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Abstract: In this paper, the performance of an active neutral point clamped (ANPC) inverter is
evaluated, which is developed utilizing both silicon (Si) and gallium trioxide (Ga2O3) devices. The
hybridization of semiconductor devices is performed since the production volume and fabrication of
ultra-wide bandgap (UWBG) semiconductors are still in the early-stage, and they are highly expensive.
In the proposed ANPC topology, the Si devices are operated at a low switching frequency, while the
Ga2O3 switches are operated at a higher switching frequency. The proposed ANPC mitigates the fault
current in the switching devices which are prevalent in conventional ANPCs. The proposed ANPC is
developed by applying a specified modulation technique and an intelligent switching arrangement,
which has further improved its performance by optimizing the loss distribution among the Si/Ga2O3

devices and thus effectively increases the overall efficiency of the inverter. It profoundly reduces the
common mode current stress on the switches and thus generates a lower common-mode voltage on
the output. It can also operate at a broad range of power factors. The paper extensively analyzed the
switching performance of UWBG semiconductor (Ga2O3) devices using double pulse testing (DPT)
and proper simulation results. The proposed inverter reduced the fault current to 52 A and achieved
a maximum efficiency of 99.1%.

Keywords: power electronics; ultrawide bandgap; semiconductors; neutral point clamped; inverter;
silicon; gallium trioxide; fabrication; hybridization

1. Introduction

Silicon-based devices have primarily been used and are still dominant in developing
power inverters [1,2]. However, ultra-wide bandgap (UWBG) semiconductors have gained
a significant amount of attention in recent years [3]. As a result, Ga2O3 being a strong
candidate for UWBG devices have the potential to be profoundly applied in the various
applications in the field of power electronics ranging from Photovoltaic (PV) inverters and
UPS systems to inverters for traction and space applications, among others [4–6]. In these
power inverters, UWBG semiconductors can contribute to high efficiency, inverter size
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reduction, and high-temperature environment operation, which are unlikely to be achieved
otherwise [7]. These features of Ga2O3 devices are due to the specific properties of the
UWBG material. Gallium trioxide (Ga2O3) devices are capable of achieving these because
unlike their conventional counterpart, the blocking voltage that is rated for these devices
is nearly a hundred times higher for the same width of the drift region [8]. In addition,
the high thermal conductivity, along with the fast-switching speed are two main factors
that are offered by Ga2O3 devices to gain this advantage [3]. Though the UWBG devices
can be applied in medium power applications, the ongoing research has suggested that
these devices have great potential to be applied in high power applications with modular
multilevel inverters (MLIs) [9].

For medium-voltage-range Photovoltaics (PV), several DC-link voltages are proposed
in recent years [10,11] considering different interests. However, when efficiency and
reliability are the main concern, the 1.5kV DC-link-based PV generation system has gained
significant attention along with systems [12,13]. In addition to that, for higher efficiency in
PV systems, transformer-less configurations have shown better performance compared
to other transformer-based configurations [6]. Though many inverter topologies had
been proposed previously considering high voltage applications, a three-level neutral
point clamped (NPC) inverter is one of the most optimal inverter choices for high voltage
applications [14]. Since the clamped common-mode voltage (CMV) is enabled in this type
of topology, it minimizes leakage-current-related issues [15]. That is why, for a transformer-
less system, it is a better choice than other systems which are incorporated by leakage
current. Despite this, due to the unequal loss distribution among the switches, the NPC
inverter has issues related to neutral-point voltage imbalance, as well as a shoot-through
fault in the switching devices [16].

Various types of control strategies along with modified inverter topologies have
recently been proposed to overcome the inconveniences in the NPC inverter. Since NPC
inverters are prone to the shoot-through problem, a split inductor configuration can be used
to solve this issue [17]. It should also be noted that in addition to successfully protecting
the shoot-through fault, reduced leakage current and the eradication of CMV transitions
that are high frequency in nature, can be achieved through this inverter. However, even
though this configuration removes most of the inconveniences, it operates in a unity power
factor region. Therefore, this configuration is hardly suitable for high voltage applications
that are designed specifically for supplying reactive power to the grid. In addition to that,
the previously mentioned non-uniform loss distribution problem in the switches of the
NPC inverters still exists in these topologies.

In [18], the non-uniform current distribution was addressed, and it proposed an
active neutral point clamped (ANPC) inverter. As per the switching states of ANPC
inverters, additional redundant zero states can be gained in the ANPC inverter topology.
Therefore, unequal switching loss distribution can be mitigated if different zero states can
be appropriately exploited in the switching states of the ANPC inverter. Considering these
additional states, some notable PWM-based control techniques are employed previously
in the ANPC inverter topology [19,20]. The use of current and voltage sensors for the
selection of the redundant zero states that are available in the ANPC topology focused on
power factors. So, how the states of the inverters will be chosen is largely related to the
feedback signals of those current and voltage sensors. This solution is optimized to achieve
high efficiency in ANPC, which provides the states for the hybrid Si/Ga2O3-devices-based
ANPC topology. The high efficiency and the low cost relative to all Ga2O3 inverters can be
obtained according to researchers [21]. Recent literature has also shown promising results
using the aforementioned approach where the switching devices of the ANPC were mostly
built using wide bandgap (WBG) materials or silicon carbide (SiC) [22]. However, one fact
about their research is that they only considered low voltage applications, and the entire
ANPC inverter was built using devices from the same bandgap materials. Furthermore, one
fact about their research is that they considered the converters suitable for only low-power
applications having low voltages. Because in the case of MV applications, unlike silicon
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devices, the body diodes of Ga2O3 MOSFETs are the cause of further switching losses along
with overshoots that are significant in switching transient, the design criteria would be
different [23]. In addition to that, as the dead-band time is declined in high-frequency
devices, the severity of the shoot-through fault rises remarkably. It should also be noted
that as high-frequency switching devices are employed at the output side, an increase has
been seen in the voltage amplitude in the electromagnetic interference (EMI) frequency
range, which ultimately contributes to the increased size and complexity in EMI filters [24].

Considering the issues stated above, this study proposes a hybrid ANPC inverter
that utilizes both conventional Si and Ga2O3 devices. As a result of this hybridization, the
switching losses of the inverter are reduced significantly. The hybridization also made the
implementation of a split-output structure achievable. Thus, the proposed circuit can also
handle the switching transient overshoots. In this structure, since the UWBG switch is
decoupled externally by the parallel diode, both overshoot issues in the switching transient,
as well as switching losses, are declined significantly. These reduced overshoots ultimately
also lead to decreased voltage and current stresses on the UWBG devices. As this converter
topology is capable of supplying reactive power to loads with a wide range of power
factors, it can be used for grid-tied PV systems. The key contributions of the paper can be
listed as follows:

• Incorporating UWBG semiconductors to utilize their various advantages such as
reduced size, minimized switching transient overshoots, reduced current and voltage
stress, high-frequency switching, and efficiency;

• Hybridization with conventional Si switches to prevent high leakage current and
high-frequency switching losses;

• The split-output structure is adopted for the ANPC inverter to prevent shoot-through
current fault, reduce electromagnetic interference (EMI) on the output, and enable it
to operate under different ranges of power factors;

• Validating the performance enhancement by comparing with conventional ANPC in
terms of power losses, efficiency, fault current, and EMI.

The rest of the paper is arranged as follows. The modeling of the proposed inverter
topology is outlined in Section 2. Following this section, a characteristic and comparative
analysis of the proposed inverter and conventional ANPC is presented in Section 3, includ-
ing an analysis on fault currents, core losses, switching losses, efficiencies, EMI, and power
factors. Section 4 discusses the summary and conclusion of the manuscript.

2. Modelling of Hybrid ANPC Inverter with Ga2O3 and Si Switches
2.1. Modelling of UWBG (Ga2O3) Semiconductors

In this article, the design of UWBG semiconductors is described briefly since the
modeling and fabrication of the UWBG semiconductor is not the main objective of this
study. The UWBG switches are modeled considering the drain current and source im-
plementation [25], while the channel is isolated using the doping structure as shown in
Figure 1. The Ga2O3 parameters that are used in this study to build the proposed inverter
are demonstrated in Table 1. These parameters are only used in technology computer-
aided design (TCAD) to evaluate the conduction behavior of the Ga2O3 devices. The I-V
characteristics of these switches are shown in Figure 2.

Firstly, a Ga2O3 n-type epitaxial layer having 100 nm thickness is developed over a
β-Ga2O3 (single crystal), which is semi-insulating in nature. Secondly, A dopant with a
concentration of 2 × 1017 cm−3 is applied to dope the epitaxial layer. Tin (Si/Sn) implanta-
tion is used to form the 50 nm deep drain regions and the dopant concentration. Finally,
a metal gate of 2 µm length and a work function of 5.93 eV is implanted on the top of a
dielectric film gate with 20 nm length. The drain and gate are separated by a 4 µm gap [26].

To evaluate the performance of the Ga2O3 devices, accurate switching behavior is very
crucial. However, since the switching behavior of the UWBG devices cannot be evaluated
using TCAD, SPICE models of the Ga2O3 are required for further analysis [27]. In this
regard, the level 1 Schichman–Hodges model parameters as shown in Table 2 are extracted
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from TCAD and were used to develop the SPICE model. The model parameters along
with the switching, conduction, drain-source voltage, and drain current are implemented
in LTSpice software to build a simulation model of the Ga2O3 switching device. The
parameters that are used to build the LTSpice simulation model are shown in Table 2.
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Table 1. Parameters used in TCAD for analyzing conduction behavior of Ga2O3 switches.

Parameters Values

Bandgap energy 4.8 eV

Effective density of states at 300 K 4.45 × 1018 cm−3

Electron affinity 4 eV

Electron mobility 118 cm2/Vs
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Table 2. Parameters used in SPICE for analyzing switching behavior of Ga2O3 switches.

Parameters Values

Channel length 2 µm

Channel width 4.7 × 106 µm

Oxide thickness 20 nm

Electron mobility 118 cm2/Vs

Substrate doping 2 × 1017 cm−3

Zero-bias threshold voltage −2.25 V

Transconductance 2.79 × 10−6 A/V2

Gate-drain capacitance 4.3 × 10−11 F/m

2.2. Modelling of Hybrid ANPC Inverter

The schematic diagram of the proposed topology is depicted in Figure 3. The four
switches, namely, S1, S4, S5, and S6, are constructed by using Si-based IGBTs, which are
rated as 1.2 kV. On the other hand, the S2 and S3 switches are made by Ga2O3-based
MOSFETs of 800 V rating. The utilization of both Si and Ga2O3 devices has ensured that
the inductors can be split into L1 and L2 through these devices. In addition, it should be
noted that the diodes D2 and D3 are both Ga2O3-based Schottky diodes [28]. As illustrated
in Figure 3, the Ga2O3-based MOSFETs, i.e., S2 and S3 switches, are decoupled from D2 and
D3, and this leads to the division of the inductors. Some capacitors are series-connected in
the DC-link to make up neutral point ‘n’. There is a common portion of the two inductors
between point ‘a’ and the terminal ‘n’, and the output is taken from this portion. As it
is listed in Table 1, this inverter has six possible states. The states denoted by P and N
represent positive and negative states, respectively, and null states are referred to as O1
to O4. S2 and S3 gallium trioxide (Ga2O3) switches are operated at a higher frequency,
whereas Si IGBTs are operated in lower frequencies because it is required to maximize the
output. To exploit this, only two null states, O3 and O2, as shown in Table 3, are utilized.
More specifically, in case of the positive half cycle, the states P as well as O3 are used, and
the states N and O2 are utilized for the operation of the negative half cycle. The UWBG
is operated at a higher frequency of 100 kHz while the other four Si-based switches are
operated at a lower fundamental frequency of 50 Hz. The gate pulses for switches are
created using the level-shifted pulse width modulation (LSPWM) [29], which are depicted
in Figure 4. The S1 and S6 switches will remain ON, while switches S4 and S5 will be turned
OFF in case of positive cycle operation. On the contrary, the S4 and S5 switches will be
ON and start conducting, while the S1 and S6 switches will be turned off for the negative
half cycle.
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Table 3. Switching states for the proposed HANPC inverter.

States
Switches

S1 S2 S3 S4 S5 S6

P 1 1 0 0 0 1

O1 0 1 0 0 1 0

O2 0 1 0 1 1 0

O3 1 0 1 0 0 1

O4 0 0 1 0 0 1

N 0 0 1 1 1 0
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As illustrated in Figure 4, the LSPWM is employed for the output voltage generation.
In addition, there are three voltage levels, namely, 0.5 Vdc, 0, and 0.5 Vdc. It can be observed
from Figure 4 that the proposed inverter has four modes of operation. Mode 1 and mode 2
are for the first half cycle whereas mode 3 and mode 4 are for the negative half cycle. As
both cycles have a symmetrical operation, only mode 1 and mode 2 are discussed in this
paper as depicted in Figure 5.

2.3. Modes of Operation

As the operation is dependent on the directions of the load current, each mode has
two cases. The detailed circuit operation for mode 1 and mode 2 is shown in Figure 4.

Mode 1: In this mode, the output will be a positive voltage. A two-output load current
is possible in this case, as shown in Figure 5a,b for for iL > 0 and iL < 0, respectively. During
this mode, the gate pulse is received only by S1, S2, and S6 switches while other switches
remain OFF. In the case of iL > 0, the current will flow through the split inductor L1 because
of the ON state of the switches S1 and S2. Similarly, when the load current direction is
reversed, i.e., iL < 0, the current flows through another split portion of the inductor in L2.
The inverter output voltage will be 0.5 Vdc in this mode irrespective of the load current
direction, and it is depicted in Figure 4. Whether the load current is positive or negative,
the current through the two split inductors, i.e., L1 or L2, will always be unidirectional.
Therefore, unlike the split-NPC inverter that only can work for unity power factor because
of one load direction current, the proposed hybrid ANPC inverter due to its two different
load current direction can work on a wide range of power factors.
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Mode 2: The operation of this mode is different from mode 1 because, here, the
application of zero state, particularly O3, is performed. In other words, the state of the S1,
S4, S5, and S6 switches will be the same as mode 1, however, the state of S2 and S3 will
be changed so that zero output voltage can be obtained. It is evident that at the neutral
point, the output voltage will be clamped. The identical current flow path can be seen in
Figure 5c,d. In this case, when the load current is positive, the current will flow through
switch S6 and the split portion of the inductor L1. Similarly, for a negative load current,
the current path will be through switch S3 and other split portion L2 of the inductor. The
analytical study for the inverter will be presented in the next section.

3. Performance Analysis, Results, and Discussions of Hybrid ANPC Inverter

By analyzing the switching states given in Table 3, the value of the output voltage
can be derived. Since the output terminal has split inductors, the voltage depends on the
variation in the inductor current. This ultimately means that if the rate of current change
is large, the output voltage will see a decline because of the losses associated with the
inductors. Therefore, the output voltages of the proposed inverter can be derived by using
(1) and (2) for the positive half cycle and negative half cycle, respectively:

Van = 0.5 × S2VDC − L1
di
dt

(1)

Van = L1
di
dt

− 0.5 × S3VDC (2)

It is noticeable that as the current passes through S2 and S3, the current stress (di/dt)
is declined considerably because of using Ga2O3 based switches. If (1) is utilized, then
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the rate of change of current through S2 for state transition from O3 state to P state can be
calculated by:

di = 0.5 × S2VDC × dt
L1

(3)

Here, dt is denoted for the time interval for the S2 switch to transit from O3 state to
P state. Typically, the turn ON (ton) time for each switch, including both Si and Ga2O3
switches will be comprised in this period. The nominal value of dt is acquired from the
manufacturer’s datasheets for Si-based switches, whereas for Ga2O3, the information is
obtained from [30]. The summary is demonstrated in Table 4. It is clear from expression
(3) that the di/dt stress is inversely proportional to the value of the first split inductor (L1).
This also pointed out the fact that as Ga2O3 switches have little ton time (approximately
28.6 ns), the split inductance (L1) value would be proportionally small to constrain the
current stress of the ANPC inverter. Therefore, the voltage drop across L1 would also be
comparatively smaller than the DC-link voltage under steady-state operation. In addition
to the reduced di/dt stress and voltage drop, under steady-state operating conditions, the
inverter will experience reduced power loss across the inductor. Furthermore, as illustrated
in Figure 1, the split inductors (L1 and L2) are contributing to decoupling Ga2O3 switches
S2 from D2 as well as S3 from D3. The overshoots are significantly damped out because of
this decoupling.

Table 4. Switching parameters of Si and Ga2O3 switches.

Model

Switching Parameters

Rated Voltage
(Vr)

Rated Current
(Ir)

Turn on Time
(ton)

Turn off Time
(toff)

IGW15T120FKSA1
(Si IGBT) 1200 V 15 A 50 ns 502 ns

Ga2O3 switch 800 V 20 A 28.6 ns 94 ns

Ga2O3 Schottky diode 1700 V 25 A - -

The common-mode voltage (CMV) of the hybrid ANPC inverter with 100 V DC-link
can be calculated as follows:

Van = 0.5 × 100 − 1 × 10−6di
28.6 × 10−9 = 50 − 34.96di. (4)

The CMV of the conventional ANPC inverter with 100 V DC-link can be calculated
as follows:

Van = 100 − 1 × 10−6di
50 × 10−9 = 100 − 20di. (5)

It can be observed that for a certain value of di, the CMV of hybrid ANPC is almost
64.96% less than the CMV of conventional ANPC.

3.1. Analysis of Shoot through Fault Protection

In the proposed inverter, the complimentary operation of S2 and S3 at high switching
frequency may result in the false turn-on of the switches [30]. Since Miller capacitance is
present in all switches, the stored charge in it can cause the false turn ON of S3. If both
switches are in the ON state at the same time, the positive DC link voltage may become
shorted in a positive half cycle of operation. The same thing is true for negative voltage
during the negative half cycle. MOSFETs, in contrast to bipolar devices such as IGBTs,
cannot endure overcurrent. Although shoot-through fault can happen in any switching
device, since UWBG devices such as Ga2O3 switches are operating in this inverter at a very
high frequency, they are more prone to this fault [31]. The issue is overcome by restricting
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the rate of the rising fault current using the split inductors. Hence, the proposed inverter
configuration offers zero dead-band between S2 and S3.

To observe the impact, the shoot-through fault is allowed to happen on purpose when
transitioning from the zero state O3 to the state P. The fault current (If) is allowed to pass
through S2 and can be determined by:

I f (t) =
0.5 × VDC

Req + R1 + R2

(
1 − e

−t(Req+R1+R2)
Leq+L1+L2

)
(6)

Here, t is the time interval when shooting through the fault is allowed to happen,
the resistances of L1 and L2 are denoted by R1 and R2, respectively, and, Req and Leq are
the equivalent resistance and inductance of the printed circuit board (PCB) path. Req and
Leq are required to calculate the maximum allowable time of shoot-through fault for a
selected PCB.

The values of Req and Leq are calculated to be 0.245 Ω and 187 nH, respectively, from
the information given for PCB in [32,33]. Thus, the maximum allowable time is 21.06 ns for
the selected design which is, in fact, lower than the turn OFF time of the Ga2O3 devices.
In addition, the overcurrent limit for the design is 80 A. Therefore, before the switch S2 is
turned off (with toff = 94 ns), the switch S3 will be turned on falsely and can cause device
failure. This issue is resolved by allowing a shoot-through time which is almost twice
the turn OFF time of the Ga2O3 devices by using 1 uH split inductors. The numerical
calculations can be realized by:

For conventional ANPC with split inductors,

I f (t) =
600

0.245 Ω

(
1 − e

−1004 ns ×0.245 Ω
2.187 µH

)
= 260.52 A (7)

For the proposed hybrid ANPC with split inductors,

I f (t) =
600

0.245 Ω

(
1 − e

−188 ns ×0.245 Ω
2.187 µH

)
= 51.04 A (8)

A simulation is conducted to determine the shoot through fault current of the proposed
inverter by taking into consideration all the parasitic elements of the presented inverter
circuit. Accordingly, the shoot-through fault’s current paths are illustrated for both the
positive and negative half cycle in Figure 6a,b, respectively. The simulation results are
shown in Figure 7, and it can be observed that they are almost similar to the calculated
values. It can be observed that in the case of the proposed inverter, the fault current is
within the limit. This validates the predominance of the UWBG device as well as the
hybridization that has been utilized in this article. It is worth noting that the fault current
can be reduced for the conventional ANPC by increasing the value of the split inductors.
However, it will incur more inductor core losses into the system and will eventually reduce
the inverter’s efficiency, making it radically unsuitable for industrial applications.

3.2. Analysis of Core Losses

The core losses of the proposed inverter are calculated in this section by considering
the split inductors. The parameters which are considered for the proposed inverter’s
inductor design are listed in Table 5. The permissible losses in the copper winding are
computed for the chosen core, with the required product area, which is the product of the
window area (Wa) and the core area (Ac):

Wa × Ac =
LImax Irms

KtBmax jmax
(9)
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Table 5. Parameters for designing the split inductors.

Parameters Nomenclature Values

Inductor L1 = L2 1 µH

Maximum current Imax 42 A

RMS current Irms 35 A

Topological constant Kt 0.3

Maximum flux density Bmax 160 mT

Maximum current density jmaz 5 A/mm2

Product area Wa × Ac 0.002 cm4

Here, L is one of the split inductors, Imax is the maximum current flowing through
the inductor, Irms is the rated RMS current, Kt is the topological constant, Bmax is the
maximum flux density, and jmax is the maximum current density of the inductor. Although
for complete accuracy the optimum loss for copper should be measured, the maximum
permissible copper loss is calculated in this section because of the minimal difference
between the accurate and approximate values, as well as for simplicity. Thus, the maximum
allowable copper loss is used to measure the efficiency. The product area value obtained
from (9) is used to determine the thermal resistance Rth by utilizing the data from [33],
assuming that the core temperature is increasing by 50 ◦C:

Rth = 17.45(Wa × Ac)
−0.509 + 0.416 °C/W (10)

After the thermal resistance is calculated, this can lead to the measurement of maxi-
mum possible core loss (PCu) for a particular temperature rise ∆T, and it can be determined
by the following equation:

PCu =
∆T
Rth

(11)

The measurement of the copper winding loss can be performed for the split inductors
by utilizing (9) to (11). Because of the minimal values of the product area, a large core
size is selected for the practical design. The core losses for the selected material from
Magnetics [34] are plotted using the values given in [33] in Figure 8 for the selected
core volume.

Micromachines 2021, 12, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 8. Core loss induced by the inductors under different switching frequencies. 

3.3. Analysis of Switching Losses 
Although it is already clear that the use of split inductors in the hybrid ANPC module 

is a major source of loss in steady-state operation, the inherent nature of the hybrid ANPC 
inverter is also responsible for the additional losses. The use of Ga2O3 switches S2 and S3 
is a viable solution for this topology because these UWBG switches help to reduce the 
switching losses. Therefore, to quantify the improvement, it is essential to know how 
much loss is reduced after the addition of the UWBG switches. 

For switching loss measurement, double pulse testing (DPT) [30] is conducted. The 
DPT circuit used for the switching measurement is illustrated in Figure 9. The parasitic 
inductors in the PCB path are denoted by Lp1, Lp2, and Lp3; the series inductor in the DC 
link is denoted by Ls; and the output inductor is denoted by Lo. Similarly, the drain to 
source capacitance of Ga2O3 switches and the anode–cathode capacitance of the Ga2O3 

Schottky diode are indicated as Cds and Cac, respectively. The output inductance is meas-
ured following [30] while Lp1, Lp2, and Lp3 are measured following [33]. All the calculated 
values are listed in Table 6. 

 
Figure 9. DPT circuit of the hybrid ANPC inverter with parasitic elements. 

Table 6 after putting these values in LT Spice, the simulation is conducted and switch-
ing transients are calculated. 

+
-

V D
C 

/2
 

V D
C 

/2
 

n

a

S1

S2

S3

D2

S5

S6

DS2 Cds Cac

D3 Cac

DS3 Cds

Lp1 Lp2

L p
3

Lp1 Lp2

L p
3

Ls

Ls Lo

VDC

S4

L1

L2

Figure 8. Core loss induced by the inductors under different switching frequencies.



Micromachines 2021, 12, 1466 12 of 19

3.3. Analysis of Switching Losses

Although it is already clear that the use of split inductors in the hybrid ANPC module
is a major source of loss in steady-state operation, the inherent nature of the hybrid ANPC
inverter is also responsible for the additional losses. The use of Ga2O3 switches S2 and
S3 is a viable solution for this topology because these UWBG switches help to reduce the
switching losses. Therefore, to quantify the improvement, it is essential to know how much
loss is reduced after the addition of the UWBG switches.

For switching loss measurement, double pulse testing (DPT) [30] is conducted. The
DPT circuit used for the switching measurement is illustrated in Figure 9. The parasitic
inductors in the PCB path are denoted by Lp1, Lp2, and Lp3; the series inductor in the DC link
is denoted by Ls; and the output inductor is denoted by Lo. Similarly, the drain to source
capacitance of Ga2O3 switches and the anode–cathode capacitance of the Ga2O3 Schottky
diode are indicated as Cds and Cac, respectively. The output inductance is measured
following [30] while Lp1, Lp2, and Lp3 are measured following [33]. All the calculated
values are listed in Table 6.
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Table 6. Parameters for DPT testing.

Equipment Nomenclature Value

Inductors

Ls 36.15 nH

Lp1 11.6 nH

Lp2 19.16 nH

Lp3 11.6 nH

Lo 1200 uH

Capacitors
Cds 171 pF

Cac 80 pF

Table 6 after putting these values in LT Spice, the simulation is conducted and switch-
ing transients are calculated.

The DPT test is performed repeatedly for different load currents and switching volt-
ages to emulate practical scenarios. The data obtained from DPT are used to measure the
energies required for the turning ON and turning OFF of the switches by using simulation,
and they are referred to as Eon and Eoff, respectively. Figure 10 illustrates the measured
switching energies for both the conventional and the proposed inverter topologies. Though
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the energy consumption in the ideal switch should be zero, the semiconductor switches are
hardly ideal, and thus, from these curves, it can be observed how switching energies rise
when the load current increases. In addition, it is evident from these curves that the use of
Ga2O3 switches has greatly contributed to reducing both the turn-on and turn-off switching
energies. The simulated waveform shown in Figure 11 represents the minimization of
switching losses with the utilization of Ga2O3 switches. It can be observed from Figure 11a
that when S2 is turned on, the switching current has increased as soon as the gate pulse
is applied. In other words, since conventional Si switches have a slow turn-on time, an
overshoot current of 43 A is caused by Cac of D3. On the contrary, the Ga2O3 switches
have a very fast turn-on time, which is why the overshoot current in this case significantly
declined as shown in Figure 11c. This phenomenon also implies that due to the decreased
overshoot, a faster decrease in switching voltage across the switch S2 in the case of the
proposed inverter leads to decreased loss. In the case of turn-off, an almost similar event
occurs in both case 1 and case 2, which are illustrated in Figure 11b,d, respectively. In this
case, it can be observed that an overvoltage spike of almost 630 V is experienced by the
conventional inverter compared to the 560 V spile of the hybrid.
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ANPC inverter. This has resulted in higher turn OFF losses incurred by the conven-
tional inverter. Although the margin of differences between the conventional inverter and
the hybrid ANPC for turn OFF losses is very close, the overall switching losses of hybrid
ANPCs are significantly lower because the turn ON losses are more dominant.

3.4. Analysis of Efficiency

The efficiencies of switching losses, conduction losses, and split-inductors losses are
considered. The switching energies obtained from the DPT test are used for switching
loss calculation. In case of switching loss, turn ON loss Pon and turn OFF loss Poff are
determined by:

Pon = fs × Eon (12)

Po f f = fs × Eo f f (13)

where the switching energies Eon and Eoff can be determined by:

Eon = Is × xon (14)

Eo f f = Is × xo f f (15)
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The equations for xon and xoff can be mathematically expressed by:

xon = x1on × Is
2 + x2on × Is + x3on (16)

xo f f = x1o f f × Is
2 + x2o f f × Is + x3o f f (17)Micromachines 2021, 12, x FOR PEER REVIEW 14 of 20 
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Here, the constants x1on, x2on, x3on, . . . . . . are representative of the constants that
are used for curve fitting shown in Figure 10. Additionally, the conduction losses are
calculated using the manufacturer’s datasheet curves for different load currents in the case
of conventional Si switches, whereas, for Ga2O3 switches, it has been obtained from the
information provided in [35]. The expressions obtained from these curves are:

Pc = x4 × Is
2 + x5 × Is (18)

where x4 and x5 are the constants for the curve fitting of Figure 10. Furthermore, the core
losses from the split inductors are determined using the curves shown in Figure 8 and the
information provided in [34].

In this paper, the losses of both conventional ANPCs as well as the proposed hybrid
ANPC inverter are calculated considering different loads. In addition, three switching
frequencies are considered to compare the loss behavior of the configurations, as shown in
Figure 12. It can be validated from Figure 12 that because of using UWBG switches and
due to reduced switching losses, the proposed inverter’s efficiency in all cases is much
higher compared to the conventional Si-based ANPC inverter.
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3.5. Analysis of High-Frequency Transient in Output Voltage

Along with the advantages of the conventional ANPC inverter, the proposed inverter
can reduce high-frequency switching noise in the output voltage. This high-frequency
noise primarily contributes to electromagnetic interference (EMI) issues and also has
some impacts on the operation of the gate driver [24]. In addition, the incorporation
of the two split inductors, i.e., L1 and L2, in the proposed inverter topology makes it
possible to decrease the high-frequency transients considerably because of the filter of the
transients by the inductances. Thus, the size of the electromagnetic compatibility (EMC)
filter becomes significantly smaller. This statement can be validated by using (1) and (2).
If any sudden change has occurred in the output voltage of the presented inverter, that
impact will be damped by the inductance’s inherent capability to oppose any sudden
change in current. The blocking voltage is tuned according to the values of the split
inductor. For the proposed design, as the inductance value was 1 uH for the split inductor,
the output voltages’ harmonic spectra can be illustrated for both conventional ANPCs
and the proposed hybrid ANPC inverter through LT Spice simulation, as is illustrated in
Figure 13. It can be seen that the final range of the high-frequency transient will be 5 to
15 MHz. This is due to the damped high-frequency voltage in this frequency range by the
split-inductors. Thus, the added split inductors for the shoot-through protection also help
to reduce the EMI filter size.
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The cross-sectional area (A) of an EMI Filter for the hybrid ANPC with 100 kHz
switching frequency can be determined by:

A =
2πrL

µ0µr N2 =
2π × 0.1 × 0.5 × 10−6

1.2566 × 10−6 × 6000 × 400
= 1.04 × 10−7m2 (19)

Here, r, µ0, µr, and N represent the toroid radius to centerline, the magnetic constant,
the relative permeability of Mn–Zn ferrite, and the number of turns, respectively. Simi-
larly, the cross-sectional area of the EMI filter for a conventional ANPC can be calculated
as follows:

A =
2πrL

µ0µr N2 =
2π × 0.1 × 20 × 50 × 10−9

1.2566 × 10−6 × 6000 × 400
= 2.08 × 10−7m2 (20)

Thus, it can be observed that the size of the EMI filter for the proposed ANPC inverters
becomes halved compared to the conventional ANPC inverter due to the usage of split
inductors. Furthermore, the relative permeability versus the switching frequency curve for
Mn–Zn ferrite is shown in Figure 14. It is noticeable that with higher switching frequency,
the relative permeability tends to decrease logarithmically. Therefore, the cross-sectional
area of the EMI filter will increase with a higher switching frequency.

Micromachines 2021, 12, x FOR PEER REVIEW 17 of 20 
 

 

(CMV). It can be observed that the CMV is always constant at 100 V and it does not contain 
any ripples of high frequency. Thus, the leakage-current-related issues can also be solved 
using this topology. 

 
Figure 14. Relative permeability of Mn Zn ferrite under different switching frequencies. 

 
(a) (b) 

Figure 15. Simulation results for the hybrid ANPC inverter for the output voltage (Van), current (Ian) 
and common-mode voltage (CMV) with (a) unity power factor, (b) non-unity power factor. 

4. Conclusions 
To sum up, this paper presents a three-level hybrid ANPC topology that includes 

Ga2O3-based MOSFET as well as Si-based IGBTs. This inverter has split inductors at the 

100

1000

10000

10 100 1000 10000

Re
la

tiv
e 

Pe
rm

ia
bi

lit
y

Switching frequency (kHz)

Figure 14. Relative permeability of Mn Zn ferrite under different switching frequencies.

3.6. Analysis of Operation at Various Range of Power Factors

The MATLAB/Simulink version of the proposed hybrid ANPC inverter is developed
in this section to validate that it can operate in various ranges of power factors. LTSpice
simulation is not required in this case since this feature is embraced by the proposed inverter
due to implementing the split-inductors-based design, and this feature is not associated
with using UWBG switches. Thus, for operational simplicity, MATLAB Simulink along
with ideal MOSFETs and IGBTs are used to develop the proposed inverter. The output
voltage and current waveforms are obtained for the proposed topology using a 200 V DC
link. Thus, a voltage of 100 V will come across each DC-link capacitor. The simulation
tests are repeated with the loads with non-unity power factor. To show the applicability
of the proposed converter compared to the existing topologies. The results show the
non-distorted waveforms for voltage and currents. The results for output voltage Van
and load current Ian are shown in Figure 15. Furthermore, the voltage across one DC-link
capacitor is also shown, which indicates the nature of the common-mode voltage (CMV).
It can be observed that the CMV is always constant at 100 V and it does not contain any
ripples of high frequency. Thus, the leakage-current-related issues can also be solved using
this topology.
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4. Conclusions

To sum up, this paper presents a three-level hybrid ANPC topology that includes
Ga2O3-based MOSFET as well as Si-based IGBTs. This inverter has split inductors at the
output, which are not only capable of protecting against the shoot-through fault but can
also contribute to the reduced EMI in the output voltage. To maximize the efficiency of our
converter, as well as to maximize the benefit of the Ga2O3 switches, both the modulation
technique as well as four modes of operation are discussed in this paper. The efficiency of
both the conventional ANPC and the proposed hybrid ANPC inverter is measured and
compared through LT Spice and MATLAB simulations. It was observed that under various
switching frequencies and output power, the minimum efficiency was 96.8%, whereas a
99.1% maximum efficiency was obtained by the proposed inverter. The employability of
the proposed module is analyzed by taking into consideration the reduced overshoots in
switching waveforms, higher efficiency, lower current, voltage stress, minimized shoot-
through current, and EMI. Eliminating the dominating switching losses, especially turn-on
losses, as well as the addition of UWBG switches, contributes to an increase in efficiency.
In addition, to validate the inverter’s capability to supply reactive power, the module
was operated under both various load conditions by changing the power factors. The
simulation result acquired from the proposed module coincides with the theoretical results.
The following is a list of the manuscript’s concluding statements:

• The proposed inverter incorporated UWBG-based Ga2O3 switches, which contributed
to its enhanced efficiency and reduced switching losses.

• The Ga2O3 switches of the inverter make it a suitable candidate for high voltage, high
temperature, and high switching operation.
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• A maximum efficiency of 99.1% is obtained, making this inverter suitable for applica-
tions in grid-tied PV structures.

• The minimized EMI and fault current, because of the split-inductors-based design,
allowed this inverter to be utilized in sophisticated industrial applications.

This study applies UWBG switches for ANPC inverters considering the technical
pros and cons. Since the fabrication and production of UWBG semiconductors are still in
their early phase industrially, experimental verification of the proposed inverter will be
considered in the future. In the future, UWBG devices have great potential in the field of
power electronics because of their superior characteristics over wide bandgap (WBG) and
conventional semiconductors. Thus, researchers can utilize this opportunity to incorporate
UWBG devices in other inverters/converter topologies and power electronic applications.
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