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Abstract
The current research aims to aid policymakers and healthcare service providers in estimating
expected long-term costs of medical treatment, particularly for chronic conditions charac-
terized by disease transition. The study comprised two phases (qualitative and quantitative),
in which we developed linear optimization-based mathematical frameworks to ascertain
the expected long-term treatment cost per patient considering the integration of various
related dimensions such as the progression of the medical condition, the accuracy of medi-
cal treatment, treatment decisions at respective severity levels of the medical condition, and
randomized/deterministic policies. At the qualitative research stage, we conducted the data
collection and validation of various cogent hypotheses acting as inputs to the prescriptive
modeling stage. We relied on data collected from 115 different cardio-vascular clinicians to
understand the nuances of disease transition and related medical dimensions. The framework
developed was implemented in the context of a multi-specialty hospital chain headquartered
in the capital city of a state in Eastern India, the results of which have led to some interesting
insights. For instance, at the prescriptive modeling stage, though one of our contributions
related to the development of a novel medical decision-making framework, we illustrated that
the randomized versus deterministic policy seemedmore cost-competitive.We also identified
that the expected treatment cost was most sensitive to variations in steady-state probability
at the “major” as opposed to the “severe” stage of a medical condition, even though the
steady-state probability of the “severe” state was less than that of the “major” state.
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1 Introduction

According to the world health organization (WHO), the work on healthcare costing and
accompanying efficiencies explores questions around the usage of healthcare resources, par-
ticularly in the public health sector (WHO, 2022a). Strategies and policies for improving
health by expanding access to healthcare services need to be looked at from a resource-centric
perspective to remain viable, efficient, and affordable. Addressing the resource allocation and
proactive estimation of expenditures for delivering healthcare services revolves around treat-
ment policies, costs, and an economic assessment of contributions made to improving health,
particularly chronic diseases (e.g., HIV, diabetes, and cardiovascular diseases). In particular,
questions like how much needs to be allocated to healthcare spending to reach healthcare
goals, what the cost drivers are, and how resources should be apportioned are essential ques-
tions that need to be addressed. Answers to such questions can be addressed by developing
methods, tools, and frameworks. These can be integrated at a larger policy level so that effi-
cient cost estimation can percolate at various levels, such as the country, district, and hospital
levels (WHO, 2022b).

Global healthcare spending has been spiraling since the early 2000s, as per a report
released by the WHO in 2019 (WHO Working Paper, 2019). Of particular concern is that
healthcare costs have been continuing to rise at a much higher rate than the rate of increase
in countries’ gross domestic product (GDP), irrespective of whether the country is a low-,
middle-, or high-income country. For instance, between 2000 and 2017, the average increase
in GDP for low-income countries was slightly higher than 6%. In the same period, the
average increase in healthcare spending for such countries was somewhat less than 8%. In the
case of high-income countries, the gap between the average increase in healthcare spending
and the average increase in GDP is even more pronounced. Between 2000 and 2017, the
average increase inGDP for high-income countrieswas less than 2%,while the corresponding
increase in healthcare expenditure was almost 4%. The rise in healthcare spendingworldwide
continues to have positive effects on public health outcomes, particularly in developing
nations (Dhagarra et al., 2019). However, increases in spending do not necessarily imply
enhanced service coverage (WHO Working Paper, 2019).

Though increased healthcare spending can positively impact (both at the private- and
public-sector level), there are important accompanying downsides, both at the macro and
micro levels. At the macro level, healthcare spending has been accompanied by a signifi-
cant increase in catastrophic and out-of-pocket spending (OOPS) as a share of total health
expenditure in the past decade (WHO Working Paper, 2019). Catastrophic spending mea-
sures a household’s financial hardship. It reflects the concerns of households in having to
choose between spending on healthcare services/products and spending on basic needs such
as food, education, and housing. OOPS pertains to payment by households to healthcare
service providers to obtain service and health products in cash or credit payments to doctors,
pharmacies, and user fees (Walker et al., 2019). Globally, the number of individuals with
catastrophic health spending rose between 2000 and 2015 (WHO Working Paper, 2019).
Further, an increase in healthcare expenditure, particularly governmental spending, does not
yield desirable effects until the right priority in budgetary allocation is set (WHO Working
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Paper, 2019). For instance, in the United States (US), the sickest 5% of the population con-
sumes 50% of total healthcare costs, while the healthiest 50% of the population consumes
only 3% of the nation’s healthcare costs. With lifestyle changes across the globe, chronic
diseases such as diabetes and heart disease have soared, thus leading to spiraling costs (Balta
et al., 2021). In theUS, it is estimated that healthcare costs accompanied by productivity losses
will cost the US economy more than $1 trillion annually (Raghupathi & Raghupathi, 2018).
At a micro level, planning for healthcare costs, including those related to post-treatment,
could significantly influence the allocation of resources in both the short- and long-term (Li
et al., 2021; Mitropoulos et al., 2020). Therefore considering the challenges associated with
resource planning, somemeasure of broad estimates of costs within a certain time period for a
particular type of medical condition (especially chronic conditions) would be of tremendous
value in that such reasonably estimated expected costs per patient would ensure a signifi-
cant reduction in uncertainty in planning when considering stakeholders such as individuals,
hospitals, and insurance companies (Chapel et al., 2017; Kwon et al., 2016; Mitropoulos
et al., 2020; Tortorella et al., 2021). The aforementioned arguments warrant that for chronic
diseases, in particular, the modeling and prediction of costs due to disease accrued over time
is critical for future services and budgets. However, it is also well documented that cost-data
modeling is often problematic due to gaps in the unavailability and distribution of such data
(Cooper et al., 2006). Particularly in the ongoing COVID-19 pandemic, wherein countries
have been faced with multiple waves, each wave accompanied by huge escalations in public
and private expenditures, such cost modeling and prediction would enable governmental and
household entities to have some degree of certainty in earmarking their budgets.

Any typical chronic medical condition such as cardiovascular disease is often character-
ized by different severity states such as minor, moderate, or severe. Over a period of time,
these states can either deteriorate considerably or stay the same with certain frequencies
(probabilities). There would be a certain level of treatment decision in each of these states
depending on the extent of medical, medicinal, and surgical interventions. In such transitions,
the expected costs, therefore, likely depend on whether treatment decisions are determinis-
tic or randomized in nature. A deterministic decision reflects when the healthcare service
provider prescribes an appropriate level of treatment depending on past experiences in that a
certain expected cost of medical treatment would result.

On the other hand, a randomized policy pertains to an attempt by the medical service
provider so that certain acceptable treatment decisions can be mapped to individual states of
the medical condition to minimize the expected treatment costs. Further, long-term steady-
state probabilities (i.e., probabilities [frequencies] with which the medical condition exists
in a particular condition), would significantly impact the expected costs of treatment under
both deterministic and randomized policies. Furthermore, data related to the accuracy of
diagnosis can also impact the long-term steady-state probabilities and, therefore, treatment
costs (Šimundić, 2009).

The following key research questions were developed in view of the aforementioned
arguments and motivations.

RQ1: How can we model deterministic and randomized medical treatment policies by
integrating different states of a medical condition, transition probabilities, the accuracy
of medical treatment, and the costs associated with medical treatment, thus evolving a
structured approach to predict and model medical costs over a period of time?
RQ2: How can we deploy and validate data related to probabilistic transitions and
frequencies pertaining to various states of a medical condition such that, based on
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Fig. 1 Progression of the study

robust statistical validation, these can be adopted to illustrate our prescriptive modeling
approach?

To respond to these research questions, we specifically considered the case of patients
accompanied by cardiovascular conditions who received treatment from one of the chains of
a large multi-specialty hospital chain headquartered in the capital city of a state in Eastern
India. In the first stage of our research (i.e., the qualitative stage), we employed the theoretical
construct of thematic analysis to identify and classify major cardiovascular condition states.
The clinicians for this classification were 115 retired cardiovascular specialists and surgeons
(out of a total of 187 specialists who were contacted). Using the clinicians’ expert inputs, we
also obtained a sense of the broad frequencies of each of these states, transitions, and accuracy
of diagnoses. We further conducted statistical validations to eliminate outliers to ensure that
the data from the remaining clinicians were not statistically different. Following this, in the
second stage of our research (i.e., the modeling stage), using the linear programming (LP)-
based exact-method technique, we modeled the frameworks of the minimization of expected
medical costs of treatment under both deterministic and randomized policies. Using the data-
related costs, transition probabilities, and so on, we illustrated the workings of the models
developed. Figure 1 illustrates the progression of our study.

From Fig. 1, it can be seen our study involved three distinctly different phases. In the
first phase, and based on the literature review, we identified the current research gaps and
discussed how these gaps can be addressed. Following this, in the qualitative stage, based on
semi-structured interviews with experts (cardiovascular clinicians), we conducted a thematic
analysis focused on identifying major themes of the transition of the medical condition. We
further collected the data pertaining to the prevalence of frequencies of medical conditions
in various states, accompanying transitions, and so on. Finally, we performed statistical val-
idation and testing of several hypotheses in the qualitative stage that formed the premise
for the next study stage (i.e., the prescriptive modeling stage). We developed Markovian
property-based mathematical models with consideration for both deterministic and random-
ized policies at the prescriptive modeling stage before performing a sensitivity analysis.

The remainder of the paper is organized as follows: Sect. 2 presents the literature review
and research gaps; the research methodology is detailed in Sect. 3; Sect. 4 captures the step-
wise solution methodology with an illustrative example; Sect. 5 enumerates the key findings
and analysis; implications in terms of managerial and policy dimensions are discussed in
Sect. 6; and, finally, the paper concludes in Sect. 7, wherein concluding remarks and future
research directions are presented.
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2 Literature review and research gaps

The two primary research streams aroundwhich our research revolves are a) the cost and eco-
nomic modeling of healthcare using analytical and statistical methods; b) the cost-dominant
medical decision-making in healthcare. We now present the extant research literature related
to both streams.

2.1 Cost and economic modeling of healthcare using analytical and statistical
methods

Using the Bayesian Markov-chain Monte Carlo simulation method, Cooper et al. (2007)
devised a cost modeling method for diseases that are spread over time. The study contributed
to the extant literature in two important ways from a methodological perspective. First, the
regression-based statistical method developed was adjusted for modeling skewness (par-
ticularly a right-leaning skew) observed in the data. Second, the methods developed also
accounted for the correlation of costs over different times for individuals. The model was
used in the context of early inflammatory polyarthritis. From conducting a systematic review,
Wammes et al. (2018) concluded that healthcare cost modeling does not only represent novel
methodological outcomes. This is important from the standpoint that high-cost patients are
typically sickest in that they represent higher utilization of scarce healthcare resources. Using
data from high- as well as low-income countries, the study advocated for tailored interven-
tions (as opposed to standard interventions) for high-cost patients. Lin et al. (2019) developed
a machine-learning model to identify high-cost patients by incorporating expert knowledge
about causal relationships. In particular, the study considered four types of variables with a
high degree of linkage with the future high cost of treatment: procedure, demographic, diag-
nosis, and cost variables. An important contribution of this study was that it modeled cost
implications for nonlinear and high-dimensional data using predictivemodeling in the context
of chronic obstructive pulmonary disease. Manrique-Rodriguez et al. (2014), using the sever-
ity levels and associated probabilities of adverse events, highlighted that cost savings during
clinical judgment are often underestimated in current research in that such research does not
typically consider indirect and intangible costs. Using various statistical methodologies, the
study illustrated the cost-effectiveness of the implementation of smart-pump technology in
pediatric intensive care units (ICUs). In their study on predicting healthcare costs, Revels
et al. (2017) employed an autoregressive integrated moving average (ARIMA) time series
analysis to model and forecast the future direct and indirect healthcare costs related specifi-
cally to morbid obesity. An important contribution of this study pertained to the identification
of accelerating trends related to morbid obesity. Verma et al. (2022) described the descrip-
tive and descriptive framework to analyze the demand for customer review ratings. Weaver
et al. (2015) employed regression models to estimate the costs attributable to hypertension,
adjusting for comorbidities and socio-demographic factors in the context of Canadian data
up until 2020. The study demonstrated that hypertension accounts for significant spending
in the Canadian healthcare budget and is projected to increase further as a percentage of the
total budget. Employing a dataset from Barnes-Jewish Hospital, the study’s area under the
curve (AUC) was found to be 0.70 for a 30-day readmission prediction. This AUC value
was significantly higher than all extant line-based methods. Sushmita et al. (2015) employed
machine learning algorithms to predict healthcare costs on publicly available survey data
accurately. This study contributed to the extant literature in several ways. First, the study
demonstrated that prior healthcare costs alone could be a good indicator of future healthcare
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costs. Second, the M5-model tree technique, as employed in the study, was found to generate
accurate future healthcare cost predictions. Finally, the methods employed in the research
were found to be useful in evaluating future costs for large segments of the population with
reasonably low errors. Morid et al. (2018) identified five methods for predictive-cost mod-
eling. Using a dataset of approximately 90,000 individuals and 6.3 million medical claims,
the study demonstrated that gradient boosting had the best predictive performance for low-
to medium-cost individuals. However, artificial neural networks (ANN) and ridge regression
models worked better for high-cost individuals. Khalilpourazari et al. (2021) proposed a
Gradient-based Grey Wolf Optimizer for complex optimization problems in that Gaussian
walk and Levy flight were used to improve the exploration ability of evolved optimizers.
The method developed was deployed in the context of COVID-19 case prediction in terms of
the peak of infected, recovered, ICU-admitted, and death cases. They developed a Stochas-
tic Fractal Search algorithm and combined it with a mathematical framework to forecast
the pandemic based on public datasets to model the COVID-19 pandemic in Canada. The
study showed that increasing testing capacity can enhance the detection of cases, particularly
asymptomatic cases that mostly contribute to a rise in infections. They deployed a novel
mathematical model to design an efficient flood evacuation plan in disasters. The problem
was non-polynomial (NP) and hard in nature in that four different algorithms were offered to
solve the mathematical model developed. The mathematical framework was also deployed
to validate the real-life data from the devastating tsunami in Ishinomaki, Japan, in 2011.

2.2 Cost-dominant medical decision-making in healthcare

In a study related to healthcare budgets and the decision rules of cost-effective healthcare
providers, Baal et al. (2014) converged on the fact that most economic evaluations typically
do not include all medical costs that may result in future costs related to illnesses. To this
end, the study developed theoreticalmodels and demonstrated optimal decision rules for cost-
effectiveness analysis such that future costs of both related and unrelated medical care should
be included. The theoretical model was applied to an example of transcatheter aortic valve
implantation. Wang et al. (2018) employed cost-sensitive deep learning methods (grounded
in convolution neural networks) that trained a multilayer perceptron (MLP) for readmission
policy prediction. A key limitation that this study addressed was that, as opposed to a policy
of relying on certain vital signs and diseases by extracting statistical features, it advocated
for considering the skewness of class labels in medical data and the different costs of clas-
sification errors. Douglas (2020) showcased that responsibility-sensitive healthcare funding
as a key lever for both patients and service providers goes a long way to ensure long-term
healthcare costs remain at sustainable levels. Notably, this study also emphasized policy
integration, particularly in chronic diseases, to enhance cost competitiveness and survival
rates. Stadhouders et al. (2016) advocated for cost-containment policies for long-term cost
control in the healthcare sector. In particular, the study emphasized four primary targets to
contain costs, viz. volume controls, price controls, budgeting, and market-oriented policies.
Daultani et al., (2015a, 2015b) introduced another dimension to reducing waiting times for
patients based on simulation. Sari et al. (2017) analyzed lean-based policies and accounted
for direct costs such as fees paid to consultants/other relevant expenses and indirect costs
related to wages. Their work was further extended by Henrique et al. (2021), who had a view
of specifically carrying out continuous improvement in healthcare, thereby contributing to
the notion of lean healthcare with the objectives of minimizing both service provider and
patient expenditure. Daultani et al., (2015a, 2015b) presented a comprehensive study on the
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detailed scope of lean applications in different healthcare settings. Cookson et al. (2017)
deployed cost-effectiveness analysis (CEA) to address health equity concerns. The premise
of this study revolved around ensuring social equity policies. It described two main ways to
address health equity concerns using CEA. The first way pertains to equity impact analysis,
which quantifies the distribution of cause and effect by equity-relevant variables. The second
pertains to equity trade-off analysis, which quantifies trade-offs between improving total
health and other equity objectives.

2.3 Key research gaps and contributions

This section presents the research gaps addressed in the current study. Though studies such
as Beaulieu and Bentahar (2021), Lin et al. (2019), and Walker et al. (2019) argue for robust
modeling of economic costs and decision policies in healthcare service delivery, thereby
understanding the economic impacts that can be of significant value both at the policy as
well as operational level, we specifically expand on the extant literature in the following
ways.

(a) Most current studies, including those byLin et al. (2019),Morid et al. (2018), andWalker
et al. (2019), implicitly assume that the policies around patient diagnosis and treatment
are known well in advance, even for diseases that are subject to transition to degenerate
states. This assumption around treatment policies given apriori is restrictive in that there
cannot be scenario-based cost modeling of medical treatment. To address this limitation,
the current study conducted cost modeling based on two kinds of treatment policies, viz.
deterministic and randomized. Deterministic policies are those in which the healthcare
professional performs treatment based on prescribed treatment guidelines. In contrast, in
the randomized policy, treatment decisions can be made to keep direct expected costs at
a minimumwhile still deploying acceptable treatment decisions for a particular medical
condition state.

(b) Although de Gues et al. (2016) deployed Markovian decision analysis to contrast treat-
ment strategies, the vast majority of extant studies that focus on cost and economic
modeling failed to take into account the fact that chronic diseases can be associated with
certain progression in that a specificmedical condition can deteriorate to degenerate lev-
els or remain at the same state. Further, information related to medical diagnosis serves
as a key input in ascertaining the steady-state transition probabilities that in turn serve as
a key input for the prescriptive modeling of expected treatment costs. Such harnessing
of Markovian properties and assessment of deterministic and randomized policies, thus
resulting in long-term steady-state probabilities, can be valuable to concerned stake-
holders in that they can aid these stakeholders in understanding the economic impact of
a medical condition (even at the localized level).

(c) Prior to developing the prescriptive framework based on linear optimization models,
we collected real-life and empirically validated data on cardiovascular conditions from
retiredmedical professionals (experts) who had experience diagnosing and treating such
conditions. In particular, data on states of the said medical condition, transitions, and
treatment accuracy were systematically collected during primary data collection. Fur-
ther,we relied on robust statistical validation, thereby eliminating outliers and attempting
to ensure that the data did not remain statistically dissimilar. All these nuances related to
data and hypothesis formalized at the qualitative stage (stage 1) were key to establish-
ing and validating the prescriptive model developed in stage 2. Therefore, an important
contribution associated with our study is that, instead of evolving a prescriptive model
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characterized only by theoretical underpinnings, our model is grounded in real-life data
backed further by strong statistical validation. Table 1 encapsulates a comparison of our
research with the current literature.

(d) Most current studies, including those by Cooper et al. (2007), Lin et al. (2019), Sari
et al. (2017), and Wang et al. (2018), provided a point-solution to optimal steady-state
probabilities with consideration for various states of progression of the disease and did
not perform post-optimality analyses. However, we also conducted a detailed sensitivity
analysis to understand better the impact of variations in steady-state probabilities cor-
responding to different states. We further identified that the expected cost of treatment
is most/least sensitive to a given state of the medical condition. Finally, in contrast to
most current studies, by incorporating information related to true/false treatment, we
also ensured that such dimensions were adequately captured at both the qualitative and
prescriptive modeling stage.

3 Researchmethodology

Practicality dictates that the most important determinants of research methodology are often
formulated research questions (Saunders et al., 2019; Zhao et al., 2020). The research ques-
tions posed in the current study required the authors to move sequentially from empirical
findings tomathematicalmodeling, thus forming an appropriate basis for research approaches
intervening in the world and not merely observing the world (Goldkuhl, 2012; Zhao et al.,
2020). Qualitative approaches have proven to be effective in gaining deep insights and diver-
sified views of certain phenomena by probing experts (i.e., clinicians [in this case, a specific
genre of medical professionals]) for their diversified views and understanding (Wellington
& Szczerbinski, 2007). In line with the above assertions, we conducted the study in the
qualitative stage (stage 1) and the modeling stage (stage 2), as shown in Fig. 2.

3.1 Qualitative stage

The first stage, the qualitative stage, was aimed at data collection, validation, and prepro-
cessing, thus serving as input to the second stage, the prescriptive modeling stage. In the
first stage, one-on-one semi-structured interviews were conducted with experts (clinicians)
over video calls (primarily due to the ongoing COVID-19 pandemic). The objective of such
interviews as a primary method of data collection is anchored in the fact that such a method
enables (1) insightful discussions with experienced medical professionals, thus obtaining
richness in primary first-hand data; (2) the uncovering of newer knowledge through allowing
clinicians to express their ideas freely; (3) the privacy of clinicians who are not willing to
share personal experiences in front of peers; and (4) two-way communication between inter-
viewer and interviewee. Following this, the use of thematic analysis helped identify, analyze,
and report themes within the data. Further, thematic analysis has shown itself to be flexible
and tangible, particularly in the context of qualitative data (Braun & Clarke, 2006).

At the end of the information-gathering phase, it was broadly expected that the major
states of the medical condition along with its accompanying transitions would be finalized.
These thematic inputs then acted as an input to collect the pertinent objective data, followed by
rigorous statistical testing and validation to ensure that elemental relationshipswere identified
and verified. In particular, we aimed to substantiate a few important questions: (a) Are there
any statistical differences in the frequencies of different states of medical conditions?; (b) Are
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Fig. 2 Schema of the research methodology

there any statistical differences in the transitions of different states of medical conditions?;
and (c)How can we work with the means of different parameters that are statistically similar
by filtering out the outliers?

Once the rigorous statistical validation was conducted, we moved to the second stage of
the work (i.e., the prescriptive modeling stage), wherein we conducted detailed modeling of
deterministic and randomized policies, as detailed in Sect. 3.2.

3.2 Modeling stage

3.2.1 Expressing states of the medical condition and transitions

The indices, parameters, and decision variables of the model are presented in Table 2. There
are three major indices pertaining to the actual states of the medical condition, treatment
corresponding to a particular state, and correspondingmedical decision. The decision variable
pertains to optimal steady-state probabilities and optimal steady-state transition probabilities
under both deterministic and randomized policies.

Suppose a patient suffering from a specificmedical condition, state A(mt) requires the cor-
responding treatment. The treatmentwould be appropriate only if the corresponding treatment
is T(mt). This means that for the specific state A(mt), only T(mt) would be appropriate, and
no other treatment decisions such as T(m1), T(m2), … T(mt-1), …, T(mt+1),…. T(mT ) would
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Table 2 Indices, parameters, and decision variable set

Indices

A(mt) Actual state “mt” represents a particular state of the medical condition

T(mt ) Corresponding treatment for particular state “mt” of the medical condition

k Medical decision “k” such that k � 1, 2, 3….K

Parameters

[p{A(mt ) → A(mT )] Mean transition probability of the medical condition from state “mt” to
state “mT ”

p{A(mt )} Mean probability of medical condition remaining in state “mt” itself

D(k, mt) Decision “k” exercised for the state of medical condition “mt” under the
deterministic policy

y(k, mt) Decision “k” exercised for the state of medical condition “mt” under the
randomized policy such that y(k, mt) ε (0,1)

C{A(mt)} The average cost of treatment corresponding to the actual state of medical
condition “mt”

EDet (C) The expected cost of the treatment considering the deterministic policy

ERand(C) The expected cost of the treatment considering the randomized policy

Decision variable set

θ∗{A(mt ) → A(mT )] Optimal steady-state transition probabilities from state “mt” to “mT ”
under the deterministic policy

y∗{A(mt ) → A(mT )] Optimal steady-state unconditional transition probabilities from state “mt”
to “mT ” under the randomized policy

π∗{A(mt )} Optimal probabilities of state “mt” to remain in the same state under the
deterministic policy

y∗{A(mt )} Optimal probabilities of state “mt” to remain in the same state under the
randomized policy

be acceptable. If A(mt) is mapped to T(mt), then the treatment decision would be termed ‘true
treatment.’ Otherwise, the treatment would be termed ‘false treatment.’ Table 3(a) depicts
this mapping for various states of a medical condition and corresponding treatment decisions
in that it represents the treatment probability matrix represented as [p{A(mt ), T (mt )]. An
element of this matrix depicts whether the decision is true or false, along with the mean prob-
ability of a specific state of a medical condition and accompanying treatment. For instance,
referring to Table 3(a), for the element lying at the intersection of A(mt) and T(mt), the
treatment is true, and the corresponding probability of treatment corresponding to medical
condition A(mt) is p{ A(mt), T(mt)}.

Another dimension of medical treatment is related to the Markovian property in that the
state of a specific medical condition can evolve to other severe states of the specific medical
condition. For example, an individual with a specific “minor” cardiovascular condition can
remain in this same condition with a probability of 1/2 or can deteriorate to a “major” and
“severe” conditions over a period of time with probabilities of 3/8 or 1/8, respectively. This
means that, on average, there is a 50% likelihood of the patient remaining steady at the
same “minor” condition. The patient’s “minor” condition would deteriorate to “major” and
“severe” with a 37.5% and 12.5% likelihood, respectively. Referring to Table 3(b) and the
transitionmatrixwithin [p{A(mt ) → A(mT )],A(m1) denotes a “minor condition”.A(m1) can
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remain at this state itself with a probability of p{A(m1)}. A(m1) can further deteriorate to lower
states of the medical condition with individual probabilities. For instance, state A(m1) can
deteriorate to a lower state A(m2) with a mean transition probability of p{A(m1) → A(m2)}.

If A(m1), A(m2), A(.), A(mt), A(mT ), A(..), A(mT ) are all possible exhaustive states of
a medical condition such that A(m1) > > A(m2) > > A(.) > > A(mt) > > A(mT ) > >
A(..) > > A(mT ) with > > depicting progressively degenerate states, then the sum of the
corresponding mean transition probabilities corresponding to all the rows would be equal
to 1. For instance, within the medical condition transition matrix [p{A(mt ) → A(mT )], for
the first row in Table 3(b), the sum of the transition probabilities can be expressed using the
following mathematical expression:

p{A(m1)} + p{A(m1) → A(m2)} + p{A(m1) → A(.)} + p{A(m1) → A(mt )}
+ p{A(m1) → A(..)} + p{A(m1) → A(mT )} � 1 (1)

Further, a particular degenerate state, for instance, A(m2) cannot transition back to better
prior states. Therefore, the values of such transition probabilities would be equal to zero.

Similarly, for the remainder of the row, the following mathematical expressions can be
used:

p{A(m2)} + p{A(m2) → A(.)} + p{A(m2) → A(mt )}
+ p{A(m2) → A(..)} + p{A(m2) → A(mT )} � 1 (2)

p{A(.)} + p{A(.) → A(mt )} + p{A(.) → A(..)}
+ p{A(.) → A(mT )} � 1 (3)

p{A(mt )} + p{A(mt ) → A(..)} + p{A(mt ) → A(mT )} � 1 (4)

p{A(..)} + p{A(..) → A(mT )} � 1 (5)

Equations (1)–(5) ensure that the sum of the transition probabilities corresponding to each
state of the medical condition equals 1.

Notably, the last state, A(mT ), will not improve from any previous state and will remain
in this state only with a probability of 1. Therefore, the value of p{A(mT )} would be equal to
1. The interplay of likelihoods of states of a medical condition and corresponding medical
treatments and transition probabilities would have a combined effect in that the resulting
probabilities would be indicative of uncertainties associated with a specific state of medical
condition/corresponding treatment while at the same time taking into account deterioration to
a degenerate state of a medical condition. This means that the effective transition probability
would be a key input in subsequent modeling.

When we consider the mean effective transition probability, we can ascertain the elements
of the effective transition probability using the independent property of the two probability
element sets depicted in Table 3(a) and (b).

The effective transition probability can be represented using two types. The first is a
transition within the same state (e.g., “minor” to “minor”), and the second is a transition
from one state to another (e.g., state “minor” to “major”). The effective transition probability
in the same state of a medical condition—for instance, related to state A(m1)—is expressed
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as x{A(m1)} and can be determined using the following mathematical expression:

x{A(m1)} � p{A(m1) × p{A(m1), T (m1)}
p{A(m1) × p{A(m1), T (m1)} + p{A(m1), T (m2)} × p{A(m1) → T (m2)}
+ · · · p{A(m1), T (mT )} × p{A(m1) → T (mT )}

(6)

The effective transition probability when the state of a medical condition transitions
to some other state, for instance, when state A(m1) transitions to A(mT ), is expressed as
x{A(m1) → A(mT )} and can be determined using the following mathematical expression:

(7)

x{A(m1) → A(mT )}
� p{A(m1), T (mT )} × p{A(m1) → A(mT )}

p{A(m1) × p{A(m1), T (m1)} + p{A(m1), T (m2)} × p{A(m1) → A(m2)}
+ · · · p{A(m1), T (mT )} × p{A(m1) → A(mT )}

Similar to the approach specified in Eq. (7), the remaining elements of the effective
medical condition transition matrix can be ascertained such that the matrix can be denoted as
[x{A(mt ) → A(mT )]. In tabular form, the matrix [x{A(mt ) → A(mT )] would look similar
to Table 3(b), except p would be replaced by x.

3.2.2 Deterministic and randomized policies

Deterministic policies Once the elements of the matrix [x{A(mt ) → A(mT )] are estab-
lished, we can proceed to determine steady-state probabilities corresponding to individual
states of a medical condition. These steady-state probabilities denote the long-term likeli-
hood of medical conditions in a particular state. It is to be noted that A(mT ) represents the
absorbing state in that once the state of medical condition finally transitions to A(mT ), it
becomes an infeasible state and needs to be brought back to state A(m1). For instance, if the
patient goes into a “severe” state in certain cardiovascular conditions, the patient might have
to be administered a pacemaker. Therefore, the corresponding probability for A(m1) would
assume a value of 1.

If θ∗{A(m1)}, θ∗{A(m2)}, θ∗{A(.)}, θ∗{A(mt )}, θ∗{A(..)}, and θ∗{A(mT )} are the mean
steady-state probabilities corresponding to states A(m1), A(m2), A(.), A(mt ), A(..), and
A(mT ) respectively, then the following mathematical expressions can be written to ascertain
steady-state probabilities in line with Markovian theory (Hillier et al., 2010). These steady-
state probabilities signify the likelihood of observing a particular state of a medical condition
long-term:

θ∗{A(m1)} � θ∗{A(mT )} (8)

θ∗{A(m2)} � θ∗{A(m1)} × x{A(m1) → A(m2)} + θ∗{A(m2)} × x{A(m2)} (9)

θ∗{A(.)} � θ∗{A(m1)} × x{A(m1) → A(.)} + θ∗{A(m2)} × x{A(m2) → A(.)}
+θ∗{A(.)} × x{A(.)} (10)

θ∗{A(mt )} � θ∗{A(m1)} × x{A(m1) → A(mt )} + θ∗{A(m2)} × x{A(m2) → A(mt )}
+θ∗{A(.)} × x{A(.) → A(mt )} + θ∗{A(mt )} × x{A(mt )} (11)

θ∗{A(..)} � θ∗{A(m1)} × x{A(m1) → A(..)} + ϑ∗{A(m2)} × x{A(m2) → A(..)}
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+θ∗{A(.)} × x{A(.) → A(..)} + θ∗{A(mt )} × x{A(mt ) → A(..)}
+θ∗{A(.)} × x{A(..)} (12)

θ∗{A(mT )} � θ∗{A(m1)} × x{A(m1) → A(mT )} + θ∗{A(m2)} × x{A(m2) → A(mT )}
+θ∗{A(.)} × x{A(.) → A(mT )} + θ∗{A(mt )} × x{A(mt ) → A(mT )}
+θ∗{A(..)} × x{A(..) → A(mT )} (13)

Equations (8)–(13) ensure that each of the steady-state probabilities is written as a sum
of the probabilities of all the possible ways one state can transition into another state.

Since θ∗{A(m1)}, θ∗{A(m2)}, θ∗{A(.)}, θ∗{A(mt )}, θ∗{A(..)}, and θ∗{A(mT )} are all
exhaustive steady-state probabilities corresponding to states A(m1), A(m2), A(.), A(mt ),
A(..), and A(mT ), respectively, the following equation can also be used:

θ∗{A(m1)} + θ∗{A(m2)} + θ∗{A(.)} + θ∗{A(mt )} + θ∗{A(..)} + θ∗{A(mT )} � 1 (14)

Equation (14) ensures that all exhaustive steady-state probabilities are captured.
If c{A(m1)}, c{A(m2)}, c{A(.)},..C{A(mt), C{A(..)}..C{A(mT ) represent the average costs

of treatment corresponding to states A(m1), A(m2), A(.),..A(mt), A(..), A(mT ), respectively,
then the deterministic long-term average cost of treatment per patient can be ascertained as
per Eq. (15):

Edet(c) � [c{A(m1)} × θ∗{A(m1)} + c{A(m2)} × π∗{A(m2)} + c{A(.)} × θ∗{A(.)}
+c{A(.)} × θ∗{A(.)} + c{A(mt )} × θ∗{A(mt )} + c{A(..)} × θ∗{A(..)}
+c{A(mT )} × θ∗{A(mT )}] (15)

If D(1), D(2), D(.), D(k), D(..), and D(K) are the various treatment decisions, then these
treatment decisions could bemappedwith individual states of themedical condition in binary
terms, as shown in Table 3(c). It is to be noted that any element of this matrix has binary
properties such thatD(k,mt) ε (0,1). The rationale for this is that depending on the actual state
of a medical condition, different treatment decisions can be taken depending on the patient.
For instance, for a “minor” cardiovascular condition, a relatively healthy patient’s treatment
might be accompanied by non-surgical and lifestyle change-oriented approaches. On the
other side, for a “minor” cardiovascular condition for a patient with comorbidities, amoderate
surgical procedure with some medicinal interventions might be more appropriate. However,
the flip side to a deterministic policy of a treatment decision is that the medical service
provider would not have any leeway to consider different treatment decisions corresponding
to different states of a medical condition in a commensurate manner. Therefore, a probability
distribution should be employed to map a particular treatment decision with a certain medical
condition state.

Randomized policy A randomized policy matrix with the mapping of states of a medical
condition and decision is shown in Table 3(d). For a given medical condition state A(mT ) and
treatment decision D(k), let y(k, mt) be a steady-state unconditional probability, which can
be interpreted as the following:

y(k, mt ) � p{state � A(mt ) and decision � k} (16)

The abovementioned steady-state unconditional probability holds the form of a joint prob-
ability containingboth the state of amedical condition and themedical decision corresponding
to that state.

123



Annals of Operations Research

Following the theory of conditional probability, each y(k,mt) is closely related toD{k,mt)
such that the following mathematical expression formulated in Eq. (17) would be satisfied:

y(k, mt ) � θ∗{A(mt )} × D(k, mt )} (17)

such that θ∗{A(mt )} �
K∑

k�1

y(k, mt ) (18)

and so that D(k, mt ) � y(k, mt )∑K
k�1 y(k, mt )

(19)

Equations (18) and (19) capture the constraints related to steady-state probabilities.
There exist three sets of constraints for y(k, mt ).

(a) θ∗{A(m1)} + θ∗{A(m2)} + θ∗{A(.)} + θ∗{A(mt )} + θ∗{A(..)} + θ∗{A(mT )} � 1 (20)

so that
mT∑

m1

K∑

k�1

y(k, mt ) � 1 (21)

Equations (20) and (21) ensure that the sum of all exhaustive steady-state probabilities
and steady-state unconditional probabilities is equal to 1.

(b) From the results on steady-state probabilities, the following can be formulated:

θ (s) �
mT∑

m1

θ∗{A(mt )} × pk{A(m1) → A(mt )} (22)

K∑

k�1

y(s, mt ) �
mT∑

m1

K∑

k�1

y(k, mt ) × pk{A(m1) → A(mt )}

f or s � {A(m1), A(m2)...A(mt )...A(mT )} (23)

(c) 0 ≤ y(k, mt ) ≤ 1, f or k � 1, 2, 3, . . . .K and m1, m2, . . .mt . . . .mT (24)

Equation (24) ensures that the steady-state unconditional probability has a bound of 0 and
1.

Hence, the long-term expected cost ERand (c) per patient can be given by the following
expression:

ERand (c) �
mT∑

m1

K∑

k�1

θ∗{A(mt )} × c{A(mt )} × D(k, mt ) �
mT∑

m1

K∑

k�1

c{A(mt )} × y(k, mt )

(25)

Equation (25) expresses the expected total cost under the randomized policy.
Hence, the linear programming model chooses y(k,mt) so as to

Minimize

{ mT∑

m1

K∑

k�1

c{A(mt )} × y(k, mt )

}
(26)

Equation (26) signifies the objective function considering the costs at each state and the
corresponding probabilistic basic variable.
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Fig. 3 Schema of the modeling stage

This is subject to the constraint

(a)
mT∑

m1

K∑

k�1

y(k, mt ) � 1 (27)

Equation (27) captures the fact that the sum of all exhaustive steady-state unconditional
probabilities is equal to 1.

(b)
K∑

k�1

y(k, mt ) −
mT∑

m1

K∑

k�1

y(k, mt ).pk{A(m1) → A(mt )} � 0, for m1, m2, ...mt , ...mT

(28)

Equation (28) establishes the interrelation between steady-state unconditional probabili-
ties and mean transition probabilities.

(c) 0 ≤ y(k, mt ) ≤ 1, for m1, m2...mt ...mT ; k � 1, 2, 3....K (29)

Equation (29) ensures that all unsteady-state unconditional probabilities are bounded
between 0 and 1.

Themodel represented bymathematical Eqs. (26)–(29) represents the linear programming
(LP) model containing (MT + 2) functional constraints and K(MT + 1) decision variables.
Because the above LP model can be solved using commercial solvers, once the y(k, mt )
values are obtained, each D(k, mt ) can be ascertained. Figure 3 depicts the step-by-step
schema of the modeling phase. An important advantage of the developed model based on
the randomized policy is that though a simplistic optimal medical policy can be found under
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the deterministic policy based on the simplex method as the optimization algorithm, the
randomized policy aids in improving the optimal setting in that costs can also be mitigated
considering the mapping of respective decisions concerning pertinent medical condition
states. Further, the randomized policy also plays a useful role in that by converting integer
variables {D(k, mt ) s} to continuous variables {y(k, mt )s}, we ensure that linear models and
accompanying optimization algorithms can work. This is especially important given that the
analogy in integer programming is to use the LP relaxation so that the simplex method can
be applied, and then the integer property solutions can hold so that the optimal LP relaxation
solution turns out to be integer anyway. A Markovian decision process (MDP) and other
formulations and accompanying methods such as dynamic programming and reinforcement
learning also focus on transitions from one state to another. However, our prescriptive mod-
els have several advantages over other approximation-based techniques such as approximate
dynamic programming. First, as opposed to approximate dynamic programming (wherein no
standard mathematical formulation can be obtained in that each mathematical formulation
has its own characteristics depending on the problem structure), our evolved formulation
under both the deterministic and randomized policy is anchored to the linear model. One sig-
nificant advantage of this is that we can achieve the exact optimal solution(s) instead of the
near-optimal solution(s) in the case of approximation-based techniques. Second, as opposed
to approximate dynamic programming (which makes a series of interrelated decisions), in
our formulations, we are able to represent the problem in terms of linear models such that
aggregate level optimal solution(s) can be obtained, leading to themerits of both parametriza-
tion and scalability. Third, as opposed to approximate dynamic programming, which relies
on exhaustive computational enumeration, a technique that often becomes problematic when
the number of states increases, our model does not suffer from this in that, irrespective of
the increase in the number of states, the underlying solution algorithm would still comprise
linear model-based algorithms. Thus, due to its high degree of parametrization, scalability,
and anchoring in linear modeling, the proposed models ensure optimal treatment policies.
The corresponding costs can be converged on time (instead of non-polynomial times for
many non-linear and approximation-based models).

4 Stepwise solutionmethodology with an illustrative example

In order to illustrate our methodology, we consider the data obtained from 115 clinicians
(experts) who had been affiliated with a multi-specialty hospital chain in Eastern India as
cardiovascular specialists and are now retired. These hospital chains are part of a large private
multi-specialty hospital chain headquartered in the capital city of an Eastern Indian state.
Being a reputable hospital in Eastern India, patients from both the native state and other states
often flock to this hospital due to its affordable health care costs. To preserve anonymity, we
do not explicitly mention the names of the hospital chain and 115 clinicians. The pertinent
data related to the study and experts’ profiles are listed in Table 9 in the “Appendix” section.
Referring to Table 9, these experts were either DMs or MDs (doctors of medicine) and
had been associated with the said hospital chain work-wise for a minimum of 22 years and a
maximum of 34 years. These clinicians possessed the expertise to diagnose, treat, and prevent
cardiovascular diseases, with experience in both non-invasive and surgical procedures.
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4.1 Qualitative stage

4.1.1 Information gathering and questionnaire phase

A belief about certainty (or uncertainty) by an expert about some state of a medical con-
dition is often grounded in data or experience gained during professional practice, or both
(Constantinou et al., 2016). While expert judgment can be useful when information is often
incomplete, experts can still make some mistakes (Hemming et al., 2018). Therefore, to mit-
igate the effects of such mistakes, we employed the IDEA protocol of expert elicitation in
particular (a form of the modified Delphi method), which comprised four sequential steps
(i.e., “Investigate”, “Discuss”, “Estimate”, and “Aggregate;” Hemming et al., 2018). During
the “Investigate” step, all experts individually answered questions and provided reasons for
their respective judgments. Following this, during the “Discuss” step, experts were shown
anonymized responses from other experts and a visual summary of responses. In the “Es-
timate” step, all experts made a final and private estimate. In the final “Aggregate” step,
the means of experts’ second-round responses were determined. Experts were permitted to
review these calculations, add commentary and correct residual misunderstandings.

The 115 experts (clinicians) opined that they had typically observed four major states of
cardiovascular conditions, which often form the basis for the corresponding level of medical
diagnosis and treatment. These levels also form the basis for corresponding administrative
procedures, including those of the hospital and insurance companies (in cases wherein the
patients were insured). Table 4 denotes this classification of the four states of cardiovascular
conditions.

Referring to Table 4, thematically, there are fourmajor cardiovascular states, viz. “Minor”,
“Moderate”, “Major”, and “Severe.”. However, it is important to note that though we would
consider these major states as different discrete levels corresponding to the medical condi-
tions, from the perspective of a medical practitioner, these different states essentially signify
an increasing level of severity in the medical condition’s continuum. The semi-structured
interviews identified another set of important themes: whether these four corresponding
states typically accompany any surgical or medicinal interventions. Finally, some nuances
related to recovery were also captured based on the semi-structured interviews.

Table 4 Thematic output related to states of cardiovascular conditions along with related attributes

States of the medical
condition

Surgical
intervention(s)

Medicinal intervention(s) Other considerations

Minor No surgery is often
needed

Some medicines may be
prescribed

Emphasis on physical
exercise for
recovery

Moderate Minor surgeries are
often needed

Significant medicinal
usage

Recovery time may
take a few weeks

Major Major surgical
procedures needed

Heavy medicinal usage Recovery time may
take a few months

Severe Major surgical
procedures with
significant risks
(many times after
heart attack)

Heavy medical usage Recovery times may
take more than 6
months and, in
certain cases, even a
year
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Thereafter, the clinicians were asked to fill out a Google form-based survey created to
capture the inputs related to cardiovascular conditions during the questionnaire phase. The
survey essentially captured three broad dimensions. First, what were the typical frequencies
of reported diagnosis of the four states of the medical condition? Second, what were the
frequencies of the accuracy of medical treatment corresponding to each of the four states
of the diagnosed condition? Third, what were and to what extent did the transitions from a
particular state of medical condition impact itself and subsequent degenerative states? Table
10 in the “Appendix” provides an excerpt of the questionnaire developed. We specifically
emphasized data from the last three years since the hospital chain had ensured the linking of
individual cases with patients’ personalizedAadhaar numbers (Unique IdentificationAuthor-
ity of India). Further, it is important to note that all clinicians did not want to report the actual
numbers; rather, they were comfortable reporting the percentages. Therefore, we relied on
frequencies.

4.1.2 Statistical testing and validation

When we observed the reported frequencies of the four states of a diagnosed cardiovascular
condition,we ascertained that out of 115, 13 clinicians reported that frequencieswere outliers.
In the case of the remaining 102 clinicians’ data, there was a clear pattern in the reported
frequencies. This pattern manifested clearly in that frequency of diagnosis of the “minor”
state was greater than that of the “moderate” state, which in turn was greater than that of the
“major” state. Finally, the “severe” state had the lowest reported frequencies. Therefore, we
only considered the inputs of 102 clinicians. In particular, one of the primary variables of
interest was the mean probability of a diagnosed state (based on the mean frequency of 102
considered clinicians). Figure 4 reports themean frequencies of false treatment corresponding
to each state of the medical condition.

However, before assuming that we could obtain and use these mean values for the subse-
quent modeling stage, it was essential to ascertain whether the mean frequency (probability)
of a particular state of diagnosis was statistically the same across the 102 clinicians consid-
ered (within a cutoff difference of 2%, as advised by the few senior clinicians in the study).
Before performing this, we examined the normality of sample data corresponding to each

Minor Moderate Major Severe

False treatment percentage 29.9% 31.2% 24.3% 12.1%

29.9% 31.2%

24.3%

12.1%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

False treatment percentage

Fig. 4 Frequencies and false treatment for the four states of the cardiovascular condition
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state of diagnosis, and we tested for normality of the sample at a 95-percent confidence inter-
val. We first laid out the data graphically and looked at the histogram and Q-Q plots, which
indicated a normal distribution. Further, we also performed the Shapiro–Wilk test for the
reported probabilities. In this test, the p-value was greater than 0.05, indicating that the prob-
abilities corresponding to each state of diagnosis were approximately normally distributed.
Thereafter, we carried out an analysis of variance (ANOVA) one-factor test at p < 0.05 for
the data from the 102 clinicians (leaving aside the outlier data from 13 clinicians), where the
following hypothesis represented the null hypothesis:

H(0): Reported frequencies of diagnosed states remain statistically the same for the
twelve clinicians within a cutoff percentage of 2.

Based on the p-value and t statistic, we failed to reject the null hypothesis of frequencies
at a 95-percent confidence level.

In order to test the order of the mean probabilities of the reported states (such that the
mean probability of diagnosis at a minor state was greater than that at a moderate state and
so forth), the following null hypothesis was postulated.

H(0): The reported frequencies of the diagnosed states are such that order remains:
frequency of “Minor” state > frequency of “Moderate” state > frequency of “Major”
state > frequency of “Severe” state for all 102 clinicians.

In order to test the aforementioned hypothesis, a total of six pair-wise two-tailed t-tests
were carried out at a 95-percent confidence level (i.e., p < 0.05). For the sake of brevity, we
report two such comparisons, which are provided in Table 5: one related to “Minor” versus
“Moderate”, while the other pertains to “Minor” versus “Major.”

Based on the p-value and t statistic, it was verified that the mean probability of diagnosis
at the minor stage > the mean probability of diagnosis at the moderate state > the mean
probability of diagnosis at the major state > the mean probability of diagnosis at the severe
state.We also concluded that the frequencies (probabilities) of finding a particular state of the
cardiovascular condition remained statistically the same for the 102 clinicians. Therefore,
we used the mean medical condition probabilities p{A(mt), T(mt)}s and mean transition
probabilities p{A(.) → A(mt )} s for the subsequent modeling stage.

Notably, all statistical tests performed to validate the postulated hypotheses were paramet-
ric in nature. There were inherent assumptions about the population parameters from which
the 102 relevant (and workable) samples were drawn. Since we were also interested in the
important nuances related to the sample data (such as the order of reported frequencies at
each state), we naturally preferred parametric tests over non-parametric tests, even though
parametric tests often require normality tests and non-parametric tests do not necessarily
require such tests on the sample.

4.2 Modeling stage

4.2.1 Populate the medical condition and transition matrices-[p{A(mt ), T (mt )]
and [p{A(mt ) → A(mT )]

Table 6(a) lists the mean values of the [p{A(mt ), T (mt )] matrix.
Referring to Table 6(a), the highest percentages of cases pertained to the “minor” cardio-

vascular condition, while the lowest percentage pertained to the “severe” condition. Further,
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Table 5 Snapshot of pairwise
two-tailed t-test results Minor Moderate

(a) Comparison of frequency of the states “Minor” and
“Moderate”

Mean 0.54366667 0.31075

Observations 102 102

Pearson Correlation − 0.21411211

t Stat − 0.04093975

P(T ≤ t) one-tailed 0.484038782

t Critical one-tailed 1.795884819

P(T ≤ t) two-tailed 0.968077565

t Critical two-tailed 2.20098516

Minor Major

(b) Comparison of frequency of the states “Minor” and
“Major”

Mean 0.54366667 0.117333

Observations 102 102

Pearson Correlation − 0.1847954

t Stat 0.1405299

P(T ≤ t) one-tailed 0.44539083

t Critical one-tailed 1.79588482

P(T ≤ t) two-tailed 0.89078165

t Critical two-tailed 2.20098516

in the case of an actual medical condition being “severe”, the percentage of false treatment
was the lowest.

Table 6(b) lists the mean transition probabilities associated with the four states. It is also
worthmentioning that these probabilitieswere the best case judgments from the 102 clinicians
as per their professional understanding and experience.

4.2.2 Determine effective medical condition transition matrix- [x{A(mt ) → A(mT )]

Using the values given in Table 6(a) and (b), the elements of the medical condition transition
matrix were determined using Eqs. (7) and (8).

For instance, p (minor) was determined as follows (transition to own state):

p(minor ) � 0.701 × 0.6

(0.701 × 0.6 + 0.160 × 0.25 + 0.097 × 0.1 + 0.042 × 0.05)
(30)

Another instance of transition to a different state—that is, p(minor → moderate)—is
illustrated below.

p(minor → moderate) =
0.160 × 0.25

(0.701 × 0.6 + 0.160 × 0.25 + 0.097 × 0.1 + .042 × 0.05)
(31)

Along similar lines, the remaining elements of the matrix [x{A(mt ) → A(mT )] were
determined and are listed in Table 6(c).
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Table 6 Pertinent data related to the case example

State of medical condition Treated as

Minor Moderate Major Severe

(a) Mean medical condition and treatment probability matrix as determined based on expert
inputs [p{A(mt ), T (mt )]

Minor 0.701 0.160 0.097 0.042

Moderate 0.071 0.688 0.127 0.114

Major 0.100 0.112 0.757 0.031

Severe 0.000 0.020 0.101 0.879

State Minor Moderate Major Severe

(b) Mean medical condition transition values based on expert inputs [p{A(mt ) → A(mT )]

Minor 0.6 0.25 0.1 0.05

Moderate 0 0.58 0.227 0.15

Major 0 0 0.65 0.35

Severe 1 0 0 0

(c) Effective medical condition transition matrix [x{A(mt ) → A(mT )]

Minor 0.890 0.085 0.021 0.004

Moderate 0.000 0.897 0.065 0.038

Major 0.000 0.000 0.978 0.022

Severe 1.000 0.000 0.000 0.000

4.2.3 Ascertain optimal state probability matrix along with the deterministic decision
policies

If θ (minor), θ (moderate), θ (major), and θ (severe) are the long-term steady-state probabilities
corresponding to the states “minor”, “moderate”, “major”, and “severe,” respectively, then
the following set of simultaneous equations can be written:

θ∗(minor) � 0.890 × θ∗(minor) + θ × θ∗(minor)

θ∗(moderate) � 0.085 × θ∗(minor) + 0.897 × θ∗(moderate)

θ∗(major) � 0.021 × θ∗(minor) + 0.065 × θ∗(moderate) + 0.978 × θ∗(major)

θ∗(severe) � 0.004 × θ∗(minor) + 0.038 × θ∗(moderate) + 0.22 × θ∗(major)

θ∗(minor) + θ∗(moderate) + θ∗(major) + θ∗(severe) � 1 (32)

Solving the set of equations given in Eq. (32) on ILOG CPLEX Optimization Studio
yielded the following steady-state values:

θ∗(minor) = 0.171;θ∗(moderate) � 0.158; θ∗(major) = .650;θ∗(severe) = 0.021

The treatment costs corresponding to each of the four medical states (i.e., “minor”,
“moderate”, “major” and “severe”) were $570, $1590, $6500, and $13,500, respectively,
as determined by the average costs of the previous three years. Considering these costs and
the optimal steady-state probabilities, and using Eq. (15), EDet(c) was determined to be
$4859.84.
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Table 7 Decision description and mapping for randomized policy

Notation of
decision

Action Relevant states

(a) Decision, corresponding action, and relevant states

D1 Patients are advised for regimen and lifestyle changes with
minimal medicinal interventions

Minor, Moderate

D2 Patients are put on a medical regimen with major lifestyle
changes under a specialist’s supervision and follow-ups

Minor, Moderate,
Major

D3 Patients typically undergo a minor surgical procedure with
few post-surgery precautions

Moderate, Major,
Major

D4 Patients typically undergo a major surgical procedure with
major post-surgery precautions and a major medicinal
regimen

Major, Severe

D5 Patents typically undergo a series of major surgical
procedures with major post-surgery precautions and a
medicinal regimen that goes for months

Severe

State D1 D2 D3 D4 D5

(b) Decision mapping

Minor y(1,1) – – – –

Moderate y(1,2) y(2,1) y(3,2)

Major – y(2,2) y(3,3) y(4,3)

Severe – y(2,3) y(3,4) y(4,4) y(5,4)

Based on the clinicians’ inputs and their professional experience, Table 7(a) denotes the
major decisions that pertained to each of the four states.

It is worth mentioning that these decisions had historically been associated with the cor-
responding states of cardiovascular conditions. When we inquired why a particular decision
seemed to map with a couple of states (e.g., D1 was associated with both “minor” and “mod-
erate” states), the clinicians revealed that decisions about a specific medical condition also
have certain subjectivities and, therefore, there cannot always be clear one-to-one mapping.
The experts reasoned that other dimensions related to patients, such as comorbidities (glu-
cose level, hypertension), the extent of physical fitness, and a history of specific medical
conditions, also play a major role in warranting one decision over another.

4.2.4 Ascertain randomized policies

Using the information provided in Table 7(a) and the convention as formalized in Table 3(d),
the steady-state unconditional probabilities, y(k,mt)s, were determined. Themapping of these
variables with the state of medical conditions and corresponding decisions is illustrated in
Table 7(b). Using Eq. (26), therefore, the objective function would be the minimization of
expected costs under a randomized policy such that ERand(c) can be expressed as follows:

ERand (c) � Minimize{50y(1, 1) + 570y(1, 2) + 570y(2, 1) + 570y(2, 2) + 1590y(2, 3)

+ 1590y(3, 2) + 1590y(3, 4) + 6500y(4, 3) + 13, 500y(4, 4)+13, 500y(5, 4)}
(33)
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It is worth mentioning that, in the above equation, though decision D1 corresponding
to the “minor” state does not have a clear treatment/medical cost, as per the description of
this decision in Table 7(a), nonetheless certain administrative costs in the order of $50 are
typically incurred.

Following this convention, as formalized by Eq. (27), the following can be expressed:

(34)

y(1, 1) + y(1, 2) + y(2, 1) + y(2, 2) + y(2, 3) + y(3,

2) + y(3, 4) + y(4, 3) + y(4, 4) + y(5, 4) � 1

Corresponding to Eqs. (28) and (29), there would be 4 (hard constraints) and 22 (soft
constraints). Among the 22 soft constraints, 11were greater than equal to 0, and the remaining
11 were less than equal to 1.

The developed mathematical model belongs to linear programming and was solved using
ILOG CPLEX Optimization Studio. The following results were obtained:

{y(1, 1), y(1, 2)} � {0.136, 0}; {y(2, 1), y(2, 2), y(2, 3)} � {0, 0.215, 0};
{y(3, 2), y(3, 3), y(3, 4} � {0, 0.435, 0}; {y(4, 3), y(4, 4)} � {0.097, 0}; {y(5, 4)} � {0.117}
Using equation number 19, the following D(k,mt)s were determined:

{D(1, 1), D(1, 2)} � {1, 0}; {D(2, 1), D(2, 2), D(2, 3)} � {0, 1, 0};
{D(3, 2), y(3, 3), y(3, 4} � {0, 1, 0}; {D(4, 3), D(4, 4)} � {1, 0}; {D(5, 4)} � {1}
ERand(c) was determined to be $3031.42.
Comparing the results from both the deterministic and randomized policy produced a

couple of important points. First, as opposed to any lack of mapping of the pertinent decision
policy for the various states of the medical condition, the randomized policy resulted in the
steady-state probabilities and the mapping of the pertinent decision policy with respect to
the various states of the medical condition. Second, the expected cost of treatment under the
randomized policy was superior to that of the deterministic policy, indicating there might
be a preference for the randomized medical treatment policy over a long horizon from an
economic standpoint. Finally, the randomized policy was slightly more predisposed than the
deterministic policy toward dealing with severe states of the medical condition, considering
that the steady-state probability in the case of the randomized policy was higher than that of
the deterministic policy.

5 Key findings and analysis

In this section, we thematically discuss the important findings and accompanying nuances
related to both stage 1 and stage 2 of the study.

5.1 Findings and analyses related to the qualitative stage (stage 1)

5.1.1 Homogeneity of medical condition probabilities

The data reported by the remaining 102 clinicians were fairly homogenous in that the proba-
bility of the cardiovascular condition remaining in any particular state, as reported by 102 of
the 115 clinicians, lay within the 2% range. An important reason for this relative homogene-
ity is that most of these clinicians belonged to the same facility of the hospital chain, while
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several others belonged to a different facility (in a different city) within the state. Post-study
follow-up discussions with clinicians showed that the vast majority (more than 85%) of the
patients belonged to the same geographic regions (i.e., same state) and were predominantly
aged 55 or over. Further, a fairly low and uniform population sample size also supports the
relative homogeneity of the probabilities of different states remaining in a narrow range.

5.1.2 False treatment probabilities

Further, referring to Fig. 4, it can be said that perhaps the minimal error in judgment on
the part of the healthcare service provider is related to the diagnosis and treatment of a
“severe” state. This finding is fairly intuitive in that patients’ symptoms, and conditions
related to more severe states of a cardiovascular condition are much easier to diagnose as
opposed to those of less severe states. The two senior-most clinicians also validated this.
However, this is because medical practitioners do not look at states of such conditions in
terms of different discrete levels; instead, they consider different states as a part of the severity
continuum of the condition.When the two senior-most clinicians were probed with respect to
the broad reasons for almost 30% of false treatments in both “minor” and “moderate” states,
an important systemic reason was given by the two clinicians. The reason pertained to gaps
in the case history (even though pertinent case history was being captured through the unique
identification of the individual patients) in the majority of the patient cases. The barriers of
the non-availability of previous diagnosis and treatment, a lack of interoperability, and lack
of integration with the data of those patients who had prior treatment at government facilities
had a negative effect, as a fairly significant number of patients received inaccurate medical
treatment at each of the states of the medical condition based on the professional feedback
from the clinicians. These systemic issues playing a role in jeopardizing the diagnosis and
treatment efforts in terms of escalated costs and poor health outcomes have been adequately
captured by Dhagarra et al. (2019).

5.1.3 Transition probabilities

Referring to Table 6(c), it is fairly intuitive that the highest probability value corresponds to
the “minor” state remaining in this state itself, with the least probability value corresponding
to a transition from “minor” to “severe.” The probabilistic values of the transitions from
“minor” to “moderate” and from “minor” to “major” remained in an intermediate range.
However, a counter-intuitive finding here pertains to the fact that the probabilistic value of
the transition from “moderate” to “severe” was higher compared with the transition from
“major” to “severe.” For this observation, we again probed the two senior-most clinicians. It
was revealed that a large part of this could be attributed to the fact that, in many instances,
it was found that patients who did not have any surgery and were associated mostly with a
“moderate” state did not often adhere to the post-treatment protocols and lifestyle changes
that were recommended.
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5.2 Findings and analyses related tomodeling stage (stage 2)

5.2.1 Comparison of deterministic and randomized policy

A comparison of the randomized policy and deterministic policy of medical treatment
revealed that the expected long-term cost of treatment in the case of the randomized pol-
icy was significantly lower than that of the deterministic policy. An important reason for this
difference is that in the case of the randomized policy, the optimal steady-state unconditional
probability is less skewed toward the “severe” state than a deterministic policy, which is
more skewed toward the “severe” state. The cost of diagnosis, treatment, surgeries, and post-
treatment in a “severe” state was found to be significantly higher in the case of a “severe”
state as opposed to the other states. Because the treatment decision in the deterministic policy
revolves around the healthcare service provider prescribing an appropriate level of treatment
depending on the history of the case, a certain expected cost of the medical treatment would
result. On the other hand, the randomized policy revolves around an attempt by the service
provider in such a manner that certain acceptable treatment decisions can be mapped to indi-
vidual states of a medical condition such that the expected treatment costs can be minimized.
The adoption of randomized medical treatment policies can be of particular value to large
developing countries such as India, which are often characterized by limits on governmental
spending, inadequate healthcare infrastructure (relative to developed countries), and variable
quality of healthcare (Kong et al., 2018). However, this is not to suggest that a randomized
policy that optimizes the long-term treatment costs is universally superior to a deterministic
policy and should always be adopted. Of particular emphasis would be how the treatment
outcomes of the two policies contrast with each other in that if the instances of false treatment
in the case of the randomized policy are not too different compared with the deterministic
policy, the randomized policy can be an acceptable lever for keeping the treatment costs
lower.

5.2.2 Sensitivity analysis

To understand the impact of the changes in the steady-state probabilities on the total expected
treatment cost spread over time, we conducted a sensitivity analysis for the deterministic pol-
icy. In particular, we varied the steady-state probability corresponding to the states “minor”,
“moderate”, “major”, and “severe” one at a time within ± 10%. Table 8 represents these set-
tings. Further, the sensitivity analysiswas performed under higher- and lower-cost conditions.
Referring to Table 8(a) and considering, for example, when θ (minor) is varied from 90 to
100%of its optimal value, the higher side of the expected cost would result when θ (moderate)
and θ (major) remains constant, and θ (severe) varies based on variation in θ (minor; due to the
magnitude of associated cost coefficients corresponding to the probabilities of an individual
state). When θ (minor) is varied from 101 to 110% of its optimal value, a higher side of the
expected cost will result when θ (major) and θ (severe) remain constant, and π(moderate)
varies based on variation in θ (minor). When θ (minor) is varied from 90 to 100% of its
optimal value, the lower side of the expected cost will result when θ (major) and θ (severe)
remain constant, and θ(moderate) varies based on variation in θ (minor) (due to the associated
cost coefficients corresponding to the probabilities of the individual state). When θ (minor)
is varied from 101 to 110% of its optimal value, the lower side of the expected cost will
result when θ (major) and θ (major) remain constant, and θ (severe) varies based on variation
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Table 8 Conditions for the sensitivity analysis

Range of variation Variable subject to
variation (A)

Variables remaining constant (B) Variable varying due
to variation in A

(a) Under higher-cost conditions

(90% to 100%)
variation in
variable of
interest

θ (minor) θ (moderate) θ (major) θ (severe)

θ (moderate) θ (minor) θ (major) θ (severe)

θ (major) θ (minor) θ (moderate) θ (severe)

θ (severe) θ (minor) θ (moderate) θ (major)

(101% to 110%)
variation in
variable of
interest

θ (minor) θ (major) θ (severe) θ (moderate)

θ (moderate) θ (major) θ (severe) θ (minor)

θ (major) θ (moderate) θ (severe) θ (minor)

θ (severe) θ (moderate) θ (major) θ (minor)

(b) Under lower-cost conditions

(90% to 100%)
variation in
variable of
interest

θ (minor) θ (major) θ (severe) θ (moderate)

θ (moderate) θ (major) θ (severe) θ (minor)

θ (major) θ (moderate) θ (severe) θ (major)

θ (severe) θ (moderate) θ (major) θ (minor)

(101% to 110%)
variation in
variable of
interest

θ (minor) θ (moderate) θ (major) θ (severe)

θ (moderate) θ (major) θ (minor) θ (severe)

θ (major) θ (minor) θ (moderate) θ (severe)

θ (severe) θ (moderate) θ (minor) θ (major)

inπ(minor). Table 8 lists all possible instances of variations under both higher and lower-cost
conditions and considers the range of variation, i.e., from 90 to 110%.

Figure 5 captures variations in the steady-state probabilities for the four states and their
corresponding impact on the expected cost of treatment. Referring to Figs. 5a–d, it can be
seen that under higher-cost conditions, the expected cost of treatment was most sensitive to
variations in θ(major). Further, in the lower cost condition, the expected cost of treatment
was most sensitive to θ(major). Further, referring to Fig. 5a, under both higher and lower-cost
conditions, an increase in θ (minor) from 90 to 110% resulted in a decreasing trend in the
expected cost of treatment. Referring to Fig. 5d, under both higher and lower-cost conditions,
an increase in θ (severe) from 90 to 110% resulted in an increasing trend in the expected cost
of treatment.

It can also be observed that the expected cost of treatment was most sensitive to variations
in the steady-state probability at the “major” stage of a medical condition as opposed to the
“severe” stage of a medical condition, though the steady-state probability of the “severe”
state was less than that of the “major” state.
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(a)  Impact of variation in ϴ (minor).

(b)  Impact of variation in ϴ (moderate).
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(c)  Impact of variation in ϴ (major).
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Fig. 5 Impact of variations in steady-state probabilities for each state on total expected cost
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(d) Impact of variation in ϴ (severe).
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Fig. 5 continued

6 Implications

6.1 Managerial implications

From amanagerial implications perspective, our study can aidmedical service providers such
as private and public hospitals, practitioners, and surgeons in several important ways. First,
the study enables such entities to approach the costmodeling of treatment costs in a structured
and scientific manner while considering real-life data. The robust statistical validation per-
formed at the qualitative stage (stage 1) ensures that samples taken are subject to reasonable
testing and validation. Such an approach can be helpful to medical service providers in that
large countries (especially developing countries) are often associated with challenges to data
collection in a structured manner. It remains impossible in many cases to collect data at a
larger sample level or even as part of the population level. Thus, our study shows a possible
way in which data pertaining to disease prevalence at various stages of severity, accompa-
nying transitions with accompanying frequencies, and true/false treatment can be collected
and handled, leading to meaningful conclusions. Second, the analytical part of the study
(stage 2) enables parametrization of specific medical decisions to be made under both the
randomized and generalized policy. This parametrization can aid medical service providers
in developing some guiding decision support systems such that, by including the contextual
factors such as the medical history of a patient in line with treatment cost rationalization,
optimal medical treatment decisions can be reached. In particular, such an approach can be
extremely beneficial in those cases wherein the doctors’/clinicians’ discretion, depending on
different patients, is lower.

6.2 Policy implications

Our study augments the extant research in several important ways at a policy level. First,
in the context of low- and middle-income countries (LMICs) and from a resource planning
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perspective, there has been increasing interest in understanding the cost of healthcare pro-
grams that can deliver the desired healthcare services to patients (Clarke-Deeler et al., 2019;
Goodarzian et al., 2021). The cost modeling detailed in our study can be scaled up to cover a
large population with adjustments related to geographical nuances, lifestyles, and so on, thus
providing important policy inputs to prioritize health interventions, make informed decisions
related to budgeting, and possibly also considering opportunities for improved efficiency.
Of particular importance from our study in terms of a policy contribution is the formaliza-
tion of the cost of treatment, which can aid in earmarking city- and state-level healthcare
budgets such that governments can prioritize considerations for other pressing challenges
such as fluctuations in costs associated with the ongoing COVID-19 pandemic. Second,
conventional activity-based costing methods, as argued for and demonstrated in the studies
of Javid et al. (2016) and McBain et al. (2016), characterize a bottom-up approach, thus
requiring significant efforts in painstakingly capturing the cost drivers in the longer term.
Instead, our devised approach takes a macro-level perspective of economic cost modeling
and considers transition probabilities, decision costs, and types. Third, from the perspective
of service providers (both public and private), the framework developed in the study also aids
in understanding the relationship between the expected cost of treatment and transition prob-
abilities. For instance, based on cost modeling and sensitivity analysis, it was determined that
transitions to “severe” states significantly impact the expected costs of treatment as opposed
to transitions to other states. Therefore, with this understanding, governments and private
healthcare service providers can sensitize patients about non-medical interventions such as
lifestyle changes such that the transitions to “severe” states remain at a minimum. For less
life-threatening medical conditions and from a policy perspective, deployment of the ran-
domized policy can be of particular value in that treatment decisions would predominantly
be cost-focused. Finally, as many LMICs move toward universal health coverage, the ability
to synthesize and visualize disease transitions and other nuances such as the accuracy of
medical treatment with robust cost analytics would enable sound financial planning that can
be empirically justified.

7 Concluding remarks and future research pathways

In this two-stage research, we developedmathematical frameworks to determine the expected
cost of treatment per patient in the long-term, considering the integration of various interre-
lated nuances such as the transition of the medical condition, accuracy of medical treatment,
and medical decisions taken at various severity levels of the medical conditions. Further,
LP-based and exact method-oriented modeling approaches were deployed to ascertain the
steady-state probabilities corresponding to the respective severity levels of the medical con-
dition under both the deterministic and randomized policy. However, before delving into the
modeling aspect of the study, thereby taking into context the prescriptive setting and at the
qualitative stage of the study, we also focused on the data collection and validation of various
cogent hypotheses, thus providing input to the modeling stage of research. To this end and to
ensure a strong empirical underpinning to the research, we relied on the data collected from
115 different cardiovascular medical professionals to understand the nuances related to dis-
ease transition, the accuracy of medical treatment, and treatment decisions about individual
disease severity levels. In particular, we relied on semi-structured interviews and thematic
analysis to understand the characteristics related to the empirical setting. Based on a few key
hypotheses developed and their subsequent validation, we utilized the empirical data as an
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input to the modeling stage of the study. Thematically, there were four broad severity levels
of the cardiovascular condition identified: “minor,” “moderate,” “major,” and “severe.”

At both the qualitative and prescriptive modeling stage of the study, several interesting
insights emerged based on the case example of a history of cardiovascular treatment at the
service facilities of awell-knownmulti-specialty hospital chain in Eastern India. For instance,
at the qualitative stage of the research, it was determined that treatment accuracy was better
in more severe states of cardiovascular conditions and inferior in relatively less severe states
of the condition. Counter-intuitively, it was also determined that the probabilistic value of
the transition from “moderate” to “severe” was higher compared with the transition from
“major” to “severe”. At the prescriptive modeling stage, though one of our primary contribu-
tions relates to developing the novel mathematical framework, with subsequent optimization
runs, we illustrated that the randomized policy seems to be cost-competitive compared with
the deterministic policy. Further, using a sensitivity analysis, we showcased the impact of
the varying steady-state probabilities of the respective states of a medical condition on the
expected cost of treatment. Finally, there are several ways our study can be aligned with
favorable policy implications, one of which is possibly considering a randomized treatment
policy in LMIC countries to treat pervasive but less life-threatening conditions.

Like any study, ours is also not devoid of limitations. First, our research only considered
direct costs when modeling the expected cost of treatment. Other indirect costs, such as
wages, administrative costs, and so on, were not considered. This implication is particularly
important for countries like the US, wherein administrative costs typically constitute a sig-
nificant proportion of overall healthcare expenditure. Second, in demonstrating our modeling
framework, the sample data used was rather limited and primarily belonged to the same geo-
graphical setting and similar age group. Therefore, to further generalize the study’s findings,
it is imperative that the framework developed to be tested in a larger setting with a more het-
erogeneous population. Third, at the qualitative stage of our study, we relied on respondents’
inputs to ascertain the transitions pertinent to the medical condition and the accuracy of the
treatment. An implicit assumption here is that the data did not significantly suffer from the
clinicians’ biases in that the IDEA frameworkworks effectively in such cases. Fourth, another
future research direction would be to explore the application of more advanced supervised
learning methods such as deep learning and structure analysis to improve the performance
of cost prediction methods. Such forecasts can be conducted with respect to certain extant
data over a sufficiently long period. Specifically, adding the features of medical treatment
and benefiting from their predictive and explanatory power can be an important step in such
approaches.
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Appendix

See Tables 9 and 10.

Table 9 Study and clinicians’ attributes

Attribute type Sub-attribute Detail/value

Related to clinicians Expert profile Retired cardio/heart specialist and
surgeon

Minimum professional experience 22 years

Maximum professional experience 34 years

Number of clinicians reached out to 187

Number of clinicians agreed to share
inputs

115

Highest education attainment MD or DM in cardiology

Related to the study Video platform used for a
semi-structured interview

Cisco Webex

Minimum duration of the interview 43 min

Maximum duration of the interview 57 min

Average duration of the interview 51 min

Period of the study July to December 2020
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Table 10 Excerpt of the survey questionnaire
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Šimundić, A.-M. (2009). Measures of diagnostic accuracy: Basic definitions. The Journal of International
Federation of Clinical Chemistry and Laboratory Medicine, 19(4), 203–211.

Stadhouders, N., Koolman, X., Tanke, M., Maarse, H., & Jeurissen, P. (2016). Policy options to contain
healthcare costs: A review and classification. Health Policy, 120(5), 486–494.

Sushmita, S., Newman, S., Marquardt, J., Ram, P., Prasad, V., De Cock,M., & Teredesai, A. (2015). Population
cost prediction on public healthcare datasets. InProceedings of the 5th international conference on digital
health 2015, https://doi.org/10.1145/2750511.2750521.

Tortorella, G. L., Fogliatto, F., Sunder, M. V., Veragara, A.M. C., &Vassolo, R. (2021). Assessment and priori-
tisation of Healthcare 4.0 implementation in hospitals using Quality Function Deployment. International
Journal of Production Research. https://doi.org/10.1080/00207543.2021.1912429

van Baal, P., Meltzer, D., & Brouwer, W. (2014). Future costs, fixed healthcare budgets, and the decision rules
of cost-effectiveness analysis. Health Economics, 25(2), 237–238.

Verma, A., Kuo, Y. H., Kumar, M. M., Pratap, S., & Chen, V. (2022). A data analytic-based logistics mod-
elling framework for E-commerce enterprise. Enterprise Information Systems. https://doi.org/10.1080/
17517575.2022.2028195

Walker, R. C., Tong, A., Howard, K., & Palmer, S. C. (2019). Patient expectations and experiences of remote
monitoring for chronic diseases: Systematic review and thematic synthesis of qualitative studies. Inter-
national Journal of Medical Informatics, 124, 78–85.

Wammes, J. J. G., van der Wees, P. J., Tanke, M. A. C., Westert, G. P., & Jeurissen, P. P. T. (2018). Systematic
review of high-cost patients’ characteristics and healthcare utilisation. British Medical Journal Open,
8(9), e023113.

Wang,H., Cui, Z., Chen,Y.,Avidan,M.,Abdallah,A.B.,&Kronzer,A. (2018). Predicting hospital readmission
via cost-sensitive deep learning. IEEE/ACMTransactions on Computational Biology and Bioinformatics,
15(6), 1968–1978.

Weaver, C. G., Clement, F. M., Campbell, N. R. C., James, M. T., Klarenbach, S. W., Hemmelgarn, B. R.,
Tonelli, M., & McBrienfor, K. A. (2015). Healthcare costs attributable to hypertension. Hypertension,
66, 502–508.

Wellington, J., & Szczerbinski, M. (2007). Research methods for the social sciences. Continuum.
WHO Working Paper. (2019). Global spending on health: A world in transition. World Health Orga-

nization. (WHO/HIS/HGF/HFWorkingPaper/19.4). https://apps.who.int/iris/bitstream/handle/10665/
330357/WHO-HIS-HGF-HF-WorkingPaper-19.4-eng.pdf. Accessed on October 17, 2021.

World Health Organization. (2022a). Health systems and governance: Economic evaluation& analysis. https://
www.who.int/teams/health-systems-governance-and-financing/economic-analysis, Accessed April 16,
2022a.

World Health Organization. (2022b). Health systems and governance: Costing and technical efficiency.
https://www.who.int/teams/health-systems-governance-and-financing/economic-analysis/costing-and-
technical-efficiency. Accessed April 16, 2022b.

Zhao, G., Hormazhabal, J. H., Elgueta, S., Manzur, J. P., Liu, S., Chen, H., Lopez, C., Karturiratne, D.,
& Chen, X. (2020). The impact of knowledge governance mechanisms on supply chain performance:
Empirical evidence from the agri-food industry. Production Planning and Control. https://doi.org/10.
1080/09537287.2020.1809023

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1145/2750511.2750521
https://doi.org/10.1080/00207543.2021.1912429
https://doi.org/10.1080/17517575.2022.2028195
https://apps.who.int/iris/bitstream/handle/10665/330357/WHO-HIS-HGF-HF-WorkingPaper-19.4-eng.pdf
https://www.who.int/teams/health-systems-governance-and-financing/economic-analysis
https://www.who.int/teams/health-systems-governance-and-financing/economic-analysis/costing-and-technical-efficiency
https://doi.org/10.1080/09537287.2020.1809023

	A framework for the estimation of treatment costs of cardiovascular conditions in the presence of disease transition
	Abstract
	1 Introduction
	2 Literature review and research gaps
	2.1 Cost and economic modeling of healthcare using analytical and statistical methods
	2.2 Cost-dominant medical decision-making in healthcare
	2.3 Key research gaps and contributions

	3 Research methodology
	3.1 Qualitative stage
	3.2 Modeling stage
	3.2.1 Expressing states of the medical condition and transitions
	3.2.2 Deterministic and randomized policies


	4 Stepwise solution methodology with an illustrative example
	4.1 Qualitative stage
	4.1.1 Information gathering and questionnaire phase
	4.1.2 Statistical testing and validation

	4.2 Modeling stage
	4.2.1 Populate the medical condition and transition matrices-[p{ A(m_t ),T(m_t )] and [p{ A(m_t ) to A(m_T )]
	4.2.2 Determine effective medical condition transition matrix- [x{ A(m_t ) to A(m_T )]
	4.2.3 Ascertain optimal state probability matrix along with the deterministic decision policies
	4.2.4 Ascertain randomized policies


	5 Key findings and analysis
	5.1 Findings and analyses related to the qualitative stage (stage 1)
	5.1.1 Homogeneity of medical condition probabilities
	5.1.2 False treatment probabilities
	5.1.3 Transition probabilities

	5.2 Findings and analyses related to modeling stage (stage 2)
	5.2.1 Comparison of deterministic and randomized policy
	5.2.2 Sensitivity analysis


	6 Implications
	6.1 Managerial implications
	6.2 Policy implications

	7 Concluding remarks and future research pathways
	Appendix
	References




