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Abstract
Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their
research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been
determined that the work in this field began nearly 44 years ago with the primitive development of functional
piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk
scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research
institutes, and agencies across 4 different continents regarding the vast development of these devices’ design,
manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner;
in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their
manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial
comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are
depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant
section features clear future predictions based on the author’s past knowledge and expertise in this field of research
and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone
interested in learning about these small devices.

Introduction
The field of transducers has undergone several revolu-

tions. One of those reforms was the creation of nano-
technology, which enabled the making of very small
transducers with submicron dimensions. This develop-
ment and extensive material research gave birth to
microelectromechanical systems (MEMS). Soon, the
macro world of sensors shifted to the microscale, leading
to an ever-increasing demand in the field. Today, most
smartphones have MEMS inertial systems inside. MEMS
has also revolutionized the field of ultrasound, leading to
the creation of very small ultrasound transducers. These
transducers are popularly known as micromachined

ultrasound transducers (MUTs), and they can be broadly
classified as capacitive MUTs (CMUTs)1 and piezoelectric
MUTs (PMUTs).
The key component of a MUT is a suspended micro-

diaphragm. A CMUT’s diaphragm consists of either a
single layer of a conducting material or a single layer of a
nonconducting material, both with an electrode layer, that
is suspended generally with a 0.5 µm to 2 µm gap from the
grounded substrate, which is electrostatically actuated
with an alternating current (AC) electric field. Alter-
natively, a PMUT’s diaphragm consists of at least four
layers, including a passive layer and a piezoelectric layer
sandwiched between metal electrodes that can be dyna-
mically actuated with AC.
Although there are existing reviews on PMUTs2,3 that

provide an understanding of the subject, most of the
important information about the topic has not been
reported. Some examples of this important information
are (a) the historical evolution of PMUTs, notable PMUT
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hotspots, publication statistics, and PMUT commerciali-
zation, (b) PMUT’s working principle and design maps,
(c) special PMUTs with enhanced capabilities, including
structurally modified PMUTs and flexible/stretchable
PMUTs and (d) specific applications of PMUTs as
transmitters, receivers, and transceivers. Above all, an
important definition of PMUTs in terms of the thickness
of the piezoelectric layer is missing in the existing reviews;
without this definition, it is difficult to classify PMUTs
into thin-film or thick-film categories. This review has
been prepared to address this missing information, and it
serves to provide a holistic overview of the past, present,
and future research in this field. It starts with the PMUT
evolution characteristics, followed by the design basics,
novel piezoelectric thin films along with methods to fab-
ricate PMUTs. The paper subsequently continues with an
explanation of special PMUTs with unconventional
designs and their research implications, followed by a
vivid description of the major applications using them for
constructing a transmitter, receiver, or transceiver. Two
critical comparison charts of various thin-film piezo-
electric materials and PMUT applications have been
tabulated, which can easily give the reader a sense of their
quantifiable qualities.

PMUT evolution: past to present
About thin-film PMUTs
What are PMUTs?
PMUTs are micromembrane ultrasound transducers

backed by an acoustic cavity that can be nanofabricated in
various shapes and dimensions. A PMUT’s transduction
mechanism is governed by thin-film piezoelectricity,
causing necessary vibrations. PMUTs are generally oper-
ated at their resonant frequencies and can function as
transmitters/actuators, receivers/sensors, and transcei-
vers. As a transducer, PMUTs have three advantages over
commercially available bulk thick-film ultrasound trans-
ducers: (a) they require relatively low actuation voltages to
produce a unit acoustic pressure per unit area (Pa/V/
mm2), making them suitable for portable low-power
applications, (b) they can operate both in air and water
due to an efficient impedance matching with the sur-
roundings, and (c) they can be made in tiny form factors,
thereby enhancing their suitability for space-constrained
applications. Figure 1a(i) represents a PMUT die with
elements arranged in 2D m x n arrays. Figure 1a(ii) shows
a portion (AA’) of a linear PMUT array cut from the die.
One of the elements in the die is cut (BB’) in the form of a
three-quarter cross-section and is depicted in Fig. 1a(iii).
The figure shows all the layer constituents of a typical
PMUT fabricated by the bulk micromachining of silicon.
Figure 1b shows a collage of different PMUT chips fab-
ricated by the author’s groups, all with unique
applicability.

Piezoelectric active layer thickness in thin-film PMUTs
PMUTs function according to the lateral dynamic strain

developed in the piezoelectric thin film, and they perform
best if the thickness of the film is below a critical limit;
above this limit, the transverse strain cross-interference
becomes noticeable. There are works that experimentally
define this limit as 3 µm in a lead zirconate titanate (PZT)
{100}-textured thin film4, above which there is a sig-
nificant decay in the lateral thin-film-based (31,f) piezo-
electric coefficient. Thus, in this review, only relevant
articles that satisfy this criterion have been included.

Historical development
The first spark toward PMUT creation dates back to 1979,

when Shiosaki et al.5 developed thin-film sputtered zinc
oxide (ZnO) for sensors. Four years later, Royer et al.6

demonstrated a working PMUT structure by using thin-film
ZnO through the chemical release of the PMUT diaphragm.
In 1990, Udayakumar et al.7 used sol-gel (PZT) thin films for
flexural wave applications, followed by Muralt et al., who
demonstrated the effects of the membrane structure and
electrical parameters of thin-film PZT on PMUT response in
19968. Bernstein9 in 1997 created a thin-film PZT PMUT
array for in-water ultrasound imaging. In 2000, Han et al.10

fabricated a ZnO film with a 500 nm thickness in a PMUT
for the first time, which was the thinnest film till then. In
2001, Muralt11 fabricated a 2 µm thin film for a PMUT; then,
Percin et al.12 attempted to theoretically treat flextensional
PMUTs in 2002. In 2003, Ledermann et al.4 demonstrated
the effects of film parameters on the piezoelectricity char-
acteristics of thin films; Yamashita demonstrated in-air 3D
imaging for the first time using thin-film PZT PMUTs13 in
2004. Cavallier et al.14 demonstrated energy harvesting
applications using PMUTs in 2005. In 2006, Chao et al.15

demonstrated chemical solution deposition (CSD) of thin-
film polyvinylidene fluoride (PVDF) to make operational
PMUTs. This work was the first time a polymer piezoelectric
material was used in PMUTs. Afterward, in 2007, Chao et al.
reported rectangular PMUTs16, followed by Dausch, who
obtained B-mode ultrasound images from various targets
using a 2D PMUT array17 in 2008. In 2009, Shelton first
proposed the use of aluminum nitride (AlN) thin films as the
active layer in a PMUT18, leading to the creation of com-
plementary metal–oxide semiconductor (CMOS)-compa-
tible PMUT arrays. This work was followed by Liu et al.
proposing a handwriting input system using PZT-based
PMUTs19 in 2010. Subsequently, Przybyla20 reported on the
use of AlN PMUTs for in-air range finding at >1m distances
in 2011. In 2012, there was an initial effort toward con-
structing an equivalent circuit model of a bimorph PMUT
from Sammoura et al.21. In 2013, Chen et al. demonstrated
the use of AlN PMUTs for photoacoustic imaging applica-
tions for the first time22. Dausch demonstrated in vivo real-
time intracardiac tomography using PZT PMUTs in 201423,

Roy et al. Microsystems & Nanoengineering            (2023) 9:95 Page 2 of 17



which is considered the major in-body medical ultrasound
imaging application demonstrated to date. In 2015, Lu et al.24

demonstrated a system-on-chip fingerprint sensor, which is
one of the most important applications with relevance to
consumer electronics. In 2016, Shi et al.25 comprehensively
demonstrated acoustic energy harvesting with PMUTs, fol-
lowed by Wang et al. developing scandium-doped AlN (Sc-
AlN) for PMUTs for the first time in 201726. Subsequently, in
2018, Thao et al. developed PZT-fibered epitaxial thin-film
PMUTs27, which was followed by the development of
energy-efficient triboelectric nanogenerator (TENG)-pow-
ered PMUTs for multimodal sensing applications by Sun
et al.28 in 2019. In 2020, Jeong et al.29 developed a fabrication
flow for flexible thin-film PMUTs, which has relevance in
wearable medical applications. In 2021, Roy et al.30 developed
a microfluidic integrated platform with PMUTs and
demonstrated fluid density sensing, followed by applying
PMUTs for high-data rate intrabody communication by Pop
et al. for the first time in 202231. Thus, by observing PMUT

history, it is found that there has been massive progress in
terms of material development, innovative PMUT designs
and applications. The pictorial representation of the mile-
stone works is depicted in Fig. 1c. Out of the milestone
works, some further contributions have been tabulated as
featured contributions in the attached 2D list (see Fig. 1d).

PMUT hotspots and publication statistics
The literature reveals nearly 70 places worldwide across

4 continents (in terms of academic universities and
agencies/companies) working on PMUTs. Regarding the
number of locations with extensive PMUT research, Asia
has 30, Europe has 18, North America has 21 and Aus-
tralia has 1 PMUT hotspot(s) respectively (Fig. 2a). Pub-
lication-wise, the number of research articles has
increased exponentially, from 14 published articles in
2012 (Fig. 2b) to 79 in 2021, which indicates an ever-
increasing demand for researchers to work in this domain
to create novelties.

Collage of several different PMUT chips
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21) Demonstrated a system-on-chip fingerprint sensor for the first time [24] 
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23) Developed and implemented Sc-AIN (1 μm) as a thin film piezo in PMUTs for the first time [26]
24) Developed PZT fibered Epitaxial thin film (1.7 μm) for PUMTs [27]
25) First demonstration to integrate TENGs with PMUTs for multimodal sensing application [28]
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Fig. 1 PMUTs and their evolution. a Schematic of a bulk micromachined PMUT: (i) typical 2D PMUT die with m x n elements; (ii) cross-section of a
PMUT linear array; and (iii) single-cell PMUT’s 3D quarter cut section showing various important layers. b Collage of different fabricated PMUT chips; (i)
4.5 mm circular dual-electrode PMUT for communication applications; (ii) single element perforated PMUT for high-quality factor applications; (iii)
multifrequency PMUT array with elements of different dimensions; (iv) single element, multidevice PMUT for functional spectroscopy applications; (v)
16-element 250 µm PMUT linear array; (vi) PMUT used for microfluidic integrated sensing applications; (vii) high-density PMUT 2D array for
endoscopy; (viii) dual electrode 140 kHz PMUT for liquid density sensing application; and (ix) undiced array of multiple sized PMUTs. c Pictorial
representation of the major milestone works in the area of PMUTs from 1979 to 2022. d Featured contributions with PMUTs selected from the
milestone works. All pictures have been adapted with permission
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PMUT commercialization
PMUTs have been commercialized by three companies

(Fig. 2c): Qualcomm, TDK, and Exo. Qualcomm has
developed the first commercial in-display PMUTs (called
3D sonic sensor) to map 3D fingerprints. TDK has com-
mercialized application-specific integrated circuit (ASIC)-
bonded PMUTs titled CH101 and CH201 that are suitable

for range finding to 1.2 m and 5m, respectively. Exo has
developed a handheld prototype called Cello, containing
4096 low-powered PMUTs for multiharmonic imaging.

Author’s sectional predictions
There has been rapid growth in the number of popular

research locations, publication articles, and PMUT-based
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companies in the last five years. According to the growth
trends, it is predicted that by 2025, there will be at least 30
new hotspots for PMUTs, with the total number reaching
100. As seen in Fig. 2, Asia will continue to be the leading
continent researching PMUTs, with at least 10 new
institutes becoming involved in PMUT research in the
next 5 years from China. Articles will continue to increase
monotonically, with more than 300 research articles and
10 review articles published in the next 5 years. The
increase in the number of new companies is unpredictable
and complicated, but it is believed that there will be at
least 3 more major investments worldwide in this direc-
tion. Since all research features phases of growth,
saturation, and decay, PMUTs will exhibit this trend; it is
predicted that research in this direction will hit saturation
in the next 7–10 years, thereby following decay.

PMUT design basics
PMUT structural classification
Structural representation of PMUTs
PMUTs vibrate out-of-plane to transmit/receive sound,

and they are generally fabricated in a circular geometry.
At their fundamental frequency of vibration, the vibrating
shape is best captured by a modified parabolic shape
(Fig. 3a). Structurally, a PMUT comprises two important
layers: the device layer and the piezoelectric-active layer
(Fig. 3b). The device layer contains the neutral plane, with
the centroid of each layer at a distance of zi from the
neutral plane. Each layer has a thickness, elasticity, pres-
tress, density, and Poisson’s ratio of hi, Ei, σi, ρi and νi,
respectively. The radius of the device layer is a.

Basis for structural classification: the ‘Kappa-squared’
Structurally, PMUTs can behave as plates, membranes

or both. A plate’s vibroacoustic response is determined by
flexural rigidity (Fig. 3c), whereas a membrane’s response
is determined by pretension (Fig. 3d). This behavior is
determined by a nondimensional ratio of the product of
the net structural pretension (Te) and square of a to the
equivalent flexural rigidity (De) of the PMUT 32.

κ2 ¼ Tea2

De

where

Te ¼
X

σ ihi

De ¼
X Ei

1� νi2

� �
hi

3

12
þ zi

2hi

� �

This expression indicates that a small, thick PMUT and
a large, thin PMUT will demonstrate plate behavior and
membrane behavior, respectively, at a constant Te

32.

Figure 3e presents the dependence of the nondimensional
frequency parameter (α00β00) for the first mode of vibra-
tion (obtained while solving the PMUT’s natural
response) on κ2, which is characterized by three zones. In
the first zone, α00β00 is constant with κ2 (0.1 to 1),
demonstrating the plate behavior. Above 100, α00β00 is
linear with κ2 characterizing the membrane behavior.
From 1 to 100, mixed behavior is observed. Figure 3f
depicts the dependence of the maximum resonant
deflection at the first mode of vibration (w0) on a, with a
constant value of thickness and a constant Te. Three
zones are observed with plate, plate–membrane, and
membrane divisions. When describing PMUTs, it is
important to learn about their dynamic responses, such as
the natural response and the forced response. Many of
these important expressions are tabulated in Fig. 3g.

Working principles of PMUTs: plate and membrane
The working principles of plate and membrane

PMUTs32 are different. For a plate PMUT, applying direct
current (DC) voltage across the piezoelectric layer tends
to strain it due to the d31 piezoelectric effect. This strain is
then restricted by the underlying device layer, leading to
in-plane normal stress resultant R working from the pie-
zoelectric layer’s centroid. Since plate PMUTs are thick,
the neutral axis rests in the device layer (Fig. 3c, i). The
difference (lever arm) between the piezoelectric layer’s
centroid and the neutral axis, along with R, results in a
bending moment M that bends the structure in an out-of-
plane manner. Thus, applying an AC voltage makes the
structure vibrate. Alternatively, for a membrane PMUT,
the membrane is already stressed due to the presence of a
net pretension in the structure, which, when coupled with
structural inhomogeneity, causes the PMUT to bend
without an electric field (Fig. 3d). A DC voltage induces a
certain level of strain (ε) in the structure, which may occur
due to the comparable thickness of the device and pie-
zoelectric layer or due to a larger size-to-stack thickness
ratio changing the level of tension (τ) in the structure,
thereby changing the magnitude of bending. Applying an
AC voltage makes the structure vibrate.

PMUT functional classification
Lumped model of a PMUT
Functionally, a PMUT can be classified into three

groups—transmitter, receiver, and transceiver—and a
system-level model explains them the best. System-level
models have been developed by several research
groups2,32,33. The lumped parameter model couples the
electrical domain and the mechano-acoustic domain with
an ideal transformer, which represents piezoelectric
electromechanical coupling. Figure 3h depicts the trans-
mitter model, whereas Fig. 3i depicts the receiver model.
The flow variable in the mechano-acoustic domain is the
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flow rate of the fluid volume displaced, represented as q.
PMUT is a capacitor with capacitance Cs. Vin and Pin are
the input driving voltage and pressure, respectively, and
Vout and Pout are the output receiving voltage and output
pressure, respectively. Cm, Rm, Lm and Dac are the struc-
tural compliance, damping, equivalent mass and acoustic
impedance of the PMUT, respectively. ϕ is the turns ratio,
representing the coupling between the electrical and
mechano-acoustic domains.

PMUT as a transmitter
Design maps are available32 for the size–tension sub-

space and the thickness. In the size–tension subspace, a
PMUT’s central deflection (w0) is proportional to the
square of a in the plate regime, and it is almost inde-
pendent of a in the membrane regime (Fig. 3j). Addi-
tionally, the iso-frequency lines (Fig. 3j) (black-dashed
curves) suggest that low-residual tension devices have
relatively high deflection sensitivities, even if they have to
be shrunken to maintain the same operating frequency.
Regarding thickness, the PMUT is ideally composed of
passive (hpassive) and device layers that add to a value of
hsum. The maximum transmitted pressure (PTX) is plotted
with respect to the thickness ratio hpassive/hsum (at
a= 250 μm, Te= 0 N/m). The optimal hpassive/hsum is
reportedly 0.6 with pressure increasing according to the
increase in overall PMUT thickness (Fig. 3k).

PMUT as a receiver
The PMUT as a receiver generates a charge (QRX) that is

directly proportional to w0
32. In the size–tension sub-

space, both w0 and QRX increase as a4 (if Te= 0) and as a2

if the PMUT is tension dominated; Fig. 3l). Additionally,
the figure shows that the receiver at a lower operational
frequency has higher deflection and charge output under
a given layer configuration. In the thickness subspace, QRX

is plotted with respect to hpassive/hsum (Fig. 3m). It is
observed that QRX is directly proportional to hpassive/hsum
and inversely proportional to the thickness of the piezo-
electric layer for a given hsum. The plot also depicts that
QRX decreases with hsum, which might be due to
enhancement in the stiffness of the overall structure,

thereby leading to reduced deflections and piezoelectric
strain.

PMUT as a transceiver
The design map of a transceiver PMUT can be obtained

by combining the effects of the transmitter and recei-
ver32. Figure 3n represents the dependence of QRX on
hpassive/hsum when the receiver is 1 m from the trans-
mitter. The optimal thickness ratio to achieve the max-
imum QRX is reportedly 0.7.

PMUT fabrication
Thin-film piezoelectric materials
PMUTs have been fabricated with several piezoelectric

thin films, based on a popular contribution from Muralt
et al.34 in which the transducers’ figure of merit from the
thin-film materials perspective is mentioned. Some impor-
tant materials are discussed in the following paragraphs, and
their properties are tabulated in Table 1. The first thin-film
piezoelectric material that was developed for PMUTs was
the planar magnetron sputtered ZnO35,36 (Fig. 4a(i)), which
is reported to exhibit excellent quality in terms of c-axis
orientation with an X-ray rocking curve full width half
maximum (FWHM) of less than 1°. The next popular fer-
roelectric material developed for PMUTs is the PZT
(Fig. 4a(ii)). PZT has the highest piezoelectric constant
(|e31,f| ~ 12 C/m2)4, thereby working best as a transmitter.
However, PZT has a high dielectric constant (ε33,f~ 1200),
making it unsuitable for manufacturing receivers. Next,
P(VDF-TrFE)37 was developed (Fig. 4a(iii)) with the advan-
tages of flexibility/stretchability and low-temperature pro-
cess compatibility. The general deposition technique
involves CSD of 10–15 wt.% copolymer pellets dissolved in
methyl-ethyl-ketone, followed by low-temperature anneal-
ing. The fourth material is AlN (Fig. 4a(iv)), enabling
PMUTs to be CMOS compatible, allowing monolithic
integration of PMUTs with ASICs. Low-temperature sput-
tered AlN has a rocking curve FWHM of 3°, |e31,f| of 1.05 C/
m2 and ε33,f of 10.5 respectively18,38,39. AlN thin films are
most suitable for PMUT receivers due to their small ε33,f.
Next, Sc-AlN is developed with enhanced |e31,f|, thereby
improving a PMUT’s overall performance. A 1 μm

(see figure on previous page)
Fig. 3 PMUT design basics which can be divided into two classes based on PMUT structure and function. a Snapshot of a vibrating PMUT
idealized by a modified parabolic shape. b Important structural layers of a PMUT – the device layer and the active piezoelectric layer. c Schematic of
the working mechanism of an equivalent flexural rigidity dominated plate type PMUT. d Schematic of the working mechanism of a tension
dominated membrane type PMUT. e Dependence of frequency parameter on kappa squared clearly showing three different working regimes32.
f Dependence of a PMUT’s central deflection on the radius which also depicts three different working regimes. g Basic equations governing the
vibration of a PMUT. h Lumped parameter model of a PMUT transmitter. i Lumped parameter model of a PMUT receiver. j A PMUT as a transmitter in
the size-tension subspace32. k A PMUT as a transmitter in the stack thickness subspace32. l A PMUT as a receiver in the size-tension subspace32. m A
PMUT as a receiver in the stack thickness subspace32. n A PMUT as a transceiver in the stack thickness subspace32. All pictures have been adapted
with permission
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Sc0.15AlN film was developed by Wang et al.26 (Fig. 4a(v)),
with a rocking curve FWHM of 1.9° for scandium doping of
15%. The |e31,f| was deduced indirectly from the frequency
response of a Sc-AlN PMUT, and it was found to be
1.6 C/m2. Next, a PZT fiber epitaxial thin-film was devel-
oped by Thao et al.27 on oxide buffered layers by using
magnetron sputtering followed by fast cooling (Fig. 4a(vi)).
The thin-film exhibited a |e31,f| from 10 to 14 C/m2 and an
ε33,f from 200 to 300. Next, single crystal thin-film PZT40

and epitaxial thin-film PMnN-PZT41 were developed with
|e31,f| values of 24 C/m

2 and 14 C/m2 respectively. Recently,
sodium potassium niobate (KNN) (Fig. 4a(vii)) was devel-
oped for making PMUTs42. KNN is lead-free and thus
nontoxic, and it has better compatibility with CMOS. The
layer was deposited following repetitive CSD followed by
sessions of pyrolysis and annealing treatments to achieve an
overall film thickness of 360 nm. The KNN thin-film
demonstrated a |e31,f| of 8.5 to 14.4 C/m2 with an ε33,f of
445.

Fabrication process flows
Fabrication-wise, a PMUT array can be broadly classi-

fied into rigid and flexible arrays. Rigid arrays have zero
conformability and target applications that do not
demand surface attachability, whereas flexible arrays can
be partially to fully conformable.

Rigid PMUT arrays
Bulk micromachining In this process, the bulk sub-
strate is etched by deep etching methods to release the
PMUT diaphragm. The first work43 in this direction
began with a silicon wafer with pyrogenic oxide coated
on the bottom surface, which was followed by boron
diffusion, deposition of low-temperature oxide, backside
oxide etches, and deep silicon wet etching by EDP to
release the diaphragm. The top surface was coated with
a metalized sol-gel PZT sandwich, which was wet etched
to establish contacts (Fig. 4b(i)). The second work
(Fig. 4b(ii)) began with a metalized and surface oxidized
silicon-on-insulator (SOI) substrate, which was followed
by top metal patterning, PZT/bottom metal, oxide, and
device silicon etching to define the top structure,
followed by deep reactive ion etching (DRIE) of the
bulk silicon to release the membrane44. The third
work31,45 began with a metalized bulk lithium niobate
(LiNbO3) crystal that was wet oxidized. The assembly
was then flipped and bonded to the surface of silicon
and polished down to the thickness of the thin-film. The
stack was deposited with metal on top, which was then
patterned. DRIE was performed from the back to release
the membrane (Fig. 4b(iii)).

Surface micromachining In this process, the diaphragm
is released by micromachining from the surface withoutTa
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etching the bulk silicon. The first work46 starts with a wet-
oxidized silicon wafer that is coated with silicon nitride. A
shallow trench is then defined in silicon by reactive ion
etching (RIE). Another silicon wafer with an oxide coat
facing downward is bonded to the previously machined
wafer. The top silicon is thinned to a couple of microns,
followed by PZT metal sandwich deposition, followed by
top metal and PZT etching (Fig. 4c(i)). The second work
(Fig. 4c(ii)) starts with a silicon wafer that is oxidized
(low-temperature oxide), coated with nitride, and meta-
lized. ZnO is then sputtered and etched along with the
bottom metal and nitride to the desired pattern. Photo-
resist (PR) is pattern deposited in the trenches, and the
resultant stack’s top surface is metalized. The stack is next
patterned to create etch holes in the nitride layer. The
oxide is then wet-etched to release the membrane47. The
third work begins with a cavity SOI wafer (Fig. 4c(iii)),
which is metalized and coated with PZT followed by its
etch to take the ground connection, followed by the
deposition and patterning of the top metal for live
connection respectively48. The fourth work (Fig. 4c(iv))
starts with a silicon wafer deposited with a layer of
patterned polysilicon. It is then covered with oxide and
then coated with titanium/titanium nitride/aluminum
after partial etching and filling with tungsten. AlN is next
sputtered and then coated with a pattern of aluminum/
titanium-nitride, followed by etching and sputtering to
establish ground contact. The stack is patterned and
etched, and the polysilicon sacrificial etched to release the
membrane. The assembly is then coated with Parylene-C
to seal off the cavity49. The fifth work starts with50 a
silicon wafer with embedded shallow holes. The wafer is
annealed to activate silicon migration, which forms a thin
overlay over a cavity, forming a membrane. The
membrane is next doped and deposited with patterned
Sc-AlN and metal, followed by the pattern coat with oxide
and metal. Finally, the released silicon membrane is
pattern etched to define membranes of the desired shape
and dimension (Fig. 4c(v)). The sixth work51 starts with an
oxidized silicon wafer that is then coated with a patterned
metal PZT sandwich. Aluminum oxide is then pattern
deposited as shown in Fig. 4c(vi), which is followed by
further metallization to define the in-device traces. PR is
pattern-coated between the top metal and the bond pad,
which is then pattern-sputtered with metal to establish
the connection. The oxide attached to the silicon
substrate is pattern etched, followed by a surface isotropic
etch of the silicon to release the diaphragm.

Flexible PMUT arrays
Flexible array with rigid elements In this category, the
PMUT array is flexible, while each PMUT element is
rigid. Sadeghpour et al.52 started with an oxidized SOI

substrate, which is metalized and pattern etched in a
desired fashion. PZT is next pattern deposited, followed
by further patterned oxidization and metallization to
establish top contacts. A subsequent DRIE is performed to
etch the bulk silicon to release the membrane, followed by
a patterned RIE to desire etch silicon from the top to
create free serpentines (Fig. 4d(i)).

All flexible PMUTs In this category, both the PMUT
elements and arrays are flexible. The first work starts with
a layered stack, as shown in Fig. 4e(i). A PDMS stamp is
then used to remove the functional layers and transfer
them to another stack with silicon, poly(methylmethacry-
late), and patterned polyimide. Poly(methylmethacrylate)
is then stripped off to detach and create the flexible
PMUT53. The second work begins with a polyimide-on-
glass substrate, which is patterned with a photopattern-
able epoxy (Fig. 4e(ii)). A polyimide diaphragm is
suspended on top of it, which is followed by the
deposition of a metal PVDF sandwich. The stack is then
detached from the glass substrate to create flexibility 29.

Author’s sectional predictions
In the last decade, at least 5 new materials have been

developed for PMUTs, with single crystal PZT and Sc-
AlN being the most effective options for transmitters and
receivers, respectively. Future trends show that 5 more
new materials are to be developed in the next 5 years with
improved transmit–receive efficiencies; scholars will focus
on developing transparent and flexible thin films. While
fabrication has seen many developments, rigid PMUTs
have reached a saturation point. However, flexible/
stretchable PMUT arrays still have room for improve-
ment, with more than 5 new flows predicted in this
direction within 2 years.

Special PMUTs
In this section, structurally and functionally non-

conventional PMUTs are described, which are broadly
classified into structurally modified PMUTs and
flexible PMUTs.

Structurally modified PMUTs
PMUTs have been structurally modified to enhance

their performance levels in terms of various parameters,
including deflection/transmit sensitivity, directivity,
and bandwidth. Akhbari et al. fabricated bimorph AlN
PMUTs with two piezoelectric layers in an array, as
shown in Fig. 5a(i). The scholars claim that their
PMUTs have four times the electromechanical coupling
coefficient relative to unimorph AlN PMUTs of similar
geometry and frequency54. Rozen et al. fabricated
PMUTs with venting rings (Fig. 5a(ii)) to amplify the
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far-field sound pressure level (SPL). An increase of
4.5 dB over a control device was claimed55. Akhbari
et al. developed a curved PMUT (Fig. 5a(iii)) with a
radius of curvature of 400–2000 μm and a deflection
sensitivity that was 50 times greater than that of a
comparable flat device56. Wang et al. etched holes along
the periphery of a PMUT (Fig. 5a(iv)), which increased
the SPL by 5.3 dB compared with a similar device57–59.
Wang et al. created isolation trenches along the PMUT
periphery (Fig. 5a(v)), which increased the output
pressure by 76% compared with a similar device. The
authors claimed that the trench reduced the deflection-
induced tensile membrane stress, allowing for more
motion60. Chen et al. reported V-shaped surface springs
(Fig. 5a(vi)), which increased the deflection sensitivity
by 203% due to the release of residual stress from the
relatively flat membrane61. Wang et al. fabricated a
wide-frequency band rectangular PMUT by using the
technique of mode merging (Fig. 5a(vii)). The -6 dB
bandwidth was reported to be 95% in water, which was
exceptionally higher than that of the control
device62–64. Wang et al. fabricated a combination of
central and annular PMUT-on-a-single-chip (Fig.
5a(viii)), which increased the transmit and receive
sensitivities by 1.9 and 6.5 times those of the control
PMUT, respectively. The scholars claimed that the
phenomenon was caused by the coupling between the
two separate membranes65. Eovino et al. reported on a
ring-shaped PMUT (Fig. 5a(ix)) with a central post, and
they observed that the velocity bandwidth in fluid-
coupled operations reached 160%, which was claimed to
be 60% greater than any other reported bandwidth. The

researchers claimed that the ring geometry and
acoustic-induced resonance caused the broadband
nature66. Wang et al. reported on a spiral Archimedean
PMUT array (Fig. 5a(x)), which they claimed could
generate 18% higher sound pressure than conventional
phased PMUT arrays with similar dimensions 67.

Flexible PMUTs
There has been a recent surge in wearable transducer

development68–71. PMUTs have been make-wise modified
to develop flexible arrays with the added advantages of
wearability and conformability to various surface topolo-
gies. Chare et al. fabricated large-area PMUTs based on
flexible PVDF (Fig. 5b(i)) for in-air haptics and demon-
strated their applicability in display compatible flat
arrays72. Although the array was fabricated on a glass
substrate, the same group reported fully flexible arrays29.
Sun et al. reported a PMUT array sticker (Fig. 5b(ii)),
which they found by using PDMS stamp-based transfer.
The devices had resonant frequencies and displacement
sensitivities of 2.58MHz and 30 nm/V, respectively53.
Sadeghpour et al. created bendable PMUT arrays (Fig.
5b(iii)) that were connected by silicon springs; they
demonstrated the array’s capabilities by wrapping it
around a 3D cube with dimensions of 5 mm and a
bendability of 90° 52.

PMUT applications
PMUT applications can be classified as transmitters,

receivers, and transceivers, as described below; some
important comparisons of these terms are tabulated in
Table 2.

Structurally modified PMUTs Flexible PMUTs
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Fig. 5 Special PMUTs which can be classified as follows. a Structurally modified PMUTs: (i) bimorph PMUT with enhanced transmit sensitivity54; (ii)
PMUT with venting rings and enhanced transmit sensitivity55; (iii) curved PMUT with increased pressure output56; (iv) PMUT with relaxed boundary
conditions57; (v) PMUT with isolation trench and enhanced sensitivity60; (vi) PMUTs with V-shaped rings61; (vii) broadband PMUTs62; (viii) central and
annular PMUTs on a single chip65; (ix) ring-shaped PMUT66; and (x) Archimedean PMUT array67. b Flexible PMUTs: (i) polymer PMUT72; (ii) fully flexible
PMUT53; and (iii) flexible PMUT die with rigid elements52. All pictures have been adapted with permission
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PMUTs as transmitters
As transmitters, PMUTs generate sound and have been

applied to the domains of therapeutics, health care,
communications, and haptics. Regarding therapeutics,
Tipsawat et al.73 developed a 32-element phased array
PMUT with beam steering by using Nb-doped PZT for
neuromodulation (Fig. 6a(i)). An acoustic pressure of
0.44MPa was obtained at a focal distance of 20 mm with
an average intensity of 1.29W/cm2. Eovino et al. reported
on concentric PMUT arrays74 for focused ultrasound
applications that could focus on a spot of 1.9 mm for a
pressure of 12 kPa/V (Fig. 6a(ii)). Lee et al. created a low-
intensity pulsed ultrasound system75 by using a PMUT
linear array that generated a pressure of 0.15MPa at
1 mm; they increased the cell proliferation rate in the
range of 138–166% with respect to the control condition
(Fig. 6a(iii)). Pop et al. created a bioheating platform76

with a 5 ×10 PMUT phased array and demonstrated a 4 °C
increase in the relative temperature after 10 s (Fig. 6a(iv)).
In acoustofluidics, Cheng et al.77 developed confined
PMUT arrays to trap and manipulate 4-μm silica beads
using unipolar excitation (Fig. 6a(v)). In communications,
Shao et al.78 reported on a parametric air-coupled single-
chip bimorph PMUT array to generate highly directional
audible sound with a half-power beam width that was less
than 5°. The scholars generated a 5-kHz sound by com-
bining frequencies of 252 and 257 kHz (Fig. 6a(vi)).
Harshvardhan et al.79,80 developed near-ultrasound
PMUTs for sending data over sound. PMUTs could
send data successfully for a range of 6 m while consuming
less than 10mW of electrical power (Fig. 5a(vii)). In
haptics, Chare et al.72 demonstrated a large-area thin-film
PVDF-based PMUT array (Fig. 6a(viii)), which could
display the creation of a twin trap that reached an acoustic
pressure of 1.6 kPa after 20 mm from the PMUT in air.

PMUTs as receivers
As receivers, PMUTs receive sound and are applicable

to photoacoustic (PA) imaging, PA detection, switching,
communication, and energy harvesting. In PA imaging,
Dangi et al.81,82 combined a PMUT array with a pulsed
light source in a single device that could image a custom-
made phantom with embedded lead targets, as shown in
Fig. 6b(i). The PMUTs in the device had center fre-
quencies of 6.75MHz in water with a PA bandwidth of
89%. Next, Roy et al.83 developed a PMUT-based pulsed
PA microfluidic concentration detector that was capable
of detecting ink-water concentrations, followed by the
development of a single-cell low-frequency PMUT that
could image targets clearly in a tissue-mimicking phan-
tom84 (Fig. 6b(ii),(iii)). Recently, Cai et al.85 made a high-
order multiband AlN PMUT and used its high modes to
obtain enhanced PA images from a custom-made phan-
tom (Fig. 6b(iv)). The scholars used BRISQUE as an image

quantifier and observed that the higher modes of PMUTs
provided better images than the lower modes at similar
depths. Zheng et al.86 developed a thin ceramic PZT for
multifrequency PA imaging. Although this device
involved a relatively thick-film (9 μm) PZT, the work was
considered novel and was thus reported in this review
(Fig. 6b(v)). Recently, Wang et al. demonstrated the usage
of AlN and Sc-AlN PMUTs for microwave-induced
thermoacoustic imaging applications87,88. In switch and
communication applications, Moro et al.89 developed a
neuromorphic object localization system that used
PMUTs and resistive memories to accomplish the work
(Fig. 6b(vi)). Pop et al.90 developed a zero-power PMUT-
based ultrasonic wake-up receiver, a zero-power MEMS
plasmonic switch, and a low-leakage current CMOS load
switch as important parts of the system. A working
demonstration of the wake-up behavior was shown in a
range of 5 cm (Fig. 6b(vii)). In the domain of energy
harvesting91, Shi et al.25 demonstrated making a rectan-
gular PMUT-based broadband energy harvester for self-
powered implantable medical devices (IMDs) (Fig.
6b(viii)). The scholars demonstrated power transfer
through a 6mm pork tissue in water to receive a power of
2.3 µW/cm2.

PMUTs as transceivers
As transceivers, PMUTs transmit and receive sound;

additionally, they can function with a differential
actuation-sensing scheme as frequency-shift devices or
can function as a transmit–receive pair with device twins
facing each other. In the first direction, Dausch et al.92

fabricated two 256- and 512-element arrays through sili-
con vias to make an intracardiac catheter that captured a
B-mode image in vivo from a porcine model (Fig. 6c(i)).
Next, Tang et al.93 proposed a 3-D ultrasonic fingerprint
sensor on-chip consisting of a 110 ×56 PMUT array
bonded to a custom 180 nm readout ASIC and can image
epidermal, subsurface, and dermal fingerprints (Fig.
6c(ii)). Next, for frequency shift applications94–97, Roy
et al. devised a PMUT-microfluidic integrated device98,99

to sense fluid density; they demonstrated real-time density
monitoring with the device30 (Fig. 6c(iii)). Ledesma
et al.100 developed a single-cell PMUT on a 130 nm
CMOS chip to monitor fluid properties, such as density,
viscosity, and sound compressibility (Fig. 6c(iv)). Next,
Sun et al.28 constructed a TENG-powered functionalized
PMUT to demonstrate its functionality as a combined
temperature and humidity sensor (Fig. 6c(v)). Next,
Przybyla et al.101 made a 3D on-chip rangefinder to
localize targets over a 90° field of view to a 1-m distance
(Fig. 6c(vi)). Shi et al.102 made an AI-enabled soft robotic
perception system with PMUT-based auto positioning
and TENG to achieve appropriate positioning of ran-
domly distributed objects (Fig. 6c(vii)). Sun et al.103
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worked on a portable eye-blinking monitoring application
by mounting a similar PMUT on a spectacle that could
track eye blinks (Fig. 6c(viii)). As transmit–receive pairs,
PMUTs are applicable in intrabody communications; Pop
et al.31 created a special in-plane actuated PMUT using an
anisotropic LiNbO3 thin-film for enhanced bandwidth
characteristics. Image data were sent 13.5 cm through the
body tissue phantom (Fig. 6c(ix)).

Author’s sectional predictions: PMUTs and their
competitors
PMUTs have wide-ranging applications in health care,

consumer electronics, and industrial automation. As
transmitters, they are used in low-intensity focused
ultrasound for neuromodulation, showing potential for
achieving greater acoustic intensity efficiency than
CMUTs and bulk piezoelectric transducers. As receivers,
PMUTs are applied in PA, offering advantages in making
high fill-factor multifunctional arrays in any shape that are
integrate-able into CMOS. Although a PMUT–PA
tomography system has yet to be developed, initial results
from synthetic aperture PA imaging are promising. As
transceivers, PMUTs are successful as low-voltage ran-
gefinders and fingerprint sensors. In medical imaging
applications, PMUTs suffer from reduced axial resolution
due to their high Q factors; however, improving backing
layer schemes in PMUTs can supposedly significantly
enhance PMUT imaging performance.

Conclusion
This concise review thus forms an all-in-one reference for

the important works conducted since the beginning of
PMUT manufacturing, and it provides readers with an
overall awareness of PMUTs, their history, their present
progress, their design, and their potentials for various
applications. Although PMUTs have brought about the new
ultrasound revolution, similar to any other technologies, they
have their advantages and disadvantages. The advantages
have been discussed earlier. Some of the disadvantages over
traditional piezoelectric transducers are the limitation pre-
venting the creation of high-intensity ultrasound, the rela-
tively complicated backend, and the high investment cost in
terms of capital and time for new ventures. Despite these
limitations, it is believed that similar to all technologies,
PMUTs should continue to survive and prosper for years to
come, and they should be applied by fellow researchers and
entrepreneurs to develop meaningful applications suitable
for driving the MEMS ultrasound revolution.
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