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Abstract 

Sex differences in susceptibility, severity, and progression are prevalent for various diseases in multiple organ systems. 
This phenomenon is particularly apparent in respiratory diseases. Asthma demonstrates an age-dependent pattern 
of sexual dimorphism. However, marked differences between males and females exist in other pervasive conditions 
such as chronic obstructive pulmonary disease (COPD) and lung cancer. The sex hormones estrogen and testosterone 
are commonly considered the primary factors causing sexual dimorphism in disease. However, how they contribute 
to differences in disease onset between males and females remains undefined. The sex chromosomes are an under-
investigated fundamental form of sexual dimorphism. Recent studies highlight key X and Y-chromosome-linked 
genes that regulate vital cell processes and can contribute to disease-relevant mechanisms. This review summarises 
patterns of sex differences in asthma, COPD and lung cancer, highlighting physiological mechanisms causing the 
observed dimorphism. We also describe the role of the sex hormones and present candidate genes on the sex chro-
mosomes as potential factors contributing to sexual dimorphism in disease.
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Background
Sexual dimorphism refers to a divergence in the physical 
characteristics between chromosomally defined males 
and females of a species. These differences exist at the 
organ, cellular and molecular levels and are critical for 
establishing differences between males and females and 
enabling sexual reproduction [1–3]. However, the poten-
tial for these differences to contribute to sex differences 
in susceptibility and disease development is overlooked. 
Recently, the scientific community has actively aimed to 
recognise and investigate trends of sex differences both 
epidemiologically and physiologically. For example, the 
National Institutes of Health (NIH) mandated that sex 

must be considered a critical biological variable [4]. This 
instruction highlights the lack of data investigating sex as 
a biological factor in disease development and progres-
sion. The NIH highlights that sex is a biological variable 
that should be considered at all levels of research, from 
experimental design to analysis and reporting findings in 
animal and human studies.

It is critical to define the difference between biologi-
cal sex and gender. Biological sex refers to the sex chro-
mosome complement of an individual. Males carry one 
Y-chromosome, and one X-chromosome (XY), whilst 
females have two X-chromosomes (XX). The presence 
of the SRY gene on the Y-chromosome initiates a hor-
mone cascade during early development, stimulating 
the formation of the characteristic male phenotype. In 
contrast, the absence of the SRY gene results in the gen-
eration of female characteristics. Gender is defined by 
social norms and expectations for how “men and women” 
should behave [5]. The factors that influence gender vary 
between different cultures and with time. Notably, a 
growing body of work recognises the complex interaction 
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between gender and disease outcomes. Although impor-
tant, the impact of gender on disease is beyond the scope 
of the current body of work, and biological sex differ-
ences between males and females will be the primary 
focus of this review.

The reporting and investigation of sex differences in 
disease are being increasingly recognised across vari-
ous health conditions [6]. Nonetheless, there remains an 
incomplete understanding of the molecular and genetic 
factors driving sexual dimorphism. This is partly a result 
of large clinical and cohort studies designating sex as a 
confounding factor or a covariate in the data analyses [7]. 
As a result, the complexities of diseases remain poorly 
understood or unidentified as sometimes the effects of 
disease between males and females may occur in oppos-
ing directions, resulting in a “net-zero” effect size when 
grouped [8]. When public RNA-seq datasets are strati-
fied by sex, significant differences in gene expression are 
apparent between males and females in non-gonadal tis-
sues, which are otherwise non-significant when unstrati-
fied [8, 9]. As a result, a considerable gap exists in our 
understanding of the fundamental differences between 
males and females. Sex differences in response to the 
same clinical interventions are well reported in the lit-
erature to affect patient outcomes [7, 10–12]. Developing 
a deeper understanding of the fundamental factors and 
mechanisms driving sexual dimorphism in diseases is 
critical to furthering our understanding of disease devel-
opment and creating new, more effective ‘personalised’ 
clinical treatments.

Here, we will review patterns of sex differences in 
prominent respiratory diseases and present how sexual 
dimorphisms manifests at a molecular and physiologi-
cal level. We will also explore how the sex hormones and 
sex chromosomes contribute to pathological differences 
between males and females.

Sexual dimorphism in lung physiology
Differences in the lung structure between males and 
females may contribute to patterns of sexual dimorphism 
in various respiratory diseases. The lung’s development 
and maturation present a complex and dynamic pattern 
of sexual dimorphism driven by various factors. Impor-
tantly, differences in lung physiology between males and 
females have important clinical implications. Male lungs 
are bigger than female lungs, with this difference exist-
ing from birth into adulthood [13]. The disparity in lung 
development in utero between male and female foetuses 
begins as early as 16 to 24 weeks gestation [14]. Female 
foetuses have smaller airways and a lower number of res-
piratory bronchioles compared to males; however, their 
maturation rate is faster. Surfactant, an essential com-
pound enabling correct lung function [15], is produced 

earlier in females than males, enabling a faster lung mat-
uration rate. The faster rate of development is thought 
to explain why female neonates are less likely to suffer 
from respiratory distress syndrome compared to male 
neonates [16]. Estrogen produced by the placenta stimu-
lates the production of surfactant and the development 
of alveoli [17]. In contrast, testicular-derived androgens 
such as testosterone function to suppress the production 
of surfactant [13, 17], to which female foetuses are not 
exposed. As a result of divergent patterns of lung devel-
opment, in early life, males and females present with dis-
tinct physiological lung profiles. As mentioned above, 
female lungs are smaller, with fewer respiratory bronchi-
oles and smaller airways [14], whilst the luminal area for 
the large and central airways is approximately 14–31% 
larger in males, even when matching for lung size [18]. 
Cumulatively, as the female lung is smaller, with fewer 
respiratory bronchioles, the total number of alveoli and 
lung surface area is higher for males throughout early 
development. This disproportionate lung size and airway 
growth rate is called ‘dysanapsis’ [19, 20]. Females dem-
onstrate higher forced expiratory flow rates until they 
are 18 years old [21]. This increased airflow rate is postu-
lated to reduce female children’s susceptibility to damage 
due to in utero exposures and the development of res-
piratory conditions such as asthma and respiratory tract 
infections [6, 22]. As total lung capacity (TLC) increases 
in females, sex differences in expiratory flow rates also 
diminish. Clinical studies attribute sex differences in lung 
pathology changes such as airway fibrosis and inflamma-
tion to physiological and anatomical differences [23]. As 
such, biological and structural differences between males 
and females may contribute to patterns of sexual dimor-
phism in respiratory diseases such as asthma, chronic 
obstructive pulmonary disease (COPD) and lung cancer.

Sex differences in respiratory diseases
As mentioned, sexual dimorphism is apparent in a range 
of diseases across multiple organ systems. However, sex 
differences in the susceptibility, severity and progression 
between males and females for chronic respiratory dis-
eases are particularly intricate. For example, idiopathic 
pulmonary fibrosis is two times more common in males 
[24], whilst cystic fibrosis demonstrates greater severity 
in women [25]. This complex interaction between sex 
and disease becomes significantly apparent for asthma, 
chronic obstructive pulmonary disease (COPD) and lung 
cancer.

Asthma
Asthma is a heterogenous respiratory disease charac-
terised by hyper-reactive and reversible airway inflam-
mation. It is primarily diagnosed based on a history of 
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respiratory symptoms from wheezing, episodic short-
ness of breath (dyspnea), chest tightness and cough, 
varying over time [26]. Intrinsic to asthma is a complex 
interplay between airway inflammation and remodelling, 
culminating in airway hyperresponsiveness (AHR). Air-
way remodelling refers to structural changes in the air-
ways, such as increased airway smooth muscle (ASM), 
thickened basement membrane, epithelial dysplasia, and 
increased collagen deposition [27]. These changes result 
in a thickened airway wall, which, combined with inflam-
matory exudate produced by immune cells, obstruct the 
airway causing difficulty breathing. Figure  1 illustrates 
the significant obstruction of the airway lumen in asthma 
patients compared to healthy patients. The extent of 
expiratory airflow limitation is measured by the forced 
expiratory volume in one second (FEV1), which is a com-
mon tool used to evaluate asthma. Variability in FEV1 
is commonly triggered by exposures such as exercise, 
allergens or viral infections. In most cases, as asthma 
becomes more severe the airflow obstruction becomes 
fixed, increasing the rate of FEV1 loss.

The exact cause of asthma remains unknown. As such, 
it remains a significant health problem. Approximately 
300 million people suffer asthma worldwide, with Aus-
tralia demonstrating one of the highest prevalence rates, 
at 11.2% [28, 29]. Asthma is the leading disease burden 
for children younger than 15, with children who are 
under 15 more likely to be hospitalised with asthma 
than those older than 15 [30]. Part of the difficulty in 
treating and managing asthma relates to its heterogene-
ous nature, with five primary clinical phenotypes recog-
nised. A range of clinical patterns or treatment responses 
determines the different asthma phenotypes. These 
include the causative agents (allergic), timing of diagnosis 

(adult-onset), lung function outcome (persistent airflow 
limitation) and associated comorbidities [26]. Allergic 
asthma is the most common phenotype, often starting in 
childhood and driven by eosinophilic airway inflamma-
tion in response to stimulation by allergens. Non-allergic 
asthma, on the other hand, presents a more neutrophilic 
immune cell profile and responds less to inhaled corti-
costeroids (ICS). Significant advances have been made 
regarding asthma management and treatment; however, 
the exact cause of asthma remains elusive. Furthermore, 
modern treatments are flawed, with therapies such as tar-
geted monoclonal antibodies failing to eliminate danger-
ous exacerbations [31]. Other clinical interventions only 
target specific aspects of asthma, such as anti-inflamma-
tory steroids that reduce the immune response but do 
not resolve the structural changes that occur [31]. This 
inability to resolve airway remodelling limits the ability 
to control patients with severe disease and presents a sig-
nificant shortfall in the attempt to cure/reverse asthma.

Sex differences in asthma
Compounding the complexity of asthma is its sexu-
ally dimorphic nature. Differences between males and 
females with asthma exist in childhood and adulthood 
asthma. Young males (12.1%) report a higher prevalence 
of asthma compared to young females (7.9%) and are two 
times more likely to be hospitalised due to asthma [32]. 
However, this pattern reverses after puberty, towards an 
increased asthma diagnosis in adult females (13.9%) com-
pared to adult males (9.6%), as depicted in Fig. 2. How-
ever, some conjecture exists in the literature, with some 
studies concluding no sex differences in asthma sever-
ity [33, 34]. Other studies report higher mortality and 
a higher rate of exacerbations in females [23], severely 

Fig. 1  Micrographs of airways from a healthy patient A and an asthmatic patient B stained with haematoxylin and eosin. A thickened basement 
membrane (BM) can be seen in the asthmatic patient with hyperplasia of the epithelial (Ep) layer. A noticeable increase in the airway smooth 
muscle (ASM) thickness can also be seen. A slight mucus exudate can be seen in the airway lumen of the asthma patient. Scale bars = 100 µm
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reducing their daily quality of life. In contrast, adult 
females have a three-fold increased risk for hospitalisa-
tion due to asthma [32]. Several factors contribute to the 
sexual dimorphic presentation of asthma, including ana-
tomical differences, sex hormones and environmental/
occupational factors.

The apparent differences in asthma susceptibility and 
severity between the sexes are associated with many fac-
tors. The differential inflammatory, fibrotic, and remodel-
ling processes present a complex nexus of physiological 
and molecular factors contributing to asthma pathogen-
esis and progression. The sex hormones have been linked 
with the temporal shift in asthma susceptibility [35–37]. 
However, genome studies reveal genetic associations 
in asthma differ by sex, highlighting unique biological 
underlying factors contributing to sexual dimorphism in 
asthma [8]. Network analyses conclude that asthma may 
function via differential mechanisms in males or females, 
despite involving similar processes and functional out-
comes [38]. Therefore, a holistic understanding of envi-
ronmental, genetic, hormonal and physiological factors 
is needed to unravel the complex interaction between 
asthma and biological sex.

Sex differences in inflammation and remodelling in asthma
A predominance of CD4 + and Th2 cells with infiltration 
of eosinophils and mast cells in the airways characterises 
type 2 airway inflammation. CD4 + and T helper cells ini-
tiate and perpetuate the phenotype of prolonged inflam-
mation [39]. This type of inflammation primarily drives 
allergic/atopic asthma. In particular, it has been noted 
that young males present with more allergic inflamma-
tion [40]. Interestingly, males are less prone to immu-
nological illnesses over their lifetime than females [23]. 
This pattern has been linked to the role of sex hormones, 
which will be discussed in detail later. Males and females 
demonstrate distinct immune cell populations in asthma. 

Female lungs have increased levels of type 2 lymphoid 
cells, specifically a subset of cells that do not express 
killer-cell lectin-like receptor G1—which is absent from 
male lungs [41]. After puberty, this cell population can 
produce type 2 inflammatory cytokines, thus creating 
different pro-inflammatory environments between males 
and females with asthma. There is a distinct pattern 
towards more atopic asthma, airway infections and bron-
chiolitis in young males before puberty, with more males 
admitted to hospital before puberty [39]. The differences 
between male and female immunological mechanisms 
and responses are complex and change with age.

Tumour necrosis factor—alpha (TNFα) and trans-
formation growth factor—beta (TGFβ) are prominent 
immunoregulatory cytokines closely associated with 
asthma pathogenesis [42]. They are critical to asthma’s 
cellular and humoral immune responses [43]. Asso-
ciations have been identified between genetic polymor-
phisms in atopic and non-atopic asthma patients [44, 
45]. In particular, they have been correlated with serum 
IgE levels, of which boys demonstrate higher levels than 
girls [28]. However, the allergic response to asthma aller-
gens can depend on CD4 + and CD8 + cells rather than 
IgE levels [23]. As such, the CD4 + to CD8 + cell ratio can 
be a marker of chronic lung disease. This ratio is lower 
in males than females in adulthood [46], contributing 
to sex differences in the inflammatory response. TNFα 
demonstrates various pathological functions, including 
inducing the infiltration and activation of immune cells 
through promoting increased expression of adhesion 
molecules [47], thus increasing bronchial hyperrespon-
siveness. Further, TNFα dysregulates epithelial barrier 
activities along with IL-13 [48]. Female-biased expres-
sion of IL-13 in asthma patients may interrupt tight junc-
tion proteins, contributing to worse asthma symptoms 
in females. The IL-17 pathway is also up-regulated in 
females with asthma, potentially driving increased air-
way hyperresponsiveness [49]. Type 2 immune response 
in asthma increases the number of neutrophils driven by 
CXCL8, a well-known neutrophil chemotactic cytokine 
[23, 50]. Similarly, IL6 levels correlate with worse asthma 
outcomes as part of type 2 immune response causing 
neutrophil infiltration [51]. Neutrophilic asthma is linked 
with a poorer response to corticosteroids [10], impacting 
patient outcomes. Furthermore, asthmatic males demon-
strate reduced response to β2-agonists with age despite 
treatment with inhaled steroids [27].

Airway remodelling refers to the degradation and 
repair of the ECM and the increased proliferation of 
fibroblasts. Traditionally it is believed that inflamma-
tion drives the airway remodelling in asthma, progressing 
into AHR and culminating in fixed airflow obstruction 
(FAO) [52]. However, there is a growing consensus that 

Fig. 2  Asthma prevalence by age group and sex in Australia 
recorded by the National Health Survey 2017–2018 [29]. The pink line 
indicates female asthma prevalence (%), and the blue line indicates 
male asthma prevalence (%)
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the altered structure of the airway may stimulate and 
promote inflammatory processes [53, 54]. For example, 
the breakdown of collagen IV affects asthma severity [45, 
46] due to a decrease in the tumstatin fragment, reducing 
inflammation and AHR [55]. Therefore, sex differences 
in inflammation may drive sex differences in fibrosis and 
vice versa. Rasmussen et al. [27] found in a longitudinal 
population study that airway remodelling is associated 
with the male sex, with reduced lung function outcomes 
from childhood into adulthood. Males demonstrate an 
accelerated decline in FEV1 predicted values, poten-
tially driven by higher rates of fixed airflow obstruction 
in younger and older populations [28, 56]. Despite this, 
female mice exposed to an Ova-sensitised model expe-
rience significantly more airway remodelling than male 
mice [57]. Lung function has been used as a surrogate 
method to measure the progression of airway remodel-
ling and asthma, as an increased rate of FEV1 decline is 
seen in many asthma cases [52]. The ratio of FEV1 to vital 
capacity (the total volume of air that can be inhaled) indi-
cates a downward trend in females from late adolescence 
into adulthood, signifying greater fibrotic and remod-
eling changes compared to males [27]. In early develop-
ment, young males demonstrate slower expiratory airflow 
rates despite having similar total lung volumes to young 
females [39], indicating an initial structural disadvan-
tage. Therefore, young males are more liable to develop 
asthma symptoms at a younger age, which might contrib-
ute to worse outcomes.

A complex relationship exists between inflammation, 
airway remodelling, biological sex and asthma. The exact 
mechanisms and factors causing these apparent dif-
ferences in pathological processes remain unclear and 
require deeper investigation and discussion. Structural or 
functional sex differences are unlikely to drive respiratory 
disorders such as asthma and wheezing, with hormonal 
or genetic factors likely to contribute.

Chronic obstructive pulmonary disease (COPD)
COPD is characterised by progressive and irreversible 
airflow limitation, culminating in a sustained decline in 
lung function. Chronic inflammation of the airway drives 
the thickening and narrowing of the airway structural 
layers, obstructing airflow [58], similar to asthma. In con-
trast, COPD is characterised by small airway remodel-
ling and emphysema, with occlusion of the airways and 
parenchymal destruction. COPD patients experience 
significant airflow limitation which is presented through 
the hallmark features of chronic cough, shortness of 
breath and excessive mucous production [59]. The irre-
versible worsening of disease symptoms significantly 
reduces patient quality of life, eventuating in disability 
and death. COPD is currently the third leading cause of 

death worldwide, affecting 7.5% of Australians older than 
40 and 30% of people older than 75 [60]. Cigarette smok-
ing is the best-known risk factor for the development 
of COPD; however, the exact cause of COPD remains 
unknown, with only 10% of COPD cases attributable to 
genetic factors. It is generally considered an adult-onset 
disease, and lifelong exposure to environmental factors 
functions as a critical pathogenic factor.

Sex differences in COPD
Historically, COPD was considered male predominant. 
In recent years, there has been increased awareness and 
investigation of sex differences in COPD incidence and 
health outcomes. The National Centre for Health Ser-
vices (NCHS) data shows that COPD death rates declined 
for males yet remained steady in females over time [61]. 
This trend is driven by a normalisation of smoking rates 
between males and females, which has narrowed COPD 
diagnosis rates between the sexes. Female smokers are 
50% more likely to develop COPD than males [62]. 
Tam et  al. found that 60% of all COPD hospitalisations 
occurred in females [63]. When considering the effect of 
smoking further, females demonstrate worse lung func-
tion and disease prognosis than males despite smoking at 
the same level [64] (Fig. 3). As such, due to environmental 
exposures, females present a steeper decline in lung func-
tionality, contributing to increased rates of COPD diag-
nosis [65]. Females showed a 5.7% reduction in FEV1% 
predicted in the low smoke exposure group compared 
to males [66]. Women report more dyspnoea, chronic 
cough and lower overall quality of life scores. In addi-
tion, females also represent a more significant proportion 

Fig. 3  Unweighted analysis of the relationship between age and 
gender-related differences in the annual decline in lung function 
(FEV1%) pred/year according to smoking. The squares/dotted line 
represents never smokers, the triangles/dashed line represents former 
smokers, and the diamonds/solid line represents current smokers. 
Recreated with permission from BioMed Central publisher and was first 
published by Gan et al. [64]
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of severe early-onset COPD patients (SEO-COPD) [67], 
defined by the development of COPD before 50 years of 
age with lung function less than the lower limit of normal 
[62, 68]. Importantly, sex differences in COPD manifest 
at a pathophysiological level, with males demonstrating 
higher levels of emphysema, whilst females show more 
significant small airway disease. A mouse model by Tam 
et al. found female mice exhibit increased levels of small 
airway remodelling and greater activation of TGFβ in the 
small airways after chronic cigarette exposure [63], which 
was not observed for males. A proteomic investigation 
of bronchoalveolar lavage (BAL) revealed an increase in 
macrophage autophagy in females who had developed 
COPD [69]. Macrophage autophagy is known to be a 
critical process in the pathophysiology of COPD [70]. 
An autoimmune profile has been reported in COPD [71]. 
As autoimmune diseases demonstrate a distinct female-
bias, this provides support of a molecular basis towards 
increased susceptibility of females to develop COPD [72]. 
Forsslund et al. show female smokers with COPD present 
with increased CD8 T-cells expressing CCR5 compared 
to non-smoker females with COPD [73]. The authors 
highlight distinct T-cell profiles dependent on smoking 
status, demonstrating a correlation between Th1 inflam-
mation with goblet cell density and BAL macrophages in 
female smokers with COPD. Comparatively, a correlation 
between Th2 inflammation and IgG serum concentration 
was reported in male smokers, with no effect of COPD 
observed. As such, clinical observations of sex differences 
stem from distinct cellular and biological interactions 
with cigarette smoking and COPD development.

Lung cancer
Lung cancer is one of the most common cancer types, 
with rates continuing to increase globally [74, 75]. Over-
all, there is a trend towards increased lung cancer cases 
in never-smoking individuals, although 80% of all lung 
cancer cases are attributable to a history of tobacco 
smoking [76]. Lung cancer is broadly classified into 
two subgroups: non-small cell lung cancer (NSCLC), 
which comprises 85% of cases, and small cell lung can-
cer (SCLC), which accounts for 15% of patients [77]. 
NSCLC includes specific subtypes such as squamous cell 
carcinoma, large cell carcinoma from epithelial cells that 
line the bronchus, and adenocarcinoma from the gland 
tissues [78]. SCLC is characterised by a rapid doubling 
time and is the most aggressive, reporting a 5  year sur-
vival rate of less than 7% [79]. Significant genetic diver-
sity in lung cancer complicates the investigation and 
understanding of biological pathways involved in disease 
development and progression. Advancements in mod-
ern sequencing technologies have identified key onco-
genic targets such as KRAS, EGFR, BRAF and JAK2 [80]. 

However, the complexity of lung cancer is attributed to 
its lack of recurrent mutations that occur at a high fre-
quency. This phenomenon impedes the ability to develop 
more effect treatments [81]. Improving our knowledge of 
the fundamental pathological features of lung cancer will 
enable the identification of key, targetable pathways and 
ultimately improve patient outcomes.

Sex differences in lung cancer
Sex bias in lung cancer is well established, with notable 
differences observed since 1996 [82]. Lung cancer is the 
second most diagnosed malignancy and the leading cause 
of cancer death worldwide [77].  Females demonstrate 
more adenocarcinoma and less squamous cell carci-
noma than males [77]. This pattern was thought to relate 
to differences in smoking patterns between the sexes. 
However, 50% of women diagnosed with lung cancer are 
never smokers, compared to 20% of males [83]. Thun 
et  al. found female never smokers of European, African 
American and Asian descent all showed increased lung 
cancer rates compared to their male counterparts [84]. 
The combination of these trends spurred the notion that 
female lung cancers have a distinct genetic and patho-
genic profile compared to males.

Figure  4 highlights the complex and dynamic pattern 
of sex differences in lung cancer over time. Male inci-
dence of diagnosis remains steady (Fig.  4A), and shows 
decreased mortality rate (Fig. 4B). In comparison, females 
have demonstrated increasing incidence and mortality 
rates over the last 40 years. Interestingly, females demon-
strate higher survival rates for all histological subtypes of 
lung cancer [85] after accounting for the stage at diagno-
sis, age and treatment (represented in Fig. 4C) [76]. Nota-
bly, females tend to be diagnosed with lung cancer at a 
younger age, potentially enabling better opportunities for 
treatment before disease progression [86]. An Australian 
longitudinal cohort study by Yu et al. found that although 
women have higher diagnosis rates, males demonstrate a 
43% increased risk of lung cancer mortality [11, 87]. The 
authors identified female patients were significantly more 
responsive to treatments, which is supported by multi-
ple other studies potentially contributing to increased 
survival rates [76, 77], whilst other studies identified sex-
specific benefits depending on the treatment [88, 89]. 
Yu et al. identified an increased density of B-cells in the 
adenocarcinoma tissues of females, which they suggested 
might contribute to improved treatment and survival 
outcomes, as B cells have critical anti-tumour activity. 
Furthermore, as female patients tend to be younger, they 
also show better baseline health status compared to male 
counterparts at a similar stage of disease [87].

The innate and adaptive immune responses between 
males and females differ significantly. Studies show that 
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males with a suppressed immune response are more sus-
ceptible to developing malignancies and infections than 
females [91]. PD-1, an immune checkpoint inhibitor, is 
increased in female NSCLC patients compared to males, 
with higher expression in female CD4 + T cells [92]. This 
pattern was postulated by Gu et al. to be associated with 
increasing testosterone levels in females with NSCLC, 
however, this mechanism requires further exploration 
[92]. Therefore, a complex relationship between lung 
cancer and biological sex exists. Although females are 
diagnosed with lung cancer more often, there is a clear 
bias towards worse outcomes in males. Furthermore, a 
distinct histological profile exists between the sexes, with 
unique pathological profiles potentially apparent between 
males and females. These differences may contribute to 

variations in response to antitumor and immunotherapy 
treatments. The trend of lung cancer appears to be linked 
to social tobacco smoking patterns. However, there is a 
distinct shift towards increased non-smoking-related 
lung cancer development rates. This trend implies impor-
tant genetic factors may  promote epidemiological and 
pathologic differences between males and females.

The sex hormones: estrogen and testosterone
Sexual dimorphism is apparent in various diseases, espe-
cially in the lung. The most common and easily attrib-
utable factor that explains differences between males 
and females are the sex hormones. These steroid hor-
mones are critical factors driving phenotypic differences 
between males and females. Androgens (testosterone) 

Fig. 4  Lung cancer incidence, mortality and survival, collected by the Australian Institute of Health and Welfare [90]. A Age-adjusted lung cancer 
incidence rates by sex B age-adjusted lung cancer mortality by sex C lung cancer survival rates (%) each year after diagnosis by sex [90]. The blue 
line represents males, whilst the pink line represents females
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are the primary male hormone, and estrogens (estra-
diol) are the predominant female hormone. However, it 
should be noted that both androgens and estrogens are 
found in females and males, but at lower physiological 
concentrations.

Estrogen and testosterone are commonly thought only 
to be produced by the sex organs (ovaries and testes). 
However, their effects extend to peripheral tissues in a 
paracrine manner [93]. As such, sex steroids are impli-
cated in various diseases impacting multiple organ sys-
tems, from cardiovascular to neurological and respiratory 
[35]. Clinical and epidemiological studies have associated 
sex hormones in modulating lung diseases. The sex hor-
mones can alter airway tone and modulate the inflamma-
tory response, with estrogen driving a pro-inflammatory 
environment, whilst androgens are reported to have anti-
inflammatory activity [94, 95]. This difference in effect 
potentially contributes to worse outcomes and increased 
incidence of complications in females suffering lung dis-
eases associated with inflammation [35].

Elevated testosterone levels are linked with decreased 
asthma risk regardless of sex [96]. Higher levels of andro-
gen receptor expression in human airway epithelium are 
associated with better lung function and fewer asthma 
symptoms [97]. This observation is potentially driven by 
the ability of androgens to attenuate inflammatory fac-
tors in the lung [32, 97] and, by inducing airway smooth 
muscle relaxation through decreased levels of cellular 
calcium [98]. Dijkstra et  al. identified polymorphisms 
in estrogen receptor alpha (ERα) that are closely linked 
with airway hyperresponsiveness and worse lung func-
tion decline in females [99]. Even in the absence of stimu-
lation, ERα deficient mice demonstrate significant AHR 
[100], highlighting a close relationship between estrogen 
and asthma symptoms.

Generally, estrogens are considered immunologi-
cal enhancers (i.e. promote an immune response), and 
androgens/testosterone are immunological suppressors 
(i.e. reduce the immune response) [101]. It is hypoth-
esised that increased estrogen levels enhance the T2 
immune profile in asthma, causing the development and 
an increased frequency of exacerbations in asthma [101]. 
This notion is supported by evidence of peri-menstrual 
worsening of asthma symptoms reported in 20–40% of 
females with severe or difficult-to-control asthma [102, 
103]. Symptoms appear worst during the mid-luteal 
phase (estrogen and progesterone are elevated) [104]. 
Many immune cells that predominate in asthma express 
estrogen and testosterone receptors such as eosinophils, 
airway smooth muscle cells and T cells [101]. As such, 
hormonal fluctuations throughout the menstrual cycle 
influence the immune response to allergic stimuli [105]. 
Epidemiological evidence shows that the rate of COPD 

incidence in females is increasing, with the death rate in 
females increasing since 2000 [106]. Differences in COPD 
pathology between males and females may be partly 
modulated by estrogen. Mouse models show female mice 
develop more airway obstruction upon chronic cigarette 
smoke exposure, while male mice develop more emphy-
sema. However, ovariectomised female mice (to remove 
estrogenic effects) develop emphysema similar to male 
mice [63]. This indicates that estrogen promotes a differ-
ent pathological COPD phenotype in females, contrib-
uting to worse disease outcomes. Androgens have been 
shown to have anti-inflammatory properties and regulate 
the structure and function of non-reproductive organs. 
Further, increased testosterone levels are linked with a 
decreased risk of asthma in both males and females [96]. 
Chiarella et al. [107] conducted an extensive review out-
lining the varying effect estrogen has on multiple airway 
cell types, highlighting the complex interaction between 
the sex hormones and the lung.

Androgens have been implicated in lung cancer devel-
opment, with reduced androgen levels associated with 
decreased cell proliferation [108] and found to alter the 
gene expression profile in cancer cell lines [109]. Testos-
terone is believed to function as a promoter of tumour 
cell proliferation, contributing to the higher incidence 
and worse outcomes from cancer in men [110]. How-
ever, estrogen has also been linked to the incidence of 
NSCLC in females—compounding the adverse effects of 
cigarette smoking. Females who smoke using estrogen 
replacement therapy (ERT) indicated more than dou-
ble an increased risk for adenocarcinoma development. 
Whereas those using ERT and who have never smoked 
showed no increased odds of developing lung cancer [78].

Puberty, pregnancy and menopause
We have discussed how sex-specific patterns of asthma 
incidence change in puberty. It is important to recog-
nise that both estrogen and testosterone change during 
puberty and are active in both sexes. The dramatically 
increased estrogen production in females at puberty 
potentially promotes increased immune system respon-
siveness and airway smooth muscle contraction [101, 
111]. Conversely, increased testosterone in males is likely 
protective, suppressing eosinophil and neutrophil inflam-
mation in the lungs and improving airway tone [112]. 
Further, Bulkhi et  al. found a one unit log2 increase of 
serum testosterone was associated with an 11% decreased 
risk of asthma in males and a 10% decrease in females 
[96]. However, no correlation between serum testoster-
one and current asthma was reported for patients under 
12  years old. This highlights that childhood asthma is 
promoted by non-hormonal factors and requires further 
investigation.
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An increasing prevalence of asthma in pregnancy has 
been reported overtime, from 3.7% in 1997 to 8.4% in 
2001 [113], with rates as high as 12.7% in Australia in 
2012 [114]. Approximately 20% of females with asthma 
experience increased exacerbations during pregnancy 
[115]. The mechanical implications due to uterus enlarge-
ment combined with hormonal changes during preg-
nancy cause increased asthma symptoms in pregnant 
females [116]. Hormonal changes occur in pregnancy to 
fulfil the mother’s and fetus metabolic needs. As detailed 
earlier, estrogen and progesterone modulate the immune 
response, which can lead to worse asthma symptoms. Up 
to 40% of mothers report that changes to their asthma 
vary with successive pregnancies, indicating that a com-
plex interplay of factors affects asthma in pregnancy 
[117].

Pregnancy with concurrent COPD or lung cancer is 
rare as both conditions develop later in life. Only two 
instances of pregnancy in patients with COPD have been 
reported. In one example, COPD symptoms improved 
with pregnancy, potentially due to the protective role of 
estrogen against increased bronchoconstriction [118]. 
The patient’s condition significantly declined post-deliv-
ery, indicating that the pregnancy caused a partial rever-
sal of COPD progression. In contrast, the other case of 
COPD in pregnancy [119] indicated little to no improve-
ment, potentially due to the overall worse disease state of 
the patient. Limited data and studies are evaluating lung 
cancer’s molecular and genomic features in pregnancy. 
However, adenocarcinoma is the most common form 
of lung cancer in pregnancy (80%), which may be linked 
to increased estrogen receptor expression in this cancer 
type [120, 121]. Consistent with general patterns for can-
cer, pathological characteristics and health outcomes for 
patients with lung cancer are the same irrespective of the 
pregnancy [120, 122].

Early menarche is closely linked with faster lung func-
tion decline and worse health outcomes later in life [13], 
with smoking known to induce early menopause. Meno-
pause is characterised by a distinct reduction of proges-
terone and estrogen production in females, occurring 
around the fifth decade [123]. Generally, postmenopausal 
females have a significantly reduced risk of developing 
asthma [124]. However, females with asthma at meno-
pause have high levels of circulating estradiol, with a 
dose-dependent correlation with asthma severity [125]. 
Asthma prevalence increases in males compared to 
females after 50 years of age, coincidentally when testos-
terone levels decrease further [126]. A recent systematic 
review [123] determined that the contribution of meno-
pause to asthma remains conflicting due to sources of bias 
and heterogeneity in the current literature. The authors 
posit that it may be prudent to explore the relationship 

between menopause and specific asthma phenotypes, 
which may lead to more insightful conclusions. Only two 
studies have investigated the link between menopause 
and COPD, with both finding no association [127, 128]. 
Hormone replacement therapy (HRT) increased the risk 
of adult-onset asthma by 49% in menopausal females in 
two independent cohorts [124, 129]. This highlights a 
complex interaction between asthma, menopause and 
hormone changes that requires deeper investigation. 
Early menopause is linked to an increased risk of lung 
cancer [130]; although smoking can bring forward the 
onset of menopause, this may primarily be a smoking 
effect. Alternatively, some studies have found late men-
opause (older than 55 years) is linked with an increased 
risk of lung cancer among non-smokers [131, 132]. This 
pattern may be caused by greater life-long exposure to 
estrogen, which has been linked with the development 
of other cancers [133]. Inconsistent definition of disease 
outcomes and measurements in studies investigating and 
associating menopause is a significant limiting factor. As 
a result, findings from these studies generate conflicting 
results. The use of clear clinical definitions and the exam-
ination of disease subtypes will enable more valuable and 
insightful conclusions to improve the current under-
stand of the link between the sex hormones with asthma, 
COPD and lung cancer.

A small cohort study  of healthy young females dem-
onstrates no change in multiple lung function measure-
ments across all menstrual cycle stages [134]. Although, a 
minor positive correlation between tidal volume, inspira-
tory time and expiratory time was reported with estradiol 
and progesterone during the early-to-mid luteal phase. A 
study by Hanley in 1981 measured peak expiratory flow 
rate (PEFR) in 102 female asthmatic patients [135]. Of 
the 36 patients who reported worsened symptoms at the 
start of menstruation, PEFR indicated a significant reduc-
tion. This indicates that an increase in airway resistance 
prompted the perception of worse symptoms. However, 
65% of the cohort reported no change in symptoms, high-
lighting that the effect of menstruation on asthma symp-
toms is inconsistent. A recent similar study combined 
subjective and objective measurements of premenstrual 
asthma deterioration in 103 females with asthma. 60% 
of participants described worsened symptoms in at least 
one of two menstrual cycles. However, only three females 
presented with objective deterioration in peak flow rates 
[136]. An association between the start of the menstrual 
cycle and asthma symptoms exists; however, there is a 
discrepancy between the perception of symptoms and 
physiological changes. Clearly, a highly complex interac-
tion exists between hormone levels, lung physiology and 
psychological perception of symptoms. Further investiga-
tion of this relationship is necessary to improve patient 
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care and health outcomes and our understanding of dis-
ease pathophysiology.

Sex hormones influence the pathophysiology of lung 
diseases. The exact role and mechanism of how estrogen 
and testosterone function is yet to be wholly elucidated. 
The current evidence indicates an association between 
estrogen and testosterone with clinical symptoms and 
presentation of these diseases, with no well-defined link 
to disease development mechanisms between the sexes. 
There remains a dearth of knowledge surrounding the 
differential effects of sex hormones in both healthy and 
disease conditions. Although the role of sex hormones 
is apparent, a deeper exploration of their signalling and 
mechanical pathways is required to elucidate how estro-
gen and testosterone contribute to disease development. 
The implication of alternate pathogenic factors driving 
sex differences is evidenced in children where the sex 
hormonal effect is limited and clear patterns of sex dif-
ferences exist.

The sex chromosomes
An imbalance exists in disease susceptibility and sever-
ity between males and females, which is apparent pre-
puberty [6], removing the effects of sex hormones. As 
such, this draws attention towards fundamental genetic 
differences between males and females. The concept 
of sex-biased gene expression is well-established and 
reviewed in detail by Grath and Parsch [137]. The pro-
cesses driving sex-biased expression are complex. In 
particular, sex-chromosome-specific mechanisms such 
as dosage compensation directly contribute to sexu-
ally dimorphic gene expression. Genes on the X and Y 
chromosome have been shown to contribute to criti-
cal cellular processes and are linked to various diseases 
[138–141]. Therefore, this is a fundamental difference 
between males and females which may contribute to 
sex differences in disease susceptibility, progression and 
severity.

Human cells contain 23 pairs of chromosomes, with 
22 pairs referred to as autosomes and the final pair 
called the sex chromosomes, X and Y. Females have 
two X-chromosomes (X-chr), and males have one X-chr 
and one Y-chromosome (Y-chr). The expression of the 
SRY gene from the Y-chr initiates the development of 
male genitalia, demonstrated by the seminal ’four-
core genome’ (FCG) mouse model [142]. This model 
involved transposing SRY from the Y-chr to an auto-
some, meaning that XX and XY mice with ovaries and 
XX and XY mice with testis could be bred [142]. As a 
result, it was possible to distinguish whether differences 
in gene expression from sex chromosome complement 
drive a sexually dimorphic phenotype or sex hormones 
[143]. The FCG model has been applied across a range 

of experimental designs, which Arnold et  al. reviewed 
in detail and highlighted the importance of this model 
across different disease systems [143]. In one itera-
tion, distinct differences were observed between XX 
and XY mice with the same gonadal type, implying a 
lack of effect by gonadal hormone secretions [144]. 
Although the effects of estrogen and testosterone must 
be acknowledged, these models indicate distinct X and 
Y-chr-specific regulation. In support, studies show 
that genetic factors drive most differences between the 
sexes in specific tissues [145, 146].

The sex chromosome complement is a critical bio-
logical factor driving sexual dimorphism in disease. The 
Y-chromosome contains the fewest number of genes 
(72) compared to the X-chromosome’s 833 genes, high-
lighting a clear imbalance in genotype between males 
and females. A study investigated the male-specific 
region (MSY) of the Y-chromosome, identifying unique 
haplogroups and observed a 50% increased risk for 
coronary artery disease compared to the other haplo-
types [147]. Macrophages from the males carrying the 
susceptible haplogroup indicated altered processes of 
inflammation. A wealth of studies and reviews highlight 
the contribution of the Y-chromosome in protecting 
against or increasing susceptibility to various diseases 
[147–150].

The importance of the Y-chr is controversial. It is 
accepted that the X and Y-chr were once identical, with 
evolutionary studies demonstrating that they share a 
common ancestor chromosome. A divergence event 
causes the Y-chr to undergo significant changes, which 
results in the partial degeneration of its structure, with 
some evidence this degradation is continuing [151]. Stud-
ies have forecasted that the Y-chromosome is declining, 
with a steady loss of genes over millions of years. This 
begged the question, “How important is the Y-chromo-
some, and will it disappear?” This is a hotly debated topic 
with two competing schools of thought:

A)	Degradation of the Y-chromosome will continue 
until it eventually becomes extinct

B)	Y-chromosome degradation is slowing down, with 
the remaining genes being critical for survival

The X-chr undergoes a unique process to adjust for 
this dramatic degradation of the Y-chr, where one X-chr 
becomes inactivated. X-chr inactivation (XCi) occurs 
early in human development. Either the maternal or 
paternal X-chr becomes inactivated in each cell. The 
same X-chr remains inactivated throughout the mitotic 
proliferation of that cell [152]. The non-coding RNA 
“Xist” initiates the recruitment of chromatin-modifier 
proteins, resulting in transcriptional silencing [153]. 
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The silenced X-chr undergoes structural and epigenetic 
remodelling leading to the formation of a condensed 
Barr body. This process theoretically accounts for the 
double dosage of two X chromosomes in females com-
pared to one in males. However, XCi is incomplete, 
with several genes escaping the inactivation process 
[146, 154]. Approximately 15–25% of genes escape XCi 
[155], meaning that these genes are expressed from both 
X-chromosomes in females. As such, females experience 
‘double-dosage’, whilst males only have a ‘single dose’ of 
these genes. Variations in XCi have also been implicated 
in disease susceptibility [154].

Bellott et  al. [156] compared the Y-chromosomes of 
multiple mammal species to investigate whether an 
overlap existed for the evolutionarily conserved genes. 
The authors identified many conserved genes that car-
ried functions beyond sex determination and function to 
affect all levels of the central dogma—from gene expres-
sion to protein translation. Therefore, genes that have 
survived on the Y-chromosome are critical regulators of 
various cellular processes. These genes include RPS4Y1, 
ZFY, DDX3Y, EIF1AY, KDM5D, KDM6C. These Y-linked 
genes have X-chromosome counterparts which are also 
evolutionarily conserved [156]. However, the sequences 
of these genes are non-exact, resulting in these proteins 
having structural variances affecting biological systems 
through divergent mechanisms and pathways [138, 148, 

157]. Therefore, these genes represent fundamental sex-
ual dimorphism at a genetic level, which exists in every 
cell type. As these genes contribute to the regulation of 
normal cell and molecular processes at a whole genome 
level [158], an imbalance of function may contribute to 
sex differences in disease susceptibility, progression and 
the response to clinical interventions. The function of 
some of the sex chromosome-linked homolog genes and 
their differences are presented in Fig. 5.

Conclusions
Sexual dimorphism is prevalent in various diseases and 
particularly complex in respiratory diseases—asthma, 
COPD and lung cancer. These differences affect the 
susceptibility, severity, presentation and response to 
medical treatments. Despite the increased study of the 
factors contributing to sex differences in recent years, 
more research is required. The sex hormones estro-
gen and testosterone are well-recognised to contribute 
to the severity of disease, but how and whether they 
are the primary factors causing disease pathogenesis 
remains unclear. We have described the phenomena 
of dosage compensation and XCi escape causing an 
imbalance of key genome regulators from the sex chro-
mosomes. These genes contribute to central disease fea-
tures such as inflammation and fibrosis. Therefore, they 
are valuable candidates to further our understanding of 

Fig. 5  Illustration of genome regulators on the X and Y chromosome and their contribution to various diseases. AA amino acids, H3K27me3 Histone 
3 Lysine residue 27 trimethylation [140, 158–171, 171–173]
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the development of disease and the generation of new 
clinical interventions to improve the health outcomes 
for males and females.
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