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Quantum advantages for transportation tasks - projectiles,
rockets and quantum backflow
David Trillo 1,2✉, Thinh P. Le1 and Miguel Navascués1

Consider a scenario where a quantum particle is initially prepared in some bounded region of space and left to propagate freely.
After some time, we verify if the particle has reached some distant target region. We find that there exist ‘ultrafast’ (‘ultraslow’)
quantum states, whose probability of arrival is greater (smaller) than that of any classical particle prepared in the same region with
the same momentum distribution. For both projectiles and rockets, we prove that the quantum advantage, quantified by the
difference between the quantum and optimal classical arrival probabilities, is limited by the Bracken-Melloy constant cbm, originally
introduced to study the phenomenon of quantum backflow. In this regard, we substantiate the 29-year-old conjecture that
cbm ≈ 0.038 by proving the bounds 0.0315 ≤ cbm ≤ 0.072. Finally, we show that, in a modified projectile scenario where the initial
position distribution of the particle is also fixed, the quantum advantage can reach 0.1262.
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INTRODUCTION
Much of current research in quantum theory focuses on the
exploitation of quantum effects in communication and computa-
tion. Nevertheless, quantum systems are originally found to be
advantageous for mechanical tasks. A paradigmatic example is the
tunneling effect1: A quantum particle can be detected in regions
of space that are classically forbidden by energy considerations.
Another noteworthy example is quantum backflow: A free
quantum particle with positive momentum can be observed to
propagate backwards. Quantum backflow was first identified by
Allcock in the context of the time-of-arrival problem2, and later
isolated by Bracken and Melloy3. More recent examples of
quantum advantage in mechanical systems can be found in4 and5.
The advantages that quantum mechanical systems might offer

for transportation, understood as the quick dispatch of massive
particles through free space, are, however, unexplored. Some
effort has been paid to investigate the properties of a hypothetical
quantum time-of-arrival operator6 in connection with quantum
backflow. Perhaps due to its foundational character, this research
program has not produced so far any concrete task where
quantum mechanical systems have the upper hand.
In this work, we prove the advantage of quantum mechanical

systems over their classical counterparts in a practical transporta-
tion task, which we call the projectile scenario. Consider a
situation where a non-relativistic one-dimensional quantum
particle (a projectile) is prepared in some bounded region of
space B and left to propagate freely. After some time ΔT, we
measure if the particle is in some distant target region R. For a
fixed initial quantum state ρ with spatial support in B, we compare
the probability of detection in R with that of a classical particle,
initially prepared in B with the same momentum distribution as ρ.
We find that there exist what one might call ultra-fast states

(ultra-slow states), whose probability of detection in R at time ΔT is
strictly greater (smaller) than that of any classical particle. A
natural figure of merit for quantum advantage in the ultra-fast
regime is the difference between the quantum and the maximum
classical probabilities of arrival. Likewise, in the ultra-slow regime

one can consider the difference between the minimum classical
and the quantum probabilities of arrival. We find that the
maximum quantum advantage in either case does not depend
on the distance between the preparation and target regions, but
only on the parameter α≔M∣B∣2/ΔT. For finite values of α, the
maximum quantum-classical gap can be computed up to
precision δ by diagonalizing an N × N matrix, with
N ¼ O log 1=δð Þð Þ.
We prove that the maximum quantum advantage, achieved in

the limit α→∞, equals the Bracken-Melloy constant3, which was
numerically estimated to have the value cbm ≈ 0.03845177,8. This
conjectured value was, however, not computed with any rigorous
error bounds. In fact, until now there was no reason to believe that
cbm was smaller than 1. In this regard, we argue that
0.0315 ≤ cbm ≤ 0.0725, hence providing an upper bound on cbm.
As we show, the appearance of cbm is not a coincidence:

through simple metaplectic transformations we connect the
quantum projectile problem with a variety of scenarios related
to and generalizing quantum backflow, including quantum
backflow itself. All such effects are therefore manifestations of
the same mathematical phenomenon, seen through different
coordinate systems. In the light of the recent interest in
experimentally demonstrating quantum backflow9–13, we argue
that projectile scenarios are more experimentally friendly and
operationally interesting.
To arrive at a transportation task with a quantum advantage

beyond the Bracken-Melloy constant, we consider a scenario in
which several projectiles are sequentially released, namely, a
quantum rocket. However, it turns out that cbm also limits the
advantage of a quantum rocket over a classical analog with the
same lift-off zone, combustion chamber size and rocket and fuel
momentum distributions.
Nevertheless, we show that a superior quantum advantage can

actually be attained in a variant of the projectile scenario where
the quantum projectile is compared with a classical particle having
the same position and momentum distributions.
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The paper is structured as follows: in section 2.1 we introduce
and solve the projectile scenario; the connection between
quantum projectiles and other examples of quantum advantage
in mechanical systems is explained in section 2.3. In section 2.4 we
provide a simple model for quantum rockets and use it to prove
that the classical-quantum gap in such artifacts is also limited by
the Bracken-Melloy constant. In section 2.5, we add a natural
constraint to the projectile scenario so that the Bracken-Melloy
limit can be superseded. Finally, in section 3 we present our
conclusions. We also provide some Supplementary Notes, in which
the lengthier computations are made more explicit.

RESULTS
Classical vs. quantum projectiles
Our starting point is a classical projectile of mass M, prepared at
time t= 0 in the region [0, L]. At time t= ΔT > 0, we observe
whether the projectile has reached region [a,∞), with a > L (see
Fig. 1). If we ignore where exactly in [0, L] the projectile was
prepared, then the probability of finding it in [a,∞) at time ΔT is,
at most, Prob p � Mða� LÞ=ΔTð Þ, where p denotes the projectile’s
linear momentum. This corresponds to a configuration where the
projectile was prepared at x= L at time t= 0. Similarly, the
probability to find the projectile in [a,∞) at time ΔT is, at least,
Prob p � Ma=ΔTð Þ, which corresponds to an initial preparation at
x= 0.
Now, let us assume that the projectile is, in fact, a quantum

mechanical system. Let SðRÞ denote the set of quantum states
with spatial support in R � R. We will omit the parentheses
whenever R is an interval, and thus denote by ρ 2 S½0; L� the initial
quantum state of the projectile. While the projectile is freely
propagating, its dynamics are governed by the kinetic Hamilto-
nian H= P2/2M, where P denotes the projectile’s linear momen-
tum operator. The probability to find the quantum projectile in
region [a,∞) after time ΔT can be found by simple application of
the Born rule: it is trðUρUyΘðX � aÞÞ, where U≔ e−iHΔT and Θ is the
Heaviside step function. Note that we work in units where ℏ= 1.
If, after time ΔT, the quantum projectile is found in [a,∞) with

probability greater than any classical particle initially prepared in
[0, L] with the same momentum distribution, we say that the
quantum projectile is ultra-fast. If, on the contrary, the projectile is
detected with probability lower than the classical minimum, we
say that the projectile is ultra-slow. To gauge how ultra-fast or
ultra-slow a quantum projectile in state ρ is, we consider the
difference between the quantum and optimal classical probabil-
ities of arrival.
Let us deal with the ultrafast case first. As we saw in the first

paragraph of this section, a classical projectile with momentum
distribution ν(p)dp will be detected in [a,∞) at time ΔT with
probability at most Prob p � Mða� LÞ=ΔTð Þ. The probability of
this event is to be evaluated on the distribution ν(p)dp. Since we
have assumed ν(p)dp to be the same as the momentum

distribution of a quantum particle in state ρ, this implies

Prob p � M ða� LÞ
ΔT

� �
¼ tr ρΘ

ΔT
M

P � ða� LÞ
� �� �

:

Thus the quantum advantage, if it exists, is given by
trðρΩFðM; a;ΔTÞÞ, with

ΩFðM; a;ΔTÞ :¼ Θ X þ ΔT
M

P � a

� �
� Θ

ΔT
M

P � aþ L

� �
;

where, in the first term of the right-hand side, we made use of the
identity U†XU= X+ ΔTP/M. The identity is a consequence of the
formulas

dX
dt

¼ i½H; X� ¼ P
2M

;
dP
dt

¼ i½H; P� ¼ 0:

We wish to find the largest advantage achievable with a
quantum projectile. That is, we are interested in the quantity

φFðM; L; a;ΔTÞ :¼ sup
ρ2S½0;L�

trðρΩFðM; a;ΔTÞÞ:

Given a set of states S and an operator A, we have, for any unitary
U, that

sup
ρ2S

trðρAÞ ¼ sup
ρ2U SUy

trðρU AUyÞ:

We next exploit this observation to prove that φF is just a
function of α≔ML2/ΔT. In particular, φF does not depend on a,
the location of the target region: remarkably, quantum projectiles
are equally advantageous no matter how large the flight
distance.
Let σ : R2 ! R2 be an affine linear transformation and

consider the vector of operators (X, P). If σ is metaplectic, namely
[σ(X, P)1, σ(X, P)2]= [X, P]= i, then, as we show in Supplementary
Note 1, there exists a unitary Uσ such that

UσXU
y
σ;UσPU

y
σ

� � ¼ σðX; PÞ: (1)

Now, consider the unitary V associated to the metaplectic map

x 7�!
ffiffiffiffi
M
ΔT

q
ðx � LÞ;

p 7�!
ffiffiffiffi
ΔT
M

q
p�

ffiffiffiffi
M
ΔT

q
ða� LÞ:

(2)

For α=ML2/ΔT, it follows that

VS½� ffiffiffi
α

p
; 0�Vy ¼ S½0; L�;

VΩFðM; a;ΔTÞVy ¼ ΘðX þ PÞ � ΘðPÞ ¼: Ω;

therefore

φFðM; L; a;ΔTÞ ¼ φðαÞ :¼ sup
ρ2S½� ffiffi

α
p

;0�
trðρΩÞ: (3)

Hence, φF is just a function of α. We call the right-hand side of the
above equation the standard projectile problem, or standard
problem for short. Note that the standard problem corresponds to
determining the maximum quantum advantage of an ultrafast
projectile of mass M= 1, prepared in the region ½� ffiffiffi

α
p

; 0�, to be
found in region [0,∞) after time ΔT= 1. So far we have only
considered ultrafast projectiles. For the ultraslow case, the story is
pretty much the same, but opposite: namely, we are now
interested in not finding the particle in the target region [a,∞)
after time ΔT has elapsed. The optimal classical strategy is now to
concentrate all the mass at point x= 0. In this case, the probability
that a classical projectile, prepared at time t= 0 in [0, L] with the
same momentum distribution as the quantum state ρ, reaches the
target region at time t= ΔT is given by

Prob p � Ma
ΔT

� �
¼ tr ρΘ

ΔT
M

P � a

� �� �
;

Fig. 1 A schematic depiction of the projectile scenario. A projectile
is prepared at time t= 0 in [0, L] and, at time t=ΔT, we verify that it
has reached region [a,∞). Maximum quantum advantage in
probability of arrival as compared to a classical particle is found to
be the Bracken–Melloy constant, 0.0315 ≤ cbm ≈ 0.0384517 ≤ 0.0725.
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and so the quantum advantage, if it exists, of not finding the
particle in the target region is quantified by trðρΩSðM; a;ΔTÞÞ, with

ΩSðM; a;ΔTÞ :¼ Θ
ΔT
M

P � a

� �
� Θ X þ ΔT

M
P � a

� �
:

The maximum quantum advantage is thus

φSðM; L; a;ΔTÞ :¼ sup
ρ2S½0;L�

trðρΩSðM; a;ΔTÞÞ:

As it turns out, φS= φ, and so the functions φF, φS are identical.
Indeed, consider the transformation

σðx; pÞ ¼ �
ffiffiffiffiffiffi
M
ΔT

r
x;

ffiffiffiffiffiffi
ΔT
M

r
pþ

ffiffiffiffiffiffi
M
ΔT

r
ðx � aÞ

 !
: (4)

Since [σ(X, P)1, σ(X, P)2]=− i, this map does not define a unitary
transformation over the set of quantum states. Rather, it defines
an anti-unitary transformation Uσ, as explained in Supplementary
Note 1. Now, the argument above relating linear optimizations
over subsets of quantum states also extends to anti-unitary
transformations. The reader can verify that, applying Uσ to the
standard problem with α=ML2/ΔT, one ends up with the
definition of φS, and, therefore, φSðM; L; a;ΔTÞ ¼ φ ML2=ΔT

� �
.

In section 2.2, we will prove that φ(α) > 0 for all α > 0, i.e., there
exist ultrafast and ultraslow quantum states in any projectile
scenario. From Eq. (3) it is clear that φ(α) is a non-decreasing
function. Moreover, as shown in section 2.3, its limiting
(supremum) value φ(∞) corresponds to the Bracken–Melloy
constant cbm14, conjectured to have the value 0.0384517. We
conclude that quantum projectiles can exhibit a limited advantage
with respect to their classical counterparts.
We finish this section by introducing yet another projectile

scenario. As before, we wish the quantum projectile to have a
larger probability of arrival, but this time we award some
advantage to the classical projectile: namely, we compare the
probability to detect the quantum projectile in the region [a,∞)
with the maximum probability of detecting the classical one in the
larger region [a− b,∞), with b > 0. This problem can be reduced,
via the transformation (2), to an optimization of
ΘðX þ PÞ � ΘðP þ βÞh iρ over ρ 2 S½� ffiffiffi

α
p

; 0�, with α=ML2/ΔT,

β ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffi
M=ΔT

p
. We denote this problem the extended standard

problem, with solution φ(α, β). Clearly, φ(α, β) is non-increasing in β
and φ(α, 0)= φ(α). Obviously, lim

β!1
φðα; βÞ ¼ 0, and so one cannot

reduce the extended standard problem to the standard problem.

Solving the standard problem
From the formulation of the standard problem (3), one can
immediately deduce that φ is a non-decreasing function of
α∈ [0,∞), with φ(0)= 0 and φ(α)≤1. It remains to see that φ(α) ≠ 0
for some α. To do this, we need to study the spectrum of
Ω≔Θ(X+ P)−Θ(P) restricted to the space S½� ffiffiffi

α
p

; 0�. In Supple-
mentary Note 2 we prove that, in position representation,

ΩjS½� ffiffi
α

p
;0� ¼

1
2π

Z
½� ffiffi

α
p

;0�2
dxdy

e
i
2ðy2�x2Þ � 1
iðy � xÞ xj i yh j (5)

Let K(x, y) be the kernel of this integral operator. If α > 0, then we
can choose z 2 ð� ffiffiffi

α
p

; 0Þ such that K(0, z)= K(z, 0)* ≠ 0. Since
K(0, 0)= 0, by the determinant criterion it follows that the 2 × 2
matrix {K(x, y)}x,y=0,z is not negative semidefinite. In particular, it
has a positive eigenvalue λ, with eigenvector ðc0; czÞT . Now,
consider the ket

ψεj i ¼ 1ffiffi
ε

p
Z

½� ffiffi
α

p
;0�
dxðc0χ½�ε;0�ðxÞ þ czχ½z�ε;z�ðxÞÞ xj i;

where χC denotes the characteristic function of C � R. For small
enough ε, ψϵj i ψϵh j 2 S½� ffiffiffi

α
p

; 0� and ψεh jΩ ψεj i � ελ>0. We con-
clude that φ(α) > 0 for all α > 0, so ultrafast and ultraslow states
exist in all projectile scenarios.
The problem of computing φ(α) for different values of α is more

convoluted. Note that the kernel K(x, y) is analytic in x, y; hence, for
x; y 2 ½� ffiffiffi

α
p

; 0�, we can approximate it up to arbitrary precision by
a polynomial on x and y of sufficiently high degree. When we
replace K(x, y) by its Nth order Taylor expansion, we arrive at a new
operator ΩN, which can be shown to be close in operator norm to
Ω, restricted to the subspace of wave functions defined in
½� ffiffiffi

α
p

; 0�. In turn, ΩN only has support on the finite-dimensional
subspace spanned by vectors of the form

R
½� ffiffi

α
p

;0�dxx
k xj i, where k

runs from 0 to the degree in x of the kernel of ΩN. Hence ΩN can
be exactly diagonalized. In Supplementary Note 2 this argument is
developed to conclude that, for finite α, we can compute φ(α) to
any precision δ we want by diagonalizing a matrix of size
Ntmaxðα; logð1=δÞÞ. In the same Supplementary Note, the
reader can also find the following (tight) linear upper bound for
φ(α):

φðαÞ � 2
ffiffiffi
3

p � 3
24π

α:

The function φ(α) is plotted for α∈ [0, 100] in Fig. 2. As it can be
appreciated, φ(α) roughly looks like a concave function, but not
quite: at regular intervals, the slope of the function becomes very
small. Such ‘steps’ seem to decrease in amplitude as α grows, and,
actually, for α≫ 1, the function appears to be well approximated
by the ansatz r+ sα−1/2.
To grasp the maximum quantum advantage, we need to study

the limiting case α=∞. The problem thus consists in determining
the spectrum of Ω, restricted to the space L2(−∞, 0]. To study this
case, it is convenient to switch to the Wigner function
representation.
The Wigner function of a quantum state ρ is

Wρðx; pÞ :¼ 1
2π

Z 1

�1
dy x � y

2

D 			ρ x þ y
2

			 E
eipy :

For convenience, we recall the properties of Wigner functions in
Supplementary Note 1. The most important one for us is the fact
that Wigner functions behave nicely under metaplectic transfor-
mations in phase space. Namely, for any metaplectic

Fig. 2 A plot comparing different projectile-related quantities.
Solid blue: plot of φ(α) for α∈ [0, 100], computed with precision
δ= 10−4. Dashed red: linear upper bound ð2 ffiffiffi

3
p � 3Þα=24π. Dashed

black: the conjectured value of the Bracken-Melloy constant cbm.
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transformation Uσ, it holds that

Wρðσ�1ðx; pÞÞ ¼ WUσρU
y
σ
ðx; pÞ: (6)

Furthermore, for any bounded measurable function f : R ! R
and a; b; c 2 R, we have that

trðρf ðaX þ bP þ cÞÞ ¼
Z

R2
dxdpf ðax þ bpþ cÞWρðx; pÞ; (7)

where some care has to go into the precise meaning of the
integral whenever the integrand is not Lebesgue integrable.
Finally, note that, if ρ has a convex support R in either position or
momentum, then the support of its Wigner function Wρ(x, p)
corresponding to that variable is also contained in R.
Now, for any state ρ, we have, by eq. (7), that

trðρΩÞ ¼
Z

R2
dxdpWρðx; pÞðΘ x þ pð Þ � Θ pð ÞÞ:

The last factor on the integrand will vanish everywhere, except in
the regions Λ+= {x+ p≥0, p≤0}, where it equals 1, and Λ−= {x+
p≤0, p≥0}, where it equals−1. However, if ρ 2 Sð�1; 0�, then
Wρ(x, p)= 0, for x > 0. Since (x, p)∈ Λ+ implies x ≥ 0, it follows that
the first region does not contribute to the integration above.

Hence,

φð1Þ ¼ sup
ρ2S½�1;0�

�
Z

Λ�
dxdpWρðx; pÞ:

The problem of integrating Wigner functions over wedges
(without any further constraints) was studied by Werner15 in the
context of time-of-arrival operators. The idea is that all wedges can
be taken to each other via a metaplectic transformation, and
therefore it suffices to study the wedge [0,∞) × [0,∞). Under this
transformation, φ(∞) becomes

sup
ρ:trðρΘðXþPÞÞ¼1

�
Z

0;1½ Þ2
dxdpWρðx; pÞ;

where we have used that Sð�1; 0� is the space of states that
satisfy the condition trðρΘð�XÞÞ ¼ 1. Werner considers the
operator corresponding to integrating Wigner functions over the
quadrant x, p≥0, and determines its spectrum to be
[− 0.155940, 1.007678]. Therefore, φ(∞) ≤ 0.155940. This bound,
however, does not take into consideration the constraint
trðρΘðX þ PÞÞ ¼ 1. To account for it, we add to Werner’s operator
a linear combination of operators corresponding to integrating
Wigner functions over hyperbolic regions in the quadrant x, p ≤ 0.
Since our Wigner functions vanish in that quadrant, the infimum
of the spectrum of the new operator (which can also be
determined with the techniques in ref. 15) also provides an upper
bound for φ(∞). We numerically find the bound φ(∞) ≤ 0.0725,
see Supplementary Note 4.
In addition, via variational methods, we show that φ(∞)≥0.0315.

This figure is obtained by optimizing linear combinations of the
average values of the operators Ω, Θ(X) over density matrices with
support on the first N+ 1 number states f nj i : n ¼ 0; :::;Ng, i.e.,
ðX þ iPÞ nj i ¼ ffiffiffiffiffi

2n
p

n� 1j i, see Supplementary Note 3 for details. A
plot of the Wigner function of a quantum state approximately in
Sð�1; 0� and approximately achieving this value can be found in
Fig. 3a.
In the next section, we will show that φ(∞)= cbm, the Bracken-

Melloy constant3, which is conjectured to have the value
0.03845177,8. Our bounds 0.0315 ≤ cbm ≤ 0.0725 therefore support
this widespread belief.

Connection with other quantum mechanical effects
As we have seen, the ultrafast (ultraslow) projectile problem is
equivalent to the standard problem, since a unitary (anti-unitary)
transformation takes us from the latter to the former. We next see
that the standard projectile problem is similarly connected to the
most extreme manifestation of other quantum mechanical effects.
The exact correspondences are summarized in Table 1. The
question of understanding the relation between some of these
effects was raised in ref. 16 and partially answered in ref. 17. Our
results answer the challenge posed in16 from a different point of

Fig. 3 Wigner functions of states with a big quantum advantage.
Two panels: a depicts the Wigner function of a near-optimal state for
the projectile scenario, and b the Wigner function of a near-optimal
state for the constrained projectile scenario. Both states are
obtained by truncating to the harmonic oscillator energy level
N= 170. The left state is the eigenstate of [Θ(−X)]170[(Θ(X+P)
−Θ(P))]170[Θ(−X)]170 with eigenvalue 0.0331, where [C]N denotes the
restriction of the operator C to the subspace spanned by the first
N+ 1 number states. The right state is the eigenstate of [Θ(X+P)
−Θ(X)−Θ(P)]170 with eigenvalue 0.1113.

Table 1. Optimization problems equivalent to the standard problem.

Scenario Operator Set of states σ(x) σ(p) α

Standard problem Θ P þ Xð Þ � Θ Pð Þ S½� ffiffiffi
α

p
; 0� x p α

Ultrafast projectile Θ X þ ΔT
M P � a

� �� Θ ΔT
M P � ða� LÞ� � S½0; L�

ffiffiffiffi
M
ΔT

q
ðx � LÞ ffiffiffiffi

ΔT
M

q
p�

ffiffiffiffi
M
ΔT

q
ða� LÞ

ML2
ΔT

Ultraslow projectile Θ ΔT
M P � a
� �� Θ X þ ΔT

M P � a
� � S½0; L� �

ffiffiffiffi
M
ΔT

q
x ffiffiffiffi

ΔT
M

q
pþ

ffiffiffiffi
M
ΔT

q
ðx � aÞ

ML2

ΔT

Quantum backflow Θ �X � ΔT
M P

� �� Θ �Xð Þ P½0;1Þ �
ffiffiffiffi
ΔT
M

q
p �

ffiffiffiffi
M
ΔT

q
x

∞

Most of the optimization problems considered in this paper are of the form maxρ2S trðρΩÞ, for some operator Ω and some set of states S. This table contains
the definitions of each problem and the reversible transformations mapping the standard problem to any other. SðRÞ denotes the set of states with position
support in R � R, and PðRÞ denotes the set of states with momentum support in R � R. We use the shorthand σ(x):= σ(x, p)1 and σ(p):= σ(x, p)2, and omit
parentheses whenever R is an interval.
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view, namely, that of (anti-)unitary equivalence, and extend the
connection to other mechanical effects.
Let us start with the phenomenon of quantum backflow2,3,8,18.

Consider a pure state that only has positive momentum and that
is evolving freely. In position representation, we can write it as

ψðx; tÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z 1

0
dpeipxe�ip2t=2MϕðpÞ:

for some function ϕ such that
R1
0 ϕðpÞj j2 ¼ 1. The probability flux

at the origin is therefore

jð0; tÞ ¼ 1
4Mπ

Z 1

0
dpdqðpþ qÞeitðq2�p2Þ=2MϕðpÞϕðqÞ�;

and thus the integrated flux at the origin from time 0 to time ΔT isZ ΔT

0
dtjð0; tÞ ¼ 1

2π

Z 1

0
dpdq

ei
ΔTðq2�p2Þ

2M � 1
iðq� pÞ ϕðpÞϕðqÞ�:

Note the similarity with eq. (5). Guided by classical intuition, one
would expect this integrated flux to be non-negative, since the
particle is only moving to the right. However, for some quantum
states ϕ(x, t), this magnitude can be negative: in that case, we
speak of quantum backflow.
Alternatively, we can interpret quantum backflow as a decrease

in the probability of detecting a particle with positive momentum
in the region [0,∞). This is so because, by the continuity equation

∂

∂t
jψðxÞj2 ¼ � ∂

∂x
jðx; tÞ;

the integrated flux satisfies:Z ΔT

0
dtjð0; tÞ ¼ ψh jUyΘðXÞU ψj i � ψh jΘðXÞ ψj i;

where ψj i ¼ R dxψðx; 0Þ xj i and U ¼ e�iP
2

2MΔT .
Call P½0;1Þ the space of all states with positive momentum

support. From all the above it follows that the maximum amount
of backflow is given by

sup
ρ2P½0;1�

tr ρ Θ �X � P
ΔT
M

� �
� Θð�XÞ

� �� �
:¼ cbm;

where we used the identity Θ(z)= 1−Θ(− z). The number cbm,
known in the literature as the Bracken-Melloy constant3, is thus
the solution a problem of the form supρ2S trðρAÞ, for some space
of states S and some operator A. In fact, this problem can be
obtained from the standard problem with α=∞ via the anti-
metaplectic transformation σðx; pÞ ¼ ð�p

ffiffiffiffiffiffiffiffiffiffiffiffi
ΔT=M

p
;�x

ffiffiffiffiffiffiffiffiffiffiffiffi
M=ΔT

p Þ.
Therefore, cbm= φ(∞).
Going through the literature on quantum backflow, one finds

that cbm is conjectured to have the value 0.03845177,8. A figure of
0.038452 is obtained in ref. 8 by fitting many points of (an
approximation to) the graph of φ(α) with the ansatz r− sα−1/2 and,
a figure of 0.0384517 is obtained in ref. 7, by fitting such points to
a degree 3 polynomial over α−1/2. To our knowledge, prior to our

work there were no rigorous, non-trivial upper bounds on cbm, and
the best lower bound fell 41% short of the conjectured value of
the constant19. Our results in the preceding section hence give
mathematical support to the conjecture cbm ≈ 0.0384517.
In Table 2 we present another set of quantum effects that are

mathematically equivalent, not to the standard problem, but to
the extended standard problem with α=∞, which we express, via
the transformation σ(x, p)= (x− β, p+ β), as an optimization of Ω
over the set of states Sð�1; β�.
One of these effects is a variant of quantum backflow in which

the particle evolves in the presence of a constant force20. That is,
with the Hamiltonian given by H= P2/2M− FX. In ref. 16 Goussev
proves that this effect is at the same time equivalent to something
he calls quantum reentry. Quantum reentry is an effect that
consists in preparing a particle in Sð�1; 0�, letting it evolve and
then measuring a negative probability flow in some point l≥0.
That is, the quantity under consideration is � R t2t1 dtjðl; tÞ for some
t2 > t1 > 0, which can again be easily transformed to the semi-
infinite standard problem, as also shown in Table 2. In particular,
the maximum probability transfer in both these effects is
the same.
Finally, we note that the extended standard problem is

equivalent to computing the maximum expression of quantum
backflow when the initial momentum is in the region [−γ,∞) for
some γ 2 R, as shown in Table 2. Thus, when the initial
momentum is in this region, the probability “backflow" acts as if
there were a constant force acting on the system, since these two
problems are again equivalent. This seems to have gone
unnoticed by Bracken, who studied the former effect in ref. 14,
despite having studied the latter in ref. 20 together with Melloy.

Classical vs. quantum rockets
The low value of cbm constitutes a severe obstruction to any
practical application of quantum systems for transportation tasks.
How to overcome this limit? A tempting idea is to consider
scenarios where a transiting quantum projectile launches a
second quantum projectile. Iterating this procedure, we arrive at
the notion of a quantum rocket, i.e., a quantum mechanical
system that, from time to time, throws away some fuel mass in the
direction opposite to the intended motion. Since this rocket
scenario encompasses the quantum projectile scenario, its
maximum quantum advantage is lower-bounded by the
Bracken-Melloy constant. Furthermore, one would imagine that,
should we prepare the fuel in the right quantum state, the limited
quantum advantage present in quantum projectiles could be
somehow bootstrapped, hence increasing the overall advantage
of the quantum rocket with respect to a classical rocket whose fuel
combustion has an identical momentum distribution.
Unfortunately, this is not the case, at least for a large class of

quantum rockets. Consider a minimal model for a quantum rocket,
where, at time t, the rocket itself is regarded as a 1-dimensional
particle of mass M(t) and zero spin. The state of the rocket at time t

Table 2. Optimization problems equivalent to the extended standard problem.

Scenario Operator Set of states σ(x) σ(p) β

Extended standard problem with α=∞ Θ P þ Xð Þ � Θ Pð Þ Sð�1; β� x p β

Generalized Quantum Backflow Θ �X � ΔT
M P

� �� Θ �Xð Þ P½�γ;1Þ �
ffiffiffiffi
ΔT
M

q
p �

ffiffiffiffi
ΔT
M

q
x

ffiffiffiffi
ΔT
M

q
γ

Constant force QB Θ �X � ΔT
M P þ FΔT2

2M


 �
� Θ �Xð Þ P½0;1Þ �

ffiffiffiffi
ΔT
M

q
p� FΔT

2

� � �
ffiffiffiffi
M
ΔT

q
x

FΔT
2

Quantum reentry Θ l � X � t2
M P

� �� Θ l � X � t1
M P

� � Sð�1; 0� ffiffiffiffiffi
MC
t1

q
x � lð Þ

ffiffiffiffiffi
M
t1C

q
l � x � t1

M p
� � l

Some of the problems which are (anti-)metaplectically equivalent to the semi-infinite standard problem, with the same notation as in Table 1. In the last row,
the normalization factor of the metaplectic transformation is C:= (t2− t1)/t2.
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is therefore specified through a trace-class positive semidefinite
operator ρðtÞ : L2ðRÞ ! L2ðRÞ. For most of its flight, the rocket
will be propagated by the kinetic Hamiltonian H ¼ P2R=2MðtÞ. At
times 0= t1 < t2 < . . . < tN, though, the rocket’s free evolution is
interrupted: namely, at time tj the rocket burns and releases a
predetermined amount of fuel mj instantaneously, thus decreasing
its overall mass by the same amount.
To model the instantaneous combustion of fuel of mass m <M,

we consider a completely positive trace-preserving (CPTP) map ϒ
that, acting on the rocket’s state ρ(t), returns a density matrix
representing the joint state of the fuel F and that of the rest of the
rocket R, whose mass is now M−m, see Fig. 4.
Call XF, PF (XR, PR) the absolute position and momentum

operators of the fuel (the rest of the rocket), and let XCM, PCM
(XREL, PREL) denote the canonical variables of the center of mass
(the relative coordinates between systems F and R), with:

XCM ¼ M�m
M XR þ m

M XF; PCM ¼ PR þ PF;

XREL ¼ XF � XR; PREL ¼ �m
M PR þ M�m

M PF:
(8)

Let UM,m be the (symplectic) unitary that switches between the R, F
and CM, REL representations and define ωCM;REL 	 UM;mϒðρÞUy

M;m.
Since ϒ is an internal and instantaneous operation, it cannot
modify the rocket’s center of mass degree of freedom. This means
that trRELðωÞ ¼ ρ. For ρ ¼ ψj i ψh j, this last relation implies that
ω ¼ ψj i ψh j 
 σψ, for some quantum state σψ.
However, σψ must be independent of ψ. Otherwise, one could

find two non-orthogonal vectors ψ;ψ0 with the property that
ϒð ψj i ψh jÞ;ϒð ψ0j i ψ0h jÞ are more easily distinguishable than
ψj i ψh j; ψ0j i ψ0h j, which contradicts the contractivity of the trace
norm under CPTP maps. Putting all together, we find that any
rocket-fuel splitting map ϒ must be of the form

ϒðρ; σ;M;mÞ ¼ Uy
M;mðρ
 σÞUM;m; (9)

where σ is the state of the relative system rocket-fuel. It must be
noted that σ should have been prepared in the rocket’s
combustion chamber. If we assume that the combustion chamber
is centered in the rocket’s center of mass and has length λ, then σ
must have spatial support in [−λ/2, λ/2].
In describing the overall flight of the rocket, we assume that, at

time tj, the quantum rocket, with mass Mj, will release a mass mj of
fuel in state σj 2 S½�λ=2; λ=2� (in the relative frame of reference).
Hence, the mass and state of the rocket will be instantaneously
updated to Mj+1=Mj−mj, ρ ! trFðϒðρ; σj ;Mj;mjÞÞ.
We consider the probability to find the rocket at time tN+1 > tN

in the region [a,∞). This is to be compared with the maximum
probability that an analog classical rocket arrives at the same
region in time tN+1. Like in the projectile scenario, this classical
rocket is assumed to have, at time t1, the same initial mass, initial
momentum distribution and initial spatial support as the quantum
one. At time tj, this classical rocket will burn a mass mj of fuel, and
the phase space distribution of the classical fuel in the fuel’s
reference frame relative to the rocket is demanded to have the
same momentum distribution and spatial support as σj.
In these conditions, in Supplementary Note 5 we show that the

difference between the quantum and classical arrival probabilities
is also limited by cbm. This no-go result crucially relies on eq. (9),

which expresses the assumption that the fuel’s interaction with
the rocket is instantaneous. Physically, this corresponds to a
configuration where the combustion chamber is open on both
sides, i.e., the fuel is allowed to exit the rocket, not only against the
rocket’s direction of motion, but also towards it. Assumption Eq.
(9) allows us to map the computation of the rocket’s maximum
quantum advantage to the standard problem (with further state
constraints) through a metaplectic transformation.

A transportation scenario with a bigger quantum advantage
In view of the last result, it would be reasonable not to expect
significant gaps between the arrival probabilities of quantum and
classical particles. As it turns out, though, a simple variation of the
way we compare classical and quantum projectiles is enough to
find quantum advantages for transportation way beyond the
Bracken–Melloy constant. Note that there exist known variations
of the quantum backflow problem that achieve quantum
advantages greater than the limit set by Bracken and Mel-
loy17,21–23. Those effects are, however, unrelated to transportation
tasks.
In Section 2.1, we compared the behavior of a quantum

projectile (or a rocket) with respect to that of a classical one with
the same momentum distribution and the same spatial support at
time t= 0. Could the quantum advantage be amplified if we
demanded further constraints on the initial position distribution
μ(x)dx of the classical projectile, besides its support? In the
extreme case, we could demand μ(x)dx to coincide with the
position distribution of the quantum projectile.
Consider thus the following problem: let ρ denote the density

matrix of a particle of mass M, and let μ(x)dx, ν(p)dp be its position
and momentum distributions at time t= 0. As before, we let the
projectile evolve freely for time ΔT and then check whether the
projectile is in [a,∞); call pq(ρ) the corresponding probability. How
much does pq(ρ) differ from the maximum arrival probability of an
analog classical particle, with initial position and momentum
distributions μ(x)dx, ν(p)dp?
The maximum classical probability of arrival is

p?cðρÞ ¼ sup
R
dxdpWðx; pÞΘ x þ p ΔT

M � a
� �

s:t: 8x; p;Wðx; pÞ � 0;R
dpWðx; pÞ ¼ μðxÞ;R
dxWðx; pÞ ¼ νðpÞ;

(10)

where W(x, p) represents the probability distribution of the
classical particle in phase space at time t= 0.
The maximum quantum-to-classical advantage in this

projectile scenario is therefore Φ? ¼ supρ2S WðρÞ, where
WðρÞ :¼ pqðρÞ � p?cðρÞ. This is a nested max-min optimization
problem, whose solution can be proven independent of
a,M, ΔT. This can be shown by replacing ρ by UρU† in WðρÞ,
where U is the metaplectic transformation X !

ffiffiffiffi
ΔT
M

q
X þ a,

P !
ffiffiffiffi
M
ΔT

q
P.

In Supplementary Note 6, p?cðρÞ is shown to equal s(∞), the
solution of the system of ordinary differential equations
ds
dx ¼ ΘþðqÞμðxÞ þ ð1� ΘþðqÞÞmin μðxÞ;~νða� xÞð Þ;
dq
dx ¼ ΘþðqÞð~νða� xÞ � μðxÞÞ þ ð1� ΘþðqÞÞmax ~νða� xÞ � μðxÞ; 0ð Þ;

(11)

with initial conditions s(−∞)= q(−∞)= 0. Here Θ+(z) is meant to
be 1 for z > 0 and 0 otherwise. s(∞) can be computed numerically
via, e.g., Euler’s explicit method.
Since we know how to compute p?c ðρÞ, one could, in principle,

use gradient ascent methods to find the maximum of WðρÞ, over
all quantum states with, say, support on the space spanned by the
first N number basis vectors. That is, we could parametrize any

Fig. 4 A schematic depiction of the action of the rocket-fuel
splitting map ϒ.
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such state ρ as ρ ¼PN
m;n¼0 ρm;n mj i nh j and then follow the

gradient ofWðρÞ with respect to the variables ρm,n. Unfortunately,
W is a concave function, so the method is not guaranteed to
converge to the absolute maximum. Moreover, we empirically
observe that, starting from a random state, projected gradient
methods typically converge to very suboptimal values.
To find a suitable starting point for gradient ascent, we

considered the following approach: suppose that there existed a
linear operator Z such that

p?cðρÞ � trðZρÞ; (12)

for all states ρ. Then we could maximize the value

WZðρÞ :¼ tr ρ Θ X þ P
ΔT
M

� a

� �
� Z

� �� �
(13)

over all density matrices with support on the first N number states.
The result would provide us with a lower bound on Φ⋆. In
addition, if the maximizer ρ⋆ satisfied WZðρ?Þ>0, then that state
would be a good starting point for gradient ascent.
Now, how to identify an operator Z satisfying (12)? Let f ; g :

R ! R be two functions such that

Θðx þ pΔT=M� aÞ � f ðxÞ � gðpÞ � 0; (14)

for all x, p. Then, for any distribution W(x, p) in phase space with
marginals μ(x), ν(p),Z

dxdpWðx; pÞΘðx þ pΔT=M� aÞ �
Z

dxdpWðx; pÞðf ðxÞ þ gðpÞÞ

¼ R dxμðxÞf ðxÞ þ R dpνðpÞgðpÞ:

It follows that the operator Z= f(X)+ g(P) fulfills condition (12). In
fact, the dual of problem (10) is the maximum of the right-hand
side of eq. (15) over all such functions f, g.
Take M= ΔT= 1, a= 0. We observe that the functions f= g=Θ

satisfy (14), and hence, the supremum of the spectrum of the
operator Ω=Θ(X+ P)−Θ(P)−Θ(X) provides us with a lower
bound for Φ⋆, as trðρΩÞ � Φ�.
If we truncate this operator in the number basis, we are looking

at the maximum eigenvalue of the matrix ðMðNÞ
nm : n;m ¼ 0; :::;NÞ,

with

MðNÞ
nm ¼ nh j ΘðX þ PÞ � ΘðXÞ � ΘðPÞð Þ mj i;

For N= 170, the maximum eigenvalue of this matrix is 0.1113: the
reader can find a plot of the Wigner function of the corresponding
eigenvector in Fig. 3b. Taking N= 1700, we obtain the tighter
bound Φ⋆≥0.1228. The maximum quantum advantage in this
projectile scenario is therefore substantially greater than the
conjectured value of cbm, or even its upper bound 0.0725, derived
in section 2.2.
Applying gradient methods on those states to improve their W

value proved to be tricky, though. Call ρ⋆ the state corresponding
to the eigenvector of MðNÞ . We observe that, even for low values
of N (say, N= 30), we need to use a very small step size in Eq. (11)
to estimate p?cðρ?Þ precisely. When we do so, we find that
p?cðρ?Þ � trfρ?ðΘðXÞ þ ΘðPÞÞg: that is, for such quantum states,
our upper bound (12) on p?c is (approximately) tight. Around the
eigenvectors of MðNÞ , the gradient of W explodes, possibly
because the function is not everywhere differentiable. Using
random perturbations of ρ⋆ as a seed, projected gradient
methods only produced states with a objective value slightly
smaller than Wðρ?Þ.
From all the above, it is thus natural to conjecture that the

obtained value of 0.1228 is (close to) a local maximum of W, at
least among quantum states with support in
f nj i : n ¼ 0; :::; 1700g.
On the other hand, note that after a suitable metaplectic

transformation the problem supρ trðρΩÞ becomes supρ trðρ~ΩÞ,

where

~Ω ¼ I�
X2
k¼0

ΘðXkÞ ¼ � 1
2
I� 3

2
1
3

X2
k¼0

sgnðXkÞ
 !

with Xk :¼ cosð2πk=3ÞX þ sinð2πk=3ÞP. The operatorP2
k¼0 sgnðXkÞ=3 is the one studied by Tsirelson in ref. 4. The

best known bounds for its spectrum are given in ref. 5. Using
Equation (D20) in ref. 5, one obtains that
Φ� � �0:5þ 1:5 ´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:17491

p ¼ 0:1262. In particular, this shows
how unreliable the numerical estimation of these quantities is,
even after using a basis with 1700 number states, and thus the
importance of getting good upper bounds as well as lower
bounds.

DISCUSSION
In this work, we have investigated how the dynamics of quantum
and classical projectiles differ, using the probability of arrival at a
distant region of space as a figure of merit. We found that non-
relativistic quantum particles can arrive at a distant region with
higher or lower probability than any classical particle with the same
initial spatial support and momentum distribution. Curiously enough,
the maximum gap between quantum and classical probabilities is
independent of the distance to the arrival region, and just depends
on the mass M and spatial support L of the projectile and its flying
time ΔT through the single parameter α=ML2/ΔT.
The discrepancy between the quantum and classical arrival

probabilities is, however, limited by the Bracken-Melloy constant
cbm ≈ 0.0384517. As we showed, the maximum quantum advan-
tage of rockets with an open combustion chamber is also
bounded by this value. Our no-go result does not apply, however,
to rockets with a 1-side closed combustion chamber, which just
allows the fuel to exit the rocket opposite to its direction of
motion. Whether such rocket models are also limited by cbm, or on
the contrary, they can achieve arrival probabilities much higher
than classical is an interesting topic for future research.
In a similar direction, we showed that considerable quantum-

classical gaps of at least 0.1262 can be observed if we demand
classical projectiles to reproduce the initial position distribution of
the quantum projectile. It is an open problem whether this figure
is indeed close to the maximum quantum advantage, and
whether this effect can be exploited for real transportation tasks.
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