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Abstract: This article introduces a novel paradigm for enhancing the administration of decisions
regarding sustainable energy planning. This is achieved by deploying novel spherical fuzzy aggrega-
tion operators that have been meticulously tailored to address the inherent complexities of uncertainty
and imprecision prevalent in energy planning datasets. These operators vastly increase the precision
and efficacy of decision-making processes, thereby transforming the entire sustainable energy land-
scape. This study focuses predominantly on the complex domain of multi-attribute decision-making
(MADM), in which the interplay of parameters is characterized by a discernible hierarchy of impor-
tance. This method generates aggregation operators based on the assignment of non-negative real
values to clearly defined priority echelons, a framework known as priority degrees. This effort results
in the development of two notable prioritized operators: the “spherical fuzzy prioritized averaging
operator with priority degrees” and the “spherical fuzzy prioritized geometric operator with priority
degrees”. The efficacy of these conceptual frameworks is vividly demonstrated through the appli-
cation of extensive case studies, in which observable results clearly demonstrate their superiority
over conventional methodologies. The empirical findings unequivocally demonstrate the superiority
of the proposed operators, resonating with substantial performance and efficiency improvements.
This study not only adds a seminal dimension to the field of sustainable energy management but
also reveals a revolutionary application of spherical fuzzy aggregation operators at the forefront of
effective decision-making paradigms. The seamless fusion of theoretical innovation and practical
utility outlines a path forward, with transformative prospects and far-reaching implications for the
sustainable energy landscape.

Keywords: aggregation operators; decision-making; sustainable energy management; spherical
fuzzy set

MSC: 03E72; 94D05; 90B50

1. Introduction

Fuzzy multi-attribute decision-making (FMADM) is a mathematical approach to mak-
ing decisions that involves taking into account multiple, often conflicting, criteria. This
method is used to handle situations where the decision-making process is not straight-
forward and requires the consideration of multiple factors. FMADM is widely used in
various fields, including engineering, economics, management, and medicine, to mention a
few. FMADM finds use in the realm of engineering, specifically in the domain of product
design and development. This methodology is employed when there exists a need to
evaluate and take into account various factors, such as cost, quality, and performance,
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in the decision-making process. The application of the FMADM methodology enables
engineers to effectively assess and identify the most optimal design solution, considering
the inherent trade-offs that exist among various criteria. This methodology can also be
applied in the context of project management to effectively determine task prioritization
and resource allocation, while considering many criteria including time constraints, budget
limitations, and available resources. In the field of economics, the FMADM approach
is employed to assess investment prospects by considering many factors like return on
investment, risk, and market circumstances. The aforementioned methodology can also
be applied within the context of portfolio management, wherein it aids in identifying the
most advantageous distribution of assets by considering several factors, including but
not limited to risk tolerance and investment objectives. Within the realm of management,
the utilization of the FMADM approach is employed to assess the efficacy of workers,
departments, and organizations [1].

This evaluation process encompasses the consideration of various criteria, including
but not limited to productivity, quality, and customer satisfaction. This strategy may also
be applied in the context of resource allocation, wherein the allocation of resources is
contingent upon various variables encompassing cost, efficiency, and risk. Within the
field of medicine, the employment of the FMADM approach is prevalent for the purpose
of assessing and comparing various treatment alternatives. This method allows for the
consideration of several criteria, including but not limited to the efficacy of the treatment,
potential adverse effects, and associated costs. This methodology can also be applied in
the context of medical decision-making in order to ascertain the optimal course of action,
taking into account many elements like patient medical records, diagnostic outcomes, and
patient preferences [2].

The utilization of FMADM has numerous advantages. Firstly, the utilization of various
criteria enables a more comprehensive assessment of available possibilities. Furthermore,
this approach facilitates the incorporation of both subjective and objective factors, hence
allowing for the consideration of stakeholders’ ideas and preferences. In conclusion, the
FMADM framework facilitates the integration of uncertainty, hence enabling the manage-
ment of scenarios characterized by incomplete or uncertain information. The FMADM
approach holds significant importance and is used in the realm of decision-making, finding
extensive application across many domains. The framework offers a structured approach
to assess various alternatives by considering several criteria, enabling the incorporation
of both subjective and objective factors, while also accommodating uncertainties. The
utilization of FMADM enables decision-makers to enhance the quality and efficacy of their
decisions by considering the trade-offs among several criteria [3].

The utilization of aggregation operators is of paramount importance in the process
of decision-making, as they facilitate the amalgamation of several factors into a unified
decision. An aggregation operator refers to a mathematical function that consolidates
several values into a singular outcome, hence offering a means to incorporate and evaluate
various criteria in the process of decision-making. There exist various forms of aggregating
operators, such as weighted sum, weighted product, and ordered weighted averaging
(OWA). The weighted sum operator is a fundamental and extensively employed aggrega-
tion operator. The process entails the allocation of weights to individual criteria, followed
by the summation of these weighted values to yield a conclusive result [4]. The utilization
of the weighted product operator is applicable in situations when the criteria exhibit in-
terdependence, whereby the outcome of one criterion has an impact on the outcome of
another criterion. The utilization of the OWA operator is employed in situations when the
criteria exhibit varying levels of importance, necessitating the decision-maker to establish a
hierarchy among them [5].

The significance of clean and sustainable energy is growing in prominence due to
global imperatives such as the mitigation of greenhouse gas emissions, enhancement of
energy resilience, and facilitation of economic progress. By placing reliance on renewable
energy sources, it is possible to diminish our reliance on conventional fossil fuels, mitigate



Axioms 2023, 12, 908 3 of 23

the adverse effects of energy production on the environment and public health, and provide
support for endeavors aimed at addressing climate change [6]. The importance of fostering
a more sustainable future necessitates the allocation of appropriate attention and assistance.
The various MADM methodology is a systematic strategy employed to assess and analyze
various criteria, which are frequently contradictory in nature, during the decision-making
process. Within the realm of clean and sustainable energy, MADM possesses the potential to
serve as a valuable instrument for decision-makers in evaluating the inherent compromises
associated with diverse energy sources, technologies, and regulations [7].

The concept of fuzzy sets was introduced by Zadeh in 1965 as a means to address the
handling of uncertain and imprecise data within decision-making contexts [8]. Fuzzy sets
provide membership grades to elements of a set within the range of values from 0 to 1. This
technique is a deviation from traditional or deterministic methodologies, which may not
consistently yield optimal results in volatile or uncertain situations. The significance of
Zadeh’s contributions in this field lies in the adaptation of set theoretic principles from crisp
examples to fuzzy sets. Subsequently, scholars have identified a multitude of applications
for fuzzy sets, encompassing domains such as data science, intelligent systems, clinical
diagnosis, and other related fields. The membership function is a fundamental attribute
of a fuzzy set; yet, the management of intricate fuzzy data might provide difficulties.
Atanassov [9] presented a solution to address this difficulty by introducing the concept
of intuitionistic fuzzy set (IFS), which represents an enhanced iteration of the fuzzy set
by incorporating degrees of both membership and non-membership. In recent decades,
there has been a growing utilization of IFSs by researchers to address the challenges posed
by ambiguity and vagueness in data. Aggregation operators (AOs) play a crucial role
in the integration of information and the combination of operational factors for different
options. Various types of have been suggested for IFSs. Yager introduced the concept
of Pythagorean fuzzy set [10] and q-rung orthopair fuzzy set [11]. Although the IFS
theory has found extensive application across several industries, it may not possess the
capacity to adequately account for situations requiring subjective human viewpoints,
such as voting. Voting often necessitates the consideration of multiple replies, including
affirmative, abstention, negative, and rejection. In order to tackle this matter, Cuong
introduced the notion of “picture fuzzy set” (PFS), which encompasses different levels
of “positive membership degree” (PMD), “neutral membership degree” (NuMD), and
“negative membership degree” (NgMD) ranging from 0 to 1. It is important to note that
these degrees must adhere to the constraint that their sum equals unity, as stated in Cuong’s
works [12]. Nevertheless, there are instances where PFS may fail to provide a suitable
resolution. In order to mitigate this constraint, a number of scholars have put forth the
notion of SFPS. To address this limitation, several researchers proposed the concept of
SFPS. Gundogdu and Kahraman [13] developed SFPSs to provide decision-makers with
more flexibility to address decision-making challenges and uncertainty. Gundogdu and
Kahraman proposed the spherical fuzzy TOPSIS [14], spherical fuzzy WASPAS [15], and
spherical fuzzy VIKOR techniques [16]. Ashraf and Saleem proposed the GRA approach
for the SF linguistic set [17]. Additionally, Zeng et al. [18], Rafiq et al. [19], and Jaller and
Otay [20] have contributed extensive research on SPFSs.

Some exsiting AOs for SPFSs are given in Table 1.

Table 1. Some AOs for SPFSs.

Authors AOs

Jin et al. [21] Logarithmic AOs
Ashraf et al. [22] Dombi AOs
Akram et al. [23] Prioritized AOs

Ashraf and Saleem [24] Basic AOs
Riaz and Farid [25] Fairly AOs

Jin et al. [26] Linguistic AOs
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1.1. Research Aims and Motivations

In the course of our everyday experiences, we encounter many scenarios that necessi-
tate the utilization of a mathematical function with the ability to condense a set of integers
into a singular value. Consequently, the AO investigation holds considerable importance
in MCDM issues. In light of their extensive application across various disciplines, a con-
siderable number of scholars have recently directed their attention towards the topic of
data aggregation. Nevertheless, it is not uncommon to encounter situations in which the
elements to be combined have a clear hierarchical structure. In the context of purchasing a
plot of land for residential construction, it is imperative to consider the factors of utility
access, location, and cost. It is essential to avoid situations where utility access is paid for in
terms of location, or when location is paid for in terms of cost. In the given scenario, there
exists a stringent hierarchy of prioritization among parameters, with P1 being of higher
priority than P2, and P2 being of higher priority than P3. Akram et al. proposed the utiliza-
tion of spherical fuzzy prioritized AOs as a solution to address this particular challenge.
The notion of determining the degrees of priority among several priority orders enhances
the flexibility of the prioritized operators. The selection of the priority degree vector by
the DM should be determined by their own preferences and the inherent characteristics of
the problem at hand. To better elucidate the concept of priority degrees, let us examine the
aforementioned instance of acquiring a plot. A priority degree, which is a non-negative
real number, will be assigned to each priority level. Given the preceding case, it can be
observed that P1 is more than P2, and P2 is greater than P3. The prioritizing relationship
between the first priority order P1 and P2 is denoted as P1 > d1 P2, where d1 represents
the degree of priority assigned to P1, with the constraint that 0 < d1 < 1. In a similar vein,
the second priority order P2 is assigned the priority degree d2, where d2 is greater than
the priority degree of P3 and is bounded between 0 and 1. Consequently, the prioritized
criteria P1 > P2 > P3 are associated with a two-dimensional vector d = (d1, d2), and this
relationship is represented as P1 > d1 P2 > d2 P3. Given the advantageous nature of the
SPFS in addressing MCDM problems, it becomes imperative to construct novel prioritized
AOs utilizing priority degrees.

1.2. Organization of the Paper

The remainder of this article is organized as follows. Section 2 provides a number of
key SPFS concepts. In Section 3, we examined how the SPF prioritized AOs based on the
priority vector operates. In Section 4, we present a method for solving MCDM problems
using new AOs. Section 5 contains an application for selecting a sustainable energy source.
Section 6 finishes with some concluding observations and future proposals.

2. Preliminaries

In this portion of the research, we will focus on the fundamentals and basic rules
of SPFSs.

Definition 1 ([13]). Assume SPFS H̃ in Q is given as

H = {〈ς, µH (Υ), νH (Υ), ηγ
H (Υ)〉 : Υ ∈ Q}

where µH , νH , ηγ
H (Υ) : Q → [0, 1] defines the “degree of positive membership”, “degree of

neutral membership”, and “degree of negative membership” of the alternative Υ ∈ Q and ∀Υ,
respectively, we have

0 ≤ µ2
H (Υ) + ν2

H (Υ) + ηγ2
H (Υ) ≤ 1.

Definition 2 ([13]). Let βð1 = 〈µ1, ν1, ηγ
1〉 and βð2 = 〈µ2, ν2, ηγ

2〉 be SPFNs. σ > 0, then
(1) βð

c
1 = 〈ηγ

1, ν1, µ1〉
(2) βð1 ∨ βð2 = 〈max{µ1, µ2}, min{ν1, ν2}, min{ηγ

1, ηγ
2}〉
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(3) βð1 ∧ βð2 = 〈min{µ1, µ2}, max{ν1, ν2}, max{ηγ
1, ηγ

2}〉
(4) βð1 ⊕ βð2 = 〈

√
(µ2

1 + µ2
2 − µ2

1µ2
2), ν1ν2, ηγ

1ηγ
2〉

(5) βð1 ⊗ βð2 = 〈µ1µ2,
√
(ν2

1 + ν2
2 − ν2

1 ν2
2),
√
(ηγ2

1 + ηγ2
2 − ηγ2

1ηγ2
2)〉

(6) σβð1 = 〈
√
(1− (1− µ2

1)
σ), νσ

1 , ηγσ
1 〉

(7) βð
σ
1 = 〈µσ

1 ,
√
(1− (1− ν2

1)
σ),
√
(1− (1− ηγ2

1)
σ)〉

Definition 3 ([13]). Let βð = 〈µ, ν, ηγ〉 be the SPFN, “score function” (SF) iג of βð is defined as

iג(βð) = µ2 − ν2

iג(βð) ∈ [−1, 1]. However, in some cases, the SF is not particularly useful for SPFN. As a result,
using the SF to evaluate the SPFNs is insufficient. We are adding a new function, which is an

“accuracy function” (AF).

Definition 4. Let βð = 〈µ, ν, ηγ〉 be the SPFN, then an AF z£ of βð is defined as

z£(βð) = µ2 + ν2 + ηγ2

z£(βð) ∈ [0, 1].

To assist this sort of study, we propose additional SF, ĭג(R) = 1+µ2
R − ν2

R
2 . We can see that

0 ≤ ĭג(R) ≤ 1.

Definition 5 ([24]). Presume that βðg = 〈µg, νg, ηγ
g〉 is a conglomeration of SPFNs and SPFWA:

Λn → Λ, if

SPFWA(βð1, βð2, . . . βðu) =
u

∑
g=1

Ŷג
gβðg

= Ŷג
1βð1 ⊕ Ŷג

2βð2 ⊕ . . . , Ŷגsuβðu

where Λn is the set of all SPFNs, and Ŷג = (Ŷג
1, Ŷג

2, . . . , Ŷג
u)

T is weight vector of (βð1, βð2, . . . , βðu),
s.t. 0 6 Ŷג

u 6 1 & ∑u
g=1 Ŷ

ג
u = 1. Then, the SPFWA is called the “picture fuzzy weighted aver-

age operator”.

Theorem 1. Let βðg = 〈µg, νg, ηγ
g〉 be the conglomeration of SPFNs, we can find SPFWA by

SPFWA(βð1, βð2, . . . βðu)

=

〈√√√√(1−
u

∏
g=1

(1− µ2
g)

Ŷג
g),

u

∏
g=1

ν
Ŷג

g
g ,

u

∏
g=1

ηγŶג
g

g

〉

Definition 6 ([24]). Presume that βðg = 〈µg, νg, ηγ
g〉 is the conglomeration of SPFN, and

SPFWG:Λn → Λ, if

SPFWG(βð1, βð2, . . . βðu) =
u

∑
g=1

βð
Ŷג

g
g

= βð
Ŷג

1
1 ⊗ . . . , βð

Ŷג
u

u

where Λn is the set of all SPFNs, and Ŷג = (Ŷג
1, Ŷג

2, . . . , Ŷג
u)

T is weight vector of (βð1, βð2, . . . ,
βðu), such that 0 6 Ŷג

u 6 1 & ∑u
g=1 Ŷ

ג
u = 1. Then, the SPFWG is called the "picture fuzzy

weighted geometric operator".
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Theorem 2. Let βðg = 〈µg, νg, ηγ
g〉 be the conglomeration of SPFNs; we can find SPFWG by

SPFWG(βð1, βð2, . . . βðu)

=

〈 u

∏
g=1

µ2Ŷ
ג
g

g ,

√√√√(1−
u

∏
g=1

(1− ν2g)
Ŷג

g),

√√√√(1−
u

∏
g=1

(1− ηγ2
g)

Ŷג
g)

〉

3. Spherical Fuzzy Prioritized AOs with PDs

In this section, AOs with PDs for SPFNs are presented.

3.1. SPFPAd Operator

Presume βðg = (µg, νg, ηγ
g) is the assemblage of SPFNs, “there is a prioritization

among these SPFNs expressed by the strict priority orders βð1 �q̆1
βð2 �q̆2

. . . �q̆u−1

βðu−1, where βðu �q̆u
βðu+1 indicates that the SPFN βðu has q̆u higher priority than βðu+1.

q̆ = (q̆1, q̆2, . . . , q̆u−1) is the (u− 1) dimensional vector of PDs. The assemblage of such
SPFNs with strict priority orders and PDs is denoted by ∆i

d .”

Definition 7. SPFPAd operator is a mapping from ∆iu
d to ∆i

d and given as,

SPFPAd(βð1, βð2, . . . , βðu) = ĭ(C̆ )
1 βð1 ⊕ ĭ(C̆ )

2 βð2, · · · , ĭ(C̆ )
u βðu (1)

where ĭ(C̆ )
g =

T(C̆ )
g

∑u
g=1 T(C̆ )

g
, T(C̆ )

g = ∏
g−1
q=1

(
ĭג(βðq)

)q̆q , for each g = (2, 3, . . . , u) and T1 = 1.

Then, SPFPAd is called “picture fuzzy prioritized averaging operators with PDs”.

Theorem 3. Presume βðg = (µg, νg, ηγ
g) is the conglomeration of SPFNs, we also define

SPFPAd by
SPFPAd(βð1, βð2, . . . , βðu)

= ĭ(C̆ )
1 βð1 ⊕ ĭ(C̆ )

2 βð2, · · · , ĭ(C̆ )
u βðu

=

√√√√1−
u

∏
g=1

(1− µ2
g)

ĭ(C̆ )
g ,

u

∏
g=1

(νg)
ĭ(C̆ )

g ,
u

∏
g=1

(ηγ
g)

ĭ(C̆ )
g

 (2)

where ĭ(C̆ )
g =

T(C̆ )
g

∑u
g=1 T(C̆ )

g
, T(C̆ )

g = ∏
g−1
q=1

(
ĭג(βðq)

)q̆q , for each g = (2, 3, . . . , u) and T1 = 1.

Proof. By “mathematical induction”. For u = 2

ĭ(C̆ )
1 βð1 =

(√
1− (1− µ2

1)
ĭ(C̆ )

1 , ν
ĭ(C̆ )

1
1 , ηγĭ

(C̆ )
1

1

)
, ĭ(C̆ )

2 βð2 =

(√
1− (1− µ2

2)
ĭ(C̆ )

2 , ν
ĭ(C̆ )

2
2 , ηγĭ

(C̆ )
2

2

)

Then
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ĭ(C̆ )
1 βð1 ⊕ ĭ(C̆ )

2 βð2

=

(√
1− (1− µ2

1)
ĭ(C̆ )

1 , ν
ĭ(C̆ )

1
1 , ηγĭ

(C̆ )
1

1

)
⊕
(√

1− (1− µ2
2)

ĭ(C̆ )
2 , ν

ĭ(C̆ )
2

2 , ηγĭ
(C̆ )
2

2

)

=

(√
1− (1− µ2

1)
ĭ(C̆ )

1 + 1− (1− µ2
2)

ĭ(C̆ )
2 −

(
1− (1− µ2

1)
ĭ(C̆ )

1

)(
1− (1− µ2

2)
ĭ(C̆ )

2

)
, ν

ĭ(C̆ )
1

1 .ν
ĭ(C̆ )

2
2 ,

ηγĭ
(C̆ )
1

1 .ηγĭ
(C̆ )
2

2

)

=

√√√√1−
2

∏
g=1

(1− µ2
g)

ĭ(C̆ )
g ,

2

∏
g=1

(νg)
ĭ(C̆ )

g ,
2

∏
g=1

(ηγ
g)

ĭ(C̆ )
g


This demonstrates that Equation (2) is valid for u = 2; now suppose that Equation (2) is
correct for u = b, i.e.,

SPFPAd(βð1, βð2, . . . βðb) =

√√√√1−
b

∏
g=1

(1− µ2
g)

ĭ(C̆ )
g ,

b

∏
g=1

ν
ĭ(C̆ )

g
g ,

b

∏
g=1

ηγĭ
(C̆ )
g

g


Now for u = b + 1,

SPFPAd(βð1, βð2, . . . βðb+1) = SPFPAd(βð1, βð2, . . . βðb)⊕ βðb+1

=

(
1−

b

∏
g=1

(1− µ2
g)

ĭ(C̆ )
g ,

b

∏
g=1

ν
ĭ(C̆ )

g
g ,

b

∏
g=1

ηγĭ
(C̆ )
g

g

)
⊕
(

1− (1− µ2
b+1)

ĭ(d+1)
b+1 , ν

ĭ(d+1)
b+1

b+1 , ηγĭ
(d+1)
b+1

b+1

)

=

√√√√1−
b

∏
g=1

(1− µ2
g)

ĭ(C̆ )
g + 1− (1− µ2

b+1)
ĭ(d+1)

b+1 −
(

1−
b

∏
g=1

(1− µ2
g)

ĭ(C̆ )
g

)
(

1− (1− µ2
b+1)

ĭ(d+1)
b+1

)
,

b

∏
g=1

ν
ĭ(C̆ )

g
g .ν

ĭ(d+1)
b+1

b+1 ,
b

∏
g=1

ηγĭ
(C̆ )
g

g .ηγĭ
(d+1)
b+1

b+1

)

=

√√√√1−
b+1

∏
g=1

(1− µ2
g)

ĭ(C̆ )
g ,

b+1

∏
g=1

ν
ĭ(C̆ )

g
g ,

b+1

∏
g=1

ηγĭ
(C̆ )
g

g


This demonstrates that Equation (2) applies for u = b + 1. Therefore,

SPFPAd(βð1, βð2, . . . βðu) =

√√√√1−
u

∏
g=1

(1− µ2
g)

ĭ(C̆ )
g ,

u

∏
g=1

ν
ĭ(C̆ )

g
g ,

u

∏
g=1

ηγĭ
(C̆ )
g

g



Theorem 4. Presume that βðg = (µg, νg, ηγ
g) is the conglomeration of SPFNs, and

βð
−
= (ming (µg), maxg (νg), maxg (η

γ
g)), and βð

+
= (maxg (µg), ming (νg), ming (η

γ
g))

Then,
βð
− ≤ SPFPAd(βð1, βð2, . . . βðn) ≤ βð

+

where ĭ(C̆ )
g =

T(C̆ )
g

∑u
g=1 T(C̆ )

g
, T(C̆ )

g = ∏
g−1
q=1

(
ĭג(βðq)

)q̆q , for each g = (2, 3, . . . , u) and T1 = 1.
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Proof. Since,
ming (µg) ≤ µg ≤ maxg (µg) (3)

ming (νg) ≤ νg ≤ maxg (νg) (4)

and
ming (η

γ
g) ≤ ηγ

g ≤ maxg (η
γ

g) (5)

From Equation (3) we have, ming (µ2
g) ≤ µ2

g ≤ maxg (µ2
g)

⇔ ming (µ
2

g) ≤ (µ2
g) ≤ maxg (µ

2
g)

⇔ 1−maxg (µ
2

g) ≤ 1− (µ2
g) ≤ 1−ming (µ

2
g)

⇔
(

1−maxg (µ
2

g)

)ĭ(C̆ )
g

≤
(

1− (µ2
g)

)ĭ(C̆ )
g

≤
(

1−ming (µ
2

g)

)ĭ(C̆ )
g

⇔
u

∏
g=1

(
1−maxg (µ

2
g)

)ĭ(C̆ )
g

≤
u

∏
g=1

(
1− (µ2

g)

)ĭ(C̆ )
g

≤
u

∏
g=1

(
1−ming (µ

2
g)

)ĭ(C̆ )
g

⇔ 1−maxg (µ
2

g) ≤
u

∏
g=1

(
1− (µ2

g)

)ĭ(C̆ )
g

≤ 1−ming (µ
2

g)

⇔ −1 + minj (µ
2

g) ≤ −
u

∏
g=1

(
1− (µ2

g)

)ĭ(C̆ )
g

≤ −1 + maxg (µ
2

g)

⇔ 1− 1 + minj (µ
2

g) ≤ 1−
u

∏
g=1

(
1− (µ2

g)

)ĭ(C̆ )
g

≤ 1− 1 + maxg (µ
2

g)

⇔ minj (µ
2

g) ≤ 1−
u

∏
g=1

(
1− (µ2

g)

)ĭ(C̆ )
g

≤ maxg (µ
2

g)

⇔
√

minj (µ2
g) ≤

√√√√√1−
u

∏
g=1

(
1− (µ2

g)

)ĭ(C̆ )
g

≤
√

maxg (µ2
g)

From Equation (4) we have,

ming (νg) ≤ νg ≤ maxg (νg)⇔ ming (νg)
ĭ(C̆ )

g ≤ (νg)
ĭ(C̆ )

g ≤ maxg (νg)
ĭ(C̆ )

g

⇔
u

∏
g=1

ming (νg)
ĭ(C̆ )

g ≤
u

∏
g=1

(νg)
ĭ(C̆ )

g ≤
u

∏
g=1

maxg (νg)
ĭ(C̆ )

g

⇔ ming (νg)
ĭ(C̆ )

g ≤
u

∏
g=1

(νg)
ĭ(C̆ )

g ≤ maxg (νg)
ĭ(C̆ )

g

Let
SPFPAd(βð1, βð, . . . βðn) = βð = (µ2, ν, ηγ)

If, ĭג(βð) ≤ ĭג(βðmax) and ĭג(βð) ≥ ĭג(βðmin), then

βðmin ≤ SPFPAd(βð1, βð2, . . . βðn) ≤ βðmax
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Theorem 5. Presume that if βð� is an SPFN having the characteristics βðg = βð�, ∀g, then

SPFPAd(βð1, βð2, . . . βðu) = βð�

Proof. Let βð� = (µ�, ν�, ηγ
�) be the SPFN. Then, by assumption, we have βðg = βð�, ∀g

gives µ2
g = µ2�, νg = ν� and ηγ

g = ν� ∀g. By Definition 7, we have ∑u
g=1 ĭ

(C̆ )
g = 1. Then,

by using Theorem 3, we obtain
SPFPAd(βð1, βð2, . . . βðu)

=

√√√√1−
u

∏
g=1

(1− µ2
�)

ĭ(C̆ )
g ,

u

∏
g=1

ν
ĭ(C̆ )

g
� ,

u

∏
g=1

ηγĭ
(C̆ )
g
�


=

(√
1− (1− µ2

�)
∑u

g=1 ĭ
(C̆ )
g , ν

∑u
g=1 ĭ

(C̆ )
g

� , ηγ∑u
g=1 ĭ

(C̆ )
g

�

)
= (µ�, ν�, ηγ

�)

= βð�

Corollary 1. If βðg = (µg, νg, ηγ
g) is the conglomeration of largest SPFNs, i.e., βðg = (1, 0, 0)

for all g, then
SPFPAd(βð1, βð2, . . . βðu) = (1, 0, 0)

Proof. We would immediately establish a corollary analogous to Theorem 5.

Corollary 2. If βð1 = (µ2
1, ν1, ηγ

1) is the smallest SPFN, i.e., βð1 = (0, 0, 1), then

SPFPAd(βð1, βð2, . . . βðu) = (0, 0, 1)

Proof. Here, βð1 = (0, 0, 1) then by SF,

ĭג(βð1) = 0

Since,

T(C̆ )
g =

g−1

∏
q=1

(
ĭג(βðq)

)q̆q , for each g = (2, 3, . . . , u) and T1 = 1.

We have,

T(C̆ )
g = ∏

g−1
q=1

(
ĭג(βðq)

)q̆q = (ĭג(βð1)
q̆1) (ĭג(βð2)

q̆2) . . . (ĭג(βðg−1)
q̆g−1) = 0

From Definition 1, we have

SPFPAd(βð1, βð2, . . . βðu) = ĭ(C̆ )
1 βð1 ⊕ ĭ(C̆ )

2 βð2, · · · , ĭ(C̆ )
u βðu

= 1 βð1 ⊕ 0 βð2 ⊕ . . . 0 βðn

= βð1

Theorem 6. Presume that βðg = (µg, νg, ηγ
g) and βg = (φg, ϕg, χg) are two conglomerations

of SPFNs, if r > 0 and β = (µ2
β, νβ, ηγ

β) is an SPFN, then
1. SPFPAd(βð1 ⊕ β, βð2 ⊕ β, . . . βðu ⊕ β) = SPFPAd(βð1, βð2, . . . βðu)⊕ β
2. SPFPAd(rβð1, rβð2, . . . rβðu) = r SPFPAd(βð1, βð2, . . . βðu)
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3. SPFPAd(βð1 ⊕ β1, βð2 ⊕ β2, . . . βðu ⊕ βn) = SPFPAd(βð1, βð2, . . . βðn)⊕
SPFPAd(β1, β2, . . . βu)
4. SPFPAd(rβð1 ⊕ β, rβð2 ⊕ β, . . .⊕ rβðu ⊕ β) = rSPFPAd(βð1, βð2, . . . βðu)⊕ β

Proof. This is trivial by definition.

SPFPAd operator satisfied following properties.
Characteristic: 1
Presume that βðg = (µg, νg, ηγ

g, ηγ
g) is the conglomeration of SPFNs, then we have

lim
(q̆1,q̆2,...,q̆u−1)→(1,1,...,1)

SPFPAd(βð1, βð2, . . . βðu) (6)

= SPFPWA(βð1, βð2, . . . βðu)

Proof. Given that, (q̆1, q̆2, . . . , q̆u−1)→ (1, 1, . . . , 1), from this we have,

T(C̆ )
g =

g−1

∏
q=1

(
ĭג(βðq)

)q̆q →
g−1

∏
q=1

(
ĭג(βðq)

)
= Tg

by this we obtain, ĭ(C̆ )
g → ĭg

lim(q̆1,q̆2,...,q̆u−1)→(1,1,...,1) SPFPAd(βð1, βð2, . . . βðu)

= lim
(q̆1,q̆2,...,q̆u−1)→(1,1,...,1)

ĭ(C̆ )
1 βð1 ⊕ ĭ(C̆ )

2 βð2, · · · , ĭ(C̆ )
u βðu

= ĭ1βð1 ⊕ ĭ2βð2, · · · , ĭuβðu

= SPFPWA(βð1, βð2, . . . βðu)

Characteristic: 2
Presume that βðg = (µg, νg, ηγ

g) is the conglomeration of SPFNs and ĭג(βðg) 6= 0 for all g,
then we have

lim
(q̆1,q̆2,...,q̆u−1)→(0,0,...,0)

SPFPAd(βð1, βð2, . . . βðu) (7)

= 1
u (βð1 ⊕ βð2⊕, . . . ,⊕βðu)

Proof. Given that, (q̆1, q̆2, . . . , q̆u−1)→ (0, 0, . . . , 0), from this we have,

T(C̆ )
g =

g−1

∏
q=1

(
ĭג(βðq)

)q̆q = 1

and ĭ(C̆ )
g =

T(C̆ )
g

∑u
g=1 T(C̆ )

g
= 1

n . Hence lim(q̆1,q̆2,...,q̆u−1)→(0,0,...,0) SPFPAd(βð1, βð2, . . . βðu) =

1
u (βð1 ⊕ βð2⊕, . . . ,⊕βðu)

Characteristic: 3
Presume that βðg = (µg, νg, ηγ

g) is the conglomeration of SPFNs and ĭג(βð1) 6= 0 or 1,
then we have

lim
q̆1→+∞

SPFPAd(βð1, βð2, . . . βðu) = βð1 (8)
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Proof. Here, q̆1 → +∞ for each g = 2, 3, ..., u we have T(C̆ )
g = ∏

g−1
q=1

(
ĭג(βðq)

)q̆q =

(ĭג(βð1)
+∞) (ĭג(βð2)

q̆2) . . . (ĭג(βðg−1)
q̆g−1) = 0 because, 0 < ĭג(βð1) < 1,

∑u
g=1 T(C̆ )

g = T(C̆ )
1 = 1⇒ ĭ(C̆ )

1 =
T(C̆ )

1

∑u
g=1 T(C̆ )

1

= 1 and ĭ(C̆ )
g =

T(C̆ )
g

∑u
g=1 T(C̆ )

g

for each g = 2, 3, ..., u. Hence,

lim
q̆1→∞

SPFPAd(βð1, βð2, . . . βðu) = βð1

Characteristic: 4
Presume that βðg = (µg, νg, ηγ

g) is the conglomeration of SPFNs and ĭג(βðg) 6= 0 for all

g = 1, 2, ..., k + 1, and ĭג(βðk+1) 6= 1, then we have

lim
(q̆1,q̆2,...,q̆k ,q̆k+1)→(0,0,...,0,+∞)

SPFPAd(βð1, βð2, . . . βðu) = (9)

1
k+1 (βð1 ⊕ βð2⊕, . . . ,⊕βðk+1)

Proof. Given that, (q̆1, q̆2, . . . , q̆k, q̆k+1)→ (0, 0, . . . , 0,+∞). So,

T(C̆ )
g = ∏

g−1
q=1

(
ĭג(βðq)

)q̆q =

(ĭג(βð1)
q̆1) (ĭג(βð2)

q̆2) . . . (ĭג(βðg−1)
q̆g−1)→

(ĭג(βð1))
0 (ĭג(βð2))

0 . . . (ĭג(βðg−1))
0 = 1 for each g = 2, 3, . . . , k + 1.

T(C̆ )
g = ∏

g−1
q=1

(
ĭג(βðq)

)q̆q =

(ĭג(βð1)
q̆1) (ĭג(βð2)

q̆2) . . . (ĭג(βðg−1)
q̆g−1)→

(ĭג(βð1))
0(ĭג(βð2))

0 . . . (ĭג(βðk))
0(ĭג(βðk+1))

+∞...(ĭג(βðg−1))
q̆g−1 = 0

∀g = k + 2, k + 3, . . . , u
So,

∑u
g=1 T(C̆ )

g = T(C̆ )
1 = k + 1 and ĭ(C̆ )

g =
T(C̆ )

g

∑u
g=1 T(C̆ )

g
→ 1

k+1 for each g = 1, 2, 3, ..., k + 1.

ĭ(C̆ )
g =

T(C̆ )
g

∑u
g=1 T(C̆ )

g
→ 0

k+1 = 0 for each g = k + 2, k + 3, . . . , u.

Hence,
lim

(q̆1,q̆2,...,q̆k ,q̆k+1)→(0,0,...,0,+∞)
SPFPAd(βð1, βð2, . . . βðu)

= 1
k+1 (βð1 ⊕ βð2⊕, . . . ,⊕βðk+1)

Characteristic: 5
Presume that βðg = (µg, νg, ηγ

g) is the conglomeration of SPFNs and ĭג(βðk+1) 6= 1 or 0,
then we have

lim
(q̆1,q̆2,...,q̆k ,q̆k+1)→(1,1,...,1,+∞)

SPFPAd(βð1, βð2, . . . βðu) = (10)

SPFPWA(βð1 ⊕ βð2⊕, . . . ,⊕βðk+1)

Proof. Given that, (q̆1, q̆2, . . . , q̆k, q̆k+1)→ (1, 1, . . . , 1,+∞). So,

T(C̆ )
g = ∏

g−1
q=1

(
ĭג(βðq)

)q̆q =

(ĭג(βð1)
q̆1) (ĭג(βð2)

q̆2) . . . (ĭג(βðg−1)
q̆g−1)→

(ĭג(βð1)) (ĭג(βð2)) . . . (ĭג(βðg−1)) = Tg for each g = 2, 3, . . . , k + 1.

T(C̆ )
g = ∏

g−1
q=1

(
ĭג(βðq)

)q̆q =
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(ĭג(βð1)
q̆1) (ĭג(βð2)

q̆2) . . . (ĭג(βðg−1)
q̆g−1)→

(ĭג(βð1))(ĭג(βð2)) . . . (ĭג(βðk))(ĭג(βðk+1))
+∞...(ĭג(βðg−1))

q̆g−1 = 0
∀g = k + 2, k + 3, . . . , u
So,

∑u
g=1 T(C̆ )

g → ∑k+1
g=1 Tg and ĭ(C̆ )

g =
T(C̆ )

g

∑u
g=1 T(C̆ )

g
→ Tg

∑k+1
g=1 Tg

for each g = 1, 2, 3, ..., k + 1.

ĭ(C̆ )
g =

T(C̆ )
g

∑u
g=1 T(C̆ )

g
→ 0

∑k+1
g=1 Tg

= 0 for each g = k + 2, k + 3, . . . , u.

Hence,

lim
(q̆1,q̆2,...,q̆k ,q̆k+1)→(1,1,...,1,+∞)

SPFPAd(βð1, βð2, . . . βðu) = SPFPWA(βð1 ⊕ βð2⊕, . . . ,⊕βðk+1)

3.2. SPFPGd Operator

Definition 8. An SPFPGd operator is a mapping from ∆iu
d to ∆i

d and defined as,

SPFPGd(βð1, βð2, . . . , βðu) = βð
ĭ(C̆ )

1
1 ⊕ βð

ĭ(C̆ )
2

2 , · · · , βð
ĭ(C̆ )

u
u (11)

where ĭ(C̆ )
g =

T(C̆ )
g

∑u
g=1 T(C̆ )

g
, T(C̆ )

g = ∏
g−1
q=1

(
ĭג(βðq)

)q̆q , for each g = (2, 3, . . . , u) and T1 = 1.

Then SPFPGd is called "picture fuzzy prioritized geometric operator with PDs".

Theorem 7. Presume βðg = (µg, νg, ηγ
g) is the conglomeration of SPFNs, we can also find

SPFPGd by
SPFPGd(βð1, βð2, . . . , βðu)

= βð
ĭ(C̆ )

1
1 ⊕ βð

ĭ(C̆ )
2

2 , · · · , βð
ĭ(C̆ )

u
u

=

(
u

∏
g=1

(µ2
g)

ĭ(C̆ )
g , 1−

u

∏
g=1

(1− νg)
ĭ(C̆ )

g , 1−
u

∏
g=1

(1− ηγ
g)

ĭ(C̆ )
g

)
(12)

where ĭ(C̆ )
g =

T(C̆ )
g

∑u
g=1 T(C̆ )

g
, T(C̆ )

g = ∏
g−1
q=1

(
ĭג(βðq)

)q̆q , for each g = (2, 3, . . . , u) and T1 = 1.

Proof. This is identical to Theorem 3.

Theorem 8. Presume that βðg = (µg, νg, ηγ
g, ηγ

g) is the conglomeration of SPFNs, and

βð
−
= (ming (µ

2
g), maxg (νg), maxg (η

γ
g)), and

βð
+
= (maxg (µ

2
g), ming (νg), ming (η

γ
g))

Then,
βð
− ≤ SPFPGd(βð1, βð2, . . . βðn) ≤ βð

+

where ĭ(C̆ )
g =

T(C̆ )
g

∑u
g=1 T(C̆ )

g
, T(C̆ )

g = ∏
g−1
q=1

(
ĭג(βðq)

)q̆q , for each g = (2, 3, . . . , u), and T1 = 1.

Proof. Proof is same as Theorem 4.
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Theorem 9. Presume that if βð� is an SPFN having the characteristic, βðg = βð�, ∀g, then

SPFPGd(βð1, βð2, . . . βðu) = βð�

Proof. Let βð� = (µ2�, ν�, ηγ
�) be the SPFN. Then, by assumption, we have βðg = βð�,

∀g gives µ2
g = µ2�, νg = ν� and ηγ

g = ηγ� ∀g. By Definition 8, we have ∑u
g=1 ĭ

(C̆ )
g = 1.

Then, by using Theorem 7, we obtain
SPFPGd(βð1, βð2, . . . βðu)

=

 u

∏
g=1

µ
ĭ(C̆ )

g
� ,

√√√√1−
u

∏
g=1

(1− ν2�)
ĭ(C̆ )

g ,

√√√√1−
u

∏
g=1

(1− ηγ2
�)

ĭ(C̆ )
g


=

(
µ2∑u

g=1 ĭ
(C̆ )
g

� ,

√
1− (1− ν2�)

∑u
g=1 ĭ

(C̆ )
g ,

√
1− (1− ηγ2

�)
∑u

g=1 ĭ
(C̆ )
g

)
= (µ2�, ν�, ηγ

�)

= βð�

Corollary 3. If βðg = (µg, νg, ηγ
g) is the conglomeration of largest SPFNs, i.e., βðg = (1, 0, 0)

for all g, then
SPFPGd(βð1, βð2, . . . βðu) = (1, 0, 0)

Proof. We can easily obtain a corollary similar to Theorem 9.

Corollary 4. If βð1 = (µ2
1, ν1, ηγ

1) is the smallest SPFN, i.e., βð1 = (0, 0, 1), then

SPFPGd(βð1, βð2, . . . βðu) = (0, 0, 1)

Proof. Here, βð1 = (0, 0, 1), then by SF, we have,

ĭג(βð1) = 0

Since,

T(C̆ )
g =

g−1

∏
q=1

(
ĭג(βðq)

)q̆q , for each g = (2, 3, . . . , u) and T1 = 1.

We have,

T(C̆ )
g = ∏

g−1
q=1

(
ĭג(βðq)

)q̆q =

(ĭג(βð1)
q̆1) (ĭג(βð2)

q̆2) . . . (ĭג(βðg−1)
q̆g−1) = 0

From Definition 1, we have

SPFPGd(βð1, βð2, . . . βðu) = βð
ĭ(C̆ )

1
1 ⊗ βð

ĭ(C̆ )
2

2 , · · · , βð
ĭ(C̆ )

u
u

= βð
1
1 ⊗ βð

0
2 ⊗ . . . βð

0
u

= βð1 = (0, 0, 1)

Theorem 10. Presume that βðg = (µg, νg, ηγ
g) and βg = (φg, ϕg, χg) are two conglomerations

of SPFNs, if r > 0 and β = (µ2
β, νβ, ηγ

β) is an SPFN, then
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1. SPFPGd(βð1 ⊕ β, βð2 ⊕ β, . . . βðu ⊕ β) = SPFPGd(βð1, βð2, . . . βðu)⊕ β

2. SPFPGd(rβð1, rβð2, . . . rβðu) = r SPFPGd(βð1, βð2, . . . βðu)

3. SPFPGd(βð1 ⊕ β1, βð2 ⊕ β2, . . . βðu ⊕ βn) =
SPFPGd(βð1, βð2, . . . βðn)⊕ SPFPGd(β1, β2, . . . βu)

4. SPFPGd(rβð1 ⊕ β, rβð2 ⊕ β, . . .⊕ rβðu ⊕ β) = rSPFPGd(βð1, βð2, . . . βðu)⊕ β

Proof. This is trivial by definition.

SPFPGd operator also satisfied the following properties.
Characteristic: 1
Presume that βðg = (µg, νg, ηγ

g) is the conglomeration of SPFNs, then

lim
(q̆1,q̆2,...,q̆u−1)→(1,1,...,1)

SPFPGd(βð1, βð2, . . . βðu) (13)

= SPFPWG(βð1, βð2, . . . βðu)
Characteristic: 2
Presume that βðg = (µg, νg, ηγ

g) is the conglomeration of SPFNs and ĭג(βðg) 6= 0 ∀ g, then

lim
(q̆1,q̆2,...,q̆u−1)→(0,0,...,0)

SPFPGd(βð1, βð2, . . . βðu) = (14)

1
u (βð1 ⊗ βð2⊗, . . . ,⊗βðu)
Characteristic: 3
Presume that βðg = (µg, νg, ηγ

g) is the conglomeration of SPFNs and ĭג(βð1) 6= 0 or 1,
then

lim
q̆1→+∞

SPFPGd(βð1, βð2, . . . βðu) = βð1 (15)

Characteristic: 4
Presume that βðg = (µg, νg, ηγ

g) is the conglomeration of SPFNs and ĭג(βðg) 6= 0 for all

g = 1, 2, ..., k + 1, and ĭג(βðk+1) 6= 1, then

lim
(q̆1,q̆2,...,q̆k ,q̆k+1)→(0,0,...,0,+∞)

SPFPGd(βð1, βð2, . . . βðu) = (16)

1
k+1 (βð1 ⊗ βð2⊗, . . . ,⊗βðk+1)
Characteristic: 5
Presume that βðg = (µg, νg, ηγ

g) is the conglomeration of SPFNs and ĭג(βðk+1) 6= 1 or 0,
then

lim
(q̆1,q̆2,...,q̆k ,q̆k+1)→(1,1,...,1,+∞)

SPFPGd(βð1, βð2, . . . βðu) = (17)

SPFPWG(βð1 ⊗ βð2⊗, . . . ,⊗βðk+1)

4. Proposed Methodology Based on Developed AOs

Let A ג = {A ג
1, A ג

2, . . . , A ג
m} and Ğ i = {Ğ i

1 , Ğ i
2 , . . . , Ğ i

n } be the alternatives and
criterion, respectively; priorities are given among the criterion by strict priority relation.
Ğ i

1 �q̆1
Ğ i

2 �q̆2
Ğ i

3 . . . �q̆n−1
Ğ i

n , indicate that parameter Ğ i
J has a greater priority than

Ğ i
J+1 with degree q̆q for q ∈ {1, 2, . . . , (n− 1)}. DM gave their opinion matrix D = (ℵ£

ij)m×n,
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where ℵ£
ij is for the alternate A ג

i ∈ A ג as per the parameter Ğ i
j ∈ Ğ i by DM. The matrix

D has converted into normalized matrix by the given formula Y = (f℘
ij)m×n,

(f℘
ij)m×n =

{
(ℵ£

ij)
c; j ∈ τc

ℵ£
ij; j ∈ τb.

(18)

where (ℵ£
ij)

c show the compliment of ℵ£
ij.

The recommended operators will be added to the MCDM, which will necessitate the former
procedures.
Step 1:
Acquire the decision matrix D = (ℵ£

ij)m×n in the format of SPFNs from DM.

Ğ i
1 Ğ i

2 Ğ i
n


A ג

1 (µ11, ν11, ηγ
11) (µ12, ν12, ηγ

12) · · · · · · (µ1n, ν1n, ηγ
1n)

A ג
2 (µ21, ν21, ηγ

21) (µ22, ν22, ηγ
22) · · · · · · (µ2n, ν2n, ηγ

2n)
...

...
. . . . . .

...
A ג

m (µm1, νm1, ηγ
m1) (µm2, νm2, ηγ

m2) · · · · · · (µmn, νmn, ηγ
mn)

Step 2:
There is no need for normalization if all indicators are of the same kind. The matrix has
been amended to “transforming response matrix, Y = (f℘

ij)m×n” by Equation (18).
Step 3:
Aggregate RSij for all alternates A ג

i by utilizing the SPFPAd (or SPFPGd) operator.

RS ij = SPFPAd(f
℘
i1,f℘

i2, . . .f℘
in)

=


√√√√1−

n

∏
j=1

(
1− µ2

ij

)ĭij

,
n

∏
j=1

(νij)
ĭij ,

n

∏
j=1

(ηγ
ij)

ĭij

 (19)

or
RS ij = SPFPGd(f

℘
i1,f℘

i2, . . .f℘
in)

=

 n

∏
j=1

(µij)
ĭij ,

√√√√1−
n

∏
j=1

(
1− ν2

ij

)ĭij

,

√√√√1−
n

∏
j=1

(
1− ηγ2

ij

)ĭij

 (20)

Step 4:
Compute the total score from all alternative assessments.
Step 5:
The SF was used to classify the alternatives, and the most appropriate option was chosen.

5. Case Study

The integration of sustainable energy planning is fundamentally interconnected with
decision-making processes across multiple levels, encompassing individual families, na-
tional governments, and international organizations. The establishment of this link is
fundamental in the pursuit of sustainable energy development objectives and in effectively
tackling the worldwide issues of climate change, limited resources, and environmental
deterioration. The initial step in sustainable energy planning is the establishment of well-
defined objectives and priorities. It is imperative for all stakeholders, including politicians,
energy businesses, and individuals, to establish a clear and context-specific definition of
sustainability. The decision-making process encompasses the evaluation of environmental,
social, and economic concerns, alongside the assessment of long-term energy requirements.

The significance of clean and sustainable energy is escalating due to the global demand
for energy to fuel national economies, coupled with the imperative to mitigate adverse
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environmental consequences. The demand for renewable and sustainable energy sources
has experienced substantial growth in recent years. This surge can be attributed to
several factors, such as the escalating prices associated with conventional fossil fuels,
mounting apprehensions over climate change, and the imperative to mitigate greenhouse
gas emissions [27]. This article aims to explore the significance and applications of clean
and sustainable energy, as well as its pivotal role in fostering a more sustainable future.

• Reducing Greenhouse Gas Emissions: The mitigation of greenhouse gas emissions can
be achieved by the use of clean and sustainable energy sources, thereby addressing
the primary driver of global warming. When traditional fossil fuels, including coal,
oil, and natural gas, are utilized as energy sources, they release significant quantities
of carbon dioxide and other greenhouse gases into the atmosphere. In contrast,
renewable energy sources, including wind, solar, and hydropower, do not generate
direct emissions and exhibit much reduced indirect emissions in comparison to fossil
fuels [28].

• Cost-Effective: Clean and sustainable energy is frequently exhibiting a growing ten-
dency towards cost competitiveness when compared to conventional fossil fuels in
numerous instances. The costs associated with renewable energy technologies, such
as wind turbines and solar panels, have experienced a substantial reduction in recent
years and are projected to sustain a downward trend. Moreover, it is worth noting that
renewable energy sources exhibit significantly lower operational costs in comparison
to conventional fossil fuels. This disparity arises due to the susceptibility of fossil fuels
to price changes and geopolitical concerns [29].

• Improving Energy Security: The utilization of clean and sustainable energy sources
has the potential to enhance energy security through the mitigation of reliance on
imported fossil fuels. Countries can enhance their energy independence and mitigate
the risks associated with price volatility and supply disruptions by depending on
energy sources that are readily accessible within their own borders [30].

• Creating Jobs: The adoption of a clean and sustainable energy system has the potential
to generate novel employment prospects in various sectors, including the installation,
maintenance, and manufacturing of renewable energy technologies. Furthermore,
the advancement of novel energy technologies has the potential to foster economic
expansion and catalyze innovation [31].

• Enhancing Public Health: The utilization of clean and sustainable energy resources
has the potential to enhance public health through the mitigation of air and water
pollution. These forms of pollution have been linked to many health complications,
including respiratory ailments, cardiovascular disorders, and malignancies. Moreover,
it is worth noting that renewable energy sources exhibit significantly lower levels of
noise emissions compared to conventional fossil fuels, hence mitigating the adverse
effects of noise pollution on human health.

• Aiding Rural Development: Clean and sustainable energy sources have the potential
to facilitate the provision of electricity to remote and rural areas, which frequently
lack access to conventional grid networks. The provision of modern energy services
through this initiative can have a substantial influence on the development of rural
areas, facilitating economic growth and enhancing access to essential resources.

• Supporting Climate Action: The use of clean and sustainable energy sources plays
a pivotal role in the worldwide endeavor to address climate change. Renewable
energy sources have the potential to decelerate the progression of global warming and
alleviate its adverse consequences, including elevated sea levels, heightened frequency
and severity of natural calamities, and alterations in precipitation patterns, through
the reduction in greenhouse gas emissions [32].

The significance of clean and sustainable energy is growing in prominence due to global
imperatives such as the mitigation of greenhouse gas emissions, enhancement of energy
resilience, and facilitation of economic progress. By placing reliance on renewable energy
sources, it is possible to diminish our reliance on conventional fossil fuels, mitigate the
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adverse effects of energy production on the environment and public health, and provide
support for endeavors aimed at addressing climate change. The importance of fostering
a more sustainable future cannot be overstated, and it warrants significant attention and
support. Figure 1 illustrates the interconnectedness between several factors and sustainable
energy, including decision-making, waste management, biofuels, climate change, pollution,
and other relevant issues. We take papers from PubMed and make a Figure 1 by VOS viewer.

Figure 1. Relation of different aspects with sustainable energy.

The various MADM methodology is a systematic strategy employed to assess and
analyze various criteria, which frequently exhibit conflicting characteristics during the
decision-making process. Within the realm of clean and sustainable energy, MADM can
serve as a valuable instrument for decision-makers to evaluate the inherent compromises
associated with various energy sources, technologies, and policies. This article aims to
explore the applications of MADM within the realm of clean and sustainable energy,
emphasizing its significance in fostering a more sustainable future.

• Evaluating Energy Sources: The MADM approach can be employed to assess and
compare different renewable energy sources, including solar, wind, hydro, and bioen-
ergy, in relation to conventional fossil fuels like coal, oil, and natural gas [30]. Various
factors that may be taken into account throughout the review process include technical
feasibility, economic viability, environmental effect, and social acceptability. This can
assist decision-makers in selecting the energy source that is most suitable for their
particular requirements and conditions.

• Assessing Energy Technologies: The MADM technique can be employed to assess
and contrast various energy systems, including wind turbines, solar panels, and
hydropower plants. The evaluation process may take into account several factors, such
as technical performance, cost, environmental effect, and reliability. This can assist
decision-makers in selecting the technology that is most suitable for their particular
requirements and circumstances [29].

• Prioritizing Energy Policies: The MADM methodology can be effectively employed to
establish priority rankings for energy policies and projects, including but not limited
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to renewable energy objectives, subsidies, and tax credits. The evaluation process
may encompass various factors, such as cost-effectiveness, feasibility, environmental
impact, and social acceptability. This can assist decision-makers in selecting policies
and initiatives that have a higher probability of accomplishing their energy objectives
and facilitating a shift toward a more sustainable energy framework.

• Evaluating Energy Projects: The MADM technique can be employed for the assessment
and comparison of distinct energy projects, including wind farms, solar power plants,
and hydropower schemes. The review process may encompass various factors, such
as economic viability, environmental effect, social acceptability, and technological
feasibility. This approach can assist decision-makers in selecting projects that have a
higher probability of attaining their energy objectives and facilitating a shift toward a
more sustainable energy framework.

• Balancing Trade-Offs: The MADM approach can be employed to effectively manage
the trade-offs that arise from the utilization of diverse energy sources, technologies,
and policies. For instance, renewable energy sources such as wind and solar power
exhibit the advantageous characteristics of being sustainable and emitting minimal
amounts of greenhouse gases. However, it is worth noting that these energy sources
may also entail adverse consequences for animals and local residents. In contrast,
hydro and bioenergy have the potential to generate minimal levels of greenhouse gas
emissions; however, it is important to acknowledge that these energy sources can also
exert adverse effects on water resources and ecosystems. The utilization of MADM
can assist decision-makers in selecting the most suitable energy source, technology,
or policy that effectively manages the inherent trade-offs and facilitates the transition
toward a more sustainable energy system [32].

• Incorporating Stakeholder Perspectives: The MADM can serve as a valuable tool for
integrating the viewpoints of diverse stakeholders, including governmental entities,
energy corporations, environmental advocacy groups, and local communities. The
review process may encompass various factors, such as technical feasibility, economic
viability, environmental effect, and social acceptability. This can assist decision-makers
in selecting the optimal energy source, technology, or policy that is most likely to
effectively accomplish their energy objectives while considering the concerns and
perspectives of many stakeholders.

The MADM technique serves as a valuable instrument for decision-makers in assessing
the inherent trade-offs associated with various energy sources, technologies, and policies
within the realm of clean and sustainable energy. By integrating many criteria and con-
sidering the perspectives of different stakeholders, MADM can facilitate the advancement
toward a sustainable energy system and foster a more equitable and balanced approach to
making energy-related decisions. As the global community confronts the pressing issues
of mitigating greenhouse gas emissions and enhancing energy security, the relevance and
significance of MADM will progressively escalate [33]. DM has more than 15 years of
experience in the renewable energy industry in a variety of capacities. He possesses a
Bachelor’s and a Master’s degree in environmental engineering and energy policy and
management, respectively. He began their career as an engineer at a prominent solar panel
manufacturer, where he gained practical knowledge of renewable energy technologies.

6. Numerical Illustration

Suppose the decision-making dilemma of determining the best candidate for the re-
newable energy sector. Presume the conglomeration of alternatives, A ג

1 = Wave Energy,
A ג

2 = Wind Energy, A ג
3 = Nuclear Energy, and A ג

4 = Wind Energy and Wave Energy.
These possibilities are evaluated using four criteria, Ğ i

1 = cost, Ğ i
2 = innovation, Ğ i

3 = en-
vironmental aspects , and Ğ i

4 = international collaboration. “Prioritized in strict priority
order” is Ğ i

1 >q̆1
Ğ i

2 >q̆2
Ğ i

3 >q̆3
Ğ i

4 . PDs are q̆ = (2, 1, 3).
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6.1. With SPFPAd Operator

Step 1:
Obtain matrix D = (ℵ£

ij)m×n by DM, which is shown in Table 2.

Table 2. Rating given by DM.

Ğ i
1 Ğ i

2 Ğ i
3 Ğ i

4

A ג
1 (0.30, 0.10, 0.35) (0.24, 0.31, 0.15) (0.57, 0.12, 0.23) (0.13, 0.23, 0.22)

A ג
2 (0.45, 0.18, 0.10) (0.42, 0.21, 0.10) (0.43, 0.17, 0.31) (0.21, 0.30, 0.21)

A ג
3 (0.65, 0.23, 0.09) (0.45, 0.26, 0.22) (0.32, 0.41, 0.09) (0.38, 0.46, 0.12)

A ג
4 (0.43, 0.29, 0.15) (0.34, 0.19, 0.31) (0.47, 0.20, 0.10) (0.23, 0.32, 0.37)

Step 2:
In this case, no criteria are cost-type criteria, all are the benefit type, so there is no need for
normalization. Normalized SPF decision matrix given in Table 3.

Table 3. Normalized SPF decision matrix.

Ğ i
1 Ğ i

2 Ğ i
3 Ğ i

4

A ג
1 (0.30, 0.10, 0.35) (0.24, 0.31, 0.15) (0.57, 0.12, 0.23) (0.13, 0.23, 0.22)

A ג
2 (0.45, 0.18, 0.10) (0.42, 0.21, 0.10) (0.43, 0.17, 0.31) (0.21, 0.30, 0.21)

A ג
3 (0.65, 0.23, 0.09) (0.45, 0.26, 0.22) (0.32, 0.41, 0.09) (0.38, 0.46, 0.12)

A ג
4 (0.43, 0.29, 0.15) (0.34, 0.19, 0.31) (0.47, 0.20, 0.10) (0.23, 0.32, 0.37)

Step 3:
Aggregate the SPF values RS ij for all A ג

i using Equation (19), given in Table 4.

Tij =


1 0.6806 0.5274 0.3182
1 0.6241 0.5086 0.2604
1 0.8836 0.7555 0.4889
1 0.7396 0.5547 0.3229



Table 4. SPF-aggregated values RS i.

RS 1 (0.32384, 0.188324, 0.291279)
RS 2 (0.400315, 0.223092, 0.163386)
RS 3 (0.449495, 0.344833, 0.169078)
RS 4 (0.373113, 0.279878, 0.212848)

Step 4:
Compute the score for all SPF-aggregated values RS i.

ĭג(RS 1) = 0.567758

ĭג(RS 2) = 0.588612

ĭג(RS 3) = 0.552331

ĭג(RS 4) = 0.546618

Step 5:
Ranks according to SFs.

RS 2 � RS 1 � RS 3 � RS 4
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So,
A ג

2 � A ג
1 � A ג

3 � A ג
4

A ג
2 is best alternative among all other alternatives.

6.2. With SPFPGd Operator

Step 1:
Obtain matrix D = (ℵ£

ij)m×n by DM, which is shown in Table 5.

Table 5. Rating given by DM.

Ğ i
1 Ğ i

2 Ğ i
3 Ğ i

4

A ג
1 (0.30, 0.10, 0.35) (0.24, 0.31, 0.15) (0.57, 0.12, 0.23) (0.13, 0.23, 0.22)

A ג
2 (0.45, 0.18, 0.10) (0.42, 0.21, 0.10) (0.43, 0.17, 0.31) (0.21, 0.30, 0.21)

A ג
3 (0.65, 0.23, 0.09) (0.45, 0.26, 0.22) (0.32, 0.41, 0.09) (0.38, 0.46, 0.12)

A ג
4 (0.43, 0.29, 0.15) (0.34, 0.19, 0.31) (0.47, 0.20, 0.10) (0.23, 0.32, 0.37)

Step 2:
In this case, no criteria are cost-type criteria, all are the benefit type, so there is no need for
normalization. Normalized SPF decision matrix given in Table 6.

Table 6. Normalized SPF decision matrix.

Ğ i
1 Ğ i

2 Ğ i
3 Ğ i

4

A ג
1 (0.30, 0.10, 0.35) (0.24, 0.31, 0.15) (0.57, 0.12, 0.23) (0.13, 0.23, 0.22)

A ג
2 (0.45, 0.18, 0.10) (0.42, 0.21, 0.10) (0.43, 0.17, 0.31) (0.21, 0.30, 0.21)

A ג
3 (0.65, 0.23, 0.09) (0.45, 0.26, 0.22) (0.32, 0.41, 0.09) (0.38, 0.46, 0.12)

A ג
4 (0.43, 0.29, 0.15) (0.34, 0.19, 0.31) (0.47, 0.20, 0.10) (0.23, 0.32, 0.37)

Step 3:
Aggregate the SPF values RS ij for all A ג

i using Equation (20), given in Table 7.

Tij =


1 0.6806 0.5274 0.3182
1 0.6241 0.5086 0.2604
1 0.8836 0.7555 0.4889
1 0.7396 0.5547 0.3229


Table 7. SPF-aggregated values RS i.

RS 1 (0.375924, 0.154949, 0.235749)
RS 2 (0.477456, 0.168068, 0.139601)
RS 3 (0.528257, 0.256109, 0.115782)
RS 4 (0.457342, 0.212521, 0.169966)

Step 4:
Compute the score for all SPF-aggregated values RS i.

ĭג(RS 1) = 0.610488

ĭג(RS 2) = 0.654694

ĭג(RS 3) = 0.636074

ĭג(RS 4) = 0.622411
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Step 5:Ranks according to SFs.

RS 2 � RS 1 � RS 3 � RS 4

So,
A ג

2 � A ג
1 � A ג

3 � A ג
4

A ג
2 is the best alternative among all other alternatives.

6.3. Comparison with Existing AOs

Proposed AOs are contrasted against a significant number of existing AOs in this
section. We obtain a comparable optimal solution by solving the data with previously
established AOs, which we then employ to equalize our results. This demonstrates that the
AO is effective and long-lasting. Several previously-published AOs are outperformed by
the methodology presented in this paper. To confirm that our ideal solution is the best, we
test it with a wide spectrum of existing operators. The fact that we both arrive at the same
optimal conclusion indicates that our proposed AOs are reliable. Comparison anaylsis is
given in Table 8.

Table 8. Comparison of proposed operators with some exiting operators

Authors AOs Ranking of Alternatives The Optimal Alternative

Jin et al. [21]

L-SFWA A ג
2 � A ג

1 � A ג
3 � A ג

4 A ג
2

L-SFWG A ג
2 � A ג

1 � A ג
3 � A ג

4 A ג
2

L-SFOWA A ג
2 � A ג

4 � A ג
3 � A ג

1 A ג
2

L-SFOWG A ג
2 � A ג

4 � A ג
1 � A ג

3 A ג
2

Ashraf et al. [22]

SFDWA A ג
2 � A ג

3 � A ג
1 � A ג

4 A ג
2

SFDWG A ג
2 � A ג

1 � A ג
3 � A ג

4 A ג
2

SFDOWA A ג
2 � A ג

1 � A ג
3 � A ג

45 A ג
2

SFDOWG A ג
2 � A ג

4 � A ג
3 � A ג

1 A ג
2

Proposed SPFPAd A ג
2 � A ג

3 � A ג
1 � A ג

4 A ג
2

7. Conclusions

This paper presents a novel methodology for managing decision-making processes
effectively within the context of sustainable energy planning. The proposed strategy makes
use of innovative spherical fuzzy prioritized evaluation objects. These operators incorporate
the concept of level prioritization, enabling a more comprehensive and sophisticated
approach to decision-making. The results of the conducted case studies provide empirical
evidence for the efficacy of this particular strategy, demonstrating superior performance
in comparison to conventional approaches. This article makes a substantial contribution
by proposing a more precise and efficient approach to sustainable energy planning and
decision-making. This study provides valuable insights for experts in the relevant field
and emphasizes the potential of fuzzy spherical prioritized analytical objects as a decision-
making tool.

In the not-too-distant future, the operators and methodologies described above will be
utilized in a wide variety of applications, including analysis of networks, risk evaluation,
cognitive psychology, learning by reinforcement, processing of signals, and a variety of
others with uncertain contexts. During the process of aggregating future efforts, one of our
goals is to conduct an analysis of the interrelationships that exist between attribute pairs.
In addition, we plan to establish more comprehensive information metrics that will assist
us in comprehending the information that we come into contact with on a daily basis.
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