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A B S T R A C T   

Fast-growing smart city applications, such as smart delivery, smart community, and smart health, are generating 
big data that are widely distributed on the internet. IoT (Internet of Things) systems are at the centre of smart city 
applications, as traditional cloud computing is insufficient for satisfying the critical requirements of smart IoT 
systems. Due to the nature of smart city applications, massive IoT data may contain sensitive information; hence, 
various privacy-preserving methods, such as anonymity, federated learning, and homomorphic encryption, have 
been utilised over the years. Furthermore, limited concern has been given to the resource consumption for data 
privacy-preserving in edge computing environments, which are resource-constrained when compared with cloud 
data centres. In particular, differential privacy (DP) has been an effective privacy-preserving method in the edge 
computing environment. However, there is no dedicated study on DP technology with a focus on smart city 
applications in the edge computing environment. 

To fill this gap, this paper provides a comprehensive study on DP in edge computing-based smart city ap-
plications, covering various aspects, such as privacy models, research methods, mechanisms, and applications. 
Our study focuses on five areas of data privacy, including data transmitting privacy, data processing privacy, data 
model training privacy, data publishing privacy, and location privacy. In addition, we investigate many potential 
applications of DP in smart city application scenarios. Finally, future directions of DP in edge computing are 
envisaged. We hope this study can be a useful roadmap for researchers and practitioners in edge computing 
enable smart city applications.   

1. Introduction 

The term “smart city” was initially introduced in 2012 [1], with the 
goal of leveraging information and communication technologies to 
enhance the functioning of urban areas. Over the past decade, the 
development and implementation of smart city initiatives have prolif-
erated, as evidenced by the rapid growth of smart home systems [2], 
smart healthcare systems [3,4], smart manufacturing service systems 
[5], intelligent transportation systems [6,7], and other similar projects. 
Meanwhile, advanced computing technologies are required to address 
issues, such as processing massive volume of data produced by the large 
number of IoT (Internet of Things) devices accessing the network. While 
cloud computing based on large-scale centralised server clusters has 
enabled the large-scale commercial use of the internet, enterprise IT, 

and smartphones, it has been shown to be insufficient for meeting the 
requirement of rapidly growing smart IoT systems due to issues, such as 
high response delay or limited bandwidth on the terminal side. In recent 
years, edge computing has emerged as a promising computing paradigm 
for smart IoT systems [8,9]. Table 1 summarizes the major factors that 
make edge computing an ideal computing infrastructure for smart IoT 
systems. Specifically, edge computing can effectively reduce the delay of 
the computing system and data transmission bandwidth, alleviating the 
pressure on centralised cloud data centres [10]. 

Edge computing offers the potential to offload some computation 
tasks of smart city applications from IoT devices to the edge of the 
network where abundant resources are available [11–14]. However, 
given the nature of smart city applications, many computation tasks may 
involve sensitive information and individual users’ private data, making 
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data privacy a crucial concern for edge computing. For example, a study 
analyzing friendship association accurately predicted the sexual orien-
tation of Facebook users by examining 4080 Facebook profiles from the 
MIT network [15]. Additionally, cybercriminals may exploit users’ pri-
vate information for targeted social engineering attacks [16]. As such, a 
data privacy protection solution is essential for a secure smart IoT sys-
tem [12,17]. 

In recent years, with the emergence of edge computing technology, 
many researchers have started to investigate the privacy protection issue 
for edge computing. Existing technologies on privacy protection in edge 
computing mainly focus on DP [18–20], homomorphic encryption [21, 
22], secure multiparty computing [23], and verifiability and auditability 
[24]. In this work, we focus on DP applications in five specific areas, 
including data transmission, data processing, data model training, data 
publishing, and location privacy, for smart city application scenarios 
based on edge computing. The reason for this is that the first four areas 
are typical data management stages, and location privacy is the most 
representative privacy issue in edge computing-based smart city 
applications. 

In 2006, Dwork [25] proposed a privacy-preserving mathematical 
model to prevent differential attacks. The definition of DP does not 
depend on the attackers’ background knowledge, and the technology is 
extensively applied in machine learning [26–28], data mining [29,30], 
deep learning [31–33], etc. The prominent advantages of DP are mainly 
the following three aspects. First, the attackers’ background knowledge 
does not need to be considered. Second, the technology contains 
rigorous proof and a quantitative expression for privacy breach risk. 
Third, the dataset privacy is protected to a great extent by adding a few 
bits of noise, that is, the volume of noise added has nothing to do with 
the data sets’ size. Currently, existing studies/reviews related to DP can 
be classified into four categories as summarised in Table 2. To the best of 
our knowledge, this paper is the first study on DP technology in smart 
city application scenarios based on edge computing. 

In summary, this study has made the following major contributions. 

●We comprehensively review the existing studies on the application 
of DP methods in edge computing-based smart city applications.  

● We summarise and classify the security and privacy issues for edge 
computing-based smart city applications.  

● We propose important future research directions of DP for edge 
computing-based smart city applications. 

The rest of this paper is organised as follows. The research method-
ology for this paper is described in Section 2, and the main contents 
include the question description, data exploration, and article selection. 
Section 3 presents the basic concepts in this study, including the 

definition of edge computing, the definition of DP, and its mechanism. In 
Section 4, we enumerate the typical privacy challenges for edge 
computing-based smart city applications. Section 5 reviews the privacy- 
preserving technology and the advantages of DP in the environment of 
edge computing. In section 6 we summarise the application and imple-
mentation of DP for the smart city applications for edge computing. 
Section 7 envisages future directions, including anomaly detection and 
data attack defence. Finally, Section 8 concludes the paper. 

2. Research methodology 

In this section, we present the method for searching appropriate 
articles on DP for the smart city applications based on edge computing, 
including index content description, data exploration, and article 
selection. 

2.1. Index content description 

This study aims to explore the features and methods in the research 
articles with the main challenges associated with data privacy in the 
edge computing environment and smart city applications. Specifically, 
we focus on 5 index contents in this study, as shown in Table 3. 

2.2. Data exploring and article selection 

Articles pertinent to DP in the edge computing environment or smart 
city applications can be explored in mainstream academic databases, 
such as, for example, Google Scholar, the Institute of Electrical and 
Electronics Engineers (IEEE) Xplore, Springer Link, ACM Digital Library, 
etc. Fig. 1 shows the detailed distribution of the total 1397 articles found 
between 2014 and May 2023. As depicted in the figure, the majority of 
articles were published between 2019 and 2023, with 2023 having the 
highest proportion of published articles. 

In order to identify the most relevant articles for our study, we 
developed a selection criteria and evaluation framework, which is 
depicted in Fig. 2. Firstly, we considered all articles related to smart city 
and edge computing published between 2019 and 2023. Secondly, we 
examined the articles with respect to their relevance to data privacy and 
security, and excluded those that were not relevant. This led to a set of 
228 articles related to DP out of the initial 336 articles. Within this set, 
94 articles focused on LDP, while the remaining 134 articles focused on 
DP. We note that while we primarily discuss the 228 articles related to 
DP in our analysis, we also provide a comprehensive overview by dis-
cussing some of the articles that were removed during the selection 
process. Fig. 3 illustrates the distribution of relevant articles on smart 

Table 1 
Major factors of choosing edge computing for smart IoT systems.  

Factors Description 

Capacity To transmit more and more data generated by extensive connected 
devices to the cloud service with a centralised location, it needs super 
bandwidth and return capacity. However, edge computing and local data 
processing can reduce the amount of data to be transmitted. 

Cost There are costs associated with transmitting large amounts of data over 
long distances. In addition, huge amount of data generated by many 
devices may not be related to business, so it does not need to be 
transmitted to the central processing centre. 

Analysis Data are the basic asset of the digital economy. Edge computing 
technology having the ability to convert data into real-time (or near real- 
time) for analysis and operation. 

Security Many companies and users may not want sensitive data to leave the field 
or their servers. 

Delay Although 5G has a lower delay than 4G, it is difficult to achieve very low 
delay in long-distance and multi-hop networks. 

Elastic Edge computing can provide more communication paths than a 
centralised mode. This kind of distribution can better guarantee the 
flexibility of data communication.  

Table 2 
The categories of differential privacy study.  

Categories Contents Years Ref. 

Network Social Network Analysis 2021 [34] 
Cyber Physical Systems 2019 [35] 

Machine Learning Utility and Private 2020 [36] 
2014 [37] 

Big Data Cryptography 2021 [38] 
Data Release 2012 [39] 
Decision Tree 2019 [40] 
Data Aggregation 2018 [41] 
Location Pattern Mining and Health Data 2020 [42] 

2013 [43] 
Statistical Estimators 2010 [44] 

2008 [45] 
Utility and Private 2021 [38] 

2016 [46] 
2014 [47] 

Data Mining 2020 [36] 
2017 [47] 
2014 [48] 

Other Shuffle Model 2021 [49]  

A. Yao et al.                                                                                                                                                                                                                                     



Array 19 (2023) 100293

3

city and edge computing, classified into five categories: thesis, confer-
ence, study/review, editorial material, and online publishing/Web-
pages. The highest numbers of papers were published from 2019 to 
2023, followed by conference papers. Fig. 4 shows the distribution of the 
228 selected articles among DP and LDP. The figure indicates that the 
number of articles on DP is always higher than that on LDP and that 
2023 had the largest number of articles. 

3. Background 

In Section 3, the definition of edge computing and some related 
terminologies are introduced; then, we introduce the definition and 

mechanisms of differential privacy. 

3.1. Definition of edge computing 

The formal definition of edge computing was first described by the 
European Telecommunications Standards Institute (ETSI). 

Definition 1. (Edge Computing) [50] Edge computing affords an 
environment of IT service and cloud computability at the mobile 
network edge of the radio access network (RAN) and approximate to 
mobile clients. 

Fig. 5 shown is the full edge computing architecture which is con-
sisted of edge devices, edge network, edge computing centre, and a core 
infrastructure. Edge devices, for instance, mobile phones, computers, 
and servers are responsible for receiving the instruction from and 
reporting data back to the smart gateway. The interconnection of IoT 
devices and accelerometers are realised by fusing several communica-
tion networks. The edge computing centre provides calculation, storage, 
and network forwarding resources. The core infrastructure affords 
computing services and management functions for mobile edge devices 
besides a core network. The core network mainly includes the internet, 
mobile core network, centralised cloud service, and data centre. 

Edge computing is a new and innovative computing exemplification. 
Edge computing uses an open framework that provisions resources to 
the end devices from the network edge, which integrates network, 
computing, and storage and application services. Hence, edge 
computing can play a substantial role in smart city applications, for 
instance the deployment of network video cameras, the construction of 
intelligent sensing system platforms, data acquisition, transmission, and 
processing. To provide readers with a better understand the concept of 
edge computing, we summarise some representative terminologies 
[51–54] in Table 4. The related terminologies are often applied in smart 
city scenarios. 

3.2. Differential privacy 

DP is a technique that enables accurate data queries from a statistical 
database while minimizing the risk of identifying individual records 
[25]. Unlike other privacy protection methods, DP focuses on safe-
guarding the privacy of each individual record rather than the entire 
dataset [55]. Currently, DP research is primarily focused on protecting 
location privacy [20,56–58], data analysis [59–61], developing mech-
anisms [62–64], and exploring the application of federated learning 
[65–67]. For example, Miao et al. [56] devised a DP algorithm with the 
quad-tree based on Hilbert curve division to reduce the limitation of 
computing resources in the edge node. They built a noise query tree, and 
segmenting the privacy budget based on the noise tree. The retrieval 

Table 3 
Index contents.  

Index Contents Brief Description 

IC1: The typical privacy issues and 
challenges in smart city applications 
for the edge computing. 

The typical privacy issues could be 
classified into network, data, 
infrastructure, and application. The 
index content is detailed in the 
description in Section 4. 

IC2: The privacy-preserving 
techniques, and the advantage of 
the differential privacy method 
applied in the edge computing 
environment based smart IoT 
system. 

Reviewed articles considered 
differential techniques to achieve the 
privacy protection mechanism. The 
existing privacy protection methods 
contain DP, secure multipart 
computing, private information 
retrieval, etc. The advantages of DP are 
enhancing data availability, reducing 
the computation complexity, etc. The 
index content is detailed in a description 
in Section 5. 

IC3: The adoptions of the edge 
computing environment are 
considered in the differential 
privacy method research. 

Some existing methods are general- 
purpose, but some methods are 
particularly suitable for specific types of 
applications. This relevant information 
is available to researchers and 
practitioners. The index content is 
detailed in a description in Section 6. 

IC4: The experiment platforms/tools, 
datasets, and evaluated metrics are 
applied to implement the DP 
mechanism or algorithm. 

The reviewed articles might apply 
various experimental platforms/tools to 
implement the DP mechanism or 
algorithm. Their datasets and 
evaluation metrics are summarised. The 
index content is detailed in a description 
in Section 6. 

IC5: The future research directions of 
DP methods in the edge computing 
environment. 

The directions for future research of DP 
methods for the smart city applications 
based on edge computing include data 
anomaly detection, data attack defence, 
and others. The index content is detailed 
in a description in Section 7.  
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Fig. 1. Distribution of published articles with smart city and edge computing by year.  
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efficiency was greatly improved by the Hilbert curve. Nie et al. [59] 
proposed a DP tensor computing model to solve data analysis security 
problem in SDN-based IoT. In the tensor computing model, DP is used to 
protect data privacy transmitted to the cloud layer. Zhang et al. [20] 
designed a lightweight DP protection mechanism in order to solve the 
privacy leakage issue of location model training. They extended ε-DP 
theory to mature machine learning localisation technology, imple-
mented privacy protection in training localisation model. In a highly 

untrustworthy environment Guo et al. [62] proposed a mechanism 
named online multi-item double auction (MIDA) to solve the method of 
allocating finite edge servers to IoT devices They improved the MIDA 
mechanism on the basis of DP to protect sensitive information from 
being compromised. Zhang et al. [65] put forward a federated learning 
framework supported by mobile edge computing that integrates the 
model partition technique and DP simultaneously. They reduced the 

Fig. 2. Selection criteria and evaluation framework.  

Fig. 3. The distribution diagram of article type by year.  

Fig. 4. The distribution diagram of articles with DP and LDP by year.  
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heavy computational cost of deep neural network training on edge de-
vices and provided strong privacy guarantees. In this framework, the 
updated edge data from a device to server are protected through the DP 
method perturbation. 

3.2.1. DP-related definitions 
In this paper, we consider X with size |X | is a limited data universe. 

D and D′ named neighbouring datasets if |DΔD′

| ≤ 1, where the two 

datasets are form X with unordered and finite. That’s mean the 
neighbour dataset differing in one element for two datasets. In addition, 
a query stream is denoted as F and there is m queries (fi ∈ F, i = 1, 2, ...,
m), where query function f is a map D to the range R : 

f : D→R 

The purpose of DP is to make attackers less certain about whether an 
individual is in the dataset after observing the results of a query f . 

Definition 2. (Differential Privacy) [25]: For any two neighbour 
datasets D and D′ , a function with randomised algorithm M guarantees 
differential privacy for arbitrarily output subset S ⊆ Range(M ) if M 

satisfies: 

Pr[M (D) ∈S ] ≤ eε ×Pr[M (D′

) ∈S ] + δ  

where the range for resultant of randomised algorithm M denoted 
Range(M ) and a privacy parameter is denoted ε. The parameter controls 
the privacy degree of the mechanism. If δ = 0, M is ε-differential pri-
vacy. The schematic of DP is shown in Fig. 6. For two neighbour datasets 
D and D′ , the probability ratio of the output S by the mechanism M is 
running are all less than eε. 

Definition 3. (Privacy Loss) [68]: The observed value ξ produces 
privacy loss is denotes as: 

L
(ξ)
M (x)‖M (y) = ln

(
Pr(M (x) = ξ)
Pr(M (y) = ξ)

)

The privacy loss reacted to the degree of protection with algorithmic 
M is, in other words, if the probability distributions of M (D) and M (D′

)

are greater, the privacy loss is larger. On the contrary, the privacy loss is 
smaller. 

Definition 4. ((α,β)-Accuracy) [68]: A query release mechanism M is 
(α, β)-accuracy concerning queries f ∈ b if every database x, with 
probability at least 1 − β, the output of the mechanism M (x) satisfies: 

max
f∈b

|f (x) − (x)| ≤ α 

The definition expresses that the probability of malfunction is less 
than β and denotes P(|f(x) − M (x)| ≥ α) ≤ β, in which |f(x) − M (x)| ≥ α 
is “not accurate”. 

3.2.2. Mechanisms of differential privacy 
The fundamental mechanisms include the Gaussian mechanism, 

Laplace mechanism, and Exponential mechanism, which are used to 
guarantee DP. While the Gaussian mechanism and Laplace mechanism 
are applied to the numerical results, and the exponential mechanism is 
applied to the nonnumeric results. 

Definition 5. (Gaussian Mechanism) [68] A randomised algorithm M 

satisfies (ε,δ)-DP for any query function f : D→R , if: 

Fig. 5. The Composition of edge computing.  

Table 4 
The terminologies related to edge computing.  

Terms Descriptions 

Application Rules and 
Requirements 

Rules and requirements related to various edge 
applications, including required resources, required or 
useful services, maximum delay/delay, DNS (domain 
name system) rules, traffic rules, mobility support, etc. 

Edge Applications In the mobile edge system, edge applications have the 
potential to afford or consume edge services and can 
be instantiated on the edge host. 

Edge Host It includes an entity of edge platform and 
virtualisation infrastructure to afford computing 
resources, storage resources, and network resources 
for various mobile edge applications. 

Edge Host Level 
Management 

It performs the management of specific edge functions 
of specific edge platforms, edge hosts, and various 
edge applications running on them. 

Edge Mainframe It includes two level management which is edge 
system and edge host. 

Edge Platform It can provide and consume a variety of edge services 
and provide a variety of edge services for itself. It can 
run all kinds of edge applications on a specific edge 
host virtual infrastructure. 

Edge Service It can provide services according to the edge platform 
or application. 

Edge System The set of edge hosts and edge management entities is 
needed to run various kinds of edge applications in the 
operator network or subnet. 

Edge System Level 
Management 

A management entity with a global view of the entire 
edge system. 

NFV (Network Function 
Virtualisation) 

Through the abstraction of virtual hardware, the 
network function is decoupled from the hardware 
equipment needed for its operation. 

UE Application The related applications are run by the user terminal 
and have the ability to interact with the mobile edge 
system through the user application lifecycle 
management agent. 

User Application It is instantiated in the edge system to respond to the 
user’s request through an application operating on the 
user terminal. 

User Terminal Equipment The mobile terminal equipment is used to access the 
basic network of mobile communication and run 
various applications that can transmit IP packets 
through the basic network of mobile communication. 

Virtualised Resource Computing resources, storage resources, and network 
resources are provided by the underlying virtual 
infrastructure for each upper mobile edge application.  

Fig. 6. Schematic of differential privacy.  
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M (D)= f (D) + N
(
0, σ2)

where N (0, σ2) is the Gaussian distribution, and σ (σ =

‖f(D)− f(D′
)‖2

ε

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
2 ln

( 2
δ

))√

) is the standard deviation of Gaussian distribu-
tion. 

Definition 6. (Laplace Mechanism) [69] A randomised algorithm M 

satisfies ε-DP for any query function f : D→R , if: 

M (D)= f (D) + Lap
(

Δf
ε

)

where Δf = max
D,D′

‖f(D) − f(D′

)‖1 is the sensitivity of f andthe noise 

Lap
(

Δf
ε

)
is defined by the Laplace distribution, which is the probability 

density function of a random variable Lap(x|u, b) = 1
2b exp

(
−

|x− u|
b

)
. 

Here, the location parameter denoted as u, and the scale parameter 
denoted as b. A schematic of the Laplace distribution is shown in Fig. 7. 
The scale parameter b is smaller, and the curve is “thinner”. 

Definition 7. (Exponential Mechanism) [68]: For a query f : D→ R 

and a utility function u : D× R →R, the prior distribution π(y) of output 
f(x), the exponential mechanism M is defined as follows: 

Pπ,u(y)∝π(y)e− βu(x,y)

DP technology involves many noise mechanisms, for instance, 
Gaussian, Laplace mechanism, and Exponential mechanism. In subse-
quent work, many mechanisms have occurred successively. The stair-
case mechanism and the stage Laplace mechanism have been proposed 
to reduce the noise power introduced by DP. These two mechanisms can 
reduce the influence of data query and function computation [70]. The 
improved matrix Gaussian mechanism (IMGM) for matrix-valued DP has 
been proposed to solve the influence of data correlation [71]. The DP 
bounds and the corresponding central limit theorem have been proposed 
to solve multiple queries and iterative calculations [72]. Some re-
searchers proposed the privacy amplification approach of different 
scenarios to reduce the loss of the DP mechanism to performance, such 
as the privacy amplification based on sampling, iteration, reorganisa-
tion, etc. 

4. Privacy challenges 

In this section, we identify several privacy challenges in smart city 
applications in an edge computing environment. We begin by providing 
examples of privacy and security cases that have arisen in this context. 
We then offer a concise overview of the typical privacy challenges that 
smart cities face. This section focuses on addressing the following issue 

raised in Section 2: 
IC1: Typical security issues and challenges in smart city applications 

for the edge computing. 
To provide a comprehensive understanding of the privacy issues and 

challenges in smart city applications for edge computing, we have 
classified them into several typical categories. Fig. 8 presents the clas-
sification, and each category is described in detail in subsection 4.2. 

4.1. Some privacy cases in smart city applications 

In this subsection, some typical privacy attacks/challenges and 
example cases in smart city application scenarios are listed in Table 5. 

As listed in Table 6, these security and privacy incidents are closely 
related to people’s daily lives. In other words, data privacy leaks often 
occur in the condition of smart cities. For example, a case of infringe-
ment of citizens’ personal information was discovered in Zhenjiang, 
China. More than 10 provinces and cities were involved, and there were 
30 suspects. The attackers used overseas chat tools and virtual currency 
to collect and sell more than 600 million pieces of personal information 
and illegally earned more than 8 million RMB [80]. Furthermore, the 
Elasticsearch server used by the British data analysis company, Polecat, 
leaked nearly 30 terabytes of data to the public network [81]. Privacy 
attacks are divided into two categories: black box attacks and white box 
attacks, which mainly contain membership inference attacks, recon-
struction attacks, property inference attacks, and model extraction at-
tacks. The main reason for this is that the server itself is not protected by 
any authentication or other forms of encryption. In consequence, it is of 
great importance to develop data privacy protection techniques for 
smart cities. 

In the smart city application scenario, Duan et al. [82] classified data 
privacy issues into three categories: data privacy, information privacy, 
and knowledge privacy. However, the broader issue of data security has 
become a significant concern, encompassing data privacy, data avail-
ability, and data integrity [83]. In recent years, there has been extensive 
research on data privacy protection to address this concern. 

Anonymity technologies such as k-anonymity, t-closeness, and l-di-
versity have been developed for early privacy protection. In 2002, 
Latanya Sweeney [84] proposed a k-anonymity model along with pol-
icies for deployment to address the issue of data owners releasing private 
data. However, k-anonymity has been found to be insufficient in pre-
venting attribute leakage. To address this, Li et al. [85] proposed the 
t-closeness concept, which requires the distance between two distribu-
tions (the distribution for sensitive attributes in any equivalence cate-
gory and the distribution of the attribute in the overall data) to not 
exceed a threshold t. Machanavajjhala et al. [86] introduced the l-di-
versity concept, which aims to publish data without revealing sensitive 
information. Although these technologies provide privacy to some 
extent, they only offer anonymity and therefore have limitations. 

Encryption technology has emerged as a primary means of protecting 
privacy in recent years. For instance, Xia et al. [87] developed an 
encryption method to safeguard sensitive data and prevent unautho-
rized access. Liu [88] proposed methods for constructing a secure 
public-key encryption scheme, while Li et al. [89] presented a 
time-domain multi-authority outsourcing attribute encryption method 
to address data collection and sharing in edge computing. However, 
encryption technology has a significant disadvantage in that key man-
agement and distribution can be costly and complex, limiting its prac-
ticality in some contexts. 

4.2. Privacy challenges 

Here we analyse issues and challenges of the privacy in the edge 
computing environment. Privacy concerns in edge computing can be 
categorized into five stages of data handling in smart city applications: 
collection, storage, and transmission, processing, and publishing/ 
sharing, as depicted in Fig. 8. Fig. 7. Schematic of laplace distribution.  
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4.2.1. Data collecting 
Due to the large number of perception nodes and intelligent terminal 

devices in the edge computing environment, these devices may leak 
users’ personal information such as location and identity during data 
collection. The data collected by sensor networks is the foundation of 
smart systems and applications. However, these networks are generally 

vulnerable to attack [100]. The edge server provides access control for 
users, and the data collected by the end devices can be offloaded to other 
untrusted servers. The privacy challenges for data collecting in edge 
computing-based smart city application scenarios are summarised as 
follows. 

● Unsafe communication protocol: Wireless communication technol-
ogy is used to connect the edge node and mobile devices. The edge 
node that connects the cloud services is message middleware or 
network virtualisation technology. These unsafe communication 
protocols in edge computing environments have eavesdropped on 
and are easily tempered. In addition, these protocols lack encryption, 
authentication, and other measures.  

● It is easy to initiate DDoS (distributed denial of service) for two main 
reasons. First, the field devices participating in the edge computing 
environment usually use simple processors and operating systems. 
Second, the computing resources and bandwidth resources of the 
device itself are limited, which makes complex security defence so-
lutions impossible.  

● Account hijacking: This is usually done through phishing emails, 
malicious pop-ups, etc. The malicious attacker performs operations, 
such as modifying user accounts and creating new accounts. 

4.2.2. Data storing 
In the edge computing environment, the influence of hardware, 

software, operating system of human operation, server will inevitably 
change or even delete users’ data [101]. The attackers can obtain sen-
sitive and private data directly from users through end devices. There-
fore, we need to pay furthermore consideration to data privacy with 
storage in the edge computing environment. The privacy challenges for 
data storing are summarised as follows.  

● Sensitive and private data in the edge devices. In the sensitivity data 
security domain, many researchers are concerned about data loss, 
breach, and illegal data manipulation (copying, publishing, and 
dissemination). In the privacy data security domain, the existing 
studies mainly focus on privacy data release, location privacy, and 
identity information.  

● Data can be marred easily in the edge node. The reason for this is that 
the data lack effective data backup, recovery, and audit measures.  

● Devices’ security challenges refer to physical security issues that 
threaten edge computing devices, such as device damage and link 
failures caused by natural disasters. 

4.2.3. Data transmitting 
In edge computing environments, the wireless transmission of data 

poses a significant risk of data breaches as it is susceptible to eaves-
dropping and data theft by hackers. Furthermore, the distribution of 
devices in the network increases the potential of data breaches. As a 
result, ensuring the privacy of transmitted data is a major challenge in 
edge computing environments. 

Fig. 8. The privacy challenges of edge computing.  

Table 5 
Typical privacy attacks and example cases.  

Scenarios Security Attacks/ 
Challenges 

Cases Ref. 

Smart 
Community 

Novel Forms of Cyber- 
attack, Denial-of-service 
(DoS) attack, A Man-in- 
the-Middle Attack, 
Viruses, Worms, Trojans, 
and Spyware, SQL 
Injection Attack, Social 
Engineering Attacks. 

GPS Spoofing Attacks 
on Unmanned Ground 
Vehicles. 

[73] 

Smart 
Transportation 

Privacy, Authorisation, 
Verification, Access 
Control, System 
Configuration, 
Information Storage, and 
Management. 

Privacy of Vehicle 
Tracks. 

[74, 
75] 

Smart Logistics Leaked credentials; 
Hijacking attacks; Cross- 
cloud attacks; Service 
request attacks; 
Authentication; Man-in- 
the-middle attack; 
Response attacks; 
Impersonation attacks; 
Malicious edge device 
attacks; RFID tag attacks; 
Spoofing attacks; 
Blackhole attacks; Denial 
of service attacks; 
Hardware Trojan; 
Injection spoofing group 
attacks; 

The recipient cannot 
receive the courier 
normally. 

[76, 
77] 

Smart 
Healthcare 

Information Leaks; 
Insertion Attacks; 
Minimality Attacks. 

Disclosure of patient 
privacy information. 

[78] 

Smart 
Manufacturing 
Service 

Communication 
Channels; DoS Attacks; 
Disclosing User Privacy. 

Harm to humans and 
the environment, 
Damage to or loss of 
process, equipment, or 
any other assets. 

[5] 

Smart Home Device Vulnerabilities; 
Trusted Codebases with 
Bad Security Records; 
Excessive Access Granted 
to Cloud Servers; 
Excessive Access Granted 
to Device Handlers or 
Smart Apps. 

Determine whether 
there is anyone in the 
house based on the 
water or electricity 
situation. 

[79] 

As summarised in Table 6, some real security incidents are data breaches with a 
global impact from 2016 to 2021. 
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● Data leakage: In an edge computing environment, data transmission 
may pass through multiple nodes, some of which may have security 
vulnerabilities, leading to data leakage. In addition, attackers may 
obtain data transmitted through methods such as network sniffing, 
resulting in data leakage.  

● Data tampering: During data transmission, attackers may tamper 
with data, thereby affecting data integrity and credibility. For 
example, an attacker might modify the transmitted data to include 
malicious code or false information. 

● Identity forgery: Attackers may forge identities, impersonate legiti-
mate users or devices for data transmission, so as to obtain sensitive 
information or attack the system. 

4.2.4. Data processing 
In the edge computing environment, users’ data become more 

vulnerable to security breaches and unauthorized access due to the data 
processing in the edge layer [102]. The privacy challenges for data 
processing are summarised as follows.  

● Data breaches and unauthorized access are major concerns in edge 
computing due to the large number and wide distribution of devices. 
The security of data is often vulnerable to attacks and snooping, 
which may lead to the exposure of sensitive user information, 
resulting in security risks and privacy issues.  

● Another challenge is the lack of control over data processing. Data is 
often collected, transmitted, and stored by multiple devices, making 
it difficult for users to understand the specific processing process of 
data and control it. This can lead to misprocessing or misuse of data, 
which can be detrimental to privacy.  

● Implementing a uniform privacy policy in a distributed system is 
challenging. Edge computing involves data exchange and processing 
between multiple devices and nodes, making it difficult to implement 
a consistent privacy policy. This can lead to data inconsistencies and 
vulnerabilities, increasing the risk of data breaches and unauthorized 
access. 

4.2.5. Data publishing 
In the edge computing environment, the proliferation of devices and 

distributed computing has led to an increase in data interaction between 
devices. Furthermore, the development of data mining and analysis 
technologies has also increased the risk of privacy breaches. As a result, 
the issue of privacy protection in data release has become a significant 
challenge for edge computing [103]. The challenges to privacy in data 
publishing in this environment can be summarised as follows.  

● Since many open devices may publish data with each other, this data 
may contain sensitive information about the user, such as location, 
health status, and so on. Therefore, data needs to be anonymized 
before being released to public places to protect users’ privacy. 

Table 6 
Some real security incidents.  

Time Institutions Incidents Reasons Damages 

October 
2016 
[90] 

Adult Friend 
Finder 

Most user data 
(name, email, 
and password) 
are leaked. 

Weak algorithm 
SHA-1. 

412.2 
million 
accounts 

February 
2018 
[91] 

My Fitness 
Pal 

Users’ related 
login 
information 
data (E-mail, IP, 
and login 
credentials) are 
sold on the dark 
web and more 
broadly. 

Hackers accessed 
the network to 
extract data. 

150 million 
user 
accounts 

November 
2018 
[92] 

Starwood 
(Marriott) 

The users’ 
information 
(name, contact, 
passport, travel, 
and other 
sensitive data) 
that was 
exposed for 
Starwood. 

The access to 
Starwood system 
was gained by 
malicious 
attacker. 

500 million 
guests. 

April 
2019 
[93] 

Facebook The users’ data 
(phone 
numbers, 
account names, 
and Facebook 
IDs) are posted 
for free. 

Database leaked 
for free on the 
dark web. 

533 million 
users 

November 
2019 
[94] 

Alibaba Some users’ 
data (user 
name, phone 
number) are 
collected by an 
affiliate marker. 

The affiliate 
marker scraped 
customer data by 
crawler software 
that he created. 

1.1 billion 
pieces of 
user data 

March 
2020 
[95] 

Sina Weibo The users’ data 
(name, 
username, 
gender, 
location, and 
phone 
numbers) are 
sold by an 
attacker. 

The attacker had 
gathered 
publicly posted 
information by 
using a service. 

538 million 
accounts 

July 
2020 
[96] 

Bitglass Data breaches 
at US medical 
institutions. 

Loss or theft of 
endpoint 
devices. 

15 billion 
usernames 
and 
passwords 

January 
2021 
[97] 

Nitro PDF Large-scale 
leakages of the 
user database, 
over 77 million 
pieces of data 
(email 
addresses, 
usernames, and 
passwords) 
were leaked. 

Hackers publicly 
leaked user 
records 
databases for 
free. 

77 million 
accounts 

June 
2021 
[98] 

LinkedIn A dataset 
containing 
information 
including email 
addresses, 
phone numbers, 
geolocation 
records, 
genders, and 
social media 
details is 
posted. 

A hacker used 
data scraping 
techniques by 
exploiting the 
site’s and others’ 
APIs. 

700 million 
users 

January 
2022 
[99] 

Broward 
Health 

The patient 
database of 
third-part 
medical was 

Some endpoints 
have no Multi- 
Factor 

1.3 million 
patients  

Table 6 (continued ) 

Time Institutions Incidents Reasons Damages 

breach. The 
patients’ name, 
birthday, home 
addresses, 
licence and so 
on were 
divulged. 

Authentication 
(MFA). 

March 
2022 
[99] 

L’Assurance 
Maladie 

The accounts of 
19 pharmacists 
were 
compromised 
and the data of 
institution were 
breached. 

The accounts and 
passwords were 
retrieved by 
Hackers in a dark 
web forum. 

510,000 
people  
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● Edge computing is usually based on wireless networks for data dis-
tribution, which is vulnerable to hacker attacks and malware in-
fections. Therefore, security protocols and encryption technologies 
should be used to ensure the confidentiality and integrity of data in 
the release process to avoid data theft or tampering. 

4.3. Summary 

The use of edge computing in smart cities requires a higher level of 
privacy protection due to the increased interconnection of devices and 
data flow. As a result, there is a greater demand for data integrity, 
confidentiality, and availability. This distinguishes the privacy chal-
lenges faced in smart cities from those in other scenarios, which can be 
attributed to the following factors.  

● Diversity of data sources: Smart cities have a wide variety of data 
sources, including sensors, surveillance cameras, mobile devices, 
etc., and these devices have different data collection methods and 
data types, so how to protect different types of data privacy need to 
be considered during data collection and storage.  

● Security of data transmission: Data transmission in smart cities 
usually needs to be carried out through wireless networks, which is 
less secure and vulnerable to hacker attacks and eavesdropping, so a 
series of security measures need to be taken to protect the security of 
data transmission.  

● Privacy protection of data processing: Data processing in smart cities 
usually involves a large amount of personal privacy information, 
such as face recognition, vehicle recognition, etc., so a series of 
privacy protection measures need to be taken to protect this personal 
privacy information.  

● Transparency of data release: Data release in smart cities needs to 
ensure the transparency of data, that is, the source, processing pro-
cess and use of data need to be open and transparent, so that the 
public can supervise and evaluate the legality and rationality of data 
use. 

The distributed nature of edge computing can provide better archi-
tectural support for data privacy and security applications. However, the 
edge computing environment has certain requirements for privacy. 
Firstly, because the location of edge nodes is close to users and data are 
not backed up, attackers can exploit vulnerabilities in nodes to obtain 
advanced permissions, such as modifying or accessing users’ private 
data. Secondly, if an attacker gains control of an edge data center, all 
services in the area can be compromised, and useful information can be 
obtained through untrusted edge servers. In addition, some edge servers 
are not properly managed and can be easily compromised by hackers. 
Unlike traditional privacy protection methods such as encryption tech-
nology, end devices in the edge computing environment may not meet 
system requirements, and excessive computing energy consumption is 
also a factor that needs to be considered. Therefore, privacy protection 
for both edge servers and end devices needs to be carefully considered. 

The challenges of privacy protection in the edge computing envi-
ronment can be summarised as follows. Firstly, the limited resources of 
edge servers may affect the effective implementation of some privacy 
protection strategies. Additionally, the computing and transmission 
limitations of edge servers can result in simplified services with reduced 
capability. Finally, there is an increasing demand for lightweight pri-
vacy protection strategies in a distributed environment, which may 
weaken the extent of privacy protection. Therefore, addressing these 
challenges is critical to ensuring the privacy and security of edge 
computing systems. 

5. Technology research 

In this section, the related research work about DP is introduced. 
First, we summarise and compare existing privacy-preserving methods. 

Afterwards, we describe the advantages of DP for edge computing in 
smart city application scenarios. 

This index content is based on the IC2 mentioned in Section 2: 
IC2: The privacy-preserving techniques and the advantage of the 

differential privacy method applied in the edge computing environment- 
based smart IoT system. 

According to the study, existing privacy-preserving techniques in the 
edge computing environment are displayed in Table 7, and discussions 
are included in sub section 5.1. The advantages of DP are summarised 
according to the technique characteristics and the requirements of the 
smart city application scenarios based on edge computing in subsection 
5.2. 

5.1. Privacy-preserving methods 

The first group of privacy protection methods include data distur-
bance [104], data anonymity [105], and data encryption [106,107]. 
Data disturbance mainly adds noise and random disturbance to the 
original data to distort sensitive data. However, this technology cannot 
guarantee that the data statistics are disturbed, as well. Therefore, the 
data release with DP technology [44] using data disrupting technology 
has also appeared one after another, but the computational cost is 
relatively high. Data anonymization changes or publishes the data to be 
used in some way to prevent key information from being identified. Data 
anonymization is used for the published trajectories [108] and health 
data [109]. Nonetheless, data anonymization is unable to handle the 
huge size of data processing [110]. Data encryption technology trans-
forms a message into meaningless cipher text through an encryption key 
and encryption function. Then, the plaintext was restored into the cipher 
text by receiver through the function and key to decryption. 

In recent years, numerous researchers have proposed advanced pri-
vacy protection technologies such as secure multiparty computation 
technology [112], private information retrieval (PIR) [113], data 
desensitization [114], and data cleaning technology. Secure multiparty 
computation is a universal cryptographic primitive that enables 
distributed parties to jointly compute an arbitrary functionality without 
revealing their private inputs and outputs [115]. Private information 
retrieval facilitates the retrieval of one of K pieces of information from N 
facsimile databases without unveiling the identity of the queried infor-
mation to any single database [116]. Data desensitization reduces the 
sensitivity of sensitive data through substitution, distortion, and other 
transformations while retaining certain usability and statistical charac-
teristics [117]. Data cleaning technology inspects and verifies the 
collected data, and the analyser can obtain accurate data by deleting 
duplicate information and correcting existing errors [118]. Table 7 
presents a comparison of the existing privacy protection technologies. 

5.2. The advantages of differential privacy in edge computing 

Some researchers have proposed numerous effective privacy- 
preserving methods for edge computing environments. DP has become 
one of the most popular methods for privacy preservation because of its 
ability to define a strong privacy guarantee. 

There are many methods to protect the privacy of users’ data for 
smart devices in the smart city based on edge computing environment, 
such as a mobility support system (MSS) [119], a higher-level security 
transmission with multichannel communications [120], a dynamic 
customisable privacy-preserving model basis of Markov decision process 
[121], and a privacy-aware task offloading method (POM) [122]. 
However, traditional protection methods need to rely on stronger 
background relationships and reduce the data utility. Therefore, some 
privacy preservation methods with DP provide various advantages in the 
edge computing environment. For example, Meng et al. [19] designed a 
data collection method of location that imports a DP mechanism with 
random disturbance in the Voronoi diagram. The privacy-preserving 
mechanism can not only better meet users’ privacy needs but also 
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have higher data availability. Du et al. [18] designed two DP algorithms, 
output perturbation (OPP) and objective perturbation (OJP), to guar-
antee privacy protection. These algorithms can guarantee the accuracy 
of benchmark datasets. 

The use of edge computing can provide benefits beyond data privacy 
protection, including energy consumption reduction, resource effi-
ciency, and improved computing power [123]. For instance, Miao et al. 
[56] proposed a DP method for preserving location privacy that reduces 
the computational complexity and resource consumption at the edge 
node. Gai et al. [124] developed a privacy-preserving mechanism for IoT 
and blockchain in the edge computing environment to enhance trust-
worthiness and achieve optimal task allocation through DP. Addition-
ally, Liu et al. [57] designed a DP framework for data release in the edge 
computing environment, which enhances the accuracy of queries. In 
summary, the main advantages of DP in edge computing are as follows.  

● Meeting users’ privacy needs and enhancing data availability.  
● Reducing computational complexity and resource consumption.  
● Enhancing the trustworthiness of the edge nodes.  
● Enhancing the accuracy of the query. 

6. Applications and implementation 

This section focuses on the applications and implementation of DP in 
smart city scenarios based on edge computing [8]. We begin by intro-
ducing the detailed classification of DP research for these scenarios. 
Then, we explore the application of DP in various stages of data man-
agement in the edge computing environment, highlighting its benefits in 
protecting data privacy. Specifically, we focus on four stages, including 
data privacy in transmitting, processing, model training, and publishing. 
In addition, typical data privacy issues, such as location/trajectory pri-
vacy protection, are also discussed. Some typical applications of smart 
city, such as smart manufacturing service, smart logistics, and data 

management, are shown in Fig. 9. In this study, the complete course of 
data management from data collection to data publishing in smart city 
applications for edge computing is considered. The course of data 
management is shown in Fig. 9, which can be mainly divided into 
transmitting, processing, training, and publishing. 

In recent years, with the rapid growth in the number of smart IoT 
devices, big data are being generated in the forms of text data (e.g., e- 
mails, web pages), images, audio, video, and location information (e.g., 
latitude, longitude, altitude) [125]. These data may contain users’ pri-
vate information, and hence, data privacy preservation has become a 
critical issue. Edge computing brings enormous benefits to analysing and 
mining data, perceiving location information, and localisation [126]. 
Nonetheless, data privacy-preserving research is important for users and 
managers. Chinnasamy et al. [127] reviewed the data security and pri-
vacy requirements in the edge computing environment. First, they 
emphasised the definition of edge computing protection and confiden-
tiality criteria. Second, they proposed the categorisation of threats on 
the edge device through the definition. Then, they presented the 
state-of-the-art tactics used to mitigate privacy risks. At the same time, 
they designed the measurements for the efficiency of interventions and 
the related technical pattern of mitigating the attackers. Finally, they 
showed the development in technical approaches and research di-
rections of potential professionals about the area of edge device privacy 
and security. Zhang et al. [128] proposed investigation on the privacy 
concerns of edge devices. 

In this subsection, we introduce data privacy in data transmitting, 
data processing, model training, and data publishing for the smart city 
application scenarios based on edge computing. As summarised in 
Table 9, we compare the existing DP method with privacy protection for 
edge computing in edge computing-based smart city application sce-
narios, privacy mechanisms/algorithms, types of noise, types of privacy, 
types of data, and methods of adding noise. 

This section is based on IC3 and IC4 in Section 2: 

Table 7 
The comparison of different technologies for privacy-preserving.  

Privacy Protection 
Technology 

Usage Scenarios (Typical) Protected Objects Methods/Strategies Privacy Requirements 

Differential Privacy Open Statistical Database Objects in the Statistics Database  • Laplace Mechanism;  
• Exponential Mechanism;  
• Gaussian Mechanism.  

• Priori-Knowledge;  
• Errors Exist;  
• Cannot be Precise. 

Secure Multiparty 
Computing 

Private Payment Channels Private payment between 
merchants and customers.  

• Oblivious Transfer;  
• Garbled Circuits.  

• Confidentiality;  
• Correctness. 

Private information 
retrieval 

Internet Terminal.  • Documents;  
• Data;  
• Events.  

• Manual Search;  
• CD Search;  
• Online Search;  
• Network Search.  

• Confidentiality;  
• Correctness. 

Homomorphic 
Encryption  

• Retrieval;  
• Statistics;  
• AI Tasks. 

Personal information data.  • Encrypted Neural Network;  
• Encrypted KNN;  
• Encrypted Decision Tree;  
• Encrypted Support Vector Machine 

and other Algorithms.  

• Confidentiality of Data;  
• Availability of Data. 

Format-Preserving 
Encryption (FPE)  

• Database;  
• Data Masking Field. 

Sensitive information in the 
database, network data  

• Prefix;  
• Cycle-Walking;  
• Generalised-Feistel.  

• Data Confidentiality;  
• The Format of the Data 

Remains Unchanged. 
Data Cleaning Media Equipment  • Disks;  

• Flash Memory Devices;  
• CDs;  
• DVDs.  

• Covering;  
• Degaussing;  
• Encryption;  
• Physical Destruction. 

Data confidentiality. 

Data Anonymization Medical information disclosure Patient personal information and 
disease privacy.  

• K-anonymity;  
• (α,k)–Anonymity [111];  
• L-Diversity [86];  
• T-closeness model [85].  

• Unrecognisable;  
• Data Availability. 

Data Masking Enterprise storage, organisation, 
and management database.  

• Personal information;  
• Other Sensitive Information.  

• Rounding;  
• Quantification;  
• Shielding;  
• Truncation;  
• Unique Replacement;  
• Hashing;  
• Rearrangement.  

• FPE Encryption Data 
Confidentiality;  

• Data Availability.  
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IC3: The applications of the edge computing environment are 
considered in differential privacy method research. 

DP research in the edge computing environment has various appli-
cations, including protection mechanisms, algorithm design, data 
management, and federated learning. In this article, we focus on privacy 
preservation in the context of data management, which includes various 
stages as shown in Fig. 9. 

IC4: The experimental platforms/tools, datasets, and evaluated 
metrics are applied to implement the DP mechanism or algorithm. 

The implementation of DP techniques can be presented as generating 
noise data, the objective function is added noise, parameters, or gradi-
ents in model training, and the models’ output is added noise. We 
summarise the implementation platform/tools, common datasets, and 
evaluation metrics of DP for some applications in Table 8. Table 9 il-
lustrates the different characteristics of DP, and they are compared in 
the edge computing environment. 

6.1. Data privacy in data transmitting 

In the edge computing environment of smart city scenarios, the data 
transmitted between users and edge services or devices may expose 
users’ privacy information [129]. Malicious attackers steal or falsify the 
data being transmitted, thereby mining the private information in the 

data. In addition, malicious attackers predict user behaviours according 
to the data. For example, the China Railway Service 12,306 data 
transmission security incident caused the leakage of 600,000 accounted 
and 4.1 million pieces of contact information in December 2018 [130]. 
Data transmission that is not properly handled can cause a great 
infringement on user privacy. Therefore, the privacy preservation of 
data transmission for cloud and edge computing has received much 
attention in recent years [131–133]. 

There are two parts to data transmission privacy preservation in the 
edge computing environment. For secure computing methods, Shafagh 
et al. [134] designed a platform named Pilatus to protect the security of 
data transmission. Aujla et al. [135] designed a framework named 
SDN-aided to provide privacy-preserving with the secure grid-based 
cryptograph system for edge-cloud interplay data transmitting and 
SDN-assisted management. Shen et al. [136] showed a scheme with 
bilinear mapping and homomorphic encryption to judge the positional 
link of multi-query keywords on the transmitted data. 

On the DP method, Nie et al. [59] put forward a DP tensor computing 
model (DPTCM) to protect the data privacy for transmitted to the cloud. 
They implemented the privacy of transmitting data through the flexible 
computing function of edge computing. At the same time, the DP 
method does not generate excess overhead. Hassan et al. [35] reviewed 
the security of data transmission with transportation systems. They 

Fig. 9. Typical smart city applications and data management stages.  
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divided DP implementation into three types in the transportation sys-
tem: the networks of railway freight and vehicular, the data of auto-
motive manufacturer. Wang et al. [137] considered the privacy of the 
connected vehicles, which mainly contains the process of the vehicles 
transmitting data to the roadside unit and base station, such as the speed 
and location. They proposed a system architecture named 
privacy-preserving vehicular edge computing (PP-VEC) by disturbing 
the context information of connected vehicles to address the privacy 
protect issues of the transmitting process. 

In summary, the privacy preservation of data transmitted with DP for 
edge computing environments in smart city scenarios mainly has three 
characteristics.  

● Low energy cost, namely, the DP mechanism, has little impact on 
energy consumption.  

● Type diversiform, which means that the DP mechanism can address 
different types of data privacy.  

● Low latency means that the DP mechanism requires little support of 
task offloading. 

6.2. Data privacy in data processing 

Data processing usually involves data mining and retrieval. Data 
mining is the process of extracting the potential information for data 
that is hidden and unknown but potentially useful from a large amount 
of data. The goal of data mining is to build a decision model that predicts 
future behaviour based on data from past actions. 

In the smart city scenario, data mining applications have been 
deployed for our daily lives, such as smart transportation [138], smart 
healthcare [3], and smart detection systems [6]. In these scenarios, the 
edge devices implement the collection and pre-processing of datasets, 
and there is abundant personal privacy. Therefore, many researchers 
focus on cryptography with privacy-preserving data mining [139–141]. 
However, traditional cryptographic methods produce large extra 

Table 8 
Platform/tools and common datasets with different articles.  

Ref. Platform/Tools Common Datasets Evaluation Metrics 

Name Type Number 

[18] TensorFlow MINIST Handwritten Digital Images 6000 Samples  • Accuracy;  
• Data Utility;  
• Privacy. 

SVHN Image Dataset 9812 Digits•

CIFAR-10 Colour Images 6000 Samples•

STL-10 Colour Images (Few Label) 6000 Samples•

[30] Python 3.7 Adult Census Database 48,442 Records  • Prediction Accuracy;  
• Model Performance. General Social Study 

(GSS) 
Personal Information Related to 
the Happiness 

51,020 Records•

[56] * Taxi Trajectories Taxi Routes in Beijing 10,357 Routes  • Query Accuracy;  
• Algorithm Runtime 

Efficiency. 
[102] Python 3.6 Checkin from Gowalla User Locations 6,442,890 Check-in 

Information  
• Query Accuracy;  
• Algorithm Operation 

Efficiency. GPS Trajectory from 
Geolife 

Users’ Trajectory 182 Users (5 Years) 

[58] * Loc-Gowalla User Locations  • 86 nodes;  
• 291 Edges;  
• 48,906 Records  

• Query Accuracy;  
• Query Error. 

T-drive Taxi Tracks in Beijing 10,357 Tracks 
[59]  • Python;  

• Cloud Server;  
• 64-GB RAM. 

Wsdream QoS Evaluation Result Throughput Values of 4500 
Web Services  

• Complexity;  
• Communication Cost;  
• Accuracy. UTS Urban Traffic Speed 214 Anonymous Road 

Segments 
[61] Super Computing Center YFCC100 M Videos and Images 100 Million Media Objects  • Average Reward (AD);  

• Average Regret (AR);  
• Cumulative Regret (CR). 

[150]  • TensorFlow;  
• VGG-Face Network;  
• MTCNN. 

LFW Labelled Face in the Wild  • 158 Identities;  
• 4324 Label Face Images.  

• Accuracy;  
• Time Cost;  
• Memory Cost;  
• Energy Cost;  
• Network Transmission 

Cost. 
[137] * Simulation Experiment.  • Average Delay Reduction;  

• Task Multiplier. 
[142]  • Java Development Toolkit (JDK) 

Version 1.8;  
• Weka. 

Adult Disease; 14 Attributes 48,842 Records  • Scalability;  
• Processing Time;  
• Accuracy. 

Heart Disease; 75 Attributes 3030 Records 

[151] * SUMO Simulation of Urban MObility 100 Trajectories  • Data Utility;  
• Efficiency;  
• Respectively. 

[152] * SEARCH LOGS Google Trend data and AOL search 
log. 

32,768 Records  • Mean-squared error 
(MSE);  

• KL Divergence (KLD); AGE Brazilian Census Data 100,078,675 Records 
LOCATION New Zealand demographic data. 7725 Blocks 

[153] * geom.net Authors Collaboration Network 7343 Vertices and 11,898 
Edges  

• Privacy;  
• Utility;  
• Mean Absolute Error 

(MAE). 
out.moreno_lesmis_lesmis Characters Cooccurrences 

Network 
77 Vertices and 254 Edges. 

RGD Randomly Generated Dataset 100 Vertices and 1645 Edges  
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Table 9 
Comparison of DP in different edge computing-based smart city application scenarios.  

Classify Application Scenario Privacy Mechanism/Algorithm Noise Types Noise Distribution Add Noise Method Privacy Types Ref. 

Data 
Transmit 

Large amounts of IoT devices over 
the network are managed by the 
software-defined network (SDN). 

A differential private tensor computing model. Laplace τij
Gk

= ([R(N − 1)Δ] /ε)
̅̅̅̅̅
2e

√
nij 

φij
Gj

∼ (0,M]

Add noise tensors τij
Gk
,φij

Gj 
to 

gradient ∇ij
Gk[ik ]

. 

ε-DP [59] 

The computing resource 
management and task offloading on 
the Internet of Vehicles (IoVs). 

A system architecture named PP-VEC (privacy- 
preserving vehicular edge computing) and an 
algorithm named K-NJTA (K-neighbour joint 
optimisation of task offloading and resource 
allocation). 

Exponential exp ( − ε × |r − q(B)|) The local differential privacy 
and a MWEM mechanism 
processes the context 
information for connected 
vehicles. 

ε-DP [137] 

Data Mining The data owners turn to 
collaboratively train machine- 
learning models in the edge 
computing environments. 

The distributed data mining scheme with 
differential privacy based on tree structure. 

Laplace 
Lap

(
1
ε

)

=
ε
2
e− |x|ε Adding noise to when 

calculating the supports of the 
leaf nodes in each iteration. 

ε′ -DP (ε′

=
P
T

, P is the 

total number of privacy 
budget, T is the number of 
iterations) 

[30] 

In the public infrastructure is 
provisioned protection to protect an 
individual’s information. 

A fuzzy convolution neural network (FCNN) is 
injected noise with a Laplace mechanism. 

Laplace 
Lap

(
ΔQ
ε

)

=
ε

2ΔQ
e
−
|x|ε
ΔQ R(x) = Q(x)+ Lap

(
ΔQ
ε

)
ε-DP [142] 

Data 
Retrieval 

The multimedia big data of the 
mobile social networks in the edge 
computing environment. 

Tree-based noise aggregation algorithm Laplace 
Lap

(
ln n
ε′

)

=
ε′

2 ln n
e
− |x|ε′

ln n 
μ̃(n) =

∑
(x,y)

(
rx,y +

Lap
(

ln n
ε′

))

ε-DP [61] 

Model 
Training 

Training datasets in wireless big 
data scenario. 

Output Perturbation Algorithm; 
Objective Perturbation Algorithm; 

Laplace p(q) =
1
αe− ω‖q‖ W(D)+ q; 

Where W(D) is objective 
function 

εp-DP (p is disclosure risk) [18] 

The training process in DNNs faces 
recognition models. 

The client-server model-based DNNs training 
algorithm in a privacy-preserving manner. 

Gaussian N (0,S2
f × σ2) di

(x,y) = ci
(x,y) + N (0,S2

f × σ2) (ε,δ)-DP [150] 

Data  
Publishing 

Network data publication between 
two related individuals in the 
relevant dataset corresponding to 
the weighted network. 

ε-correlated edge differential privacy (CEDP) Laplace 
Lap

(
CS
ε

)

=
ε

2CS
e
−
|x|ε
CS where CS is 

correlated sensitivity. 

M (DI) = f(DI)+ Lap
(

CS
ε

)
ε-CEDP(Correlated Edge 
DP) 

[153] 

The publication data of the various 
sensors. 

A partitioned histogram data publishing algorithm 
based on wavelet transform. 

Laplace 

Lap
(

Δf
ε

)

=
ε

2Δf
e
−
|x|ε
Δf 

Adding Laplace noise to the 
coefficient ci with magnitude 
1 + logk

2
εWHaar(ci)

. 

ε-DP [152] 

The release of location data in the 
edge computing environment. 

A differential privacy quadtree partitioning 
algorithm. 

Laplace 
Lap

(
1
εx

)

=
εx

2
e− |x|εx x.count = Ct + Lap

(
1
εx

)

Where Ct is the true count value 
based on D. 

εx-DP (x is the node of 
quadtree) 

[102] 

Location The movement features of users in 
vehicle ad hoc network. 

Trajectory partition algorithm with differential 
privacy and trajectory clustering algorithm. 

Exponential exp
( ε
2Δu

u(starpar,m)
)

where strt_par is a prior 
characteristic node. 

Adding noise into the publishing 
trajectories set T′

1,T
′

2 ,…,T′

k. 
ε-DP [151] 

Add noise to each node of the quad- 

tree Laplace 
( ε
h

)
Privacy-aware framework for mobile edge 
computing (MEPA). 

Laplace 
Lap

(
1
εx

)

=
εx

2
e− |x|εx h̃ = hx + Lap

(
1
εx

)
εx-DP (x is node) [56] 

The location privacy in the edge 
nodes for the Internet of Things 
(IoT). 

The geographic indistinguishable mechanism Laplace 

Lap
(

Δf
ε

)

=
ε

2Δf
e
−
|z|ε
Δf 

Lap(b) =
1
2b

e
−
|z|
b 

The noise selects different 
distributions when the actual 
positions are in different ranges. 

The output of query function f is 
added noise. 
DPQ(G,Y) = f(G,Y) + Lap(V1 ,

V2,…,Vr)

εd-DP (d is the distance of 
two users) 

[58] 

(continued on next page) 
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computational overhead, which further hinders the application in the 
edge computing environment. 

In the research field of edge computing environment, some re-
searchers have focused on DP to protect the privacy of data mining for 
the smart city application scenarios in recent years. To economise 
computing costs and increase efficiency, Sun et al. [30] considered that 
data mining applications complete the data mining task when the data 
are not shared by owners aspiration. They focused on the tree-based 
distributed data mining scheme with DP in the edge computing envi-
ronment. The participants built a decision model with their data; then, 
they shared the model after being injected with noise. Sharma et al. 
[142] proposed DP using an algorithm named fuzzy convolution neural 
network (DP-FCNN) to address the problem of data accessed by an un-
authorized user. The data providers were responsible for injecting noise 
into the datasets that the data owners uploaded. The scalability, model 
accuracy, and processing time of DP-FCNN are showed good efficiency. 

Data retrieval extracts or queries the data in the database according 
to the users’ needs. The results of data retrieval generate a table that can 
either be put back into the database or used as an object for further 
processing. 

In the smart city scenario, because most multimedia service pro-
viders are located in remote sites, users’ access delays will lead to a poor 
service experience when users choose a service. Edge computing tech-
nology can solve delay problems; users retrieve the required data from 
the nearest edge node and reduce the delay [10]. However, when 
retrieving the popularity of multimedia content from a massive amount 
of data, network administrators need a suitable retrieval system [143]. 

The edge nodes bypass the central trusted system and exchange data 
with each other, which leads to a leakage of user privacy information. 
Therefore, a perfect retrieval system alone is not enough, and the data 
privacy protection problem in the retrieval system needs to be solved. 
There are many privacy protection schemes, such as anonymization, DP, 
and desensitization. In large-scale data, DP has little influence on pre-
diction accuracy and the algorithm does not need to be considered 
[144]. In the foundation of the DP, Zhou et al. [61], they proposed a 
multimedia content retrieval based on tree privacy-preserving and 
trustworthy distributed. They made personalised predictions on the 
edge network and deployed DP and trust mechanisms combined with 
edge nodes. Zhou et al. [61] found that the time of the model converges 
to the optimal policy when the privacy level is increased to certain 
degree. 

In summary, privacy preservation for data processing with DP of 
edge computing-based smart city application scenarios mainly has three 
characteristics. 

● Balanced computing cost and efficiency means that the DP mecha-
nism has a good trade-off between the computation and the effi-
ciency of data mining for the edge computing environment.  

● High accuracy means that the accuracy has little impact after a 
certain quantity of noise is added to the data processing stage.  

● Low processing time means that the DP method can disturb the 
original data in the data processing stage in a short time. 

6.3. Data privacy in model training 

Currently, some attackers acquire private sensitive training data to 
leakage privacies or attack maliciously in a series of smart city scenarios, 
for instance smart home, smart medical, and smart logistics,. Xu et al. 
[145] proposed an attack method for the training data is adjusted by 
conspired malicious participants in strategically. The attack made a 
certain dimension weight of the aggregation model is rose or fallen by 
the pattern. He et al. [146] designed a new attack method to compro-
mise the inference data privacy in a collaborative deep learning system. 
They verified the effectiveness and generalisation by evaluating the 
attack method under different settings, models, and datasets. Ji et al. 
[147] presented a broad class of model-reuse attacks. However, Ta
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maliciously crafted models may trigger host ML systems to misbehave 
on targeted inputs in a highly predictable manner. Zhang et al. [148] 
studied generative model-inversion attacks where the privacy informa-
tion of training data are inferred by the access of a model is abusing. 

The model training contains some privacy data for different smart 
city application scenarios based on edge computing environment. 
Therefore, the challenges of the privacy protection field with edge 
computing in smart city scenarios are to insure that private information 
are not leaked in the model training. Some researchers focus on DP 
technology to solve data privacy with a training model for edge 
computing-based smart city application scenarios. In 2010, Michael 
et al. [149] proposed a method with adding Laplace noise to enhance the 
privacy of training data. They improved the accuracy of a general class 
for histogram queries while guaranteeing DP. Du et al. [18] considered 
the privacy of correlated datasets and designed two different algorithms, 
OPP (output perturbation) and OJP (objective perturbation), to protect 
the model training data privacy, and the algorithm satisfies DP. In order 
to abate the computing cost of the local device, Mao et al. [150] enabled 
training of deep convolutional neural networks to face recognition 
models with the DP mechanism. They indicated that the training accu-
racy is more sensitive to the noise of the deeper convolution layer. 

The training data privacy-preserving for the smart city application 
scenarios mostly contains the model training data for edge devices and 
edge nodes. The noise with a Laplace or Gaussian distribution is added in 
the process of training to protect the training data by DP method. The 
privacy budget ε is confirmed by fine-tuning. Both Du et al. [18] and 
Mao et al. [150] believed that the model effect of privacy budget ε in a 
certain range is the best. The former considered the privacy budget ε in 
ε ∈ [10− 2, 20], and the latter considered it in ε ∈ [2,5]. 

In summary, the privacy preservation of model training with DP for 
edge computing-based smart city application scenarios mainly has three 
characteristics.  

● High accuracy means that the accuracy of training model can be 
increased by the consistent result of the DP mechanism. 

●Support of different types of datasets, which means that the DP 
mechanism can accomplish high-quality privacy preservation in a 
wide variety of diverse datasets, such as correlated datasets.  

● Low computing cost means that the DP mechanism requires low 
computing cost in the model training. 

6.4. Data privacy in data publishing 

Data publication for edge computing in smart city scenarios has been 
a hot research topic for data analysis, which has the characteristics of 
dynamic, multiple sources, and large amounts. However, there are many 
security issues with data publishing. The attackers acquire sensitivity 
information using some attack models, as illustrated in Table 10. 

DP applies to data publishing scenarios in various fields, such as 
histograms and matrix mechanisms. Dwork et al. [68] designed the 
Laplace mechanism with a histogram, and Laplace distribution (Lap

( 1
ε
)
) 

noise was added to the data. Su et al. [159] proposed a method named 
PrivPfC, which involves publishing data for classification based on DP. 
They use the exponential mechanism with a novel quality function. They 
indicate that using fewer steps to avoid spreading the privacy budget is 
too thin. Yan et al. [160] focused on the data published in V2G networks, 
and proposed DP algorithm to protect the privacy of the data release in 
V2G networks. They defined a variable sliding window to improve the 
utility of data. 

In addition to these methods, Xiao et al. [161] designed the mech-
anism of the Haar wavelet transform, and they added noise to the Haar 
coefficient. Jia et al. [162] showed an approach called StructureFirst, 
which uses square error and an exponential mechanism to compress the 
original histogram. Acs et al. [163] combined the adaptive hierarchical 

clustering technique and the greedy bisection strategy to propose the 
method named P-HPartation. Jia et al. [162] designed a method named 
NoiseFirst, which obtained the optimal partitioning of data grids by 
adding noise and then splitting and merging. However, NoiseFirst is only 
applicable in the one-dimensional histogram. Therefore, Xiao et al. 
[164] presented a DPCube that can obtain multidimensional V-optimi-
sation histograms by combining the KD-tree and the unit division to 
solve the one-dimensional histogram. These five methods have common 
advantages that support longer-range count queries, and the query ac-
curacy is high. Miao et al. [56] proposed a new noise quadtree 
data-basedapproach to statistical data release for moving objects. The 
approach satisfies the DP-preserving model. Liu et al. [102] proposed a 
location data and distributed data release method in the edge computing 
environment to preserve user privacy with the release of location data. 
They constructed a DP complete quadtree and adjusted the quadtree by 
the threshold to balance the error. 

In conclusion, the privacy preservation of data release/publication 
with DP in edge computing environments adds noise using the Laplace 
and Exponential mechanism. According to the experimental results of 
the literature, the smaller the privacy budget ε is, the better the algo-
rithm performance. In summary, the privacy preservation of data pub-
lishing with DP for edge computing-based smart city application 
scenarios mainly has three characteristics:  

● Better performance, namely, the performance of publishing data can 
be improved by DP mechanism.  

● Better data utility, namely, the DP mechanism, can improve the 
utility of data through data dynamics to adjust the publishing 
window. 

● Higher accuracy, namely, the DP mechanism, can improve the ac-
curacy of range queries over attributed histograms. 

6.5. Data privacy in location/position trajectory 

In smart city applications, some smart IoT devices share real-time 
information with edge or cloud servers to provide real-time services. 
For example, users’ behaviour raises some security issues, and the best 
crucial issue is the trajectory/location leakage. The privacy of location/ 
position trajectory belongs to the data privacy-preserving method, as 
well. Because some researchers often pay attention to the location pri-
vacy field, this study refers to the application of related DP methods in 

Table 10 
The attack models.  

Attack Models Descriptions Ref. 

Link Attacks The attackers obtain sensitive information by 
analysing the relationship between an individual 
and attributes through links. 

[155] 

Similarity Attack The attackers obtain part of individual privacy 
information by analysing the similarity of 
sensitive attributes in equivalence classes. 

[156] 

Skewness Attack The attackers dope out a lot of individual privacy 
information by analysing the similarity 
distribution of sensitive attributes in equivalence 
classes. 

[85] 

Replay Attack The attackers use the received data to cheat the 
system and make it pass the identity 
authentication. 

[157] 

Probabilistic 
Inference Attack 

The attackers obtain sensitive information 
through the difference between before and after 
publishing data. 

[158] 

Background 
Knowledge Attack 

The attackers infer the sensitive information of an 
individual for the background knowledge of the 
model and part of the information of an 
individual. 

[85] 

Homogeneity Attack The attackers get the sensitive information of the 
individual if they know that an individual exists in 
an equivalence class that is the values of all 
attributes. 

[86]  
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the location privacy field. 
Malicious attackers can infer the address, lifestyle, social relation-

ship, etc. By obtaining location data [165]. Location-based service is one 
of the dominating forms of edge service, and location privacy is a 
concern of users [166]. Tian et al. [166] proposed an eight-category 
classification of location-based service for edge computing-based 
smart city application scenarios from three dimensions, as shown in 
Figs. 10 and 11. 

The existing research on location/position privacy mainly divided 
into four types of methods which are anonymous, obfuscation, POI 
modelling, and DP. K-anonymous is often used to protect location pri-
vacy. However, in the K-anonymous model, the usability of data will 
reduce for the sparse data, and the attackers’ background knowledge is 
explicit [58]. Then, the location’s privacy is protected by obfuscation. 
Nevertheless, the method reduces the precision and the privacy level of 
location information [167]. Wang et al. [168] considered the database 
level and proposed a point of interest (POI) modelling method to avoid 
location information. However, POI modelling needs extensive 
pre-processing and query frequency. Therefore, the DP approach 
without background knowledge is a good solution to these deficiencies. 

In recent years, DP has provided strong privacy guarantees in loca-
tion privacy preservation for edge computing-based smart city applica-
tion scenarios. Zhou et al. [151] presented a DP algorithm to protect the 
vehicular trajectory. They integrated an exponential mechanism and 
clustering algorithm. Jing et al. [58] developed the geographic indis-
tinguishable mechanism to preserve the location privacy in the edge 
nodes for the Internet of Things (IoT). They regarded the edge nodes as 
the central server and used DP theory to realise the protection of loca-
tion privacy. Miao et al. [56] presented a framework named MEPA to 
preserve the location privacy of edge nodes. The framework provides 
computing services, and an anonymous central server is acted by the 
edge node. Liu et al. [102] considered the data uniformity heuristic 
adjustment and designed an algorithm with DP quad-tree partitioning. 
The location privacy of the query process is protected by Hilbert 
curve-based the range counting query framework. 

In the edge computing environment of smart city scenarios, due to 
the data independence and low calculation overhead of the quad-tree 
structure, the quad-tree method is one of the most commonly used 
methods. In addition, the location privacy preservation is the location of 
edge nodes and trajectory of vehicles in smart city scenarios based on 
edge computing environment. 

In summary, the privacy preservation of location with DP for edge 
computing-based smart city application scenarios mainly has three 
characteristics.  

● With a low loss rate, the DP method can reduce the loss rate of 
location information in edge computing environment. One of the 
methods is to use linear programming to achieve optimal location 
fuzzy selection to reduce data loss.  

● High utility, which refers to the running utility of the algorithm and 
searching utility of location information.  

● High accuracy, data optimisation through the compressed sensing 
method to improve the data accuracy. 

6.6. Others 

In this section, edge node privacy and edge layer privacy are dis-
cussed. There is a mass of individual and business edge nodes in the 
smart city scenarios based on edge computing [18]. Those nodes contain 
the ability to compute and process data. The edge node is a business 
platform built near the edge of the user’s network, providing storage, 
computing, network, and other resources. Nevertheless, many malicious 
attackers cause internet attacks to threaten the security of edge nodes. 
For example, malicious attackers falsify edge nodes to control sensors or 
other services by physical attacks [169] and cooperative blackmailing 
attacks [170]. 

In addition, the edge node data contain some sensitive privacy. A 
variety of different big data is analysed by using machine learning 
approach in the edge node [171]. For instance, Vishalini Laguduva et al. 
[172] approached the problem of cloning physically unclonable 
function-based edge nodes in different settings. K.S. Mohanasathiya 
et al. [173] designed two encryption schemes named searchable and 
proxy re-encryption to provide a solution based on STFC (the Secured 
Two Fold Encryption Protocol in Edge Computing). They focused on 
data security from the double encryption method. Shiva Prasad Kasi-
viswanathan et al. [174] proposed several techniques for designing node 
differentially private algorithms. Duan et al. [82] proposed a solution 
based on the privacy targets of explicit and implicit divisions typed data. 
The method can solve the challenge of some new requests of user on the 
multiple sources of various integrated devices for the accumulated 
content or resources at the edge. 

Miao et al. [56] proposed a privacy-aware framework named MEPA 
for edge computing, the location privacy of the edge node as an anon-
ymous central server is protected. Du et al. [18] considered the privacy 
issue of any edge node dealing with the data. They strengthen the per-
formance of privacy preservation by injecting noise to the blocked data 
beforehand and then computing and processing it though each edge 
node. Zhang et al. [175] and Zhang et al. [176] prevented the node from 
re-identifying the sensitive information revealed by the attackers. 

In the smart city scenarios based on edge computing environment, 
edge layer privacy is the data privacy of edge layer servers. The data 
streams from the cloud and infrastructure layer are received, processed, 
and forwarded in the edge layer [177]. Therefore, in the operation of 
data processing exists some malicious attacks. For example, the data will 
be transmitted to malicious nodes in the edge layer [83]. 

Some privacy-preserving methods and algorithms have been put 
forward to preserve the privacy of the edge layer, for instance homo-
morphic encryption [178], k-anonymity [179], and DP [180]. Gu et al. 
[121] considered the data dissemination between the user and the edge 

Fig. 10. The dimension classification of the LBS  
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layer. They proposed the Markov decision process-based a dynamic 
customisable model to protect privacy. Sharma et al. [142] proposed a 
method that implements DP using a fuzzy convolution neural network 
(FCNN) with a Laplace mechanism for injecting noise to the privacy 
leakage at the edge layer. 

In summary, for edge node privacy, most research work considered 
the tree structure of the node in the edge computing environment. The 
existing method for DP demonstrates that the smaller the privacy budget 
is, the higher the privacy level. However, the noise increases as the 
privacy budget decreases. Therefore, some researchers proposed the 
privacy threshold to control the mean absolute error (MAS). For edge 
layer privacy, first, the scalability measures the system/framework to 
support a building number of input data. Second, the processing time 
measures the individual datasets in the system/framework to evaluate 
the performances. Finally, the accuracy evaluates the efficiency of DP 
with the privacy budget value. A smaller privacy budget will normally 
lead to lower accuracy. 

6.7. Summary 

In recent years, DP-protected data privacy in the edge computing 
environment has made great developments. We summarised and 
compared the application of DP in data transmitting, data processing, 
model training, data publishing, location/position trajectory, and 
others, as shown in Table 9. 

Table 9 presents a comparison of existing DP methods applied to 
edge computing based on application scenario, privacy mechanism/al-
gorithm, type of noise, type of privacy, and method of adding noise. In 
addition, we introduce the concept of noise distribution function, which 
is a probability distribution function used to add noise while minimizing 
data distortion and protecting privacy. Differential privacy noise dis-
tribution functions, such as Laplacian and Gaussian distributions, can 
regulate the size and distribution of noise, achieving a balance between 
privacy protection and data accuracy. The choice of noise distribution 
function should consider the data type and application scenario. 

The protection of edge computing-based smart city application sce-
narios with DP has been implemented by many researchers. Neverthe-
less, a great number of applications for the edge computing environment 
still need considerable attention. For example, edge intelligence is a new 
trend in the edge computing environment. Analogously, DP is combined 
with artificial intelligence algorithms or applications to ensure the pri-
vacy of the smart city. In addition, lightweight and less complex DP 
algorithms require fitting into the edge computing environment. In 
summary, DP is an effective solution for the edge computing environ-
ment, but researchers need more efforts to address all applications in 
smart city scenarios based on edge computing. 

This paper regarding the application of DP for edge computing en-
vironments in smart city scenarios contains experiments to evaluate the 
performance of the mechanism or algorithm. Then, the platforms/tools, 
common datasets, and evaluation metrics for the articles are summar-
ised in Table 8, where * represents undefined or unknown. The common 
datasets contain the name, type, and number. As illustrated in Table 8, 
the evaluation metrics generally contain accuracy, efficiency, utility, 

and privacy. 
Through the summary of existing studies, we can see that DP is one of 

the best solutions to privacy problems in smart city applications. How-
ever, there are still many deficiencies in the environment of edge 
computing, which are discussed in Section 7. For example, the param-
eters are adjusted to improve the data utility according the datasets size. 
The DP algorithm cannot provide effective privacy preservation because 
the privacy budget cannot be adjusted. In addition, untrusted edge de-
vices with intentionally or unintentionally leaking privacy are 
considered. 

7. Future directions 

Despite the advantages of differential privacy (DP) in edge 
computing, there are still several challenges that need to be addressed. 
One of the reasons for these challenges is the frequent operations 
involved in edge computing, such as data transmission, sharing, and 
collaborative analysis [181]. In the context of smart cities, it is partic-
ularly important to address challenges related to data anomaly detection 
and defense against data attacks in edge computing environments. These 
challenges remain an active area of research in DP for edge computing, 
and new solutions are needed to ensure effective data privacy and se-
curity in this context. For example, in January 2019, the server used to 
store data from the Oklahoma Department of Securities data without 
sufficient protection faced a serious data breach by the cybersecurity 
company, UpGuard [182]. The leaked data included up to 3 TB of data, 
containing millions of sensitive government documents and FBI inves-
tigation reports. In the same year, the American Banking System (ABS) 
was attacked by Avaddon’s extortion request [183]. Although its cus-
tomers were not directly attacked, the attackers may have obtained 
customer data and access rights through ABS. Therefore, the future 
research directions of data anomaly detection, data attack defence and 
others for implementation with DP for edge computing environments in 
smart city scenarios are discussed in this section. 

This section is based on the IC5 mentioned in Section 2: 
IC5: Future research directions of DP methods in edge computing 

environments. 
The future research directions of differential privacy methods in the 

environment of edge computing can be presented as data anomaly 
detection, data attack defence, and others. 

7.1. Anomaly detection 

Anomaly detection can collect and analyse users’ data for abnormal 
behaviours in real-time. The application applies in many scenarios, such 
as time-series data monitoring, fraud in the financial context, data 
anomaly in feature engineering, data anomaly in the ELT process, etc. 
Nonetheless, data anomaly detection mainly contains multi-sensor data 
anomaly detection and network anomaly detection in the edge 
computing environment. 

In recent years, Fan et al. [184] considered the data that needed to be 
transformed before the release for privacy preservation, and they pro-
posed the framework for anomaly detection with DP. Du et al. [185] 
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extended DP to detect poisoning samples in backdoor attacks. Randa 
Aliably et al. [186] proposed a privacy-preserving model that uses 
reconstructed data to classify user activity and detect abnormal network 
behaviour. 

In smart city scenarios, a massive amount of data is being generated 
and used every day, such as trajectory data, healthcare data, business 
data, financial records, etc. To better develop smart cities, data anomaly 
detection is necessary. We believe that to solve the issue of data 
anomalies in the environment of edge computing, DP is a suitable so-
lution. The reason for this is that DP contains rigorous mathematical 
modelling, and the method can provide a desirable level of privacy for 
edge computing environments in smart city scenarios. 

7.2. Data attack defence 

In smart city scenarios, the personal privacy information are regar-
ded as target with an increasing number of attacks, such as data 
poisoning attacks [187,188]. Data poisoning attacks can manipulate the 
learning model to modify the training datasets. 

In recent years, Ma et al. [189] considered the data poisoning attacks 
can be defended by DP method. They showed that private learners are 
resistant to that attack when the attackers are only able to poison a small 
number of datasets. Shadi Rahimian et al. [190] protected the machine 
learning model by adding noise to the gradients and as an alternative 
method. They evaluated the effect of two DP techniques against mem-
bership inference attacks. 

In smart cities, the research direction of data attack defence has great 
potential and needs to be further explored. For example, the gap be-
tween the theoretical limit and the empirical performance remains an 
issue. We believe that the DP method can enhance the development of 
smart cities and can produce optimal services in smart cities. 

7.3. Data storage/governance 

In edge computing-based smart city application scenarios, the end 
device that collects data needs storage or governance. 

Blockchain technology is an alternative for constructing transparent 
security to store or govern data. However, blockchain is a type of 
decentralised ledger storage system that contains tamper-proofing. It is 
ambiguous to develop a solution method for edge computing and 
blockchain for smart city applications. Gai et al. [191] proposed an 
implemented method for DP in blockchain systems to prevent 

information on blocks from data mining attacks. They introduce DP to 
protect the identity information of edge nodes. Sun et al. [192] designed 
a double disturbance localised DP algorithm to perturb the workers’ 
location information in the transparent mechanism of blockchain. To 
ensure authenticity and high income in auction mechanisms, privacy 
and security are crucial factors to consider. Guo et al. [193] designed a 
differential private portfolio dual auction mechanism for edge 
computing platforms, where IoT devices request resource packs and 
edge nodes compete to provide them, maximizing revenue while 
ensuring privacy. Lv et al. [194] mapped the complex physical space of 
CPS in smart cities into virtual space and implemented differential pri-
vacy frequent subgraph-mostly regraph to secure data privacy. How-
ever, despite these efforts, DP research in edge computing still faces 
challenges due to frequent operations like data transmission, sharing, 
and task collaborative analysis, especially in scenarios where data 
anomaly detection and attack defense for edge computing environments 
are critical. 

The DP mechanism protects users’ privacy data by deploying 
disturbance mechanisms. The research direction of data storage or 
governance can be considered from DP and blockchain technology in 
edge computing-based smart city applications. 

7.4. Data sharing 

In smart city applications, the edge nodes need to share data effec-
tively, although the communication between each edge node is unreli-
able. However, there is a series of sensitive information that leads to 
data owners being unwilling to share. Furthermore, users are increas-
ingly concerned about sensitive personal information in smart city 
applications. 

Federated learning is a collaborative method for achieving global 
model training without sharing any raw client data. It involves training a 
local machine learning model by the data owner and updating the model 
to an aggregator for collection and averaging. One of the advantages of 
federated learning is that it can handle heterogeneous local datasets that 
may be non-independent, identically distributed, and unbalanced 
among various participants [4,181,195]. Lu et al. [196] designed a data 
sharing scheme to preserve the devices privacy in the industrial Internet 
of Things. For their viewpoint, the data-sharing issue is identified as 
machine-learning issue by incorporating DP and federated learning. The 
model-sharing is parameter-sharing of the machine model instead of 
revealing the raw data of participant. Zhang et al. [197] proposed a 

Fig. 12. The resource management of edge computing systems.  
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medical data privacy protection framework to protect privacy by adding 
DP noise into federated learning. They considered the data privacy of 
patients in the smart health application. Wang et al. [198] designed a 
control algorithm to solve the issues of low resources for the federated 
learning model in IoT devices. 

In the smart city application scenarios, the DP mechanism can be 
applied in the model training stage of federated learning technology to 
conceal the users’ private data. However, it is a key issue to improve the 
practicability of data models mapped from raw data in data sharing. 

7.5. Resource management 

In the edge computing environment, the core infrastructure provides 
network access and centralised cloud computing services functions for 
devices at the edge. However, the core infrastructures are not fully 
trusting in many cases, and thus, there is a high possibility of security- 
threatening attacks, including privacy disclosure, tampering with data, 
DoS (denial of service) attacks, and service manipulation. Therefore, the 
privacy of the core infrastructure is a research direction with DP 
methods for smart city application scenarios based on edge computing. 

The edge data centre is one of the main components in edge 
computing and takes charge of virtualisation services and multiple 
management services. Nevertheless, edge data centres on some security 
issues, for instance the attacks of physical, privacy breaches, service 
manipulation, and data tampering. Therefore, the research of data se-
curity and privacy protection technology for the smart city application 
scenarios is important. 

The efficient allocation of resources is a critical research direction for 
edge computing systems as it not only improves user experience but also 
optimizes bandwidth resources. However, the process of resource dis-
tribution presents a significant challenge. Resource distribution falls 
under the umbrella of resource management for edge computing sys-
tems, as illustrated in Fig. 12. To address this challenge, Wang et al. 
[137] proposed a K-neighbour joint optimisation algorithm for task 
offloading and resource distribution using a histogram with local dif-
ferential privacy [199]. The method can protect the privacy of con-
nected vehicle and reduce the effect of the task offloading algorithm. In 
future work, research direction should focus on managing privacy for 
resource distribution and proposing optimal privacy algorithms for the 
different tasks of resource management. 

8. Conclusion 

With the advancement of edge computing, smart city applications 
have become an essential part of our daily life, ranging from manual 
operation to automatic operation and first generation wireless cellular 
technology to 5th generation mobile communication technology (5G). 
The advantages of edge computing technology, such as the sinking of 
resources, ultralow latency, high bandwidth, and high real-time 
computing power, make it a wide framework in smart city scenarios. 
Nevertheless, massive data are involved in data transmission, data 
processing, model training, and data publishing to provide better ser-
vices in smart city scenarios. However, important privacy and security 
issues are raising great concerns at the same time. 

In this paper, we present a comprehensive summarisation and 
thorough comparisons of the existing DP methods for edge computing- 
based smart city applications. Our coverage of DP in edge computing 
is extensive, encompassing a wide range of application areas including 
data transmission, data processing, model training, data publishing, and 
location privacy. Compared with other data privacy protection solu-
tions, the DP mechanism can achieve better performance in the energy 
cost, data types, latency, computing cost, accuracy, processing time, 
data utility, and model performance. 

Finally, we conclude this study by identifying some future directions 
for the application of DP in edge computing-based smart city applica-
tions, such as data anomaly detection, data attack defence, data storage/ 

governance, data sharing, core infrastructure, data centres, and resource 
distribution. We believe that this study provides a comprehensive 
overview for researchers and practitioners who are interested in pre-
serving privacy for edge computing-based smart city applications. 
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