main contributors to this surge in
DL applications include increasing computational resources and available data and the
development of techniques to train deeper networks [39]. The ability of DL models to
extract features automatically at different levels of abstraction from available RS and other
data and to make predictions without the need to simulate complex relationships makes
them valuable tools for crop monitoring. Evidently, a recent increase in interest in crop
mapping and yield prediction using DL and RS has been observed.

Several studies have reviewed DL applications in RS in general [40,48–50]. However,
none of these studies has comprehensive coverage in their applications in agriculture
monitoring. Kamilaris and Prenafeta-Boldú [47] reviewed 40 studies regarding the use
of DL in different areas of agriculture, including weed detection, disease detection, crop-
type classification and erosion assessment. Nevertheless, the study only makes a few
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references to RS-based crop-mapping and yield-prediction studies. Van Klompenburg
et al. [51] conducted a systematic review of publications to identify features, architecture
and evaluation measures regarding the application of ML in yield prediction. Furthermore,
recently published reviews by Oikonomidis et al. [52] and Muruganantham et al. [53]
systematically evaluated DL applications for yield prediction. However, these studies
either did not focus on the RS component sufficiently or did not consider some critical
attributes, such as the performances of the models, target data used, crop type and study
location. Furthermore, to the best of our knowledge, no study has yet reviewed the
application of DL in crop mapping.

This paper comprehensively reviews studies that used RS data and DL techniques for
two critical crop-monitoring applications, namely, crop mapping and crop-yield prediction.
Crop mapping mainly refers to the classification problem, whereas yield prediction is
primarily a regression problem. This paper is one of the first in the literature to provide a
thorough systematic review of the important scientific works related to state-of-the-art DL
techniques and RS in crop mapping and yield estimation. This review aims to explore the
following attributes of the studies considered:

• Platform, sensor and input features of models;
• Training data used;
• Architecture used;
• Framework used to implement the architecture;
• Crop type, site, area and scale of the studies;
• Assessment criteria and performance achieved in the studies.

The aim of this study is to summarise the existing research related to crop mapping
and yield prediction using DL and RS and to highlight the gaps between them. This review
minimises the barriers to implementing the solution and provides recommendations for
future research directions.

2. Overview of Deep Learning (DL)

Deep learning is a ML method inspired by the structure of the human brain [39]. It
involves the training of neural networks with many layers. Machine learning is a branch
of artificial intelligence (AI) that allows a computer to perform tasks by learning from a
large amount of data without explicitly programming the computer. Machine learning is
valuable when the relationships between variables cannot be efficiently described using the
traditional linear, deterministic model-building approach [54]. In DL, multiple layers learn
data representation at various abstraction levels. Complex functions can be learned using
DL with sufficient data and many layers that represent features at various abstractions [45].
The mainstream DL models include multilayer perceptron (MLP) [55], convolutional neural
network (CNN) [55], recurrent neural network (RNN) [56] and autoencoders (AEs) [39].
Recently, a self-attention-based DL model architecture called Transformer [57] has also
emerged as a key advancement in DL architecture. Figure 1 summarises the architectures
of some of the leading DL models.

A MLP is the simplest form of a feedforward ANN. Each MLP layer has a set of
nonlinear functions of the weighted sum of all the inputs from the previous layer [55].
They are also called deep neural networks (DNN). We use both terms interchangeably in
this review. Autoencoders are neural networks used for unsupervised learning [58]. They
have an encoder–decoder structure, in which the encoder represents the input data in a
compressed form and the decoder decodes the representation to the original data [39]. The
encoding and decoding are performed automatically, without any feature engineering. One
of the purposes of AEs in RS is to reduce the dimensionality of the data.
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A CNN is also a type of feedforward neural network that is commonly used in
computer vision [45]. It primarily consists of filters (convolution and pooling) that are
used to extract features from the original image [39]. Different features are highlighted in
various layers, thereby providing hierarchical representations of data [59]. The convolution
layer acts as a feature extractor and dimensionality is reduced by the pooling layer [39].
The pooling layer also prevents the network from overfitting. Often, fully connected layers,
which act as classifiers by using the high-level features learned, are found at the end of
the network. One of the key advantages of CNNs is parameter sharing. The parameter
size remains fixed irrespective of the size of the input grid. The successful application
of CNNs dates back to the late 1990s, in LeNet [60]. However, they did not achieve
momentum until the development of core-computing systems. A significant landmark in
the development of CNNs was the AlexNet [61], which won the ImageNet competition by
a large margin. Convolutional neural networks have been highly successful in computer-
vision problems, such as image classification [62], object detection [63], the neural-style
transfer of images [59] and image segmentation [64].

Recurrent neural networks can take inputs and generate outputs of different lengths.
This type of network is suitable for modelling sequential data and is widely used in speech
recognition [65], natural language processing [56] and time-series analysis [66]. In RNNs,
each layer comprises a set of nonlinear functions of the weighted sum of all the inputs
from the previous layer and ‘a state vector’ [45], which contains information about the
history of all the past elements in the sequence. The problem with RNNs is the vanishing
and exploding gradient during backpropagation [67]. Long short-term memory (LSTM)
was developed to address the vanishing-gradient problem in RNNs [68]. The hidden
layers of LSTM have memory cells that model temporal sequences and their long-range
dependencies more accurately. A gated recurrent neural network is another variant of
RNNs developed to solve vanishing- or exploding-gradient problems [69]. They have an
update gate and a reset gate, which decides which information should be passed to the
output.

Transformer architectures are also used to process sequential data. Unlike RNNs, they
receive the entire input data at once and use attention mechanisms to capture the relation
between the input and output [57]. Transformer allows the parallel processing of entire
sequences, thereby enabling very large networks to be trained significantly faster. The
use of Transformer, which was initially developed for natural language processing and is
the current state-of-the-art method in the field, has also gained recognition in computer
vision [70,71]. The Architecture section further describes the DL architectures used for crop
mapping and yield prediction.
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3. Literature Identification

A systematic search of the literature on DL- and RS-based crop mapping and yield
estimation was conducted on ‘Scopus’ and ‘Web of Science’ databases, respectively. These
databases are for peer-reviewed scientific publications. The title, abstract and keyword
were searched using the following search string:

((‘Deep Learning’) AND (‘Remote Sensing’ OR ‘Satellite Imag*’) AND (‘Agri*’ OR
‘Crop’) AND (‘Yield’ OR ‘Production’ OR ‘Mapping’ OR ‘Classification’)).

The list was then filtered to exclude review papers and book chapters, works written
in languages other than English, papers published in 2023, papers with fewer than five
citations and duplicate papers.

Only English-language articles were considered due to the linguistic abilities of the
authors and the lack of translation resources. Some of the important works in the field are
presented at conferences. Hence, we also included conference proceedings in the review.
Citation-based exclusion criteria were used to reduce the number of articles whilst ensuring
that the most important and effectual studies were included in the review. The citation
constraint might have excluded some high-quality and effectual research. Therefore, we
read the abstracts and scanned through all the articles that were removed due to these
criteria to determine any significant studies and added them to the list.

The initial search yielded 800 articles from the Scopus database and 268 articles
from the Web of Science database. After applying all the exclusion criteria and removing
duplicates, 267 articles were considered for further analysis, out of which 81 papers were
selected by reading the abstracts and skimming through the contents. Nine relevant articles,
which were identified from the bibliography or from the exclusion list, were added to the
list. In this way, 90 publications were selected for review. Figure 2 graphically describes the
step involving the identification of the publications for this study.
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Figure 3 presents the five most important sources of the reviewed research. Four
sources were peer-reviewed journals and the fifth was the IGARSS proceedings. The
IGARSS proceedings also provided significant contributions related to methods and ap-
plications in RS. Figure 4 shows the most frequently used terms in the titles, keywords
and abstracts in the reviewed studies. Font size corresponds to frequency. The cloud tag
provides a comprehensive overview of the topics covered in these papers. The cloud tag
shows that Sentinel, Landsat and SAR were the most frequently mentioned input data.
The use of temporal data seems to have been popular in these studies. Regarding the crop
types, soybeans, wheat, corn and rice were the most popular. The figure also shows that
CNN was more popular than other DL methods for crop mapping and yield prediction.
Furthermore, attention methods elicited a degree of research focus.
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4. Analysis of the Literature

A full-text read was conducted on the 90 articles that were identified. The articles
were analysed to determine and explore their essential aspects, including the architecture
of the DL, DL frameworks, RS data, training data, site and scale, assessment measures and
performance and findings. These are summarised in the section below.

4.1. Sensors and Platforms Used

Satellite, aerial or UAV sensors were used to capture RS data for crop mapping and
yield prediction. As shown in Figure 5, approximately 81% of the crop-mapping and
yield-prediction studies used satellite-based sensors, followed by UAVs (12%). A few
of the crop-mapping studies (four) also mostly used satellite and aerial imagery to test
the robustness of their developed models. Satellite imagery is easily accessible because
satellites are already present in space and regularly capture data. Further, the data provider
conducts the initial pre-processing of satellite imagery. Thus, the user can focus on the
development of the application rather than the pre-processing part. UAVs were used more
frequently in the yield-prediction studies [72–77] than the crop-mapping studies, although
UAVs can be equally beneficial in providing data for precise crop-boundary mapping.

Table 1 summarises the main sensors used in the crop-mapping and yield-prediction
studies. Apart from the sensors mentioned in the table, Planet-Scope, AVHRR, UAV-
based hyperspectral and UAV-based Multispectral (MS) and Thermal Sensor were also
used in a few of the yield-prediction studies, while Quickbird, SPOT, VENµS, OHS-2A,
Planetscope, RADARSAT-2, EO-1 Hyperion, Formosat-2, GF-1, DigitalGlobe, ROSIS-03,
WV-2, NAIP, RapidEye, Aerial (UCMerced) and Aerial (hyperspectral) were also used in
the crop-mapping studies. Moderate Resolution Imaging Spectroradiometer (MODIS) was
the most frequently used sensor and was used exclusively in the yield-prediction studies.
High temporal and sufficient spatial resolution in regional studies could have made the
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MODIS a preferred choice for regional-level yield-prediction studies. Sentinel-1, Landsat
and Sentinel-2 were the most commonly used sensors in the crop-mapping studies. The
common merit of all the aforementioned RS data is that they are freely available. These
data are also available through the Google Earth engine, so data management and pre-
processing are accessible. In fact, some crop-monitoring studies have used the Google
Earth engine as a data-management and -processing platform [78–80]. The high temporal
resolution of the MODIS and Sentinel sensors also allows the study of crop phenology at
a finer level. Radar sensors, such as Sentinel-1 and Radarsat-2, can also work in cloudy
weather. This could be the reason for the broader use of these sensors in the study of the
phenological characteristics of crops, including rice. The number of UAV-based optical and
multispectral sensors is also significant. Notably, hyperspectral sensors were less explored,
despite their ability to provide better spectral range and precision, which are required for
crop monitoring [81].
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Figure 5. Common RS-based platforms used: most studies used satellite-sensor data.

Table 1. Major RS-based sensors used.

Sensor Attributes
Number of Usages

Yield Crop Map

MODIS

Multispectral sensor
Spatial resolution: 250–1000 m
Temporal resolution: up to a day
High temporal and moderate spatial resolutions make
it suitable for crop mapping and yield prediction at
regional and global scales.

22 0

Sentinel-1

Radar sensor
Spatial resolution: 10 m
Temporal resolution: ~6 days
Suitable for monitor crops in cloudy weather

0 14

Landsat

Multispectral sensor
Spatial resolution: 30 m
Temporal resolution:16 days
Suitable for regional/continental-scale crop mapping
and regional-to-field-scale yield-prediction studies;
can also be used in historical studies

3 10
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Table 1. Cont.

Sensor Attributes
Number of Usages

Yield Crop Map

Sentinel-2

Multispectral sensor
Spatial resolution: 10–60 m
Temporal resolution: ~10 days
Suitable for crop mapping in smaller fields and
field-scale yield-prediction studies.

2 13

UAV(RGB)

Optical sensor
Spatial resolution: up to centimetres
Flexibility in data capture
Suitable for crop mapping with precise field
boundaries and field-level yield-prediction studies;
limited spectral information for crop monitoring.

2 4

WV-3

Multispectral sensor
Spatial resolution: 1.2 m
Temporal resolution: ~1 day
High cost of data, suitable for mapping crops with
precise field-boundary and field-scale yield-prediction
studies.

1 2

UAV
(Multispectral)

Multispectral sensor
Spatial resolution: up to centimetres
Flexibility in data capture
Crop mapping with precise field-boundary and
field-level yield-prediction studies.

1 2

4.2. Input Features

As features input to the DL architecture, crop-mapping studies typically used optical
data (RGB), multispectral data, radar data, thermal data, or a combination of these data.
Some of the reviewed studies used the time-series enhanced vegetation index (EVI) [82,83]
and normalised difference vegetation index [84] derived from the RS data as inputs in
their crop-mapping models. Bhosle and Musande [85] reduced the dimensionality of the
hyperspectral image using principal component analysis before feeding it to the CNN
model. Traditionally, computer-vision CNN models were designed for three-channel red,
green and blue (RGB) images. When transferring models developed for computer vision
are used in RS applications, the data should be prepared in a three-channel RGB format,
so additional multispectral bands cannot be used [86]. For instance, Li et al. [87] used this
approach and only used the RGB channel of the multispectral Quickbird image to feed the
LeNet model.

For crop-yield studies, environmental data, such as climate and soil data, are increas-
ingly integrated with RS data [88–96]. Optical, multispectral, radar or thermal data, or
their combination, were commonly used RS input features in the yield-prediction studies.
Vegetation indices were used more often in the yield-prediction studies than in the mapping
studies. Approximately 40% of the yield-prediction studies used the vegetation index as an
input for their model. However, Nevavuori, Narra and Lipping [73] and Yang et al. [74]
found that optical or/and multispectral images performed better than vegetation indices
for yield prediction in the CNN model. The authors of [90] attempted to predict yield using
satellite-derived climate and soil data without using spectral or VI information, but the
model only achieved a coefficient of determination of 0.55.

In crop-yield-prediction studies at the administrative unit (county/district) scale,
satellite imagery has a higher resolution than target data. A typical approach in such a
scenario is to aggregate each target area’s values (county/district) using mean or weighted
means. You et al. [42] proposed a histogram method to reduce the dimensionality of RS
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data whilst preserving key information for yield prediction. The approach was adopted in
several subsequent studies [5,78,97].

Multi-temporal data, which are necessary to distinguish between crop types and
estimate yield reliably, capture information on different crop-growth stages [98–100]. In-
terestingly, in 59% of the studies, the input features had multitemporal dimensions. Al-
though many studies used multitemporal data, none of them intuitively modelled temporal
dependencies. A few studies used ‘Explainable AI (XAI)’ techniques to understand the
significance of different input features in model prediction. For instance, Wolanin et al. [101]
visualised and interpreted features and yield drivers using regression-activation mapping
to determine the impact of different drivers in the yield-prediction study. They found
that downward shortwave radiation flux is the most influential meteorological variable in
yield prediction. The most important variables that influence yields were also identified
using attention mechanisms [102]. From an interpretability analysis, Xu et al. [103] identi-
fied that the increment in time-series length increased the classification confidence in an
in-season-classification scenario.

4.3. Architecture

The deep-learning crop-mapping and yield-prediction applications were typically
built using CNN, RNN, DNN, AEs, Transformer and hybrid architectures (Table 2). The
CNN was the most popular architecture, with usage in approximately 58% of the reviewed
studies. The CNN architecture is more suited to array data, such as RS data. Kuwata and
Shibasaki [104] were among the pioneers in the field of crop-yield estimation using DL.
They used a CNN network with a single and two fully connected layers (inner product
layer) to extract features that affected the crop yield and estimated the yield index. They
used satellite, climate and environmental data as inputs for the model. Similarly, for crop
mapping, an early approach was applied by Nogueira et al. [105], who used a CNN for fea-
ture extraction from RS scenes and classified the scenes into coffee and non-coffee. Kussul
et al. [106], in a pioneering work, proposed a CNN-based model to classify multitemporal,
multisource RS data for crop mapping.

Table 2. DL architectures: different DL architectures used in the literature.

Architecture Number of Times Used

CNN 52
RNN 20
MLP 6

Transformer 2
AE 4

Hybrid of CNN and RNN 14
Hybrid of CNN and ML 2

Bayesian NN 1
Domain adversarial NN 1

The use of CNN-based methods for semantic segmentation can be broadly categorised
into patch-based approaches and fully convolutional networks (FCN) [107]. In patch-based
approaches, the imagery is sliced into different patches. Each patch is fed to the CNN
model, which assigns the central pixel or the whole patch to one target value. Some of
the examples of patch-based CNN for crop mapping include the 2D CNN classification
model by Kussul et al. [106], oil-palm-tree and citrus-tree detection studies [87,108,109], the
classification of PolSAR data by Chen and Tao [110] and the study by Nogueira, Miranda
and Santos [105], who classified the SPOT scene as coffee and non-coffee scene.

In yield prediction, Tri et al. [75] used LeNet and the inception version to extract
features from the image patch. In the inception module, rather than selecting a filter size,
multiple convolution filters of different sizes were selected (to learn features at a different
scale) and all the outputs were concatenated [111]. To reduce the number of parameters,
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one-by-one convolution was used along the depth. Nevavuori et al. [80] designed a CNN
architecture similar to that presented by Krizhevsky et al. [46] to predict yield from UAV-
based RGB images. The model predicted wheat and barley yield at the field scale with
satisfactory accuracy. Jiang, Liu and Wu [83] used a CNN based on LeNet-5 to classify
a time-series EVI curve. The authors fine-tuned the model, which was trained to detect
handwritten numbers on the MNIST database with parameter-based transfer learning
using the curve of the time-series EVI. One of the major disadvantages of the patch-based
crop-classification approach is that small features may be smoothed and misclassified in
the final classification.

In 2015, a novel CNN approach, called FCN, which used convolutional layers to
process the input image and generate an output image of the same size, was introduced.
It used the entire image as the input, extracted feature at different levels of abstraction
and upsampled features to restore the input resolution in the next part of the network
using techniques such as bilinear interpolation, a deconvolution layer and features from an
earlier, more spatially accurate layer. The U-net [112] is a widely used FCN architecture
with skip connections. It was also used quite often for crop mapping. Typical examples of
FCN usage for crop mapping are those of Du et al. [113] and Saralioglu and Gungor [114].
Adrian, Sagan and Maimaitijiang [80] used 3D U-net to extract features from the temporal
and spatial dimensions. Notably, FCN is mainly used with higher-resolution imagery.
Mullissa et al. [115], La Rosa et al. [116], Chamorro Martinez et al. [117] and Wei et al. [118]
implemented FCN in the classification of crops in synthetic-aperture radar (SAR) images.
Chew et al. [119] used a VGG16 architecture and the publicly available ImageNet dataset
to pretrain their model before feeding the UAV image.

The application of a 1D CNN along the temporal or spectral dimension is also used
for crop mapping and yield prediction. Zhong, Hu and Zhou [82] demonstrated that 1D
CNN can be effectively and efficiently used to classify multitemporal imagery. The authors
compared the output of a 1D CNN with a RNN to classify summer crops using multitem-
poral Landsat EVI data. In the experiment, the 1D CNN exhibited a higher accuracy and
FI score than CNN-, RF- and SVM-based methods. This experiment demonstrated the
ability of 1D CNN to represent temporal features to classify crops. However, the limitation
of this approach is that it fails to consider the spectral and spatial information of satellite
imagery. Zhou et al. [120] used object-based image analysis, which is well-recognised as
a classification method for high-resolution images for crop mapping. The authors used a
segmentation algorithm to make segments from Sentinel–2 imagery and used a 1D CNN
to classify the mean spectral vector of the segments. This approach used the mean of the
segments to capture spatial information but still did not model the temporal relation, which
would have improved the accuracy.

The RNN models were the second most widely used models, since they were applied
in more than 22% of the reviewed studies. In fact, RNNs were preferred for yield prediction.
More than 40% of the reviewed yield-prediction studies used RNNs. The RNN is the
preferred method for agricultural monitoring when temporal dimensions are involved [47].
The LSTM, a type of RNN, was effective in learning temporal characteristics from multi-
temporal images for crop mapping [121,122] and yield estimation [5,79,88]. Rußwurm and
Korner [123] proposed a LSTM model for temporal-feature extraction to classify multiclass
crop types. Xu et al. [122] used the LSTM model to learn time-series spectral features for
crop mapping. The authors also studied the spatial transfer of the model amongst six sites
within the US corn-maturity zone and found that the approach can learn generalisable
feature representation across regions. However, the RNN model typically cannot be used
to learn spatial-feature representation.

Although MLPs are not particularly suitable for array data, such as RS and environ-
mental data, a few studies also used MLPs. For instance, Maimaitijiang et al. [72] used a
fully connected feedforward neural network and data fusion for yield prediction. They stud-
ied the impact of fusing data, such as spectral, crop-height, crop-density, temperature and
texture data, at the input and intermediate stages for soybean yields. Chamorro Martinez
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et al. [117] used a Bayesian neural network to predict the yield and find the uncertainty asso-
ciated with the prediction. In the Bayesian neural network, the weight of the neural network
is not fixed, but represented by a probability distribution. The use of AE, which is an unsu-
pervised DL technique, featured in some of the crop-mapping applications [116,124,125]. In
these studies, the AEs were used to learn the compressed and improved the representation
of satellite data, which were then classified using other methods.

Hybrid modules that contain more than one architecture were used to learn spatial,
spectral and temporal features for improved decision making. In the hybrid models,
different architectures were used to learn features in various domains. These models
either merged higher-level features obtained from two networks or used the output feature
of one architecture as an input for another. To model the spatial context and temporal
information from the multitemporal images jointly, the combinations of RNN and CNN
were used [42,117]. Ghazaryan et al. [126] found that a hybrid model provided the highest
accuracy out of 3D CNN, LSTM and a combination of CNN and LSTM whilst predicting
the yield from multitemporal, multispectral and multisource images. Zhao et al. [127] used
a LeNet-5 [128] model and a transfer-learning approach to classify red, green and infrared
images in a first step and then improved the classification results using the DT model with
phenological information in a second step. Although this hybrid approach improved the
accuracy of the rice mapping, the approach could be challenging to implement in a larger
scale because the decision rules are local and have to be determined from the field survey.

Attention mechanisms have also become popular in recent years in DL crop-mapping
and yield-prediction models. An attention LSTM model with an attention mechanism was
used to improve the generalisability of a yield-prediction model and identify the contri-
bution of different variables to the yield [102]. The attention mechanism was also used to
identify important features for crop mapping [103]. Wang et al. [129] claimed that crop map-
ping can be improved by integrating an attention mechanism and geographic information
because it reduces the effects of geographic heterogeneity and prevents irrelevant infor-
mation from being considered. Seydi, Amani and Ghorbanian [84] implemented spatial-
and spectral-attention mechanisms to extract hidden features relevant to crop mapping.
Self-attention-based transformers, which have been found to be effective for processing
sequential data, were also applied for crop mapping. Rußwurm and Körner [130] con-
cluded that transformers were more robust in handling the noise present in raw time-series
RS data and were more effective for their classification. Reedha et al. [131] employed the
Visual Transformer (ViT) model to classify aerial images captured by UAVs and achieved
a similar degree of accuracy to a CNN. The authors also claimed that when the labelled
training dataset is small, ViT models can be better than state-of-the-art CNN classification.
To evaluate their performance, DL models are typically benchmarked against ML methods,
such as SVM, RF and DT.

4.4. Frameworks

Deep-learning frameworks are software libraries with pre-built structures made for
implementing DL models. The implementation of DL architectures has been made easier
and more accessible in this way. The most popular DL frameworks are convolutional
architectures for fast feature embedding (Caffe) [132], Theano [133], TensorFlow [134],
PyTorch [135], CNTK [136] and MatConvNet [137]. These frameworks have a robust GPU
backend that allows the training of networks with billions of parameters.

TensorFlow was the most widely used framework for crop mapping and yield predic-
tion with DL (Figure 6). TensorFlow is written in Python and interfaces in R and JavaScript
are also available. TensorFlow was developed by researchers who work on the Google
Brain Team as a ML and DNN framework. It supports multiple GPUs and CPUs. Keras
was also frequently used, with a total of 19 mentions. Keras is a high-level neural-network
API written in Python and runs on top of TensorFlow or Theano. Of the Keras-based
implementations, 11 used TensorFlow as the backend, one used Theano, and the remainder
did not report a backend. Keras APIs are intuitive and straightforward, resulting in their
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rapid growth. TensorFlow version 2 completely integrates Keras, thus providing a versatile
library with a simple interface.
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Furthermore, Pytorch was used relatively frequently, with nine mentions. Facebook’s
AI-research laboratory developed PyTorch. Providing flexibility, speed and deeper integra-
tion with Python, PyTorch has gained a user community in recent years. Caffe is written in
C++ with a Python interface and is also popular in computer vision because it incorporates
various CNN frameworks and datasets.

Deep neural networks are also built in Scikit-learn [138], a ML library. Mu et al. [139]
used Scikit-learn to develop a DNN for yield prediction in their study, and Ma et al. [91]
developed a Bayesian neural network. Scikit-learn does not support GPU implementation.
Furthermore, DL4J [140], which is suitable for distributed computation, was also used in
a study.

4.5. Crop Type

In the crop-yield-prediction studies, DL was most frequently applied to corn and
soybeans (Table 3). Although most of the yield-prediction studies used a single crop, some
also approached the prediction of the yield of more than one crop without distinguishing
between the crops [73,76,96]. For crop mapping, most of the studies detected multiple
crops. Rice was the most commonly mapped single crop. The wide use of rice as a staple
food crop and the distinct phenological characteristics of rice fields reflected in the sensor
data could be the primary reasons for its high rate of detection.

Table 3. Crop types used in the various studies. Most yield-prediction studies used either corn or
soybean. Most of the crop-mapping studies mapped multiple crops. In the table, references to more
than two crops are denoted as multiple.

Crop Number of Studies

Yield Prediction Crop Classification

Corn 9 -
Soybean 9 -

Corn and soybean 2 3
Wheat 5 -

Wheat and barley 1 -
Wheat and corn 1 -

Wheat and rapeseed - 1
Rice 4 6

Multiple 2 41
Coffee - 2

Oil-palm tree - 3
Tobacco - 1
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4.6. Training Data

A DL model’s accuracy and generalisation ability is determined by the quality and
quantity of the training data [39]. Insufficient training data cause models to overfit and
affect their prediction accuracy. Most of the training on crop mapping was performed by
collecting the crop-type labels of the area of concern through field visits (Table 4). A field
visit is a labour- and time-intensive process. After the field survey, the cropland-data layer
(CDL) was the primary source of training for the crop-classification models. The CDL is a
georeferenced, crop-specific land-cover map of the United States [141]. It is prepared using
ground-truth data and moderate-resolution imagery. The CDL has a resolution of 30 m.
It is published annually by the United States Department of Agriculture (USDA). It can
be inferred that conducting such a study in other parts of the world is challenging, since
such standard data are unavailable. Only three studies used government-supplied data
other than CDL. Another method for training the data was the visual-image interpretation
of higher-resolution images.

Table 4. Source of training data in crop-mapping studies.

Data Source
(For Crop Mapping) Number of Studies

Field survey 17
CDL 13

Visual interpretation (VisI) 6
Benchmark data 5

Government data (excluding CDL) 3
Crowdsourcing 2

CDL and field survey 1
Field survey and VisI 2

Data from Agricultural Company 2

Benchmark data, such as the UC Merced land-use dataset, the NWPU-RESISC45
dataset, the Campo Verde dataset and Breizhcrops, are also available for RS analysis
and were used to test models in some of the crop-mapping studies. Crowdsourcing is
another source of training data. Wang et al. [142] used crowdsourced crop-type data from
farmers to train a network. Saralioglu and Gungor [114] created a web interface to collect
training data for crop mapping. However, the challenge presented by the crowdsourcing
method is the creation of an incentive or motivation for the contributor. Furthermore, the
validation of these data is another challenge. Google Street View Images can also provide
an efficient, cost-effective way to deliver ground referencing to train a DNN for crop-type
mapping [143].

The county-level yield statistics provided by the USDA National Agricultural Statistics
Service and the yield data collected from fields were the most commonly used data for
training DL-yield prediction (Table 5). The USDA yield statistics are separated from other
government data sources in the table to highlight the frequency of their use. The target
data for yield prediction at the field scale are collected during harvesting, either by the
harvester [73] or by the weighted grain from each yield plot [72]. Field data are essential
for field-level predictions. The data prepared by local governance bodies may not provide
confidence inaccuracy. The USDA county-level yields are available for the USA, while
CISA data are available for Canada. However, such data are not available for other parts of
the world.
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Table 5. Source of training data for crop-yield-prediction studies.

Data Source
(For Crop-Yield Prediction) Number of Studies

Field data 11
Government data (excluding USDA) 9

Government data (USDA) 11
Government data (USDA) and field data 1

Data-augmentation techniques, such as rotation and flips, were also used in the crop-
mapping [113] and yield-prediction studies [75] to further enlarge the data and ensure that
the model was independent of rotation and flips. Some of the crop-mapping studies used
the domain-adaptation technique [144] and weakly supervised learning [145] to address
the scarcity of training data. Wang et al. [145] concluded that CNN can perform better
than other ML methods for crop mapping, even when the training data are scarce, if the
training labels are used efficiently. The authors used two types of training data, a single
geotagged point (pixel) and an image-level label, to train a U-net. This training approach
gave satisfactory results that demonstrated the applicability of weak supervision. This
model should be further validated for different areas and crop types and can be improved
using multitemporal features and a DL model with temporal-learning capabilities. The
scarcity of crop-type labels and historical yield data are major barriers to the development
of the DL model for reliable and accurate crop mapping and yield prediction.

4.7. Location of Study and Area

Figure 7 shows the spatial distribution of the study sites of the reviewed studies. Some
of the studies were conducted in more than one area, such as those in which the experiments
conducted in one area, while a transfer-learning technique was used to perform estimates
at another location [5]. In such cases, both are included on the list. Evidently, the map
shows that the studies were concentrated only in some parts of the world. In total, 37%
of all the studies were conducted in the USA and 15% were conducted in China. Only
3% of the studies were conducted in Africa, despite the fact that Africa holds 60% of the
world’s arable land [146]. Agriculture accounted for 55% of Australian land use and 11% of
goods-and-services exports in 2019–2020 [147], but only one reviewed study used Australia
as its study site.
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the study sites varied from 65 hectares to as large as the Indian wheat belt and the entire
USA. In all the UAV-based studies that reported the area, fewer than 200 hectares were
covered. The reason for this could be the high cost of data capture with UAVs. Studies of
larger areas provide confidence in model’s applicability to diverse landscapes.

4.8. Scale of the Output

The crop-mapping and yield-prediction studies were implemented at different scales.
The application of crop-monitoring studies depends on the output’s scale. Although
regional studies help to monitor crop production at a national and regional scale, within-
field variability is necessary to inform field-specific decision making [147,148]. The scale
of the output depends on the resolution of the input and target data. In most of the crop-
mapping studies, each pixel or pixel group was assigned a crop class. The precision of the
field boundary and generalisation depends on the spatial resolution of the RS data. We
categorised the yield-prediction studies into two classes, namely, field-level and county-
or district-level. Almost 70% of the yield-prediction studies were county-level and the
remainder were field-level. The county/district-crop-yield statistics were typically used
in the county-scale yield-prediction studies. In contrast, the field data collected from
farmers and harvesters were used for field-scale studies. Precise yield data can be used
to make predictions at the best possible scale Notably, the platforms used and the scales
of the studies were correlated. The field-level yield was estimated in all the UAV-based
yield-prediction studies. The county-level yield-prediction studies were predominantly
conducted in the USA. The reason for this could be the availability of USDA yield data.

4.9. Evaluation Metrics and Performance

The most commonly used evaluation metrics in the reviewed crop-mapping studies
were the overall accuracy, kappa statistics, precision, recall and F1 score. The majority of
the studies used more than one metric to evaluate performance. Approximately 87% of
all the crop-mapping studies used overall accuracy to assess their model’s performance.
Overall accuracy is the most intuitive evaluation measure. It is the ratio of the correct
predictions to the total number of predictions made. It is proportional to the area that
is correctly mapped. Along with overall accuracy, kappa statistics were often computed
in the crop-mapping studies. Precision refers to the ratio of correctly predicted positive
observations to the total positive predictions made by the model. The recall is the number
of correct positive results divided by the number of all the samples that should have been
identified as positive. The F1 score is the harmonic mean of the precision and the recall [149].
The studies reported either the F1 score of individual classes or the mean (weighted or
unweighted) of the F1 scores. Notably, the overall accuracy of a dataset can be misleading
when the class distribution is uneven. The precision, recall and F1 score might be more
useful in such studies.

The mean squared error (MSE), root MSE (RMSE), coefficient of determination (R2),
mean absolute error (MAE) and mean absolute percentage error (MAPE) were the com-
monly used metrics in assessing the reviewed yield-prediction models. The MSE is the
average of the square of the difference between the original values and the predicted values.
The MSE penalises larger errors because each value is squared. The RMSE is similar to
the MSE, but takes the square root of the output. The problem with using MAE, MSE and
RMSE is that the value depends on the units and the scale of the residuals. The mean
absolute percentage error (MAPE) attempts to solve this issue. It transforms the errors into
percentages; ideally, the MAPE should be as close to 0 as possible. The R2 is the degree of
agreement between the true value and the predicted value. It measures the proportion of
variance in the dependent variables explained by the independent variable. The R2 was the
most frequently used evaluation metric in the yield-prediction studies, since it was used in
65% of the studies. Most of the yield-prediction studies also computed multiple metrics.
After R2, RMSE and MAPE were the most commonly used. In some studies [75,77], the
yield prediction was approached as a classification task. Each image segment was assigned
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to a yield class and classified within a particular yield category. These studies used the
overall accuracy and F1 score as evaluation metrics.

Comparing model performance is not easy when models use different evaluation
metrics. We prepared box plots that show the distribution of the achieved R2 and the
overall accuracy percentage in the yield-prediction and crop-mapping studies, respectively
(Figure 8). The data for these plots were obtained from the studies that reported the
performances of the yield-prediction and crop-mapping models using R2 and overall
accuracy, respectively. The value of the best-performing model was selected to make the
graph. Most of the crop-mapping studies reported very high classification accuracies, up to
99.7%, with a mean value of 90.0%. The R2 of the yield prediction was distributed in the
range of 0.5 to 0.96, with a mean value of 0.77.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 26 
 

 

correct positive results divided by the number of all the samples that should have been 
identified as positive. The F1 score is the harmonic mean of the precision and the recall 
[149]. The studies reported either the F1 score of individual classes or the mean (weighted 
or unweighted) of the F1 scores. Notably, the overall accuracy of a dataset can be mislead-
ing when the class distribution is uneven. The precision, recall and F1 score might be more 
useful in such studies. 

The mean squared error (MSE), root MSE (RMSE), coefficient of determination (R2), 
mean absolute error (MAE) and mean absolute percentage error (MAPE) were the com-
monly used metrics in assessing the reviewed yield-prediction models. The MSE is the 
average of the square of the difference between the original values and the predicted val-
ues. The MSE penalises larger errors because each value is squared. The RMSE is similar 
to the MSE, but takes the square root of the output. The problem with using MAE, MSE 
and RMSE is that the value depends on the units and the scale of the residuals. The mean 
absolute percentage error (MAPE) attempts to solve this issue. It transforms the errors 
into percentages; ideally, the MAPE should be as close to 0 as possible. The R2 is the degree 
of agreement between the true value and the predicted value. It measures the proportion 
of variance in the dependent variables explained by the independent variable. The R2 was 
the most frequently used evaluation metric in the yield-prediction studies, since it was 
used in 65% of the studies. Most of the yield-prediction studies also computed multiple 
metrics. After R2, RMSE and MAPE were the most commonly used. In some studies 
[75,77], the yield prediction was approached as a classification task. Each image segment 
was assigned to a yield class and classified within a particular yield category. These stud-
ies used the overall accuracy and F1 score as evaluation metrics. 

Comparing model performance is not easy when models use different evaluation 
metrics. We prepared box plots that show the distribution of the achieved R2 and the over-
all accuracy percentage in the yield-prediction and crop-mapping studies, respectively 
(Figure 8). The data for these plots were obtained from the studies that reported the per-
formances of the yield-prediction and crop-mapping models using R2 and overall accu-
racy, respectively. The value of the best-performing model was selected to make the 
graph. Most of the crop-mapping studies reported very high classification accuracies, up 
to 99.7%, with a mean value of 90.0%. The R2 of the yield prediction was distributed in the 
range of 0.5 to 0.96, with a mean value of 0.77.  

 
Figure 8. Box plot showing the distribution of reported R2 and overall accuracy in yield-prediction 
and crop-mapping studies, respectively. The R2 ranged from 0.5 to 0.96, with the median at 0.78. 
The overall accuracy ranged from 51% to 99.7%, with a median value of 92%. 

5. Discussion  
Deep learning and RS have emerged as promising techniques for crop mapping and 

yield prediction in recent years. A typical approach to DL- and RS-based crop mapping 

Figure 8. Box plot showing the distribution of reported R2 and overall accuracy in yield-prediction
and crop-mapping studies, respectively. The R2 ranged from 0.5 to 0.96, with the median at 0.78. The
overall accuracy ranged from 51% to 99.7%, with a median value of 92%.

5. Discussion

Deep learning and RS have emerged as promising techniques for crop mapping and
yield prediction in recent years. A typical approach to DL- and RS-based crop mapping and
yield prediction is summarised in Figure 9. The main platforms for capturing data are UAVs,
satellites and aeroplanes. The input data can be raw spectral values from multispectral,
optical, hyperspectral, radar or thermal sensors or derived features, such as the vegetation
index, histograms of pixel intensities or even graphs of phenological characteristics. In
yield-prediction models, RS data are often integrated with environmental data, such as
climate and soil data. Although multitemporal data are popular, data from a single date
can also be used. The models are built using CNN, RNN, MLP, Transformer or hybrid
architectures. The models are usually implemented using a standard framework, such
as TensorFlow, PyTorch or Caffe. Target labels (crop labels/yield values) are the most
important components in the process and are often the limiting factors in the development
of models. Trained models are evaluated using one of the evaluation metrics to assess
their performance and fitness for use. In the section below, these aspects of the study
are discussed.
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This review shows that satellite-based sensors are the most commonly used RS-data
sources for crop mapping and yield prediction. This preference could be due to the ease of
access to data, the availability of multiple spectral and spatial resolutions, the availability
of historical data, or the global coverage of and fewer pre-processing steps in RS data.
Additionally, platforms such as Google Earth Engine make the handling of large amounts
of satellite data easier. Unmanned aerial vehicles are less often used as RS-data sources,
although they provide flexibility in terms of the choice of sensors, spatial resolution and
data-capture time. Unmanned aerial vehicles are the preferred platforms when greater
precision is needed (e.g., in precision agriculture). With regard to sensors, MODIS is
the most commonly used sensor for yield prediction, whereas Sentinel-1,2 and Landsat
2 are frequently used for crop mapping. Although hyperspectral sensors can provide
better spectral ranges and precision for crop monitoring, their application is yet to be
fully explored. Researchers and practitioners currently have access to RS data at varied
resolutions (e.g., spatial, spectral and temporal), obtained from various platforms and
sensors, thereby allowing the selection of the most suitable sensor based on the specific
needs of the study. This study also summarised the attributes of commonly used RS data
for crop mapping and yield prediction (Table 1).

The choice of input features can significantly affect how well a DL model represents
underlying phenomena. The input features determine the model’s architecture. Com-
monly used RS-derived input features in crop mapping and yield predictions are optical,
multispectral radar or thermal data. The integration of environmental data and RS data
for yield prediction is becoming increasingly popular. Environmental data provide addi-
tional valuable information for yield prediction beyond RS data [89,150,151]. Vegetation
indices, which are compact summaries of vegetation crafted from spectral values, were
also commonly used as inputs in the crop-mapping and yield-prediction studies. Some of
the yield-prediction studies used the histogram method and summarisation techniques,
such as the mean or weighted mean, to simplify input variables while retaining the most
important information. Although these methods can allow the training of DL models with
limited labelled data, they may feature the drawback of generalising input information.
Furthermore, although the use of multitemporal and multispectral data for crop mapping
and yield prediction is increasing, most existing approaches do not account for temporal,
spatial or spectral dependencies concurrently.
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The use of DL architectures for crop mapping and yield prediction has shown sig-
nificant progress due to the development of new architectures in the DL field. Several
DL methods, including MLP, CNN, RNN, Transformer and AEs, have been used for crop
mapping and yield prediction. The CNNs are the most widely used architectures for crop
mapping and yield prediction. They were specifically designed for processing data with
grid-like topologies. Furthermore, 2D CNNs, 3D CNNs and FCNs can effectively capture
and analyse the spatial features of satellite imagery. A 1D CNN can be used along temporal
or spectral dimensions to capture respective dependencies in crop-mapping and yield-
prediction tasks. Furthermore, RNNs can be used to model temporal dependencies in crop
mapping and yield prediction, but they suffer from the vanishing- and exploding-gradient
problem, are not particularly effective at capturing long-term dependencies and cannot
be parallelised. Transformer is known for its ability to capture long-range dependencies
in input data and its ability to train very large models efficiently. The reviewed studies
also suggested that for crop mapping, Transformer is more robust in handling noise in
raw time series and classification when the labelled training dataset is small. The MLPs
are not particularly efficient when used to process high-dimensional-array data such as
RS and environmental data and they have limited utility for crop mapping and yield
prediction. Considering that different architectures have varying strengths and limitations,
there is no single best architecture for crop mapping and yield prediction. Rather, the best
option depends on the amount, nature and quality of the data, the complexity of their
representation and the available computational resources, amongst other factors.

This review suggests that crop-mapping and yield-prediction research are currently
skewed towards certain crops and locations. The results of research conducted on a certain
area or crop type may not be generalisable to other regions or crops. Hence, studies must
be extended to other widely consumed crops and other regions to ensure the usability of
models in varied conditions. One of the reasons for the skewed study distribution could be
the limited availability of training labels. Scarce historical yield data and crop-type labels
are significant limiting factors in the development of DL models for crop mapping and
yield prediction. The data prepared by government bodies are amongst the most widely
used for training yield-prediction and crop-mapping models. Such data are not available
in most of the world, especially in developing countries.

With regard to the performances of the models, the evaluation metrics used in different
crop-mapping and yield-prediction studies are not uniform, which makes the comparison
of the models challenging. The main evaluation metrics used for the crop-mapping models
were the overall accuracy, kappa statistics and F1 score, whereas those in the crop-yield
prediction studies were the R2, RMSE and MAPE. The reviewed yield-prediction studies
reported R2 values that ranged from 0.5 to 0.96, with a median of 0.78, which suggests
moderate-to-high accuracy. In the crop-mapping studies, generally, a higher accuracy
was achieved, with a range of 51% to 99.7% and a median of 92%. However, a higher
performance metric does not necessarily mean that the research problem relating to accuracy
is solved. Accuracy is affected by various factors, including the choice of evaluation metrics
and the training- and test-data selection. For instance, using an overall performance
metric in imbalanced class-distribution scenarios can be misleading because the model
will perform poorly in identifying minority classes, even though the OA is high. Similarly,
a model’s performance can be overestimated due to data leakage [152]. Moreover, a
CNN model can overfit due to the involuntary overlapping of test data in the receptive
fields of the training data, biasing the evaluation [153]. Another consideration could
be the spatial distribution of the model performance. Although developed models may
exhibit satisfactory performances overall, they may not perform well at specific locations.
Moreover, the accuracy of predictions tends to improve as the season progresses, with
early-season predictions generally less accurate than later predictions.
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6. Future Work

In this review, several important aspects of crop mapping and yield prediction based
on DL and RS, which provide a foundation for future research, were discussed. The
following section highlights a few avenues for future research in this field.

The most prominent issue is the availability of target data related to different crops
in various parts of the world at diverse times. Although DL can learn nonlinear patterns
between input and output data, it requires a large amount of training data. However,
the availability of target data for crop mapping and yield prediction is limited. In yield
prediction, the data are even more scarce. Further research shall be carried out to make data
available, learning from limited data [154,155], transfer-learning approaches [156], unsu-
pervised learning [157] and the quantification of the uncertainties in predictions [158,159].
Alternative methods, such as crowdsourcing, using closed-range oblique images, including
those obtained from Google Street View, geotagged social media images and interviews
with farmers, should be further explored to collect training data. More benchmark datasets
must be developed and used to produce a standardised measure of comparison and to
allow researchers to evaluate their proposed architectures fairly and consistently. These
standard data should be available for varied times, locations, resolutions and sensor types.
Data availability can make the development of a global model that encompasses varying
times and locations possible. The domain-adaptation technique [144,160] and weakly su-
pervised learning [145] are useful for training DL models in scarce-target-data scenarios.
These techniques need to be further validated and explored for multi-temporal scenar-
ios and a large spatial extents with differences exists in environmental conditions and
cropping practices. Curriculum learning, the multi-stage transfer-learning approach and
few-shot learning also have the potential to improve our existing of crop-mapping and
yield-prediction model. Unsupervised-learning techniques can reveal hidden patterns and
structures within data without pre-existing labelled data [157]. Furthermore, unsupervised
learning can be used to study the applicability of abundant unlabelled RS imagery to crop
mapping and yield prediction. Furthermore, the modelling predictive uncertainty can be
performed by combining DL models with Bayesian statistics, which can be beneficial when
training data are scarce.

Another potential avenue for future research in this domain is to investigate how to
develop a more efficient, effective and generalisable method whilst making the best use of
available spatial, spectral and temporal richness. Although target data are scarce, satellite
imagery is abundant, but it is not utilised properly. Most of the existing crop-mapping
and yield-prediction applications fail to model temporal, spatial and spectral dependencies
simultaneously. Additionally, DL models require high computing resources and training
times, which may not always be accessible to or affordable for every institution. Thus,
designing DL models that can optimally use available RS resources to improve generalis-
ability and accuracy whilst considering the computational constraints of implementation is
one promising area of research.

Deep-learning algorithms are often considered complex black-box models that pose
challenges in terms of interpretability [161]. Interpreting the opaque decision-making
processes of DL approaches in crop mapping and yield prediction is crucial to improve
transparency, accountability and trust in predictions. Further, the interpretability of crop-
yield-prediction models could provide valuable insights into the factors that contribute
to crop-yield variability and could help to improve it. Explainable AI [162] should be
further explored in crop mapping and yield prediction to address the challenges of model
interpretability. A further avenue of research could be the integration of crop models with
DL. Deep-learning models can learn complex patterns and relationships from large datasets,
whereas crop models provide structured representations of the growth and development
of crops. The combination of these two approaches can improve the accuracy, efficiency
and interpretability of yield prediction.
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7. Conclusions

In this systematic review, 90 papers related to DL- and RS-based crop-mapping and
crop-yield-prediction studies were reviewed. The review provided an overview of the
approaches used in these studies and presented important observations regarding the
employed platforms, sensors, input features, architectures, frameworks, training data,
spatial distributions of study sites, output scales, assessment criteria and performances.
This review suggests that DL provides a promising solution for crop mapping and yield
estimation at different scales. However, the mapping of crops and prediction of yields in
new locations for new crops at the desired scale are still challenging. The issues include
scarce target data, optimal model designs, generalisability across different domains and
transparency. The resolution of these issues will better prepare us to realise the application
at scale and thus address the problems of food security and decision making in the food
industry and agro-environmental management.
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