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in Australia’s only anchialine cave are 
taxonomically novel and drive chemotrophic 
energy production via coupled 
nitrogen‑sulphur cycling
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Abstract 

Background  Anchialine environments, in which oceanic water mixes with freshwater in coastal aquifers, are char-
acterised by stratified water columns with complex physicochemical profiles. These environments, also known 
as subterranean estuaries, support an abundance of endemic macro and microorganisms. There is now growing 
interest in characterising the metabolisms of anchialine microbial communities, which is essential for understanding 
how complex ecosystems are supported in extreme environments, and assessing their vulnerability to environmen-
tal change. However, the diversity of metabolic strategies that are utilised in anchialine ecosystems remains poorly 
understood.

Results  Here, we employ shotgun metagenomics to elucidate the key microorganisms and their dominant 
metabolisms along a physicochemical profile in Bundera Sinkhole, the only known continental subterranean estu-
ary in the Southern Hemisphere. Genome-resolved metagenomics suggests that the communities are largely 
represented by novel taxonomic lineages, with 75% of metagenome-assembled genomes assigned to entirely 
new or uncharacterised families. These diverse and novel taxa displayed depth-dependent metabolisms, reflecting 
distinct phases along dissolved oxygen and salinity gradients. In particular, the communities appear to drive nutrient 
feedback loops involving nitrification, nitrate ammonification, and sulphate cycling. Genomic analysis of the most 
highly abundant members in this system suggests that an important source of chemotrophic energy is generated 
via the metabolic coupling of nitrogen and sulphur cycling.

Conclusion  These findings substantially contribute to our understanding of the novel and specialised microbial 
communities in anchialine ecosystems, and highlight key chemosynthetic pathways that appear to be important 
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in these energy-limited environments. Such knowledge is essential for the conservation of anchialine ecosystems, 
and sheds light on adaptive processes in extreme environments.

Keywords  Chemolithotrophy, Metabolic coupling, Biogeochemical cycling, Stratified water column, Groundwater 
ecology, Subterranean estuary, Marine oxygen minimum zones

Introduction
The microbial communities of stratified aquatic systems 
serve as useful models for studying the relationships 
between metabolic strategies, water column depth, and 
physicochemistry. Stratified water columns, character-
ised by physical and chemical gradients, provide dis-
tinct niches for diverse assemblages of microbes, which, 
in turn, can support complex food webs in relatively 
extreme environments. Thus, unravelling the network of 
microbial metabolic strategies that link biogeochemical 
processes and trophic webs is important for understand-
ing ecosystem functioning as well as evaluating ecosys-
tem vulnerability [1].

Subterranean estuaries are stratified aquatic systems in 
which marine-derived groundwater mixes with meteoric 
freshwater in coastal aquifers [2]. These systems are glob-
ally distributed, and most commonly form in the porous 
limestone of karst coastlines [3]. They are characterised 
by water columns that exhibit stratified physicochemical 
profiles and low dissolved oxygen content [4]. Although 
they represent low-energy and extreme environments, 
subterranean estuaries can support complex ecosys-
tems, which have been termed ‘anchialine’ [4]. The higher 
trophic levels of anchialine ecosystems largely comprise 
cave-adapted invertebrates with high rates of endemism 
[5, 6]. Earlier investigations into these anchialine food 
webs indicated that they may be supported, at least in 
part, by chemosynthetic microbes [7–9]. There is now 
growing interest in surveying the microbial communi-
ties that inhabit subterranean estuaries, and in particular, 
characterising their niche-adaptive metabolisms [1, 10]. 
Such endeavours are critical for assessing the vulnerabil-
ity of anchialine ecosystems to environmental change.

Microbial ecology studies have revealed that anchial-
ine ecosystems harbour highly diverse microbial assem-
blages. Examination of the prokaryotic community 
structure using 16S rRNA gene amplicon sequencing has 
been undertaken for several anchialine systems, including 
those found in Eastern Adriatic Sea Islands [11], Sansha 
Yongle Blue Hole in the South China Sea [12], Indonesian 
anchialine lakes [13], Blackwood Sinkhole in the Baha-
mas [14], and coastal aquifers of the Yucatán Peninsula, 
Mexico [10, 15]. These sites all revealed a high degree of 
taxonomic richness spanning functionally diverse micro-
bial groups. Brankovits, et al. [10] combined 16S rRNA 
gene sequencing with respiratory quinone biomarker 

analysis to infer the metabolic phenotypes of an anchia-
line water column, which contained a mixture of metha-
notrophs, heterotrophs, photoautotrophs, and nitrogen 
and sulphur cycling chemolithotrophs. They identified 
methane and dissolved organic carbon as key microbial 
energy sources that support higher trophic levels of the 
anchialine food web. Though, comparison between the 
microbial communities within coastal and in-land sink-
holes of the same region (Yucatán Peninsula) show that 
the dominant metabolic strategies can differ significantly 
between different sinkholes along the same aquifer net-
work [15].

Bundera Sinkhole, located in the karstic coast of Cape 
Range peninsula in north-western Australia, is the only 
known continental anchialine system in the Southern 
Hemisphere. The sinkhole, which is the only opening to 
the subterranean estuary, is located 1.7  km inland from 
the Indian Ocean. The water column exhibits strong ver-
tical stratification in its physicochemical profile, with 
decreasing dissolved oxygen and increasing salinity with 
depth, and polymodal peaks of inorganic nitrogen and 
sulphur compounds [16–18]. A range of endemic eukary-
otes have been discovered in Bundera Sinkhole, including 
copepods, remipeds, and polychaetes [19–22]. Chemical 
profiling suggests that this trophic web may be supported 
by microbial chemosynthesis [16].

Microbial studies of Bundera Sinkhole using flow 
cytometry and 16S rRNA gene sequencing have shown 
the microbial communities to be stratified along the 
depth profile [17, 18, 23]. A diverse range of prokaryotes 
have been identified in the water column, comprising 67 
identifiable bacterial and archaeal phyla [18]. Although 
community profiling suggests that a range of chemolitho-
trophic metabolisms are present throughout the water 
column, the high level of taxonomic novelty has made it 
difficult to infer the metabolic functions of many of the 
most abundant members [18]. Here, we employed shot-
gun metagenomic sequencing across a depth profile in 
Bundera Sinkhole to elucidate the metabolisms of these 
novel microbial communities. We identified key depth-
dependent chemotrophic metabolic pathways, including 
coupled nitrogen-sulphur cycling, that may be driving 
nutrient feedback loops in this system. To the best of our 
knowledge, this is the first whole metagenomic sequenc-
ing approach of any anchialine ecosystem, and represents 
important findings that can help us to better understand 
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microbial metabolic and biogeochemical processes in 
these unique environments.

Methods
Sample collection, DNA extraction, and sequencing
Water samples were collected from Bundera Sinkhole as 
previously described [18]. Briefly, this involved pumping 
water samples from depths of 2, 8, 17, 18, 22, and 28 m 
between the 29th of June and the 1st of July 2015 for 
metagenomic analysis. For depths of 8 m and below, sam-
ples were collected using four previously installed bore-
holes (Fig.  1). Physicochemical data, including salinity, 
dissolved oxygen (DO), dissolved organic carbon (DOC), 
ammonia (NH3), nitrate (NO3

−), and sulphate (SO4
2−) 

measurements were obtained from our previous study 
[18]. For metagenomic analysis, ~ 4 L water samples were 
pre-filtered using 60  µm filters (Millipore Type NY60), 
and then passed through 0.2  μm Sterivex™ filters. The 
0.2 μm filters with captured microbial cells were cut from 
their casing, and DNA extractions carried out using the 
PowerWater® DNA Isolation kit (MO BIO Laboratories, 
Inc., Carlsbad, USA), according to the manufacturer’s 
protocol. Metagenomic libraries were prepared for dupli-
cate biological replicates from each depth using the Illu-
mina TruSeq DNA Library Preparation Kit, according to 
the manufacturer’s protocol, and sequenced on the Illu-
mina HiSeq 2000 platform (High-Output v4). Details of 
Illumina sequencing output is available as Supplementary 
Table S1.

Metagenomic assembly and functional annotation
Raw reads were trimmed and quality filtered using Trim-
momatic v 0.38 [24], and assembled with metaSPAdes v 
3.13.0 [25] with default parameters. Quality of the assem-
bly for each sample was assessed with QUAST v 5.0.2 
using the metaQUAST option [26], and contigs shorter 

than 1 kb were removed from the assemblies. Open read-
ing frames (ORFs) and translated protein sequences were 
predicted using Prodigal v2.6.3 [27] in metagenomic 
mode [parameter: -p meta]. ORFs from all samples were 
pooled and dereplicated at 98% nucleotide identity using 
CD-HIT v4.8.1 [28, 29] [parameters: -c 0.98 -n 10 -d 0 -t 
0 -M 0]. The relative abundance of ORFs in each sample 
was calculated using the transcripts per million (TPM) 
method with CoverM v0.6.1 (https://​github.​com/​wwood/​
CoverM) in contig mode [parameters: contig -t 24 --cou-
pled -m TPM].

Translated protein sequences of the dereplicated 
ORFs were functionally annotated using METABOLIC 
v4.0 [30], by implementing the METABOLIC-G work-
flow with default parameters. The METABOLIC soft-
ware identifies metabolic and biogeochemical traits by 
integrating several hidden Markov model (HMM) data-
bases, comprising KOfam [31] (containing KEGG HMMs 
[32]), TIGRfam [33], Pfam [34], and custom [35] HMM 
databases.

MAG binning and quality control
For generating metagenome assembled genomes 
(MAGs), the replicate metagenome samples were re-
assembled using a co-assembly strategy with MEGAHIT 
v1.2.9 [36, 37]. Coverage of co-assembled contigs were 
calculated using Bowtie 2 v2.3.2 [38], and then binned 
using METABAT 2 v2.2.15 [39] with default parameters 
within Anvi’o v6.2 [40]. The resulting MAGs were then 
manually refined in Anvi’o. The completion and contami-
nation of MAGs were estimated with CheckM v1.2.1 [41] 
using lineage-specific marker sets [parameters: lineage_
wf -t 24]. MAG chimerism was assessed using GUNC 
v1.0.5 [42] with default parameters. Only MAGs that 
passed the GUNC chimerism check, had an estimated 
completion greater than 50%, and had an estimated 

Fig. 1  Sampling map and physicochemical profiles of Bundera Sinkhole. (Left) Topology of the sinkhole, adapted from Elbourne, et al. [18], 
and sampling points for shotgun metagenomic sequencing. (Right) Physicochemical profiles of Bundera sinkhole, including practical salinity scale 
(PSS), dissolved oxygen (DO), ammonia (NH3), nitrate (NO3), and sulphate (SO4). Physicochemical data were obtained from Elbourne, et al. [18]

https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
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contamination less than 10% were retained for further 
analysis. These represent the completion and contami-
nation MIMAG criteria for high- and medium-quality 
MAGs [43]. MAG tRNAs were detected using tRNAs-
can-SE v2.0 [44, 45], and rRNAs using barrnap v0.9 
(https://​github.​com/​tseem​ann/​barrn​ap). MAG assem-
bly statistics, including N50, L50, number of contigs, 
and maximum contig length were calculated using the 
statswrapper.sh program from the BBMap v39.01 soft-
ware package (https://​github.​com/​BioIn​foToo​ls/​BBMap).

MAGs taxonomy and functional annotation
MAG taxonomy was assigned using GTDB-Tk v2.1.1 
[46, 47] [parameters: classify_wf --cpus 24] with release 
R207_v2 of the Genome Taxonomy Database (GTDB) 
[48–51]. We inferred domain-specific phylogenies using 
concatenated protein alignments generated by GTDB-
Tk, which were based on the BAC120 [52] and AR53 [53] 
protein marker sets. The phylogenies were inferred from 
the alignments using a maximum-likelihood approxima-
tion employed by FastTree v2.1.10 [54, 55]. We applied a 
WAG substitution model with branch lengths rescaled to 
optimise the Gamma20 likelihood, and 1000 resamples 
[parameters: -gamma -wag]. The inferred phylogenies 
were visualised using the ggtree v2.4.2 [56] and ggtreeEx-
tra v1.7.0.990 [57] R packages.

MAGs were functionally annotated using META-
BOLIC v4.0 [30], by implementing the METABOLIC-C 
workflow with default parameters. The relative abun-
dance of MAGs in each sample was calculated using the 
TPM method with CoverM v0.6.1 (https://​github.​com/​
wwood/​CoverM) in genome mode [parameters: genome 
-t 24 --coupled -m TPM]. Four MAGs that were highly 
abundant, having TPM values greater than 50 in at least 
one sample, were further profiled for nitrogen cycling 
genes using the NCycDB [58]. DIAMOND v2.0.15 [59] 
was used to query MAG proteins against the NCycDB 
with a minimum E value of 1e-05 [parameters: blastp -p 
8 -k 1 -e 1e - 5], and filtered using an amino acid identity 
cut-off of 70%.

Statistical analyses
Beta-diversity analyses of the whole metagenomes, key 
metabolic genes, and MAG phyla were assessed using 
non-metric multidimensional scaling (NMDS) based on 
Bray–Curtis distances using the vegdist and metaMDS 
functions from the vegan v2.5-7 R package [60]. Group-
ings inferred from the NMDS ordination were compared 
with PERMANOVA using the pairwiseAdonis v0.4 R 
package [61], which uses the vegan functions, vegdist and 
adonis, to calculate inter-group differences in a pairwise 
fashion.

Results and discussion
Bundera Sinkhole, Australia’s only deep water anchia-
line system, supports a complex trophic web with an 
abundance of endemic micro- and macroorganisms [18]. 
Previous chemical and community profiling using 16S 
rRNA gene sequencing suggest that this ecosystem may 
be sustained by microbial chemosynthesis [18, 23]. How-
ever, the high degree of taxonomic novelty, with associ-
ated uncertainty of metabolic functions, has limited our 
understanding of the dominant metabolic pathways in 
this system. Here, we employed shotgun metagenomic 
sequencing to investigate the distribution of key meta-
bolic genes and to identify the biogeochemical cycling 
potential of the stratified microbial communities in Bun-
dera Sinkhole.

Microbial metabolic profiles are associated with water 
depth and physicochemistry
Bundera sinkhole exhibited a highly stratified water col-
umn with a marked physicochemical profile (Supple-
mentary Table  S2). The only oxic depth sampled was at 
2 m, which had a dissolved oxygen (DO) concentration of 
2.75 mg/L, and had the lowest salt concentration, being 
18.69 on the practical salinity units (PSS). The 8 m depth, 
representing the sinkhole’s halocline [16, 17], had a DO 
(0.86 mg/L) relatively higher than the samples from 17 to 
28 m depths, and an intermediate salinity being 25.46 on 
the PSS. The lower depths, encompassing the 17 − 28 m 
samples, had lower levels of DO (0.28 − 0.47  mg/L) and 
higher salinity (31.41–32.35 PSS). Polymodal peaks of 
dissolved organic carbon (DOC), ammonia, nitrate and 
sulphate were observed along the water column (Supple-
mentary Table S2).

Clear distinctions in microbial metabolic strategies 
were observed at different depths (Fig.  2). Metabolic 
strategies were inferred from the relative abundance of 
metabolic marker genes, which although does not meas-
ure their transcriptional activity, does provide an indica-
tion of the distribution of populations that carry those 
genes. Microbial communities sampled from the 17, 18, 
22, and 28  m depths exhibited similar metabolic gene 
diversity profiles, which differed from the 2  m and 8  m 
communities (Fig. 2b; PERMANOVA, P = 0.04). It should 
be noted that the 28  m samples had a slightly smaller 
average Bray–Curtis distance with the 8  m samples 
(0.30) than the 17 − 22  m samples (0.33).  However,  the 
28 m significantly clustered with 17 − 22 m samples, and 
not the 8  m samples (Fig.  2b; Supplementary Table  S3). 
The 2  m and 8  m metabolic profiles form distinct clus-
ters based on NMDS analysis (Fig.  2b), although this 
separation was not determined to be significantly differ-
ent (PERMANOVA, p = 0.33), likely due to the limited 

https://github.com/tseemann/barrnap
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statistical power of this comparison. The same clustering 
is observed for the beta-diversity of all genes detected 
in the metagenomes (Fig.  2a). Since genes were de-rep-
licated at 98% nucleotide identity, clustering of all genes 
is more likely to reflect the taxonomic composition of the 
samples. Thus, both taxonomic and functional composi-
tion of the sinkhole appear to cluster according to salin-
ity and oxygen concentrations. These same depth clusters 
are observed from 16S rRNA gene amplicon sequencing 
of the sinkhole [18].

Autotrophic CO2 fixation strategies differed by depth 
(Fig.  2c), likely in response to oxygen levels and per-
centage of incident light. The Calvin–Benson–Bassham 
(CBB) cycle, which utilises the CO2 fixation enzyme ribu-
lose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) 
by photo- and chemo-autotrophs, was depth-dependent. 
Two main forms of RuBisCO are known to be involved in 
the classical CBB cycle [62]. Surface samples, particularly 
those from the 2 m depth, were characterised by a greater 
relative abundance of the Form I RuBisCO compared 
to other depths (and other C-fixation strategies), pre-
sumably from a greater abundance of photoautotrophs. 
While the relative abundance of form II RuBisCO, which 
is adapted to low-O2 conditions [63], had an opposite 
trend, with greater relative abundance at lower depths. 
The relative abundance of genes that drive the reverse 
TCA cycle and Wood-Ljungdahl pathway increased with 
depth, which are the hypoxic regions of this system (Sup-
plementary Table S2). Similar trends have been observed 
in hypoxic and anoxic zones of stratified water columns 
[64, 65].

The relative abundance of marker genes for differ-
ent pathways involved in carbon metabolism also cor-
responded to a depth gradient (Fig.  2c). Methanol and 
formaldehyde oxidation (C1 metabolism), decreased 
with depth. Similar patterns of C1 metabolism have 
been observed over an oxygen gradient in a permanently 
stratified lake [65]. Unexpectedly, however, the meth-
ane monooxygenase gene, mmoB, involved in aerobic 
methane oxidation (the first step of methane metabo-
lism), increased with depth, where oxygen levels were 
lowest. Although it is possible that mmoB is not tran-
scribed at these depths, MMOB is also utilised in the 

“intra-aerobic” oxidation of methane in marine oxygen 
minimum zones [66]. Here, anaerobic bacteria generate 
oxygen internally via oxygenic denitrification (involving 
the conversion of two nitric oxide molecules to dinitro-
gen and oxygen), which is then used to oxidise methane 
[67]. In support of this, the relative abundance of nitrite 
reduction genes, necessary for oxygenic denitrification, 
also increase with depth (Fig. 2c). Arsenic and selenium 
cycling genes also corresponded to a depth gradient 
(Fig. 2c). In particular, the abundance of genes involved in 
dissimilatory (respiratory) arsenate and selenate reduc-
tion increased with depth. Both arsenate and selenate can 
be utilised in anerobic respiration for energy production 
[68, 69], explaining their greater relative abundance at 
hypoxic depths. These elements can thus provide addi-
tional energy sources for facultative or obligate anaerobes 
at the lower depths of the sinkhole.

Pathways for the complete cycling of nitrogen (N) and 
sulphur (S) compounds were observed in the sinkhole 
(Fig. 2d), with diverse N and S cycling reactions present 
at different depths (Fig. 2c). Several key N and S cycling 
genes were strongly correlated with concentrations of 
ammonia, nitrate, and sulphate (Fig.  3; Supplemen-
tary Table  S4), highlighting these as key environmental 
parameters. To infer the direction of these correlations 
and to identify nutrient feedback loops, we examined 
whether the correlated genes were involved in either 
the production or substrate utilisation of these chemical 
compounds. Marker genes for N cycling that correlated 
with ammonia concentrations were all involved in path-
ways that produced ammonia (Fig.  3a–c; Supplemen-
tary Table S4). These included: napA, encoding a nitrate 
reductase, involved in the first step of the dissimilatory 
nitrate reduction to ammonia (DNRA) pathway, reducing 
nitrate to nitrite; and nirB and nrfA, both encoding nitrite 
reductases, involved in the second step of the DNRA 
pathway, further reducing nitrite to ammonia. Simi-
larly, N cycling marker genes that correlated with nitrate 
concentrations were all involved in nitrate production 
(Fig.  3d, e; Supplementary Table  S4). These included 
amoA, encoding an ammonia monooxygenase, involved 
in the first step of nitrification, oxidising ammonia to 
nitrite; and nxrA, encoding a nitrite oxidoreductase, 

Fig. 2  Relative abundance and diversity of key metabolic and biogeochemical cycling genes in Bundera Sinkhole. a, b Non-linear multidimensional 
scaling (NMDS) based on Bray–Curtis distances of the relative abundance for (a) whole metagenomes (with genes dereplicated at 98% nucleotide 
identity) and (b) key metabolic genes displayed in panel c. In a, NMDS points that represent replicate samples lie on top of each other, as do those 
representing all samples from 17, 18, 22, and 28 m depths. The NMDS groupings (circles, triangles, and squares) represent samples with similar 
levels of dissolved oxygen (DO) and salinity (Supplementary Table S2). In both NMDS plots, the grouping of samples from 17, 18, 22, and 28 m 
depths (squares) is supported by PERMANOVA (p = 0.04; Supplementary Table S3). c Relative abundance of key metabolic marker genes within each 
sample. Colour scale displays the relative abundance as log10(TPM + 1) to account for TPM values of zero. Gene names are displayed to the left 
of the heatmap, and the reactions that they facilitate are on the right. d Visualisation of microbial nitrogen and sulphur cycling pathways present 
in Bundera Sinkhole. Chemical compounds that represent either the substrate or product of a reaction are boxed, with oxidation states shown 
in parentheses

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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involved in the final step of nitrification, oxidising nitrite 
to nitrate. We also found that the relative abundance of 
both amoA and nxrA are negatively correlated with the 
concentration of dissolved organic carbon (DOC) (Fig-
ure S1; Supplementary Table S5), suggesting that chem-
olithotrophic nitrification is an important metabolic 
pathway when available organic carbon is limited. Thus, 
microbial communities and environmental concentra-
tions of DOC, ammonia and nitrate are apparently linked 
in a feedback loop involving nitrification (ammonia to 
nitrate) and DNRA (nitrate to ammonia) pathways.

The relative abundance of S cycling marker genes, 
sat and sdo, displayed strong significant correlations 
with sulphate concentrations (Fig.  3f, g; Supplemen-
tary Table  S4), and are involved in the utilisation and 

production of sulphate, respectively. sat encodes a 
sulphate adenylyltransferase that coverts sulphate to 
adenosine-5′-phosphosulfate (APS) [70]. sdo encodes 
a sulphur deoxygenase which oxidises glutathione per-
sulphide (GSSH). Sulphite is the first product of SDO 
activity via GSSH oxidation, which then leads to the 
non-enzymatic production of sulphate (likely from auto-
oxidation of sulphite) [71]. SDO, however, requires O2 for 
the oxidation of GSSH, and thus may not be contributing 
to sulphate production in the hypoxic depths of the sink-
hole. In addition, the relative abundances of sor, encod-
ing a sulphur oxygenase reductase, and phsA, encoding a 
thiosulphate reductase, were also significantly correlated 
with water sulphate concentrations. SOR and PhsA may 
both indirectly contribute to sulphate production, via a 

Fig. 3  Correlations between chemical compound concentrations and genes involved in their cycling. Nitrogen and sulphur cycling genes whose 
relative abundance (TPM) are strongly correlated (r2 > 0.5) with the environmental concentrations of a–c ammonia (NH3), d–e nitrate (NO3

−), and f–i 
sulphate (SO4

2−). Plots coloured red represent genes involved in pathways that produce the corresponding chemical compound, either directly 
(b, c, e) or indirectly, via an intermediate compound (a, d, g–i). Correlation between sat gene relative abundance and SO4

2- concentrations (f) 
is coloured blue to indicate the gene’s involvement in SO4

2- substrate utilisation. Shaded regions represent the 95% confidence interval of the fitted 
linear model. A full list of r2 and p values for all evaluated nitrogen and sulphur cycling gene correlations is presented as Supplementary Table S4
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sulphite intermediate. The relative abundance of phsA is 
positively correlated with water sulphate concentrations, 
while sor relative abundance is negatively correlated 
(Fig. 3). The catalytic activity of SOR, however, is oxygen-
dependent [72], and thus absent from the lower hypoxic 
depths (Fig. 2c), where sulphate concentrations are high-
est (Fig. 1), explaining the apparent negative correlation. 
Sulphate concentrations in Bundera Sinkhole are thus 
likely being driven by, as well as shaping, the microbial 
communities in a sulphate-feedback loop.

Taxonomically novel and functionally diverse prokaryotes 
inhabit the sinkhole
Bundera Sinkhole harbours considerable microbial diver-
sity, with Shannon diversity estimates ranging from 3 to 
4 for all samples, except in the 26–28  m depths, were 
Shannon diversity dropped to just above 2 [18]. So, to 
gain better insight into the metabolic potential of the 
novel and abundant microbial species, we employed 
genome-resolved metagenomic analysis. We generated 
180 medium- to high-quality MAGs from the twelve co-
assembled metagenomes (median completion = 88.75%, 
median contamination = 0.93%; Supplementary 
Table  S6). These comprised 150 bacterial MAGs from 

20 phyla, with the remaining 30 MAGs from 3 archaeal 
phyla (Fig. 4). The composition of prokaryotic phyla dif-
fered significantly by water depth, with distinct phyla 
found at 2 m, 8 m, and 17–28 m depths (Figure S2; Sup-
plementary Table  S7), reflecting the same groupings as 
the gene-based clusters. This is supported by 16S rRNA 
gene amplicon sequencing of Bundera Sinkhole com-
munities [18], which suggests similar depth-dependent 
composition of microbial taxa. There is overlap between 
the taxonomic composition of the MAGs (Fig. 4) and the 
16S profiling results [18], with Proteobacteria dominat-
ing the communities. Although, there was a greater con-
tribution of Patescibacteria to the MAG catalogue than 
would be expected from the 16S data, and an underrep-
resentation of Marinisomatota (also commonly known as 
Marinimicrobia).

The communities inhabiting Bundera Sinkhole are tax-
onomically novel, with 75% of MAGs assigned to entirely 
new or uncharacterised families that lack cultured repre-
sentatives. In the Genome taxonomy Database (GTDB), 
newly delineated taxa are allocated with alphanumeric 
placeholder labels. Using GTDB nomenclature, we found 
that 64% of MAGs were assigned to families with such 
placeholder labels, and a further 11% of MAGs could not 

Fig. 4  Domain-specific phylogenies of MAGs from Bundera Sinkhole. Tips of the trees are coloured by their assigned phylum. Heatmaps display 
the relative abundance of MAGs in each of the duplicate samples collected from six depths (from inner to outer rings: 2 m, 8 m, 17 m, 18 m, 22 m, 
and 28 m)
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be assigned to any family (Supplementary Table S6). Even 
at the class level, almost a quarter of all MAGs in this sys-
tem were assigned to placeholder-labelled lineages. Such 
taxonomic novelty is likely driven by niche adaptation to 
the distinctive geomorphological and physicochemical 
properties of anchialine ecosystems.

The suite of MAGs assembled from Bundera Sinkhole 
provides an ideal opportunity to assess the functional 
potential of these diverse and novel taxa. The relative 
abundance of MAG-related functions associates with 
water depth (Fig.  5), as observed with the gene-based 
functional analysis. We found that the number of MAGs 
that have the genetic potential for each key metabolic 

reaction varied considerably, as does their relative abun-
dance at different depths.

We found that the taxonomy of carbon metabolism 
varied based on the carbon substrate (Fig. 5). For exam-
ple, one-carbon (C1) molecules (e.g., methanol, for-
maldehyde, formate, and carbon monoxide) are largely 
metabolised by Proteobacteria, while complex carbon 
molecules (e.g., cellulose, chitin, starch, and other oligo- 
and poly-saccharides) are metabolised by bacteria from a 
wider range of phyla.

The taxonomy of autotrophic microbes differed 
based on the CO2 fixation strategy (Fig.  5). Photo- and 
chemo-autotrophs that utilise RuBisCO as part of the 

Fig. 5  Key metabolic and biogeochemical cycling traits of MAGs in Bundera Sinkhole. From left to right: the numbers of MAGs that carry genetic 
markers (listed in Supplementary Table S8) for each functional trait are displayed by numerals; the average relative abundance (log10(TPM + 1)) 
for corresponding MAGs at each depth are displayed by the blue heatmap; and the proportion of MAGs assigned to each phylum is represented 
by the red heatmap. Archaeal phyla are denoted with asterisks. Data for each heatmap are provided in Supplementary Tables S9 and S10, 
respectively
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carbon-fixing CBB cycle were almost all Proteobacte-
ria (80%). A much more diverse range of bacteria and 
archaea had the genetic potential for utilising the reverse 
TCA (Patescibacteria, Nanoarchaeota, Campylobacte-
rota, Myxococcota, Bacteroidota) and Wood-Ljungdahl 
(Planctomycetota, Desulfobacterota, Chloroflexota, Ver-
rucomicrobiota, Nitrospirota, Bdellovibrionota) path-
ways for carbon fixation.

For the most part, N and S cycling pathways were per-
formed by Proteobacteria (Fig.  5). As described above, 
both the DNRA and nitrification processes appear to 
be important N cycling pathways that drive a nitrogen-
feedback loop in this system. The DNRA pathway, involv-
ing nitrate reduction to nitrite, which is then further 
reduced to ammonia, is largely driven by Proteobacteria 
(Fig. 5). The reverse of this process, nitrification, involves 
ammonia oxidation to nitrite, which is further oxidised 
to nitrate. Here, the final nitrification step (nitrite oxi-
dation) is predominately driven by Myxococcota, and to 
a lesser extent, Planctomycetota, Marinisomatota, and 
Nitrospinota (Fig.  5). However, the first step in nitri-
fication (ammonia oxidation), mediated by ammonia 
monooxygenases, was not detected in any MAG, despite 
their presence in the gene-based analysis (Fig. 2c). There-
fore, to identify the taxa involved in ammonia oxidation, 
we queried the genes annotated as amoA (encoding the 
ammonia monooxgenase, alpha subunit) against NCBI’s 
nr database using BLASTP. Three amoA genes were 
detected among the set of de-replicated genes. All three 
were identified as archaeal, belonging to the NCBI phy-
lum Thaumarchaeota (classified in the GTDB as class 
Nitrososphaeria–phylum Thermoproteota [50]). Thus, 
the nitrogen-feedback loop that cycles between ammonia 
and nitrate is driven by distinct prokaryotes – predomi-
nately those belonging to Proteobacteria, Myxococcota, 
and Archaea. The aforementioned sulphate-feedback 
loop, associated with sulphate reduction (sat) and sul-
phur oxidation (sdo) processes, is also largely driven by 
Proteobacteria (Fig. 5), while thiosulphate disproportion-
ation, which also appears to be contributing to sulphate 
production, is driven by diverse bacterial phyla.

Given the large metabolic contribution of Proteobacte-
ria to this system, we further investigated their functional 
potential at lower taxonomic levels (Fig.  6). We found 
that the most important contributors to key metabolic 
reactions (based on relative abundance) are species from 
less well characterised proteobacterial lineages. In par-
ticular, bacteria belonging to the gammaproteobacterial 
orders PS1 (n = 1) and GCF-002020875 (n = 7) were key 
contributors to carbon fixation (CBB cycle), and nitro-
gen and sulphur cycling (Fig.  6). The single PS1 MAG 
belongs to the genus Thioglobus, which encompass mem-
bers of the sulphur-oxidising marine SUP05 clade of 

Gammaproteobacteria. Thioglobus comprises a handful 
of cultured representatives which consist of chemoauto- 
and hetero-trophic bacteria that grow under aerobic and 
anaerobic conditions, and are assumed to contribute to 
denitrification [73–76]. The seven MAGs assigned to the 
order GCF-002020875, which lacks any cultured rep-
resentatives, all belong to the same family, also desig-
nated GCF-002020875. Of these, four MAGs belong to 
the genus Thiopontia, while the other three MAGs were 
unclassified at the genus level. There are five species rep-
resentative MAGs for Thiopontia (GCA_018671205.1, 
GCA_018658305.1, GCA_018648825.1, 
GCA_013349825.1, GCA_014384675.1), all of which 
were assembled from hypoxic saline water metagenomes 
[77–79] (NCBI BioProject Accessions: PRJNA630981, 
PRJNA632036, and PRJNA649215), suggesting that these 
bacteria are specific to this environmental niche.

Bundera Sinkhole has one to two highly abundant MAGs 
at each depth
Four highly abundant MAGs (with TPM values > 50 in 
at least one sample) were dominant at different depths 
(Fig.  7). These included two gammaproteobacterial 
MAGs, one assigned at the family level (family GCF-
002020875), and a Thioglobus sp., which were highly 
abundant at the 2  m and 8  m depths, respectively. A 
Marinisomatota MAG (order Marinisomatales) was 
highly abundant across all lower-depth samples (17–
28  m). An archaeal MAG, Nitrosopumilus sp., was also 
abundant across the lower-depth samples, particularly, at 
the 22 m depth.

The GCF-002020875 MAG (MAG-172), which com-
prised ~ 9% of the metagenomic reads from the 2 m sam-
ples (Fig.  8), represents a novel gammaproteobacterial 
lineage, having no classification below the family level. 
It encodes several enzymes that would enable it to uti-
lise sulphur as an energy source. However, it also carries 
genes for complex carbon degradation, suggesting it has 
the potential for both thioauto- and hetero-trophy. It also 
has the genetic potential to mediate two steps in the den-
itrification pathway (nitrite reduction to nitric oxide, and 
nitrous oxide reduction to N2 gas).

The highly abundant Thioglobus MAG (MAG-2) rep-
resents a major component of the 8 m community, com-
prising 26% of the reads from the 8  m samples (Fig.  8). 
It encodes several enzymes that suggest it also has the 
capacity for both thioauto- and hetero-trophy. It appears 
to be an important mediator of sulphur cycling, encod-
ing several sulphur transformation pathways, and carries 
marker genes for the complete denitrification pathway, 
converting nitrate to N2 gas, via nitrite, nitric oxide, and 
nitrous oxide intermediates. Both dominant MAGs at 
the 2 m and 8 m depths possess the genetic potential for 
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several sulphur cycling pathways as well as denitrification 
(Fig.  8). In marine oxygen minimum zones, a denitrifi-
cation pathway linking reduced sulphur compounds to 
the loss of bioavailable nitrogen represents an important 
mode of metabolic coupling [80–83]. These two domi-
nant MAGs are likely mediating this linking of sulphur 
cycling and denitrification in the shallower waters of the 
sinkhole.

In the deeper layers (17–28 m), two MAGs were highly 
abundant. One of these, MAG-107, belongs to the genus 
Nitrosopumilus, which comprise a group of ammonia-
oxidising Archaea [84]. Given their important ecological 
role in ammonia oxidation, we searched this MAG for 
the marker gene for ammonia oxidation, amoA, encod-
ing the ammonia monooxygenase alpha subunit. Sur-
prisingly, amoA was not detected in this MAG. However, 
as described above, we detected three archaeal amoA 
genes from the complete set of de-replicated metagen-
omic genes. One of these was predicted to belong to the 
genus Nitrosopumilus (100% query cover and 98.61% 

amino acid identity to Nitrosopumilus AmoA [NCBI 
accession WP_141977518.1]), and its relative abundance 
is almost perfectly correlated (r2 = 0.97, p = 1.084e − 08) 
with that of MAG-107, suggesting it to be indeed a com-
ponent of its genome. The failure for the amoA gene to 
be binned with MAG-107, is possibly due to the several 
ribosomal protein genes co-located on the same contig 
(rpl32e, rpl19e, rpl10, rpl12, rpl21e, rps17e, rps11, rps15, 
rps3ae), which are often difficult to bin because of their 
differential codon usage patterns that have been opti-
mised for rapid translation [85]. Besides ammonia oxida-
tion, this MAG also had the genetic potential for several 
nitrite reduction pathways, as well as sulphite production 
(Fig. 8).

The Marinisomatales MAG, MAG-158, represents 
the other dominant MAG at the lower depths. This 
MAG belongs to the phylum Marinisomatota, also 
commonly known as Marinimicrobia. These bacteria 
are widespread in the global oceans, and are particu-
larly abundant in sub-euphotic oxygen minimum zones 

Fig. 6  Metabolic functions associated with proteobacterial MAGs. MAGs are grouped according to their taxonomic class (left) and order (middle). 
Width of curved lines indicate the relative contribution, based on relative abundance, of proteobacterial orders (middle) to a given metabolic 
reaction (right)
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[80], which correspond to the samples that MAG-158 
was most abundant. Out of the four dominant MAGs, 
MAG-158 had the lowest estimated genome complete-
ness (57.14%), partially obscuring detailed analysis 
of its metabolism. Nevertheless, we detected several 
enzymes involved in selenium and arsenic cycling, as 
well as nitrate reduction (representing the first step in 
denitrification) (Fig. 8). Previous analyses of these bac-
teria indicate that they are important drivers of deni-
trification and sulphur cycling in hypoxic and anoxic 
seawater [80, 86], suggesting that this MAG might also 
be involved in coupled sulphur-nitrogen cycling in the 
sinkhole.

Analysis of the transporter complement of the four 
highly abundant MAGs with TransAAP [87] shows all 
MAGs have extensive transport capability (Supplementary 
Table S11). MAGs 172, 107, and 2 all encode SulP and Amt 
transporters, allowing for sulphate and ammonium spe-
cific uptake, with MAG-2 additionally encoding an MFS 
transporter specific for nitrate. Nitrate uptake in MAG-158  
could be driven by nitrate specific MFS transporters that 
it encodes, with selenate possibly being transported by the 
three DASS transporters detected. Various MFS and ABC 
transporters present in all of the MAGS would facilitate 
uptake of other substrates, such as arsenate/arsenite via 
phosphate and sugar transporters present, respectively.

Fig. 7  Relative abundance of MAGs in Bundera Sinkhole. Phyla of MAGs are displayed to the left of the heatmap. Archaeal phyla are denoted 
with asterisks. The four most abundant MAGs, having a TPM value greater than 50 in any one sample, are denoted on the right
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Conclusion
Here, we characterised the metabolic and biogeochemi-
cal cycling potential of the microbial communities inhab-
iting Bundera Sinkhole. We found that the microbial 
communities, largely represented by novel taxonomic 

lineages, display depth-dependent metabolisms. Key 
metabolic genes group into three depth-specific clus-
ters that reflect distinct phases along the dissolved oxy-
gen and salinity gradients. In particular, chemotrophic 
metabolisms that couple nitrogen and sulphur cycling 

Fig. 8  Metabolisms of the most highly abundant MAGs in Bundera Sinkhole as noted in Fig. 7. Estimated genome completeness is displayed 
within square brackets under each MAG ID. Pie charts indicate the proportion of reads at each depth that map to the four MAGs. Metabolic 
reactions are labelled in red text, proteins mediating those reactions are labelled in black text, and the reaction products/substrates are labelled 
in blue text. Bar charts indicate the dissolved oxygen (DO) and salinity at each depth. In MAG-107, ammonia oxidation is displayed as a dashed 
arrow, as the amoA gene was not originally binned with this MAG. However, it was included here after detecting an amoA gene, taxonomically 
classified as Nitrosopumilus, that had a relative abundance almost perfectly correlated (r.2 = 0.97, p = 1.084e − 08) with that of MAG-107
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appear to be characteristic of the dominant members in 
this ecosystem. These data support the idea that micro-
bial chemosynthesis is sustaining the higher trophic lev-
els in the sinkhole. To the best of our knowledge, this is 
the first whole metagenomic analysis of an anchialine 
ecosystem, and thus presents key findings that contribute 
to our understanding of ecosystem functions in subter-
ranean estuaries.

Understanding the diversity of metabolic strategies uti-
lised by anchialine microbial communities can provide 
important insights into how trophic webs are supported 
in these unique ecosystems. This is particularly impor-
tant given the high endemism of anchialine species and 
the potential vulnerability of these ecosystems to global 
environmental change and other anthropogenic influ-
ences [1]. Identifying the key microbial members and 
biogeochemical process is critical for the conservation of 
anchialine ecosystems.
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