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Abstract
Automated urine sediment analysis has become an essential part of diagnosing, monitoring, and treating various diseases

that affect the urinary tract and kidneys. However, manual analysis of urine sediment is time-consuming and prone to

human bias, and hence there is a need for an automated urine sediment analysis systems using machine learning algorithms.

In this work, we propose Swin-LBP, a handcrafted urine sediment classification model using the Swin transformer

architecture and local binary pattern (LBP) technique to achieve high classification performance. The Swin-LBP model

comprises five phases: preprocessing of input images using shifted windows-based patch division, six-layered LBP-based

feature extraction, neighborhood component analysis-based feature selection, support vector machine-based calculation of

six predicted vectors, and mode function-based majority voting of the six predicted vectors to generate four additional

voted vectors. Our newly reconstructed urine sediment image dataset, consisting of 7 distinct classes, was utilized for

training and testing our model. Our proposed model has several advantages over existing automated urinalysis systems.

Firstly, we used a feature engineering model that enables high classification performance with linear complexity. This

means that it can provide accurate results quickly and efficiently, making it an attractive alternative to time-consuming and

biased manual urine sediment analysis. Additionally, our model outperformed existing deep learning models developed on

the same source urine sediment image dataset, indicating its superiority in urine sediment classification. Our model

achieved 92.60% accuracy for 7-class urine sediment classification, with an average precision of 92.05%. These results

demonstrate that the proposed Swin-LBP model can provide a reliable and efficient solution for the diagnosis, surveillance,

and therapeutic monitoring of various diseases affecting the kidneys and urinary tract. The proposed model’s accuracy,

speed, and efficiency make it an attractive option for clinical laboratories and healthcare facilities. In conclusion, the Swin-

LBP model has the potential to revolutionize urine sediment analysis and improve patient outcomes in the diagnosis and

treatment of urinary tract and kidney diseases.
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1 Introduction

Microscopic urine sediment analysis is a routine laboratory

test [1]. Identifiable urine sediments include erythrocytes,

leukocytes, crystals, casts, epithelial cells, sperms, bacteria,

and mycetes (fungi) [2, 3], which, either singly or in

combination, can connote the presence of different clinical

conditions [4]. For example, the presence of erythrocyte

urinary sediments above a specified threshold means that

there is bleeding into the urine, which may signify diverse

pathologies (stone, infection, cancer, etc.) affecting

anatomical structures along the urinary tract, e.g., kidney

glomerulus, kidney tubules, ureter, bladder, prostate, and

urethra. Here, the shape of urinary erythrocytes depends on

the origin, i.e., dysmorphic versus non-dysmorphic in

glomerular and non-glomerular hematuria, respectively [2].

Urine sediment microscopic examination can be conducted

manually, labor-intensive and subject to human bias [5] or

using automated devices. The latter enhances operation

efficiency, helps reduce laboratory work burden, and is an

invaluable diagnostic screening tool in high-volume clini-

cal laboratories [6]. Indeed, image-based intelligent
Extended author information available on the last page of the article
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analytic systems can offer accurate and robust results at

high throughput [7, 8] for diagnosis, surveillance, and

therapeutic monitoring of various kidney and urinary tract

diseases [9].

Automated image recognition is integral to urinalysis

automation and generally comprises segmentation [10],

feature selection [11], optimization [12, 13], and classifi-

cation steps [14, 15]. Wide variations in sediment shapes,

small cell sizes, and occasional clumping of cells pose

challenges to the application of machine learning for uri-

nary sediment classification [7, 14]. Table 1 summarizes

the state-of-the-art image-based urine sediment analysis,

which comprises deep learning models exclusively. Of

note, large numbers of images (ranging from a few to 300

thousand) of distinct sediment types (3–10 classes) have

been studied that collectively encompassed the sediment

types commonly encountered in the laboratory: red blood

cells, white blood cells, epithelial cells, hyaline casts,

mucus strands, crystals (e.g., calcium oxalate), spermato-

zoa, as well as exogenous infectious agents like bacteria

and yeast cells.

It can be noted from Table 1 that the literature gaps of

the urinary sediment classification models are listed below.

• To achieve high classification accuracies, deep learning

models have typically been employed, despite their

high computational complexity. However, there is a

need for lightweight models that can run on simpler

configurations such as a laptop.

• Datasets with a limited number of categories or with

large distances between categories, such as RBC and

sperm cells, may require alternative approaches to

achieve high accuracy.

• All models listed in Table 1 are deep learning models,

highlighting the need for the proposal of competitive

feature engineering models as an alternative to deep

learning models.

The main objective of this study is to address the gaps in

feature engineering by proposing a new architecture, i.e.,

Swin-LBP in this work. This architecture represents a new

generation feature engineering work that we believe will

lead to improved performance in a variety of image anal-

ysis tasks. Furthermore, we have also developed a novel

dataset of urinary cell images, which includes 7 different

urinary cell categories. This dataset is an important con-

tribution to the field, as it will allow researchers to

benchmark the performance of their algorithms on a stan-

dardized dataset. Also, the created dataset contains more

than 10,000 images.

1.1 Motivation and our method

We were motivated to develop an accurate handcrafted

urine sediment classification method based on computer

vision of urine cell images. The challenge was posed as an

image classification problem, to which deep learning net-

works have been widely applied [20–22]. Computer vision,

which uses convolution neural networks (CNN) and

transformer-based models [23, 24], has emerged as an

important tool for image-based classification. Transform-

ers-based models possess interesting architecture [25]. The

popular vision transformer [26] and Swin transformer [27]

rely on patch-based classification: the former uses fixed-

sized patches to extract deep features, and the latter four-

layered shifted windows patch division. In this work, we

proposed a hand-modeled image classification method

based on the Swin architecture in combination with a local

binary pattern (LBP) [28] feature extraction function,

which we named Swin-LBP. The model comprised five

phases—(i) preprocessing of input images using shifted

windows-based patch division; (ii) LBP-based feature

extraction [28]; (iii) neighborhood component analysis

(NCA) [29]-based feature selection; (iv) support vector

machine (SVM) [30]-based classification; and (v) majority

Table 1 Recent image-based models developed for automated urinary sediment analysis

Author Number of images/classes Method

Liang

[14]

5377; 7: RBC, WBC, EP, EP nuclei, cast, crystals, mycete DenseNet features a pyramid network

Pan [16] Unknown; 3: RBC, WBC, CAOX Custom CNN

Li [9] 2551; 4: RBC, WBC, crystal, EP Custom CNN based on LeNet-5 structure

Ji [17] 300,000; 10: RBC, WBC, WBC cluster, squamous EP, sperm, CAOX,

hyaline cast, mucous filament, BACT, yeast

Data augmentation, area feature algorithm, AlexNet-

based end-to-training CNN

Velasco

[18]

1671; 3: RBC, CAOX, BACT InceptionResNetV2; InceptionV3

Liu [19] 2024; 7: RBC, WBC, EP, cast, crystal, yeast, non-cell Fine-tuned CNN ensemble: ResNet50, GoogleNet,

De-AlexNet

BACT bacteria; CAOX calcium oxalate crystal; CNN convolutional neural network; EP epithelial cell; RBC red blood cell; Rec recall; Sen
sensitivity; Spe specificity; WBC white blood cell

21622 Neural Computing and Applications (2023) 35:21621–21632

123



voting—and was trained and tested on a new reconstructed

7-class urine sediment image dataset.

1.2 Contributions

The contributions of the proposed model are given below.

• Novel handcrafted transformer-inspired Swin feature

engineering model is proposed.

• We have built an effective and efficient computer vision

model by combining:

• Shifted windows-based patch division of images.

• Computationally lightweight handcrafted feature

extraction and selection functions.

• Standard shallow classifier.

• A simple majority voting algorithm has been used to

get general classification results.

• Trained and tested on a 7-class urine sediment image

dataset, the Swin-LBP model attained salutary 7-class

classification accuracy of 92.60%.

The given bullets demonstrated that we are the first team

to use swin architecture for handcrafted features. It is a new

way to get high classification results from shallow

methods.

2 Dataset

Utilizing a published dataset [14, 31, 32], we conducted

segmentation, extraction, and cropping of individual urine

sediment images. This process yielded a collection of

12,330 images, which we subsequently grouped into seven

distinct classes: (i) cast (inclusive of all types of casts); (ii)

crystal; (iii) epithelia; (iv) epithelial nuclei; (v) erythrocyte;

(vi) leukocyte; and (vii) mycete. This dataset contains more

than 10,000 images, and the distribution of the aforemen-

tioned dataset is tabulated in Table 2.

We have randomly selected 2000 images from each

category but there are lower than 2000 observations in the

crystal and epithelial nuclei datasets. Therefore, all images

from these datasets have been involved in our used urine

cell image dataset. Sample images about this dataset are

also demonstrated in Fig. 1.

3 Swin-LBP model

Our novel contribution to the field of computer vision is a

cutting-edge model that we call Swin-LBP. The main

objective of this work is to significantly improve the

classification capabilities of shallow models. As depicted in

Fig. 2, our proposed model comprises five phases that are

designed to work together seamlessly.

The first phase involves preprocessing the data, whereby

each urine sediment image is resized to 240 9 240 and

then it is divided into six patches of various sizes (30 9 30,

40 9 40, 48 9 48, 60 9 60, 80 9 80, and 120 9 120).

This process generates 64, 36, 25, 16, 9, and 4 patches for

each resized image. Next, in the second phase, we use LBP

[28] to extract 59 features (as described in Sect. 3.2) from

each of the patches and the undivided sediment images.

This results in a large number of feature vectors that are

one more than the number of patches at every extraction

layer. To handle this, we merge the generated feature

vectors to create six merged feature vectors for each input

sediment image.

In the third phase, we employ the neighborhood com-

ponent analysis (NCA) [29] feature selection function to

select the most informative 295 features from each feature

vector, thereby balancing the lengths of the six feature

vectors. In the fourth phase, we feed the six selected vec-

tors, each containing the top discriminative features, to a

shallow support vector machine (SVM) [30] classifier to

obtain six predicted vectors using tenfold cross-validation

strategy.

Finally, in the fifth and last phase, we apply a majority

voting algorithm to the six predicted vectors to obtain four

predicted vectors. From the six predicted vectors and four

voted vectors obtained in the fourth and fifth phases,

respectively, we select the one with the most accurate

result as the final output. We provide technical details of

each phase in the following sections. Moreover, we have

illustrated a block diagram (open version) of the proposed

Swin-LBP in Fig. 3.

3.1 Preprocessing

In this first phase, Swin architecture-inspired shifted win-

dows-based patch division is performed as follows:

Table 2 Attributes of the collected dataset

No Name Number of images

1 Cast 2000

2 Crystal 1643

3 Epithelia 2000

4 Epithelial nuclei 687

5 Erythrocyte 2000

6 Leukocyte 2000

7 Mycete 2000

Total 12,330
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Step 0: Read urine sediment images from the collected

dataset.

Step 1: Resize each image to a 240 9 240 sized image.

Step 2: Apply six types of patch division to create six

layers. This process is defined below.

pkt ¼ Im i : iþ sn � 1; j : jþ sn � 1ð Þ;
s 2 30; 40; 48; 60; 80; 120f g

k 2 1; 2; . . .; 6f g; t 2 1; 2; . . .;
240

sn

� �
;

i 2 1; sn; . . .; 240f g; j 2 1; sn; . . .; 240f g

ð1Þ

where p represents patch; Im, the used image; k, the type of

patch; s, the size of the patch; and t, the number of patches.

3.2 Feature extraction

LBP is a histogram-based feature extraction function

deployed in the model to extract global and local textural

features from the undivided resized sediment image and its

corresponding patches, respectively, using neighborhood

relations constrained within microstructural image units of

3 9 3 overlapping windows (Fig. 4).

For each resized input sediment image, the extract LBP

function of MATLAB is used to extract at every one of the

six layers of patch divisions 59 features from the undivided

image, and its corresponding derived patches.

Step 3: Extract features from the resized images and

generate patches. This process is defined below.

Fig. 1 Sample urine cell images

of the used dataset a cast,

b crystal, c epithelia, d epithelia

nuclei, e erythrocyte,

f leukocyte, g mycete

Fig. 2 Graphical depiction of

the proposed model. P: patches;

LBP: local binary pattern; f: the

generated individual feature

vectors; F: merged feature

vectors; s: selected feature

vectors; p: predicted labels; v:

voted vectors

21624 Neural Computing and Applications (2023) 35:21621–21632

123



f k1 ¼bp Imð Þ
f ktþ1 ¼bp pkt

� � ð2Þ

where f represents the generated feature vector with a

length of 59; and bpð:Þ, LBP function.

Step 4: Merge the generated feature vectors in every

layer to create six merged feature vectors per input image.

Fk jþ 59� h� 1ð Þð Þ ¼ f kt jð Þ; j 2 1; 2; . . .; 59f g; h
2 1; 2; . . .; t þ 1f g ð3Þ

where Fk represents the kth merged feature vector; the

lengths of F1;F2;F3;F4;F5; and F6 being 3853

(= 65 9 59), 2183 (= 37 9 59), 1534 (= 26 9 59), 1003

(= 17 9 59), 590 (= 10 9 59), and 295 (= 5 9 59),

respectively.

Fig. 3 Block diagram of the

Swin-LBP model (see text for

detailed description). f,

extracted feature vector; P,

patch, SVM, support vector

machine; LBP, local binary

pattern; NCA, neighborhood

component analysis

Fig. 4 Block diagram of the LBP feature extraction function
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3.3 Feature selection

The NCA function, a simple and effective L1-norm dis-

tance-based feature selector [29], is deployed to select the

most discriminative 295 features in each of the merged six

feature vectors, which are unequal in lengths (see

Sect. 3.2), generated per input urine sediment image. In so

doing, two important aims are achieved: (i) reduction in

data dimensionality; and (ii) balancing/equalizing the

lengths of the resultant NCA-selected feature vectors to

295.

Step 5: Apply qualified indexes using the NCA feature

selection function.

indk ¼ nðFk; yÞ ð4Þ

where nð:; :Þ represents the NCA feature selection function;

indk implies the qualified indexes of the features; and y

defines actual labels.

Step 6: Choose the most informative 295 features from

the extracted feature vectors.

sk d; ið Þ ¼ Fk d; indk ið Þ
� �

; d 2 1; 2; . . .;NoIf g; i
2 1; 2; . . .; 295f g ð5Þ

where sk represents the kth feature vector with a length of

295 and NoI, the number of images.

3.4 Classification

A shallow classifier has been used in this model, and this

classifier is SVM. SVM is the widely used classifier in the

literature. Hyperparameters are set at: kernel function is

polynomial, polynomial order is three, box constraint is 1,

coding one-vs-all, validation is tenfold cross-validation.

The classification process is defined below.

Step 7: Apply SVM-based classification.

pk ¼ j sk; y
� �

ð6Þ

where p represents the predicted vector; and jðÞ, the SVM
classifier function.

3.5 Majority voting

Mode function-based weightless/hard majority voting is

implemented to augment the classification performance of

the Swin-LBP model. This process is defined below.

Step 8: Calculate the accuracies of the predicted vectors.

Step 9: Sort predicted vectors in descending order of

accuracy rates.

id ¼ sortðpkÞ ð7Þ

where id represents the index of the sorted vector.

Step 10: Generate four voted predicted vectors.

v1 ¼ x pid 1ð Þ; pid 2ð Þ; pid 3ð Þ
� �

ð8Þ

v2 ¼ x pid 1ð Þ; pid 2ð Þ; pid 3ð Þ; pid 4ð Þ
� �

ð9Þ

v3 ¼ x pid 1ð Þ; pid 2ð Þ; pid 3ð Þ; pid 4ð Þ; pid 5ð Þ
� �

ð10Þ

v4 ¼ x pid 1ð Þ; pid 2ð Þ; pid 3ð Þ; pid 4ð Þ; pid 5ð Þ; pid 6ð Þ
� �

ð11Þ

where v represents the voted vector, and xðÞ, the mode

function.

Step 11: Calculate accuracies of the four voted predicted

vectors and select the most accurate voted one.

4 Results

Two performance evaluation metrics were used to evaluate

the model: accuracy and F1-score [33, 34]. These equations

are given below.

acc ¼ tpþ tn

tpþ tnþ fpþ fn
ð12Þ

f1 ¼ 2tp

2tpþ fpþ fn
ð13Þ

where acc represents accuracy; f1, F1-score; and tp, tn, fp,

and fn; the number of true positives, true negatives, false

positives, and false negatives, respectively. The perfor-

mances of the proposed model have been presented using a

tenfold cross-validation strategy.

4.1 Results of each layer

The Swin-LBP model extracts feature from six layers, each

with variable defined patch sizes, input to downstream

NCA feature selector and SVM classifier. Table 3 sum-

marizes layer-wise classification performance obtained by

the SVM classifier.

Table 3 7-class support vector machine-based classification perfor-

mance by feature extraction layer

Layer Patch size Accuracy (%) F1-score (%)

Layer 1 30 9 30 88.87 87.05

Layer 2 40 9 40 89.69 87.90

Layer 3 48 9 48 89.60 87.73

Layer 4 60 9 60 90.69 89.08

Layer 5 80 9 80 90.67 88.90

Layer 6 120 9 120 89.52 87.53
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4.2 Voted results

The mode function used a majority voting algorithm to

select the best performance among the layer-wise predicted

vectors. Table 4 summarizes the voted results obtained by

hard voting. The Swin-LBP model attained the highest

classification accuracy of 92% with the third voted vector,

which is higher than the best layer-wise accuracy of

90.69% (Layer 4) (Table 3) attained before majority vot-

ing. Our proposed Swin-LBP was designed as a self-or-

ganized image classification architecture. Therefore, the

most accurate result among the ten (six layer-wise plus four

voted results) was selected as the final result, i.e., the Swin-

LBP model attained 92.60% classification accuracy (and

91.19% overall F1-score) on the urine sediment image

dataset.

4.3 Class-wise results

Figure 5 and Table 5 depict the model’s confusion matrix,

and class-wise performance, respectively, based on the

final best results, which were determined by the highest

accuracy scores among the six layer-wise and four voted

results calculated by the SVM classifier and majority vot-

ing, respectively. The best and worst classification perfor-

mances were obtained for the ‘‘erythrocyte’’ (96.15%

accuracy; 95.93% F1-score) and ‘‘epithelial nuclei’’

(69.26% accuracy; 76.96% F1-score) urine sediment clas-

ses, respectively.

4.4 Time complexity analysis

Swin-LBP is a lightweight feed-forward image classifica-

tion model based on handcrafted feature extraction. Using

big O notation, the model complexity is shown to be linear

(Table 6).

5 Discussion

In this paper, a new urinalysis classification model was

proposed that was trained and tested on a urine sediment

image dataset comprising 6687 urine sentiment images

divided equally among seven distinct classes. The novel

Swin-LBP model employed a new learning architecture

inspired by a Swin transformer in combination with a

handcrafted LBP-based feature extractor. Despite its linear

time complexity, our Swin-LBP model attained 92.60%

classification accuracy for 7-class classification problem

which is commensurate with the classification performance

of more computationally demanding CNN-based deep

learning models that had been developed on the same

dataset from which our study dataset was derived

(Table 7).

It can be noted from Table 7 that our proposed model

reached high classification performance and it is a com-

petitive feature engineering model to deep learning model.

Table 4 7-class model classification performance obtained by

majority voting on the predicted feature vectors

Vector The used layers Accuracy (%) F1-score (%)

Voted 1 4, 5, 2 92.07 90.63

Voted 2 4, 5, 2, 3 92.11 90.66

Voted 3 4, 5, 2, 3, 6 92.55 91.66

Voted 4 4, 5, 2, 3, 6, 1 92.60 91.19

Fig. 5 Confusion matrix obtained by applying the model on the urine

sediment image dataset. Classes 1 to 7 correspond to the urine

sediment classes ‘‘Cast,’’ ‘‘Crystal,’’ ‘‘Epithelia,’’ ‘‘Epithelial nuclei,’’

‘‘Erythrocyte,’’ ‘‘Leukocyte,’’ and ‘‘Mycete,’’ respectively

Table 5 Model classification performance for each urine sediment

class

Urine sediment class Accuracy (%) F1-score (%)

Cast 95.75 94.38

Crystal 89.65 92.12

Epithelia 94.15 92.62

Epithelial nuclei 69.26 76.96

Erythrocyte 96.15 95.93

Leukocyte 94.75 93.56

Mycete 92.65 91.71
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5.1 Ablations

We have presented the ablations to show the high classi-

fication performance of the presented Swin-LBP model. In

the first phase of this section, we used the shallow classi-

fiers to get comparative results. Then, we compared results

to LBP and local phase quantization (LPQ)-based models.

These items have been defined below.

Item 1: We have used LBP, histogram-oriented gradients

(HOG), and local phase quantization (LPQ) feature

extractors to get feature vectors.

Item 2: neural network (NN), k-nearest neighbors (k-

NN), and linear discriminant (LD) have been utilized as

classifiers.

Item 3: We have used a tenfold cross-validation strategy

to get results. In this item, threefold cross-validation and

fivefold cross-validation have been used and the calcu-

lated results using these validations have been presented

for comparison.

The results of this ablation study are illustrated in Fig. 6.

According to Fig. 6, the proposed Swin-LBP achieved a

classification accuracy of 92.60% using the utilized dataset.

We used LBP as the primary feature extraction function for

the introduced Swin-LBP architecture, resulting in an

80.84% classification accuracy for the LBP-based urinary

image classification model. Therefore, our proposed Swin-

LBP outperforms LBP by 11.76% points for this dataset. In

addition, HOG and LPQ feature extraction-based models

achieved 85.77% and 86% accuracies, respectively. These

results suggest that Swin-LBP is the optimal handcrafted

model among all considered models.

We used NN, k-NN, LD and SVM classifiers to get

benchmark results. To attain classification accuracy, we

have used feature vectors of layer 4 (60 9 60 sized patches)

and the classification accuracies of these classifiers are

shown in Fig. 7.

In Fig. 7, we observe that the SVM classifier achieves

the highest accuracy of 90.63%, surpassing the NN clas-

sifier’s performance of 87.20%.

In the defined Item 3, the results obtained using three

cross-validations techniques (threefold CV, fivefold CV

and tenfold CV) for the generated six feature vectors are

shown in Fig. 8.

Figure 8 demonstrates that the tenfold cross-validation

(CV) technique produces the highest accuracy among the

validation methods used. However, we also evaluated the

proposed Swin-LBP approach using two additional

Table 6 Computational

complexity of the Swin-LBP

model

Phase Time complexity

Preprocessing (resizing; patch division) Oðw� hÞ
Feature extraction and merging Oðm� n� t þ tÞ
Feature selection OðkÞ
Classification OðdÞ
Majority voting OðlÞ
Total Oðw� hþ m� n� t þ k þ d þ lÞ

w and h represent width and height, respectively, of the input urine cell images; m and n, width and height,

respectively, of the patches; t, the number of patches; k and d, time complexity coefficients of neighbor-

hood component analysis feature selector and support vector machine classifier, respectively; and l, number

of validation prediction vectors

Table 7 Comparison of automated image-based models for urine sediment analysis using the same dataset or its derivative*

Author Method Number of images/classes Results (%)

Kang [35] CNN-based image classification 5376 images; 7 classes AP: 84.10

Liang [14] DenseNet feature pyramid network 5377 images; 7 classes AP: 86.90

Liang [31] Faster region-based CNN; single shot detector 5376 images; 7 classes AP: 84.10

Yan [32] Bidirectional context propagation network 5377 images, 7 classes AP: 88.20

Our model Shifted windows patch division, local binary pattern, neighbor

component analysis, support vector machine, majority voting

12,230 urine sediment images*; 7 classes AP: 92.05

Acc: 92.60

F1: 91.19

Acc accuracy; AP average precision; CNN convolutional neural network; F1 F1-score

*The images are reconstructed single sediment images extracted from the dataset used in the other four studies
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validation techniques. Furthermore, we have calculated the

final results using information fusion (iterative majority

voting) of the used k-fold CV-based models and these

classification results have been depicted in Fig. 9.

Figure 9 depicts that the tenfold CV is the best valida-

tion technique.

Our experimental results for ablations, as shown above,

validate the effectiveness of the proposed Swin-LBP

approach in achieving the optimal combination of

parameters.

5.2 Highlights of the study

We have given highlights of this study in three following

items: (1) findings, (2) advantages and (3) limitations.

These important points have been listed below.

5.2.1 Findings

• Presents an automated urine sediment analysis system.

• Swin-LBP model uses machine learning algorithms to

classify urine sediment images.

• It is based on Swin transformer architecture and LBP

feature extraction technique and has five phases.

Moreover, the introduced Swin-LBP has six feature

extraction layers to use six types of fixed-size patch

divisions.

• The phases are preprocessing, feature extraction, fea-

ture selection, support vector machine-based calcula-

tion, and majority voting.

• The model was trained and tested on a 7-class urine

sediment image dataset containing 12,330 images. This

model achieved an accuracy of 92.60% and an average

precision of 92.05%.

• According to class-wise results, the best accurate cell

type is Erythrocyte and the worst one is epithelial

nuclei. There are only 687 epithelial nuclei cell images

in this dataset, and these cells are similar to epithelial

urine cells.

• The best feature extraction layer is the 4th feature

extraction layer. We have used 60 9 60 sized patches

in this feature extraction layer. Moreover, the second

best features have been generated using 60 9 60 sized

patches (5th feature extraction layer). The classification

accuracies of the 4th and 5th feature extraction layers are

90.69% and 90.67% respectively.

• The worst one is the 1st feature extraction layer since

the features of this layer yielded 88.87% classification

accuracy and this layer has used 60 9 60 sized patches.

Fig. 6 Classification accuracies obtained for the ablation study

Fig. 7 Accuracy obtained using various classifiers

Fig. 8 Classification accuracies obtained for various feature vectors

and SVM classifier with three validations (threefold, fivefold and

tenfold CVs)

Fig. 9 Summary of accuracies obtained for three cross-validation

techniques

Neural Computing and Applications (2023) 35:21621–21632 21629

123



• We have compared the commonly used shallow clas-

sifiers and the best resulting classifier is the SVM

classifier. Therefore, we have used this classifier.

• Three validations were used to attain the classification

results.

5.2.2 Advantages

• Our team has found that Swin-LBP can improve LBP’s

classification performance by approximately 11%.

• We tested the recommended Swin-LBP approach on a

large dataset of 12,230 urine cell images, achieving an

impressive classification accuracy of 92.60%. This

result highlights the potential of handcrafted models

to achieve outstanding performance on large image

datasets.

• Our study also revealed that Swin-LBP outperforms

published deep models developed on the same urine

sediment image dataset.

• The Swin-LBP model proposed in our study is simple

and can be easily implemented by researchers to

address image classification tasks.

5.2.3 Limitations

• Although fine-tuning operations can achieve higher

classification performance, we require a fast-responding

model. As such, we opted not to use any optimization

techniques.

• To further validate the proposed Swin-LBP model’s

classification performance, additional urine image

datasets could be used. Such datasets could provide

more comprehensive insights into the model’s general-

ization capabilities and its potential to address real-

world image classification problems.

6 Conclusions

In this work, we proposed a computationally lightweight

yet accurate model for automated analysis of urine sedi-

ments using the Swin Transformer architecture with shifted

windows-based patch division. Our approach enabled glo-

bal and local textural feature extraction, selection, and

classification using LBP, NCA, and SVM, respectively.

The model achieved excellent results on a derived 7-class

study dataset comprising 12,330 urine images, with a

classification accuracy of 92.60%. Our model has low time

complexity and is simple yet accurate, making it suit-

able for real-world urine sediment analysis.

Our study also highlights the versatility and utility of

computer vision-inspired shifted windows-based patch

division for general image classification problems that

enable multilevel downstream feature extraction using

handcrafted feature engineering. Specifically, our results

confirm the feasibility of the Swin-LBP approach in

biomedical image analysis applications.

Our study presents a novel method for the automated

analysis of urine sediments that achieves excellent classi-

fication accuracy with a computationally efficient

approach. Additionally, our use of shifted windows-based

patch division provides a promising technique for general

image classification problems that can enable multilevel

downstream feature extraction using handcrafted feature

engineering.

In future work, we plan to propose automated urine cell

counting and classification applications where the Swin

architecture can be combined with other image classifica-

tion options such as transfer learning, further extending the

utility of our approach.
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21630 Neural Computing and Applications (2023) 35:21621–21632

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Romahn MC (2019) Baseline urinalysis values in common bot-

tlenose dolphins under human care in the Caribbean. J Vet Diagn

Invest 31:426–433

4. Li Q, Yu Z, Qi T, Zheng L, Qi S, He Z, Li S, Guan H (2020)

Inspection of visible components in urine based on deep learning.

Med Phys 47:2937–2949

5. Cho J, Oh KJ, Jeon BC, Lee S-G, Kim J-H (2019) Comparison of

five automated urine sediment analyzers with manual microscopy

for accurate identification of urine sediment. Clin Chem Lab Med

(CCLM) 57:1744–1753

6. Laiwejpithaya S, Wongkrajang P, Reesukumal K, Bucha C,

Meepanya S, Pattanavin C, Khejonnit V, Chuntarut A (2018)

UriSed 3 and UX-2000 automated urine sediment analyzers vs

manual microscopic method: a comparative performance analy-

sis. J Clin Lab Anal 32:e22249

7. Khalid ZM, Hawezi RS, Amin SRM (2022) Urine sediment

analysis by using convolution neural network. In: 2022 8th

International Engineering Conference on Sustainable Technology

and Development (IEC), pp 173–178, IEEE

8. Liu H, Li Q, Zhang Y, Huang D, Yu F (2022) Consistency

analysis of the Sysmex UF-5000 and Atellica UAS 800 urine

sedimentation analyzers. J Clin Lab Anal 36:e24659

9. Li T, Jin D, Du C, Cao X, Chen H, Yan J, Chen N, Chen Z, Feng

Z, Liu S (2020) The image-based analysis and classification of

urine sediments using a LeNet-5 neural network. Comput

Methods Biomech Biomed Eng: Imaging Vis 8:109–114

10. Houssein EH, Helmy BE-D, Oliva D, Jangir P, Premkumar M,

Elngar AA, Shaban H (2022) An efficient multi-thresholding

based COVID-19 CT images segmentation approach using an

improved equilibrium optimizer. Biomed Signal Process Control

73:103401

11. Devi RM, Premkumar M, Jangir P, Kumar BS, Alrowaili D, Nisar

KS (2022) BHGSO: binary hunger games search optimization

algorithm for feature selection problem. CMC-Comput Mater

Continua 70:557–579

12. Premkumar M, Jangir P, Sowmya R, Elavarasan RM (2021)

Many-objective gradient-based optimizer to solve optimal power

flow problems: analysis and validations. Eng Appl Artif Intell

106:104479

13. Premkumar M, Sowmya R, Umashankar S, Jangir P (2021)

Extraction of uncertain parameters of single-diode photovoltaic

module using hybrid particle swarm optimization and grey wolf

optimization algorithm. Mater Today: Proc 46:5315–5321

14. Liang Y, Tang Z, Yan M, Liu J (2018) Object detection based on

deep learning for urine sediment examination. Biocybern Biomed

Eng 38:661–670

15. Zhang X, Jiang L, Yang D, Yan J, Lu X (2019) Urine sediment

recognition method based on multi-view deep residual learning in

microscopic image. J Med Syst 43:1–10

16. Pan J, Jiang C, Zhu C (2018) Classification of urine sediment

based on convolution neural network. In: AIP Conference Pro-

ceedings, AIP Publishing LLC, pp 040176

17. Ji Q, Li X, Qu Z, Dai C (2019) Research on urine sediment

images recognition based on deep learning. IEEE Access

7:166711–166720

18. Velasco JS, Cabatuan MK, Dadios EP (2019) Urine sediment

classification using deep learning. Lect Notes Adv Res Electr

Electron Eng Technol, :180–185

19. Liu W, Li W, Gong W (2020) Ensemble of fine-tuned convolu-

tional neural networks for urine sediment microscopic image

classification. IET Comput Vision 14:18–25

20. Khan AA, Laghari AA, Awan SA (2021) Machine learning in

computer vision: a review. EAI Trans Scalable Inf Syst 8:e4

21. Hossain MS, Bilbao J, Tobón DP, Muhammad G, Saddik AE

(2022) Special issue deep learning for multimedia healthcare.

Multimed Syst 28(4):1147–1150

22. Chu H, He Z, Liu S, Liu C, Yang J, Wang F (2022) Deep neural

network for point sets based on local feature integration. Sensors

22:3209

23. Wang L, Fang S, Li R, Meng X (2022) Building extraction with

vision transformer. IEEE Trans Geosci Remote Sens 60:1–11

24. Wang F, Rao Y, Luo Q, Jin X, Jiang Z, Zhang W, Li S (2022)

Practical cucumber leaf disease recognition using improved Swin

Transformer and small sample size. Comput Electron Agric

199:107163

25. Xu P, Zhu X, Clifton DA (2022) Multimodal learning with

transformers: a survey. arXiv preprint arXiv:2206.06488

26. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X,

Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S

(2020) An image is worth 16 9 16 words: transformers for image

recognition at scale. arXiv preprint arXiv:2010.11929

27. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B

(2021) Swin transformer: hierarchical vision transformer using

shifted windows. In: Proceedings of the IEEE/CVF international

conference on computer vision, pp 10012–10022

28. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-

scale and rotation invariant texture classification with local binary

patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987

29. Yang W, Wang K, Zuo W (2012) Neighborhood component

feature selection for high-dimensional data. J Comput 7:161–168

30. Peterson LE (2009) K-nearest neighbor. Scholarpedia 4:1883

31. Liang Y, Kang R, Lian C, Mao Y (2018) An end-to-end system

for automatic urinary particle recognition with convolutional

neural network. J Med Syst 42:1–14

32. Yan M, Liu Q, Yin Z, Wang D, Liang Y (2020) A bidirectional

context propagation network for urine sediment particle detection

in microscopic images. In: ICASSP 2020-2020 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp 981–985, IEEE

33. Powers DM (2020) Evaluation: from precision, recall and

F-measure to ROC, informedness, markedness and correlation.

arXiv preprint arXiv:2010.16061

34. Warrens MJ (2008) On the equivalence of Cohen’s kappa and the

Hubert-Arabie adjusted Rand index. J Classif 25:177–183

35. Kang R, Liang Y, Lian C, Mao Y (2018) CNN-based automatic

urinary particles recognition. arXiv preprint arXiv:1803.02699

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:21621–21632 21631

123

http://arxiv.org/abs/2206.06488
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.16061
http://arxiv.org/abs/1803.02699


Authors and Affiliations

Mehmet Erten1 • Prabal Datta Barua2 • Ilknur Tuncer3 • Sengul Dogan4 • Mehmet Baygin5 •

Turker Tuncer4 • Ru-San Tan6,7 • U. Rajendra Acharya8

& Prabal Datta Barua

Prabal.Barua@usq.edu.au

Mehmet Erten

mehmeter23@gmail.com

Ilknur Tuncer

ilknur.tuncer@icisleri.gov.tr

Sengul Dogan

sdogan@firat.edu.tr

Mehmet Baygin

mehmet.baygin@erzurum.edu.tr

Turker Tuncer

turkertuncer@firat.edu.tr

Ru-San Tan

tanrsnhc@gmail.com

U. Rajendra Acharya

Rajendra.Acharya@usq.edu.au

1 Department of Biochemistry, Elazig Fethi Sekin City

Hospital, Elazig, Turkey

2 School of Business (Information System), University of

Southern Queensland, Toowoomba, Australia

3 Elazig Governorship, Interior Ministry, Elazig, Turkey

4 Department of Digital Forensics Engineering, College of

Technology, Firat University, 23119 Elazig, Turkey

5 Department of Computer Engineering, College of

Engineering, Erzurum Technical University, Erzurum,

Turkey

6 Department of Cardiology, National Heart Centre Singapore,

Singapore, Singapore

7 Duke-NUS Medical School, Singapore, Singapore

8 School of Mathematics, Physics and Computing, University

of Southern Queensland, Springfield, Australia

21632 Neural Computing and Applications (2023) 35:21621–21632

123

http://orcid.org/0000-0001-5117-8333

	Swin-LBP: a competitive feature engineering model for urine sediment classification
	Abstract
	Introduction
	Motivation and our method
	Contributions

	Dataset
	Swin-LBP model
	Preprocessing
	Feature extraction
	Feature selection
	Classification
	Majority voting

	Results
	Results of each layer
	Voted results
	Class-wise results
	Time complexity analysis

	Discussion
	Ablations
	Highlights of the study
	Findings
	Advantages
	Limitations


	Conclusions
	Open Access
	References




